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MEASURABLE FUNCTIONS ON σ-FRAMES

RAQUEL BERNARDES

Abstract: We study (semi)measurable functions on σ-frames, extending the the-
ory of real-valued functions from frames to σ-frames. The new objects of study
are the σ-frame homomorphisms L(R) → C(L) from the usual frame of reals into
the congruence lattice of a σ-frame L, and its subclass of measurable functions
L(R) → L. The desired extension faces two obstacles: (1) in general, σ-frames have
no uncountable joins and are not pseudocomplemented; (2) σ-sublocales, that is,
the subobjects in the dual category of the category of σ-frames and σ-frame homo-
morphisms, cannot be described as concrete subsets of the σ-frame L, unlike their
counterpart in the category of locales, forcing us to work in the congruence lattice
of L.

Nevertheless, it is shown that, despite (1), the familiar method for generating
real functions on frames via scales can be extended to arbitrary σ-frames. This is
achieved by the new notions of σ-scale and finite σ-scale. It is also shown that,
despite (2), the familiar insertion, extension and separation results for real-valued
functions in several classes of frames (normal, extremally disconnected, G-perfect,
F-perfect, perfectly normal) can be proved without involving uncountable joins and
pseudocomplements, thus allowing their extension to measurable and semimeasur-
able functions.

Keywords: σ-frame, σ-locale, σ-frame congruence, σ-scale, measurable function,
lower and upper measurable function, normal σ-frame, extremally disconnected σ-
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2020 Mathematics Subject Classification: 06D22, 18F70, 28A20, 28E99.

Introduction
A σ-frame is a (bounded) lattice with countable joins in which binary

meets distribute over countable joins. These lattices arise naturally in various
contexts (see Banaschewski [3]), and typical examples of σ-frames that are
not frames are given by the cozero set lattices of topological spaces and by
the Boolean σ-algebras that one encounters in topology, measure theory and
logic.
Regarding measure theory, Baboolal-Gosh showed in [1] that the dual cat-

egory of the category of (Boolean) σ-frames and σ-frame homomorphisms
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extends (a substantial part of) the category of measurable spaces and mea-
surable maps, and later, Simpson used that category as the framework for
his point-free approach to measure theory [28].
Simpson’s proposal is a surprising remarkable alternative to the classical

theory. Indeed, as is well-known, assuming the Axiom of Choice it is im-
possible to define a measure on all subsets of the Euclidean space Rn that
is invariant under the Euclidean group of isometries; in R and R3 this fol-
lows from the famous paradoxes found by Vitali [29] and Banach-Tarski [2].
Nonetheless, the point-free approach via σ-frames of Simpson [28] overcomes
these restrictions and produces an isometry-invariant measure on all sub-
sets of Rn, which, in particular, agrees with the Lebesgue measure on the
measurable sets.
Our aim in this paper is to study measurable and semimeasurable functions

in the point-free setting. The classical background of this topic is mainly in
the book [9] by Evans-Gariepy and in the articles [12] and [21].
In the point-free setting, measurable real-valued functions are defined as

expected in a σ-frame L, as just the σ-frame homomorphisms L(R) → L
(where L(R) is the usual frame of reals, taken as a σ-frame). These functions
were originally introduced by Banaschewski-Gilmour [5] as “continuous real-
valued functions” for σ-frames.
Our purpose in this paper is twofold. First, to extend the study of mea-

surable functions to more general types of (lower and upper) measurability
and to present scaling methods for generating them akin to the ones used
for real-valued functions on frames ([13, 17, 18, 26]). The extension of scales
from frames to σ-frames is not automatic as we have to overcome the fact
that σ-frames are no longer pseudocomplemented lattices. This leads us to
the notions of σ-scale and finite σ-scale (which, in the presence of pseudo-
complements, reduce to the notions of extended scale and scale in frames).
In addition, we also describe some of the basic algebraic operations for mea-
surable functions.
Our second purpose is to extend the study of insertion, separation and

extension results for real functions ([13, 14, 15, 17, 6]) from frames to σ-
frames. Our results extend, in particular, the results for classical measurable
functions of Kotzé-Kubiak [21] and Gutiérrez Garćıa-Kubiak [12]. It should
be emphasised here that our approach reveals that insertion, extension and
separation results on the existence of certain measurable real-valued functions
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on a frame can be proved after all without involving uncountable joins and
pseudocomplements and this is why they hold more generally in σ-frames.

The paper is organised as follows. After reviewing in Section 1 the re-
quired general concepts and results, we present in Section 2 the counterpart
of (semi)measurable functions on σ-frames. In Section 3, we generalise ex-
tended scales and scales in frames to σ-scales and finite σ-scales in σ-frames,
and we show how to use them to construct (semi)measurable functions on a
σ-frame. Then, in Section 4, we briefly describe the algebraic operations for
measurable functions that will be needed throughout the paper. In Section 5,
we approach the problem of inserting measurable real functions in-between
more general real functions on σ-frames; we obtain as corollaries of our Basic
Insertion Theorem, extension and separation results also valid for arbitrary
σ-frames. Then, in Section 6, we derive the consequences of the Basic In-
sertion Theorem for normal σ-frames and extremally disconnected σ-frames.
In Section 7, we focus on F -perfect and G-perfect σ-frames. In this case,
the insertion results turn out to be easily generalisable from the correspond-
ing results for frames but the separation and extension theorems seem to be
new even for frames. Finally, in Section 8, we combine the insertion results
for normal and perfect σ-frames in an insertion theorem that characterises
perfect normality.
Very recently, we came across the article [19] where some weak variants

of measurability in σ-frames are treated (thus intersecting in a few points
our presentation in Sections 2 and 4). But while [19] describes measurable
functions quite briefly, in a slightly different way and focusing in different
aspects of them, our setting appears to be the adequate one to obtain the
general formulations for the results we were seeking to.
For future convenience, all insertion results in the paper are formulated for

extended measurable functions on σ-frames, in clear contrast with the cor-
responding literature in frames [13, 14, 15, 17]; yet separation and extension
theorems must necessarily involve real-valued functions.

