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1. Introduction
Classical orthogonal polynomial sequences (OPS) are certainly the most

studied ones. This class of OPS has some beautiful properties and char-
acterizations as well as applications in other related fields (number theory,
probability, mathematical physics, approximation theory and many others
mathematics branches). For instance, they are such that their derivatives
are also OPS. One special case of this family is the situation where OPS and
their derivatives coincide: this is known in the literature as Appell OPS. This
notion was introduced in 1880 in a work by P. Appell [5]. That is problem of
finding polynomial sequences (fn)n≥0 for which the following equation holds

Dfn(x) = rnfn−1(x) (n = 0, 1, . . .) , (1.1)

with (rn)n≥0 a nonzero complex sequence of numbers and D is a lowering op-
erator (this means an operator reducing by one the degree of any polynomial
sequence). Since that time, all polynomial sequences with property (1.1) are
called Appell sequences (see [3, 15]). Along this work, we will focus only on
Appell OPS.

We recall that if D = d/dx in (1.1), then the corresponding OPS is the
Hermite polynomial (see [2]). If D is replaced by the q-Jackson operator Dq

(respectively the Hahn operator Dq,ω) defined by

Dq,ωf(x) =
f(qx+ ω)− f(x)

(q − 1)x+ ω
, 0 < q < 1, ω ∈ C ,
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where Dq = Dq,0, then the corresponding Appell OPS are, up to an affine
transformation of the variable, the Al-Salam-Carlitz polynomials (see [4, 9]).
In [6] it is studied the case of (1.1) where

D = 2
d

dx
x
d

dx
+ ε

d

dx
, ε = ±1 ,

providing then a new characterization of the Laguerre polynomials. Such
OPS received considerable attention along the last decade and since that
time. Now consider the Askey-Wilson operator Dq which is defined by

Dq p(x(s)) =
p(x(s+ 1/2))− p(x(s− 1/2))

x(s+ 1/2)− x(s− 1/2)
, x(s) = 1

2(qs + q−s) ,

for every polynomial p. We assume that 0 < q < 1. (Taking qs = eiθ we
recover Dq as defined in [13, (21.6.2)].) We define the averaging operator by

Sq p(x(s)) =
1

2

(
p(x(s+ 1/2)) + p(x(s− 1/2))

)
, x(s) = 1

2(qs + q−s) .

The problem of finding OPS solutions of (1.1) whenever D = Dq appeared
as a special case of a problem posed by M. Ismail in [13, Conjecture 24.7.8].
This case of (1.1) was firstly solved by W. Al-Salam in [1] and secondly by
J. Galiffa and W. Ong in [8] using different methods and characterising the
Rogers q-Hermite polynomials. Despite this, none of the methods used in
both works could be useful to solve the conjecture [13, Conjecture 24.7.8] in
its entire form. This is only due the complexity of the Askey-Wilson operator
and its properties. Recently in [11], the authors addressed this conjecture in
its entire form using some new techniques. In addition, a situation of (1.1)
where operators Dq and Sq are both involved as the following equation

Dqfn(x) = rnSqfn−1(x) (n = 0, 1, . . .) ,

is considered in [7] characterizing some special cases of the Askey-Wilson
polynomials. The purpose of this work is to solve (1.1) for operators D =
SqDq and D = DqSq. This leads to a new characterization of the Al-Salam-
Chihara polynomials. In addition, we also characterize the corresponding
regular form. This definitely provides some ideas on polynomial bases to
use when dealing with problems with the averaging and the Askey-Wilson
operators.

The structure of the paper is as follows. Section 2 presents some basic facts
of the algebraic theory of OPS together with some useful results. Sections 3
and 4 contain our main results for each case.
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2. Background and preliminary results
The algebraic theory of orthogonal polynomials was introduced by P. Ma-

roni (see [14]). Let P be the vector space of all polynomials with complex
coefficients and let P∗ be its algebraic dual. A simple set in P is a sequence
(Pn)n≥0 such that deg(Pn) = n for each n. A simple set (Pn)n≥0 is called an
OPS with respect to u ∈ P∗ if

〈u, PnPm〉 = κnδn,m (m = 0, 1, . . . ; κn ∈ C \ {0}),

where 〈u, f〉 is the action of u on f ∈ P . In this case, we say that u is regular.
The left multiplication of a functional u by a polynomial φ is defined by

〈φu, f〉 = 〈u, φf〉 (f ∈ P).

Consequently, if (Pn)n≥0 is a monic OPS with respect to u ∈ P∗, then the
corresponding dual basis is explicitly given by

an =
〈
u, P 2

n

〉−1
Pnu. (2.1)

Any functional u ∈ P∗ (when P is endowed with an appropriate strict induc-
tive limit topology, see [14]) can be written in the sense of the weak topology
in P∗ as

u =
∞∑
n=0

〈u, Pn〉 an.

It is known that a monic OPS, (Pn)n≥0, is characterized by the following
three-term recurrence relation (TTRR):

P−1(z) = 0, Pn+1(z) = (z −Bn)Pn(z)− CnPn−1(z) (Cn 6= 0), (2.2)

and, therefore,

Bn =

〈
u, zP 2

n

〉
〈u, P 2

n〉
, Cn+1 =

〈
u, P 2

n+1

〉
〈u, P 2

n〉
. (2.3)

The Askey-Wilson and the averaging operators induce two elements on P∗,
say Dq and Sq, via the following definition (see [12]):

〈Dqu, f〉 = −〈u,Dqf〉, 〈Squ, f〉 = 〈u,Sqf〉.

Hereafter we denote z = x(s) = (qs + q−s)/2. Then the following proposi-
tion holds.
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Proposition 2.1. ([10] and references therein) Let f, g ∈ P and u ∈ P∗.
Then the following equations hold.

Dq
(
fg
)

=
(
Dqf

)(
Sqg
)

+
(
Sqf
)(
Dqg

)
, (2.4)

Sq
(
fg
)

=
(
Dqf

)(
Dqg

)
U2 +

(
Sqf
)(
Sqg
)
, (2.5)

αS2
q f = Sq

(
U1Dqf

)
+ U2D2

qf + αf, (2.6)

DnqSqf = αnSqDnq f + γnU1Dn+1
q f, (2.7)

fDqu = Dq (Sqf u)− Sq (Dqf u) , (2.8)

αDn
qSqu = αn+1SqD

n
qu + γnU1D

n+1
q u, (2.9)

with n = 0, 1, . . ., where α = (q1/2 + q−1/2)/2 and

U1(z) = (α2 − 1)z, U2(z) = (α2 − 1)(z2 − 1) .

It is known (see [10, Proposition 2.1])that

Dqzn = γnz
n−1 + unz

n−3 + · · · , Sqzn = αnz
n + ûnz

n−2 + · · · , (2.10)

with n = 0, 1, . . ., where

αn = 1
2(qn/2 + q−n/2) , γn =

qn/2 − q−n/2

q1/2 − q−1/2
,

un = 1
4

(
nγn−2 − (n− 2)γn

)
, ûn = n

4 (αn−2 − αn) .
We set γ−1 := −1 and α−1 := α. Recall that the monic Al-Salam-Chihara
polynomials, Qn(x; a, b|q) depend on two real parameters a and b, are char-
acterized by

xQn(x; a, b|q) = Qn+1(x; a, b|q) + 1
2 (a+ b)qnQn(x; a, b|q)

+ 1
4 (1− abqn−1)(1− qn)Qn−1(x; a, b; q)

(n = 0, 1, . . .), provided we define Q−1(x; a, b|q) = 0 (see e.g. [13]). Further,
up to normalization, the Rogers q−Hermite polynomials are the special case
a = b = 0 of the Al-Salam-Chihara polynomials. The following result is
useful.