1. Background
Our general reference for point-free topology and lattice theory is Picado-

Pultr [26]. For congruences on frames and σ-frames, we use Frith [10],
Madden [24] and Manuell [25]. For classical measurable functions, we fol-
low Evans-Gariepy [9] and, in particular, Kotzé-Kubiak [21] and Gutiérrez
Garćıa-Kubiak [12] on insertion theorems for measurable functions.
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1.1. Frames and locales. A frame (also, locale) is a complete lattice L
(with bottom 0 and top 1) satisfying the join-infinite distributive law( ∨

a∈A
a
)
∧ b =

∨
a∈A

(a ∧ b)

for every A ⊆ L and b ∈ L. This is the same as a complete Heyting algebra,
with the Heyting implication given by a → b =

∨
{x ∈ L | a ∧ x ≤ b}

and pseudocomplements given by a∗ = a → 0 =
∨
{x ∈ L | a ∧ x = 0}.

Pseudocomplements in a complete Heyting algebra satisfy the De Morgan
law ( ∨

a∈A
a
)∗

=
∧
a∈A

a∗.

A frame homomorphism is a map between frames that preserves finite
meets and arbitrary joins. We will denote the category of frames and frame
homomorphisms by Frm.
There are two well-known relations on frames (in fact, they can be formu-

lated more generally in lattices) that are of particular importance here: a is
rather below b, denoted a ≺ b, if a∗ ∨ b = 1 (or, equivalently, if there is some
u ∈ L such that a ∧ u = 0 and u ∨ b = 1); a is completely below b, and one
writes a≺≺ b, when there are aq ∈ L, q ∈ [0, 1]∩Q, such that a0 = a, a1 = b,
and ap ≺ aq whenever p < q. The latter is the largest interpolative relation
contained in ≺.

1.2. σ-Frames and σ-locales. A lattice L is join-σ-complete if it has
countable joins. A join-σ-complete lattice is a σ-frame [3, 10] if it satisfies
the distributive law ( ∨

a∈A
a
)
∧ b =

∨
a∈A

(a ∧ b)

for every countable A ⊆ L and b ∈ L. A σ-frame homomorphism is a map
between σ-frames that preserves finite meets and countable joins. σ-frames
and σ-frame homomorphisms form a category that will be denoted by σFrm.
Of course, Frm is a subcategory of σFrm. Their opposite categories, Loc and
σLoc, are the categories of locales and localic maps and of σ-locales and σ-
localic maps, respectively. As σLoc(L,M) = σFrm(M,L), given a σ-localic
map f : L → M , we will denote by f ∗ : M → L the corresponding σ-frame
homomorphism that represents f .
An important difference between categories Loc and σLoc is that, in the

latter, one does not have available the concrete description of subobjects
of an object L as certain subsets of L ([26]). In fact, σ-sublocales S of
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a σ-locale L have to be described by σ-frame quotients L/θS given by σ-
frame congruences θS on L, that is, equivalence relations on L satisfying the
congruence properties

(x, y), (x′, y′) ∈ θS ⇒ (x ∧ x′, y ∧ y′) ∈ θS,

(xa, ya) ∈ θS (a ∈ A,A = countable set) ⇒
( ∨
a∈A

xa,
∨
a∈A

ya
)
∈ θS.

The set C(L) of all congruences on a σ-frame L ordered by inclusion is a
frame ([10, 24]). Hence its dual lattice S(L) of all σ-sublocales of L equipped
with the partial order

A ⊆ B if and only if θB ⊆ θA

is a coframe.
The open and closed σ-sublocales associated with an element a ∈ L are the

σ-sublocales o(a) and c(a) represented, respectively, by the open and closed
congruences

∆a := {(x, y) ∈ L× L | x ∧ a = y ∧ a}
and ∇a := {(x, y) ∈ L× L | x ∨ a = y ∨ a}.

They are complemented to each other in C(L).
For each σ-frame L, ∆[L] := {∆a | a ∈ L} and ∇[L] := {∇a | a ∈ L} have

the following properties:

(1) The map ∇ : L → ∇[L] is an isomorphism of σ-frames and thus one
may regard L as embedded in C(L). This isomorphism preserves all
joins that exist in L.

(2) The map ∆: Lop → ∆[L] is an isomorphism of σ-coframes that pre-
serves all meets that exist in L.

(3) If L is a frame, ∇ is a frame isomorphism and ∆ is a coframe isomor-
phism.

Finally, for any σ-sublocale S of L, each σ-sublocale of S is a σ-sublocale
of L. In fact (see [28, 7]):

C(S) = {θS ∨ θ | θ ∈ C(L)} ⊆ C(L),

∇[S] = {θS ∨∇a | a ∈ L} ⊆ C(L),

and ∆[S] = {θS ∨∆a | a ∈ L} ⊆ C(L).

For any S ∈ S(L) and θ ∈ C(S), we will denote by θ∗S the pseudocomple-
ment of θ in C(S); when S = L, we will write just θ∗ if there is no ambiguity.
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1.3. The frame of reals and the frame of extended reals. The frame
of reals [4] is the frame L(R) generated by all pairs (p, q) ∈ Q×Q subject to
the relations

(R1) (p, q) ∧ (r, s) = (p ∨ r, q ∧ s);
(R2) (p, q) ∨ (r, s) = (p, s) whenever p ≤ r < q ≤ s;
(R3) (p, q) =

∨
{(r, s) | p < r < s < q};

(R4) 1 =
∨
{(p, q) | p, q ∈ Q}.

L(R) may be presented equivalently ([13]) by generators (p,—) and (—, q),
with p, q ∈ Q, and relations

(R′
1) (p,—) ∧ (—, q) = 0 whenever p ≥ q;

(R′
2) (p,—) ∨ (—, q) = 1 whenever p < q;

(R′
3) (p,—) =

∨
{(r,—) | p < r};

(R′
4) (—, q) =

∨
{(—, s) | s < q};

(R′
5) 1 =

∨
{(p,—) | p ∈ Q};

(R′
6) 1 =

∨
{(—, q) | q ∈ Q}.

The correspondence between the generators of the two presentations is
given by the identities

(p,—) =
∨
q∈Q

(p, q), (—, q) =
∨
p∈Q

(p, q) and (p, q) = (p,—) ∧ (—, q).

The frame L(R) is the same as the σ-frame defined by the same generators
and relations since the relations involved only deal with countable joins and
any countably generated σ-frame L is automatically a frame (see [5, 28] for
more details). A map from the generating set of L(R) into a σ-frame L
defines a σ-frame homomorphism f : L(R) → L if and only if it sends the
relations of L(R) into identities in L.
Moreover, any σ-frame homomorphism from a countably generated σ-frame

L into a frame is a frame homomorphism, as can be easily shown.

Proposition 1.3.1. Let L be a σ-frame with a countable set of generators.
Then L is a frame, and σFrm(L,M) = Frm(L,M) for any frame M .

Hence, in particular, σFrm(L(R),C(L)) = Frm(L(R),C(L)).

The frame L(R) of extended reals [6] (the point-free counterpart of the
space of extended reals R = R ∪ {±∞}) is the frame generated by all (p,—)
and (—, q), with p, q ∈ Q, subject to the relations

(R′
1) (p,—) ∧ (—, q) = 0 whenever p ≥ q;
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(R′
2) (p,—) ∨ (—, q) = 1 whenever p < q;

(R′
3) (p,—) =

∨
{(r,—) | p < r};

(R′
4) (—, q) =

∨
{(—, s) | s < q}.

It is not possible to present L(R) alternatively with generators (p, q) ∈
Q × Q. Nonetheless, we will still use the notation (p, q) as an abbreviation
for the element (p,—) ∧ (—, q). Since L(R) is also a countably generated
σ-frame, we have, by 1.3.1, σFrm(L(R),C(L)) = Frm(L(R),C(L)).

Remark 1.3.2. Consider the element

ω =
∨
{(p, q) | p, q ∈ Q} =

∨
p∈Q

∨
q∈Q

((p,—) ∧ (—, q)) ∈ L(R).

The frame ↓ ω is isomorphic to L(R). Therefore, there exists a onto basic
homomorphism δ : L(R) → L(R) given by δ(p,—) = (p,—)∧ ω and δ(—, q) =
(—, q) ∧ ω that has as right inverse the inclusion L(R) ↪−→ L(R) (see [6] for
more information).

1.4. Localic real and extended real functions. Recall from [13] that
a localic real function on a frame L is a frame homomorphism f : L(R) →
C(L). Similarly, a localic extended real function on a frame L ([6]) is a frame
homomorphism f : L(R) → C(L).
The set of all real (resp. extended real) functions on L will be denoted by

F(L) (resp. F(L)). They are partially ordered by

f ≤ g ≡ ∀p ∈ Q, f(p,—) ⊆ g(p,—)

⇔ ∀q ∈ Q, g(—, q) ⊆ f(—, q).

An extended real function f : L(R) → C(L) satisfying f(ω) = 1 will be
called finite-valued (or just finite). As ω =

(∨
p∈Q(p,—)

)
∧
(∨

q∈Q(—, q)
)
,

this means that ∨
p∈Q

f(p,—) = 1 and
∨
q∈Q

f(—, q) = 1,

which implies that f is actually a frame homomorphism L(R) → C(L).
On the other hand, by Remark 1.3.2, there exists an injective map

ψ : F(L) → F(L) given by ψ(f) = f ◦ δ, where δ : L(R) → L(R) is the
basic homomorphism from 1.3.2. As a consequence, the frame homomor-
phisms f : L(R) → C(L) are in a one-one correspondence with the frame
homomorphisms g : L(R) → C(L) such that g(ω) = 1, and this permits us to
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regard F(L) as a subset of F(L). Thus, the localic real-valued functions are
precisely the finite extended real-valued functions.
In the following, we recall some basic properties of localic extended real

functions. Their proofs can be easily obtained from reformulating the ones
in [4] or [26] for the finite-valued case.

Proposition 1.4.1. Let f : L(R) → C(L) be an extended real function on a
frame L. Then:

(1) If p ≥ q, then f(—, q) ∧ f(p,—) = 0.
(2) If p < q, then f(p,—) ∨ f(—, q) = 1.
(3) f(p,—) =

∨
{f(r,—) | p < r} and f(—, q) =

∨
{f(—, s) | s < q}.

(4) If f is finite-valued, then
∨
{f(p,—) | p ∈ Q} = 1 =

∨
{f(—, q) | q ∈

Q}.
(5) If p < q, then f(q,—) ⊆ f(—, q)∗ ⊆ f(p,—) and f(—, p) ⊆ f(p,—)∗ ⊆

f(—, q).

A function f : L(R) → C(L) on a frame L is upper semicontinuous (resp.
lower semicontinuous) if f(—, p) ∈ ∇[L] (resp. f(p,—) ∈ ∇[L]) for every
p ∈ Q; f is a continuous function whenever it is both upper and lower
semicontinuous. Since L is isomorphic to ∇[L], the continuous extended real
functions on a frame L are precisely the frame homomorphisms f : L(R) → L.