Theorem 2.1. [10] Let (Pn)n≥0 be a monic OPS with respect to u ∈ P∗.
Suppose that u satisfies the distributional equation

Dq(φu) = Sq(ψu) , (2.11)
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where φ(z) = az2 + bz + c and ψ(z) = dz + e, with d 6= 0. Then (Pn)n≥0

satisfies (2.2) with

Bn =
γnen−1

d2n−2
− γn+1en

d2n
, Cn+1 = − γn+1dn−1

d2n−1d2n+1
φ[n]

(
− en
d2n

)
, (2.12)

where dn = aγn + dαn, en = bγn + eαn, and

φ[n](z) =
(
d(α2 − 1)γ2n + aα2n

)(
z2 − 1

2

)
+
(
bαn + e(α2 − 1)γn

)
z + c+

a

2
.

3. Main results: first case
We are now in the position to prove our main results for one of the situation.

Lemma 3.1. Let (Pn)n≥0 be a monic OPS such that

SqDqPn(z) = knPn−1(z) (n = 0, 1, . . .) . (3.1)

Then the following relations hold.

2αU2(z)D2
qPn(z) = anPn(z) + bnPn−1(z) + cnPn−2(z) , (3.2)

4αU2(z)DqSqPn(z) =
5∑
l=1

a[l]
n Pn+2−l(z) , (3.3)

2S2
qPn(z)

= 2α2
nPn(z) + kn(Bn −Bn−1)Pn−1(z) + (kn−1Cn − knCn−1)Pn−2(z) , (3.4)

for each n = 0, 1, . . ., where

an = kn+1 − (2α2 − 1)kn − 1 , bn =
(
Bn − (2α2 − 1)Bn−1

)
kn ,

cn = kn−1Cn − (2α2 − 1)knCn−1, a
[1]
n = an+1 − an , a[2]

n = bn+1 − bn ,
a[3]
n = cn+1 − cn + (Bn −Bn−1)bn + (an−1 − α2an)Cn ,

a[4]
n = (Bn −Bn−2)cn + bn−1Cn − bnCn−1, a

[5]
n = cn−1Cn − cnCn−2 .

Proof : First of all from (2.6) using (2.5) yields

S2
q f = αU2D2

qf + U1SqDqf + f . (3.5)

Secondly, we apply successively the operators Dq and Sq to the TTRR (2.2)
satisfied by the monic OPS (Pn)n≥0 solution of (3.1). Using (2.4) and (2.5),



6 D. MBOUNA AND A. SUZUKI

we obtain the following equation.

S2
qPn(z) + αU2(z)D2

qPn(z) + α2xSqDqPn(z)

= SqDqPn+1(z) +BnSqDqPn(z) + CnSqDqPn−1(z) . (3.6)

Finally (3.2) is obtained from (3.6) by using successively (3.5), the TTRR
(2.2) and (3.1). Now from (3.5), we may also write (3.6) as

2S2
qPn(z) + z SqDqPn(z)− Pn(z)

= SqDqPn+1(z) +BnSqDqPn(z) + CnSqDqPn−1(z) .

Equation (3.4) is obtained from this equation using (2.2) and (3.1).
Lets start again with the TTRR (2.2). We apply the operator D2

q to it using
(2.4) and (2.5) to obtain

DqSqPn(z) + αSqDqPn(z) + α2xD2
qPn(z)

= D2
qPn+1(z) +BnD2

qPn(z) + CnD2
qPn−1(z) . (3.7)

Then (3.3) is obtained by multiplying (3.7) by 2αU2(z) using successively
(3.1), (3.2) and again the TTRR (2.2). Hence the result follows.