2. Measurable functions
From now on, unless stated otherwise, we will work mainly on a σ-frame

L and with the sets

F(L) = σFrm(L(R),C(L)) = Frm(L(R),C(L))

and

F(L) = σFrm(L(R),C(L)) = Frm(L(R),C(L))
of all localic real functions and all extended real functions on L.
We say that an f ∈ F(L) is lower measurable (resp. upper measurable)

if f(p,—) ∈ ∇[L] (resp. f(—, p) ∈ ∇[L]) for every p ∈ Q, and we de-
note by LM(L) and UM(L) the corresponding collections of lower measur-
able and upper measurable extended real functions, respectively. When-
ever f ∈ LM(L) ∩ UM(L), we say that f is measurable. We shall denote
LM(L) ∩ UM(L) by M(L). Note that f ∈ M(L) if f [L(R)] ⊆ ∇[L], that is,

f(p, q) = f(p,—) ∧ f(—, q) ∈ ∇[L],
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and as ∇ : L → ∇[L] is an isomorphism of σ-frames, identifying each f ∈
LM(L) ∩ UM(L) with ∇−1 ◦ f : L(R) → L, we conclude that

M(L) = LM(L) ∩ UM(L) = σFrm(L(R), L).

In particular, M(C(L)) = F(L).
In terms of notation, we will work indistinctively with f : L(R) → L and

∇ ◦ f : L(R) → ∇[L]. Both maps will be denoted by f . The context will
distinguish whether we are working in (L,≤) or rather in ∇[L] ⊆ (C(L),⊆).
Let f ∈ M(L). Despite the fact that L has not necessarily arbitrary joins,

f preserves all joins:

Proposition 2.1. Let L be a σ-frame and f ∈ M(L). For any A ⊆ L(R),∨
a∈A

f(a) exists in L and
∨
a∈A

f(a) = f
( ∨
a∈A

a
)
.

Proof : Since L(R) is a frame,
∨

a∈A a exists in L(R). Moreover, since L(R)
has a countable set of generators, there exists a countable set B ⊆ A such
that

∨
a∈A a =

∨
b∈B b. Hence,

u := f
( ∨
a∈A

a
)
= f

( ∨
b∈B

b
)
=

∨
b∈B

f(b) ∈ L,

and we only need to show that u is the join of {f(a) | a ∈ A} in L. By
the monotonicity of f , u ≥ f(a) for every a ∈ A. If v ∈ L is such that
v ≥ f(a) for all a ∈ A, then, in particular, v ≥ f(b) for all b ∈ B, and
v ≥

∨
b∈B f(b) = u.

Restricting to the finite-valued case, we introduce the classes

LM(L) := LM(L) ∩ F(L),

UM(L) := UM(L) ∩ F(L),

and M(L) := M(L) ∩ F(L)

of lower measurable, upper measurable and measurable real-valued functions,
respectively. We have

M(L) ⊆ F(L)

⊆ ⊆

M(L) ⊆ F(L).
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Remark 2.2. In particular, when L is a frame, denoting by C(L) and C(L)
the sets of all localic continuous real functions and all localic continuous
extended real functions, respectively, we have that C(L) = M(L) and C(L) =
M(L), by Proposition 1.3.1.

The novelty of working with these classes of functions in σ-frames, espe-
cially with the notion of measurability, is that while frames have pseudocom-
plements, which are often used in the proofs, σ-frames are not necessarily
pseudocomplemented. So if we want to generalise the results to σ-frames, we
need to find alternate proofs as we shall see in the next section.

3. σ-Scales
Continuous extended real-valued functions on a frame L can be canonically

generated by extended scales ([6]), that is, maps σ : Q → L such that σ(r) ≺
σ(s) whenever r < s . In order to generate continuous real-valued functions,
the extended scale must be a scale ([13]), that is, an extended scale σ : Q → L
such that

∨
{σ(r) | r ∈ Q} = 1 =

∨
{σ(r)∗ | r ∈ Q}. Some work has to be

done when replacing frames by σ-frames to adapt these notions to measurable
functions.

Definition 3.1. Let L be a σ-frame. A map φ : Q → L is an ascending
σ-scale in L (or just a σ-scale) if there exists a family (cr)r∈Q of elements of
L such that φ(s)∧ cr = 0 whenever s ≤ r, and cr ∨φ(s) = 1 whenever r < s.
Furthermore, we say that φ is finite if

∨
r∈Q φ(r) = 1 =

∨
r∈Q cr.

Proposition 3.2. Let L be a σ-frame. A map φ : Q → L is a σ-scale if and
only if φ(r) ≺ φ(s) whenever r < s.
Moreover, φ is a finite σ-scale if and only if

∨
{φ(r) | r ∈ Q} = 1 and

there are crs ∈ L such that
∨
{crs | r, s ∈ Q, r < s} = 1, with φ(r) ∧ crs = 0

and crs ∨ φ(s) = 1 whenever r < s.

Proof : Suppose that φ is a σ-scale. For each pair r < s, we have that
φ(r)∧ cr = 0 and cr ∨φ(s) = 1, hence φ(r) ≺ φ(s). In addition, if φ is finite,
taking crs :=

∨
{cu | u ∈ Q, r < u < s}, we obtain the required family.

Conversely, suppose that φ(r) ≺ φ(s) whenever r < s. Then there exist
elements crs ∈ L, r < s, such that φ(r) ∧ crs = 0 and crs ∨ φ(s) = 1. Setting
cr :=

∨
{crs | s ∈ Q, s > r}, we conclude that φ is a σ-scale. Finally, if∨

{φ(r) | r ∈ Q} = 1 =
∨
{crs | r, s ∈ Q, r < s}, then φ is clearly finite.
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Given a σ-scale φ : Q → L, let Cφ be the set of all families (xr)r∈Q ⊆ L
satisfying φ(s) ∧ xr = 0 whenever s ≤ r and xr ∨ φ(s) = 1 otherwise.

Proposition 3.3. Any pair of families (xr)r∈Q, (yr)r∈Q in Cφ satisfies∨
r>s

xr =
∨
r>s

yr for every s ∈ Q.

Proof : As ∇ : L → ∇[L] is a σ-frame isomorphism, this is equivalent to
showing that

∨
{∇xr

| r > s} =
∨
{∇yr | r > s}. Therefore, it suffices to

check that for any (xr)r∈Q in Cφ,∨
r>s

∇xr
=

∨
r>s

∆φ(r).