Lemma 3.2. Let (Pn)n≥0 be a monic OPS satisfying (3.1). The following
system of difference equations holds

kn+2 − 1/2 − 2(2α2 − 1)(kn+1 − 1/2) + kn − 1/2 = 0 , (3.8)

tn+2 − 2(2α2 − 1)tn+1 + tn = 0, tn := kn/Cn , (3.9)

kn+1Bn+1 +
(
kn+1 − kn+2 − 2(2α2 − 1)kn

)
Bn + knBn−1 = 0 ,

(3.10)

tn+3Bn+2 − (tn+2 + tn+1)Bn+1 + tnBn = 0 , (3.11)

(tn+1 + tn+2)(Cn+1 − 1/4)− 4α2tn(Cn − 1/4) + (tn−1 + tn−2)(Cn−1 − 1/4)

= tn
[
B2
n − 2(2α2 − 1)BnBn−1 +B2

n−1

]
, (3.12)

where Bn and Cn are the coefficients of the TTRR (2.2) satisfied by (Pn)n≥0.

Proof : Consider the TTRR (2.2) satisfied by monic OPS (Pn)n≥0 solution of
(3.1). Then from (3.7) using (2.7) for n = 1 and f = Pn therein, we obtain

2αSqDqPn(z) + (2α2 − 1)xD2
qPn(z)

= D2
qPn+1(z) +BnD2

qPn(z) + CnD2
qPn−1(z) . (3.13)
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We now multiply (3.13) by 2αU2 using successively (3.1), (3.2) and the TTRR
(2.2) to obtain a vanishing linear combination of Pn+1, Pn, Pn−1, Pn−2 and
Pn−3, for each n = 0, 1, . . .. Since (Pn)n≥0 is a polynomial base in P , then all
coefficients of the mentioned linear combination must be zero. Therefore we
obtain the following equations

an+1 − (2α2 − 1)an = 4α2(α2 − 1)kn , (3.14)

cn−1Cn − (2α2 − 1)cnCn−2 = 4α2(α2 − 1)knCn−1Cn−2 , (3.15)

bn+1 − (2α2 − 1)bn − 2(α2 − 1)anBn = 4α2(α2 − 1)(Bn +Bn−1)kn , (3.16)

cn+1 − (2α2 − 1)cn +
(
an−1 − (2α2 − 1)an

)
Cn +

(
Bn − (2α2 − 1)Bn−1

)
bn

= 4α2(α2 − 1)kn(Cn +B2
n−1 + Cn−1 − 1) ,

(3.17)

bn−1Cn +
(
Bn − (2α2 − 1)Bn−2

)
cn − (2α2 − 1)bnCn−1

= 4α2(α2 − 1)knCn−1(Bn−1 +Bn−2) .
(3.18)

Equations (3.8) and (3.9) follow from (3.14) and (3.15), respectively using
notations and expressions of an, bn and cn obtained in the previous lemma.
Similarly, (3.10)–(3.12) are obtained from (3.16)–(3.18) using (3.8) and (3.9).

Theorem 3.1. The only monic OPS, (Pn)n≥0, for which

SqDqPn(z) = knPn−1(z) (n = 0, 1, . . .) , (3.19)

is the Al-Salam-Chihara polynomial with parameters a and b such that (a, b) ∈
{(1,−1), (−1, 1)}.

Proof : Let (Pn)n≥0 be a monic OPS solution of (3.19). Before solving the
system of equations (3.8)–(3.12), let us find some initial conditions. We claim
that the coefficients Bn and Cn of the TTRR (2.2) satisfied by (Pn)n≥0 are
given by

Bn−1 = 0, kn−1 = γn−1αn−2 , (3.20)

Cn+1 − 1/4 =
kn − kn+2 + γn+2αn−1

4kn
+
kn+2 − kn

kn

n∑
l=1

(Cl − 1/4) , (3.21)

for each n = 1, 2, . . .. Indeed, it is known that Pn(z) = zn+fnz
n−1 +gnz

n−2 +
· · · , where f0 = g1 = 0, Bn = fn−fn+1 and Cn = gn−gn+1−fnBn. With this
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we identify the three first coefficients of term with higher degrees in (3.19)
using (2.10) to obtain kn = γnαn−1 together with

kn−1fn = knfn−1, kngn−1 = kn−2gn + γnûn−1 + αn−3un . (3.22)

From the first equation in (3.22) we obtain

Bn = (kn+1 − kn)B0 ,

which also satisfies (3.10). In addition, assume without loss of generality that
0 < q < 1. Then

lim
n→∞

qnBn = B0/2 .