Since ∇φ(s)∧∇xr
= 0 whenever s < r, that is, ∇xr

⊆ ∆φ(s) whenever s < r,
then

∨
r>s∇xr

⊆
∨

r>s∆φ(r). On the other hand, as ∇xr
∨ ∇φ(s) = 1 for all

r < s, then ∆φ(s) ⊆ ∇xr
, hence

∨
r>s∆φ(r) ⊆

∨
r>s∇xr

.

As a consequence, if there exists (cr)r∈Q in Cφ such that
∨
{cr | r ∈ Q} = 1,

then for any other (br)r∈Q in Cφ∨
r∈Q

br =
∨
s∈Q

∨
r>s

br =
∨
s∈Q

∨
r>s

cr =
∨
r∈Q

cr = 1.

Thus, in order to show that a σ-scale φ with
∨
{φ(r) | r ∈ Q} = 1 is finite,

it suffices to find a family (cr)r∈Q in Cφ such that
∨
{cr | r ∈ Q} = 1. In

particular, for each r < s, it suffices to take crs as an element satisfying
φ(r) ∧ x = 0 and x ∨ φ(s) = 1 and to check whether

∨
{crs | r, s ∈ Q, r <

s} = 1.

Remark 3.4. In case L is a frame, we can assume that cr = φ(r)∗, and it is
then clear that the σ-scales in L are precisely the extended scales in L and
that the finite σ-scales in L are precisely the scales in L.

Proposition 3.5. Let L be a σ-frame. Given a σ-scale φ : Q → L and a
family (cr)r∈Q in Cφ, the map f : L(R) → L determined by

f(p,—) =
∨
r>p

cr and f(—, q) =
∨
r<q

φ(r) (p, q ∈ Q)

is a measurable function on L. Moreover, if φ is finite, then f is a finite-
valued function.

Proof : First of all, note that the definition of f does not depend on the
chosen (cr)r∈Q in Cφ by the preceding proposition. To show that f is indeed
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a measurable function, we just need to verify that it sends the relations
(R′

1)− (R′
4) in L(R) into identities in L:

(R′
1) : For any p ≥ q, f(p,—) ∧ f(—, q) =

∨
s<q≤p<r cr ∧ φ(s) = 0.

(R′
2) : If p < q, then f(p,—)∨f(—, q) =

∨
r>p

∨
s<q cr∨φ(s) ≥ cu∨φ(v) = 1

for some u, v ∈ Q such that p < u < v < q, which exist because Q is
dense in itself.

(R′
3) : As Q is dense in itself, f(p,—) =

∨
s>p

∨
r>s cr =

∨
s>p f(s,—).

(R′
4) : Again, asQ is dense in itself, f(—, q) =

∨
s<q

∨
r<s φ(r) =

∨
s<q f(—, s).

Finally, if φ is finite, then

(R′
5) :

∨
p∈Q f(p,—) =

∨
p∈Q

∨
r>p cr =

∨
r∈Q cr = 1,

(R′
6) :

∨
q∈Q f(—, q) =

∨
q∈Q

∨
r<q φ(r) =

∨
r∈Q φ(r) = 1,

hence f is finite-valued, that is, it belongs to M(L).

More precisely, given a σ-scale φ and denoting by f the function determined
by φ (provided by 3.5), we have that φ is finite if and only if f is finite-valued.
In fact, if f is finite-valued, then∨

r∈Q
φ(r) =

∨
s∈Q

∨
r<s

φ(r) =
∨
s∈Q

f(—, s) = 1,

and
∨
r∈Q

cr =
∨
s∈Q

∨
r>s

cr =
∨
s∈Q

f(s,—) = 1.

Proposition 3.6. Let f, g ∈ M(L) be determined by σ-scales φf and φg,
respectively. Then f ≤ g if and only if φg(r) ≤ φf(s) for every r < s.

Proof : The proof is similar to the proof of its counterpart result in frames
(see e.g. [26], Lemma XIV.5.2.4).

So far, we have been using ascending σ-scales to generate measurable func-
tions. But we can generate measurable functions f : L(R) → L similarly from
descending σ-scales in L, that is, maps φ : Q → L for which there is a family
(br)r∈Q in L satisfying φ(s)∧ br = 0 whenever r ≤ s, and br∨φ(s) = 1 when-
ever s < r. In this case, the measurable function f : L(R) → L determined
by φ is given by formulas

f(p,—) =
∨
s>p

φ(s) and f(—, q) =
∨
s<q

bs

for every p, q ∈ Q. If φ is finite, that is,
∨

r∈Q φ(r) = 1 =
∨

r∈Q br, then f is
finite-valued.
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Remark 3.7. A map φ : Q → L is an ascending σ-scale if and only if every
φ′ : Q → L such that (φ′(r))r∈Q ∈ Cφ is a descending σ-scale.

Proposition 3.8. Given a measurable function f : L(R) → L on a σ-frame
L, the maps φ1 : Q → L and φ2 : Q → L given by

φ1(r) = f(—, r) and φ2(r) = f(r,—)

are, respectively, an ascending σ-scale and a descending σ-scale in L that
generate f . Additionally, if f(r,—) is pseudocomplemented for every r ∈ Q,
the map φ3 : Q → L given by

φ3(r) = f(r,—)∗

is also an ascending σ-scale in L that generates f .

Proof : Define cr := f(r,—) for any r ∈ Q. Since f ∈ F(L), we have that
φ1(s) ∧ cr = 0 for s ≤ r and cr ∨ φ1(s) = 1 otherwise. So φ1 is indeed a
σ-scale, and denoting by f1 the function generated by φ1, we have f1 = f :

f1(—, q) =
∨
r<q

φ1(r) =
∨
r<q

f(—, r) = f(—, q) for every q ∈ Q.

A similar reasoning applies to φ2.
If f(r,—) is pseudocomplemented for all r ∈ Q, let cr := f(r,—). Once

again, φ3 is a σ-scale because, as f ∈ F(L), we have φ3(s) ∧ cr ≤ f(s,—)∗ ∧
f(s,—) = 0 whenever s ≤ r and cr ∨ φ3(s) ≥ f(r,—) ∨ f(—, s) = 1 whenever
r < s. Now, note that f(—, r) ≤ f(r,—)∗ ≤ f(—, s) for r < s, where
f(r,—)∗ ≤ f(—, s) comes from the fact that f(—, s)∨f(r,—) = 1 and f(r,—)∗∧
f(r,—) = 0. So denoting by f3 the function generated by φ3, we conclude
that f3 = f :

f3(—, q) =
∨
r<q

f(r,—)∗ =
∨
r<q

f(—, r) = f(—, q) for every q ∈ Q.

Example 3.9. Extended constant functions. For each r ∈ Q ∪ {±∞}, let
φr(s) = 0 if s ≤ r and φr(s) = 1 if s > r. Setting cs := φr(s)

∗ for any
s ∈ Q, the map φr : Q → L is a σ-scale in L. The measurable function
rL : L(R) → L determined by φr is called the extended constant function
associated with r and is given by the formulas

rL(p,—) =

{
1 if p < r

0 if p ≥ r
and rL(—, q) =

{
0 if q ≤ r

1 if q > r.

When there is no ambiguity, we will denote it simply by r.
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If r ∈ Q, the extended constant function r is trivially finite-valued, and we
call it a constant function. For r = +∞ or r = −∞, we have

+∞+∞+∞ (p,—) = 1, +∞+∞+∞(—, q) = 0,

and −∞−∞−∞ (p,—) = 0, −∞−∞−∞(—, q) = 1,

for every p, q ∈ Q. The functions +∞+∞+∞ and −∞−∞−∞ are examples of measurable
extended real functions which are not finite-valued. So the inclusionsM(L) ⊆
M(L) and F(L) ⊆ F(L) are actually strict.

Example 3.10. Characteristic functions. For each complemented a ∈ L,
define φa(r) = 0 if r ≤ 0, φa(r) = a∗ if 0 < r ≤ 1 and φa(r) = 1 if r > 1.
Setting cr := φa(r)

∗, the map φa is a finite σ-scale with corresponding finite
measurable function χa : L(R) → L given by

χa(p,—) =


1 if p < 0

a if 0 ≤ p < 1

0 if p ≥ 1

and χa(—, q) =


0 if q ≤ 0

a∗ if 0 < q ≤ 1

1 if q > 1.

We call it the characteristic function associated with a ∈ L. For any a ≤ b
in L, χa ≤ χb.

To close this section, we remark that as F(L) = M(C(L)) and F(L) =
M(C(L)), σ-scales and finite σ-scales in C(L) generate, respectively, extended
real-valued and real-valued functions on L.

Example 3.11. Given a σ-locale L and a complemented σ-sublocale S ∈
S(L), consider a measurable function f : L(R) → C(S) on S satisfying 0S ≤
f ≤ 1S. Let θS be the complemented congruence associated with S, and
define

φh(r) =


0 if r ≤ 0

θ∗S ∧ f(—, r) if 0 < r ≤ 1

1 if r > 1

and

φg(r) =


1 if r < 0

θ∗S ∧ f(r,—) if 0 ≤ r < 1

0 if r ≥ 1.

As f is measurable in S, f(r,—), f(—, r) ∈ ∇[S] = {∇a ∨ θS | a ∈ L}.
Therefore, as each element φh(r) is complemented in C(L) and φh is in-
creasing, we have φh(r) ≺ φh(s) whenever r < s, besides

∨
r∈Q φh(r) =
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1 =
∨

r∈Q φh(r)
∗. Hence φh is a finite σ-scale in C(L), and the function

hf : L(R) → C(L) generated by φh is given by the formulas

hf(p,—) =


1 if p < 0

f(p,—) if 0 ≤ p < 1

0 if p ≥ 1

and

hf(—, q) =


0 if q ≤ 0

θ∗S ∧ f(—, q) if 0 < q ≤ 1

1 if q > 1.

In fact, for 0 < q ≤ 1,

hf(—, q) =
∨
r<q

φh(r) =
∨

0<r<q
[θ∗S ∧ f(—, r)] = θ∗S ∧

∨
r<q

f(—, r) = θ∗S ∧ f(—, q).

On the other hand, for 0 ≤ p < 1, and recalling that f(—, r)∗S denotes the
pseudocomplement of f(—, r) in C(S), we have

hf(p,—) =
∨
r>p

φh(r)
∗ =

∨
1≥r>p

[θ∗S ∧ f(—, r)]∗ =
∨

1≥r>p
[θS ∨ f(—, r)∗]

=
∨

1≥r>p
f(—, r)∗S =

∨
r>p

f(—, r)∗S =
∨
r>p

f(r,—) = f(p,—),

where θS∨f(—, r)∗ = f(—, r)∗S follows from the fact that as f(—, r) = ∇a∨θS
for some a ∈ L,

f(—, r)∗S = ∆a ∨ θS, f(—, r)∗ = ∆a ∧ θ∗S
and

θS ∨ f(—, r)∗ = θS ∨ (∆a ∧ θ∗S) = θS ∨∆a = f(—, r)∗S .

Similarly, one may check that the map φg is a finite descending σ-scale in
C(L), and the function gf : L(R) → C(L) generated by φg is given by the
formulas

gf(p,—) =


1 if p < 0

θ∗S ∧ f(p,—) if 0 ≤ p < 1

0 if p ≥ 1

and

gf(—, q) =


0 if q ≤ 0

f(—, q) if 0 < q ≤ 1

1 if q > 1.
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The functions gf ≤ hf are kind of a “minorant extension” and “majorant
extension” of f over L. Later on, they will be useful while studying insertion
properties.

Example 3.12. Given a σ-frame L, let a, b ∈ L be such that a ∨ b = 1. Set
θS := ∇a∧b and define

φ(r) =


∇a∧b if r ≤ 0

∇b ∨∇a∧b if 0 < r ≤ 1

1 if r > 1.