It is not hard to see that q and q−1 are solutions of the characteristic equation
associated to (3.9). Hence solutions of the mentioned equation are given by

tn = r1q
n + r2q

−n (n = 1, 2, . . .) ,

with r1 and r2 two complex numbers such that |r1| + |r2| 6= 0. Assume for
instance that r2 6= 0. Then we write tn = r2q

−n(1− rq2n), where r = −r1/r2.
We multiply (3.11) by qn and take the limit as n tends to∞ to obtain B0 = 0
and therefore Bn = 0, for all n = 0, 1, . . .. So (3.20) holds and the second
equation in (3.21) is then obtain directly from the second equation in (3.22).

From the definition of tn given in (3.9), we obtain Cn = kn/tn and so we
deduce that limn→∞Cn = 1/(2r2(q

−1− 1)). But taking the limit in (3.12) as
n tends to ∞ taking into account (3.20), we obtain limn→∞Cn = 1/4. This
means we can write

Cn =
(1− qn)(1 + qn−1)

4(1− rq2n)
(n = 1, 2, . . .) .

It is not hard to see that this satisfy (3.21) and (3.12) if and only if r = 0
and therefore Cn = (1 − qn)(1 + qn−1)/4. For the case 1 < q < +∞. We
proceed similarly to obtain Cn = (1− q−n)(1 + q−n+1)/4. Hence solutions of
(3.19) are given by Bn = 0 with

Cn+1 = 1
4(1− qn+1)(1 + qn) or Cn+1 = 1

4(1− q−n−1)(1 + q−n) ,

for all n = 0, 1, . . .. Thus

Pn = Qn(z; s,−s|q) or Pn = Qn(z; s,−s|1/q), s = ±1 .

We now characterize functionals whose corresponding OPS are solutions of
(3.19).
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Theorem 3.2. Let u ∈ P∗ be a regular functional and (Pn)n≥0 the corre-
sponding monic OPS. Then (Pn)n≥0 is the solution of (3.19) if and only if u
is a solution of the following functional equations

(qs − 1)DqSqu = 2zu , (3.23)

2q3s/2D2
q

(
U2u
)

= −(2z2 + qs − 1)u , (3.24)

2qsS2
qu =

(
− 2z2 + 1 + qs

)
u , (3.25)

8q5s/2SqDq

(
U2u
)

= (1− qs)z(−4z2 + q2s + 3)u , (3.26)

with s = ±1.

Remark 3.1. We emphasize the following. At this stage we know that monic
OPS solutions of (3.19) are the special cases Al-Salam-Chihara polynomials
and so they are classical OPS. Then there exit (see [12]) two polynomials φ
and ψ, of degree at most two and one, respectively such that

Dq(φu) = Sq(ψu) .

But from the above functional equation it is not possible to deduce (3.23)–
(3.26). Nevertheless, using Lemma 3.1 the result can be proved as follows.

Proof : Assume first that (Pn)n≥0 is the monic OPS solution of (3.19). Let
(an)n≥0 be the dual basis associated to the sequence of simple set (Pn)n≥0.
Using (3.19), the following holds

〈DqSqan, Pl〉 = −〈an,DqSqPl〉 = −kl 〈an, Pl−1〉 = −kn+1δn+1,l .

Therefore

DqSqan = −kn+1an+1 (n = 0, 1, . . .) , (3.27)

is obtained by writing

DqSqan =
+∞∑
l=0

〈DqSqan, Pl〉 al ,

taking into account what is is preceding. Equation (3.23) follows by taking
n = 0 in (3.27) using (2.1), (2.3) and the fact that B0 = 0 and C1 = (1−qs)/2
with s = ±1 (obtained from Theorem 3.1). Similarly, using (3.2) on can prove
that

2αD2
q(U2an) = anan + bn+1an+1 + cn+2an+2 (n = 0, 1, . . .) .