Since φ is increasing and φ(r) is complemented in C(S) for all r ∈ Q, φ(r) ≺
φ(s) in C(S) whenever r < s. In addition,

∨
r∈Q φ(r) = 1 =

∨
r∈Q φ(r)

∗S .
Thus, φ is a finite σ-scale in C(S) and the function f : L(R) → C(S) generated
by φ is given by

f(p,—) =


1 if p < 0

∇a ∨∇a∧b if 0 ≤ p < 1

∇a∧b if p ≥ 1

and

f(—, q) =


∇a∧b if q ≤ 0

∇b ∨∇a∧b if 0 < q ≤ 1

1 if q > 1,

where, for 0 ≤ p < 1, f(p,—) = ∇a∨∇a∧b follows from the fact that a∨b = 1
implies ∆b ∨ (∇a ∧∇b) = ∇a.

Clearly, all the results that hold for measurable functions also hold for
general functions. For that reason, from now on we will focus mainly on the
study of the lattices M(L) and M(L).

4. Algebraic operations with measurable functions
By similar arguments to the ones used in [4] for the study of the algebra

C(L), one may conclude that the operations in the algebra M(L) are also
determined by the lattice-ordered ring operations of Q.
In this section, we present the algebraic operations in M(L) that we will

need throughout the paper, by extending to σ-frames their corresponding
description for frames in [6].
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Proposition 4.1. Let λ > 0 and f, g ∈ M(L). Then:

(i) φλ·f : r 7→ f(—, rλ) is a σ-scale that generates the function λ ·f ∈ M(L)
given by (λ · f)(p,—) = f( pλ ,—) and (λ · f)(—, q) = f(—, qλ).

(ii) φ−f : r 7→ f(−r,—) is a σ-scale that generates the function −f ∈ M(L)
given by −f(p,—) = f(—,−p) and −f(—, q) = f(−q,—).

(iii) φf∨g : r 7→ f(—, r) ∧ g(—, r) is a σ-scale that generates the function
f ∨ g ∈ M(L) given by (f ∨ g)(p,—) = f(p,—) ∨ g(p,—) and (f ∨
g)(—, q) = f(—, q) ∧ g(—, q).

(iv) φf∧g : r 7→ f(—, r) ∨ g(—, r) is a σ-scale that generates the function
f ∧ g ∈ M(L) given by (f ∧ g)(p,—) = f(p,—) ∧ g(p,—) and (f ∧
g)(—, q) = f(—, q) ∨ g(—, q).

Moreover, if f and g are finite, then λ ·f , −f , f ∨g and f ∧g are also finite.

Things become a bit more complicated with the sum: we need to be cau-
tious with the classical indeterminacy (−∞) + (+∞) when working with
extended real functions. Following [6], and setting for each f ∈ M(L)

a+f :=
∨
r∈Q

f(—, r), a−f :=
∨
r∈Q

f(r,—) and af := a+f ∧a
−
f =

∨
r<s

f(r, s) = f(ω),

we say that f, g ∈ M(L) are sum compatible if a+f∨g∨a
−
f∧g = 1 or, equivalently,

if

(a+f ∨ a−g ) ∧ (a+g ∨ a−f ) = 1.

Proposition 4.2. Let f, g ∈ M(L) be sum compatible. Then

φf+g : r 7→
∨
t∈Q

f(—, t) ∧ g(—, r − t)

is a σ-scale in L. It generates the measurable function f + g : L(R) → L
given by the formulas

(f + g)(—, q) =
∨
t∈Q

(f(—, t) ∧ g(—, q − t)),

(f + g)(p,—) =
∨
t∈Q

(f(t,—) ∧ g(p− t,—)).

Moreover, if f and g are finite-valued, then f and g are sum compatible and
f + g is finite.
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Proof : The proof in [6] for the corresponding result in frames can be easily
reformulated to a proof of the fact that the family (cr)r∈Q defined by

cr :=
∨
t∈Q

(f(t,—) ∧ g(r − t,—))

is an element of Cφ.

We take note that a+f ∨ a−f = 1 for any f ∈ M(L), and a+f = a−f = af = 1

if and only if f ∈ M(L). Besides, for any f ∈ M(L) and g ∈ M(L), f and g
are sum compatible.

Finally, concerning the difference, if f and −g are sum compatible, we may
define

f − g := f + (−g).
As a+−g = a−g and a−−g = a+g , then f,−g ∈ M(L) are sum compatible if and
only if

(a+f ∨ a+g ) ∧ (a−f ∨ a−g ) = 1,

and in this case f − g : L(R) → L is given by the formulas

(f − g)(—, q) =
∨
t∈Q

(f(—, t) ∧ g(t− q,—))

and

(f − g)(p,—) =
∨
t∈Q

(f(t,—) ∧ g(—, t− p)).

5. The Basic Insertion Theorem
In this section, we address the problem of inserting measurable real func-

tions in-between more general real functions on σ-frames. We will deduce, in
particular, extension and separation results also valid for general σ-frames.
We need first to recall that a binary relation⋐ on a lattice L is a Katětov re-

lation ([20, 22]) whenever it satisfies the following conditions for all a, b, a′, b′ ∈
L:

(K1) a ⋐ b⇒ a ≤ b;
(K2) a

′ ≤ a, a ⋐ b, b ≤ b′ ⇒ a′ ⋐ b′;
(K3) a ⋐ b, a′ ⋐ b⇒ (a ∨ a′) ⋐ b;
(K4) a ⋐ b, a ⋐ b′ ⇒ a ⋐ (b ∧ b′);
(K5) a ⋐ b⇒ ∃c ∈ L : a ⋐ c ⋐ b.
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We will need a result for Katětov relations, known as the Katětov Lemma
([22, 23]), that extends the original basic lemma of Katětov [20, Lemma 1]
from power sets to general lattices.