10 D. MBOUNA AND A. SUZUKI

Therefore (3.24) follows by taking n = 0 in the above equation taking into
account (2.2)–(2.3), (2.1) and Theorem 3.1. Equation (3.25) (respectively
(3.26)) follows from the same idea using (3.4) (respectively (3.3)).
Assume secondly that (Pn)n≥0 is a monic OPS with respect to the functional
u, solution of equations (3.23)–(3.26). We are only going to use (3.23) and
(3.25). We first apply the operator Sq on (3.23) using successively (2.9) (for
n = 1 and u replaced by Squ), (3.25) and (3.23) to obtain

Sq(zu) =
1

2
(qs − 1)SqDq

(
Squ

)
=

1

2
(qs − 1)

( α

2α2 − 1
DqS

2
qu−

1

2α2 − 1
U1D

2
qSqu

)
=

α(qs − 1)

2(2α2 − 1)
Dq

((
− q−sz2 + 1

2(1 + q−s)
)
u
)
− U1

2α2 − 1
Dq

(
zu
)
.

(3.28)

In the meantime, using (2.8) one may write

U1Dq

(
zu
)

= αDq

(
zU1u

)
− (α2 − 1)S2

q

(
zu
)
.

We replace this in (3.28) in order to obtain(
q1/2 − q−1/2

)
Dq

(
(z2 − 1)u

)
= −2sSq

(
zu
)
.

This means that u satisfies (2.11) with φ(z) = s
2(q1/2 − q−1/2)(z2 − 1) and

ψ(z) = z. Therefore applying (2.12), we obtain

Bn = 0, Cn+1 =
(1− qs(n+1))(1 + qsn)

4
(n = 0, 1, . . .) ,

and therefore Pn = Qn(x; s,−s|qs) for n = 0, 1, . . .. We then use Theorem
3.1 to conclude that (Pn)n≥0 satisfies (3.19). This conclusion can be obtained
similarly using (3.24) and (3.26).

4. Main results: second case
In this section we are interested in monic OPS, (Pn)n≥0, solution of the

following equation

DqSqPn(z) = rnPn−1(z) (n = 0, 1, . . .) . (4.1)

Methods and techniques are similar to ones used in the previous section. For
this reason, we mention some of results without proves.
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Lemma 4.1. Let (Pn)n≥0 be a monic OPS such that (4.1) holds. Then the
following relations hold.

2(α2 − 1)(z2 − α2)D2
qPn(z) = anPn(z) + bnPn−1(z) + cnPn−2(z) , (4.2)

2αS2
qPn(z) = c[1]

n Pn(z) + c[2]
n Pn−1(z) + c[3]

n Pn−2(z) , (4.3)

4α(α2 − 1)(z2 − α2)SqDqPn(z)

= b[1]
n Pn+1(z) + b[2]

n Pn(z) + b[3]
n Pn−1(z) + b[4]

n Pn−2(z) + b[5]
n Pn−3(z) , (4.4)

for each n = 0, 1, . . ., where

an =rn+1 − (4α2 − 3)rn − α , bn =
(
Bn − (4α2 − 3)Bn−1

)
rn ,

cn =rn−1Cn − (4α2 − 3)rnCn−1, b
[1]
n = an+1 − (2α2 − 1)an ,

b[2]
n =bn+1 − (2α2 − 1)bn − 2(α2 − 1)anBn ,

b[3]
n =cn+1 − (2α2 − 1)cn + (Bn − (2α2 − 1)Bn−1)bn

+ (an−1 − (2α2 − 1)an)Cn ,

b[4]
n =(Bn − (2α2 − 1)Bn−2)cn + bn−1Cn − (2α2 − 1)bnCn−1,

b[5]
n =cn−1Cn − (2α2 − 1)cnCn−2, c[1]

n = rn+1 − (2α2 − 1)rn + α ,

c[2]
n =

(
Bn − (2α2 − 1)Bn−1

)
rn, c[3]

n = rn−1Cn − (2α2 − 1)rnCn−1 .

Proof : From (2.6) using (2.5) yields

αS2
q f =

(
α2U2 − U2

1

)
D2
qf + U1DqSqf + αf . (4.5)

We apply successively the operators Sq and Dq to the TTRR (2.2) satisfied
by the monic OPS (Pn)n≥0 solution of (4.1). Using (2.4), (2.5) and (4.5), we
obtain the following equation.(
α2z + 3U1(z)

)
DqSqPn(z) + 2

(
α2U2(z)− U2

1(z)
)
D2
qPn(z) + αPn(z)

= DqSqPn+1(z) +BnDqSqPn(z) + CnDqSqPn−1(z) , (4.6)

since DqU2 = 2αU1 and SqU2 = α2U2 +U2
1. Finally (4.2) is obtained from (4.6)

by using successively (4.1) and the TTRR (2.2). Now from (4.5), we may
also write (4.6) as

2αS2
qPn(z)− αPn(z) + (2α2 − 1)z DqSqPn(z)

= DqSqPn+1(z) +BnDqSqPn(z) + CnDqSqPn−1(z) .
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Equation (4.3) is obtained from this equation using (2.2) and (4.1). Equation
(4.4) is obtained by multiplying (3.7) by 2(α2−1)(z2−α2) using successively
(4.1), (4.2) and again the TTRR (2.2).

Lemma 4.2. Let (Pn)n≥0 be a monic OPS satisfying (4.1). The following
system of difference equations holds

rn+2 − 2(2α2 − 1)rn+1 + rn = 0 , (4.7)

tn+2 − 2(2α2 − 1)tn+1 + tn = 0, tn := rn/Cn , (4.8)

rn+1Bn+1 − (4α2 − 3)(rn + rn+1)Bn + rnBn−1 = 0 , (4.9)

tn+3Bn+2 − (tn+2 + tn+1)Bn+1 + tnBn = 0 , (4.10)

tn+2(Cn+1 − 1/4)− 2tn(Cn − 1/4) + tn−2(Cn−1 − 1/4)

= tn
[
B2
n − 2(2α2 − 1)BnBn−1 +B2

n−1

]
, (4.11)

where Bn and Cn are the coefficients of the TTRR (2.2) satisfied by (Pn)n≥0.

Proof : As in the proof of Lemma 3.2, we multiply (3.13) by 2(α2−1)(z2−α2)
using successively (4.1), (4.2) and the TTRR (2.2). The result follows.

Theorem 4.1. The only monic OPS, (Pn)n≥0, for which

DqSqPn(z) = knPn−1(z) (n = 0, 1, . . .) , (4.12)

is the Rogers q2-Hermite or Rogers q−2-Hermite polynomial.

Proof : Let (Pn)n≥0 be a monic OPS solution of (4.12). Following the proof
of Theorem 3.1 we obtain

Bn = 0, Cn+1 = 1
4(1− q2s(n+1)) (n = 0, 1, . . .) ,

and so the obtain

Pn = Qn

(
x; sqs/2,−sqs/2|qs

)
s = ±1, (n = 0, 1, . . .) .

Hence the result follows.

Theorem 4.2. Let u ∈ P∗ be a regular functional and (Pn)n≥0 the corre-
sponding monic OPS. Then (Pn)n≥0 is the solution of (4.12) if and only if u
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is a solution of the following functional equations

qs/2(qs − 1)SqDqu = 2zu , (4.13)

4(α2 − 1)q5s/2D2
q

(
(z2 − α2)u

)
= (−4z2 + 1− q2s)u , (4.14)

4q2sS2
qu =

(
− 4z2 + 1 + 3q2s

)
u , (4.15)

2q3s(1− qs)DqSq
(
(z2 − α2)u

)
= z(−4z2 + q4s + q2s + 2)u , (4.16)

with s = ±1.

Remark 4.1. Although the results obtained here were proved for the q-
quadratic lattices, they can be easily extended to quadratic lattices x(s) =
c4s

2 + c5s+ c6 by taking the appropriate limit as it was discussed in [10].
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