Lemma 5.1. Let ⋐ be a Katětov relation on L and � a transitive and ir-
reflexive (i.e, a relation that is not reflexive) relation on a countable set D.
Consider two families (ad)d∈D and (bd)d∈D of elements of L such that

d1 � d2 implies ad2 ≤ ad1, bd2 ≤ bd1 and ad2 ⋐ bd1.

Then there exists a family (cd)d∈D in L such that

d1 � d2 implies cd2 ⋐ cd1, ad2 ⋐ cd1 and cd2 ⋐ bd1.

For any θA, θB ∈ C(L), define

θA ⋐M θB ≡ ∃ f ∈ M(L) : θA ⊆ f(p,—)∗ and f(—, q) ⊆ θB for some p < q,

and write θA ⋐M θB whenever f ∈ M(L).

Lemma 5.2. For any θA, θB ∈ C(L) we have:

(1) θA ⋐M θB if and only if there is some f ∈ M(L) such that θA ⊆
f(0,—)∗ and f(—, 1) ⊆ θB. Moreover, θA ⋐M θB if and only if such f
is finite-valued.

(2) If θA ⋐M θB then θ∗B ⋐M θ∗A. In particular, if θA ⋐M θB then θ∗B ⋐M

θ∗A.

Proof : (1) The implication ‘⇐’ is immediate. To prove the converse, let
p < q be a pair such that θA ⊆ f(p,—)∗ and f(—, q) ⊆ θB, and define
g = 1

q−p · (f − p). Note that if f is finite-valued, g is finite-valued. As

g(0,—) =
∨
t∈Q

f(t,—) ∧ p(—, t) =
∨
t>p

f(t,—) ≤ f(p,—)

and g(—, 1) =
∨
t∈Q

f(—, t) ∧ p(t− (q − p),—) =
∨
t<q

f(—, t) ≤ f(—, q),

we get θA ⊆ f(p,—)∗ ⊆ g(0,—)∗ and g(—, 1) ⊆ f(—, q) ⊆ θB.

(2) If θA ⋐M θB, there exists f ∈ M(L) such that θA ⊆ f(0,—)∗ and
f(—, 1) ⊆ θB. Recall that r 7→ f(r,—) is a descending σ-scale in L generating
f . So there exists a family (br)r∈Q ⊆ L such that f(s,—) ∧ br = 0 if r ≤ s,
and br ∨ f(s,—) = 1 otherwise. Define φ(r) := f(1 − r,—) for all r ∈ Q.



20 RAQUEL BERNARDES

Setting cr := b1−r, one easily sees that φ is a σ-scale in L. The measurable
function g : L(R) → L generated by φ is given by

g(p,—) =
∨
p<r

cr =
∨
p<r

b1−r =
∨

1−r<1−p
b1−r = f(—, 1− p)

and g(—, q) =
∨
r<q

φ(r) =
∨
r<q

f(1− r,—) =
∨

1−q<1−r
f(1− r,—) = f(1− q,—).

Hence, θ∗B ⊆ f(—, 1)∗ = g(0,—)∗ and g(—, 1) = f(0,—) ⊆ θ∗A.
In particular, if f is finite,∨

p∈Q
g(p,—) =

∨
p∈Q

f(—, 1− p) = 1 and
∨
q∈Q

g(—, q) =
∨
q∈Q

f(1− q,—) = 1.

Proposition 5.3. Both ⋐M and ⋐M are Katětov relations in C(L).

Proof : The conditions (K1) and (K2) are trivially verified.
(K3): If θA ⋐M θB and θA′ ⋐M θB, then θA ⊆ f(0,—)∗, f(—, 1) ⊆ θB, and
θA′ ⊆ g(0,—)∗, g(—, 1) ⊆ θB for some f, g ∈ M(L); so θA∨θA′ ⊆ (f∧g)(0,—)∗,
(f ∧ g)(—, 1) ⊆ θB.
(K4): Similar to (K3), but taking the supremum f ∨ g instead.
(K5): Suppose that θA ⋐M θB. Then θA ⊆ f(0,—)∗ ⊆ f(—, 12) and f(

1
2 ,—)

∗ ⊆
f(—, 1) ⊆ θB for some f ∈ M(L). Hence θA ⋐M f(—, 12) ⋐M θB.
To prove that ⋐M is also a Katětov relation, we just need to proceed

similarly as the operations ∨ and ∧ on M(L) are closed for finite-valued
functions.

Given a σ-frame L, we say that a relation R ⊆ C(L) is separating if θAR θB
implies the existence of a, b ∈ L such that θA ⊆ ∆a ⊆ θB and θA ⊆ ∇b ⊆ θB.

Proposition 5.4. Let L be a σ-frame, φ a σ-scale in C(L) and R a separating
relation on C(L) such that φ(r)Rφ(s) whenever r < s. Then the function
f : L(R) → C(L) generated by φ is measurable. In particular, if φ is finite,
then f is finite-valued.

Proof : Since R is separating and φ(r)Rφ(s) whenever r < s, there are ∇rs ∈
∇[L] and ∆rs ∈ ∆[L] (for r < s) such that φ(r) ⊆ ∇rs ⊆ φ(s) and φ(r) ⊆
∆rs ⊆ φ(s). Consequently, for any p, q ∈ Q,

f(—, q) =
∨
r<q

φ(r) =
∨
{∇rs | r < s < q} ∈ ∇[L]

and f(p,—) =
∨
s>p

φ(s)∗ =
∨
{∆∗

rs | s > r > p} ∈ ∇[L].
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Finally, we have the following insertion theorem for a general σ-frame.

Theorem 5.5. [Basic Insertion Theorem] Given functions g, h : L(R) →
C(L) on a σ-frame L such that g ≤ h, the following statements are equivalent:

(i) There exists a measurable function f : L(R) → L such that g ≤ f ≤ h.
(ii) For each p < q, h(p,—)∗ ⋐M g(—, q).
(iii) There exist σ-scales φ1 and φ2 generating g and h, respectively, such

that φ2(r) ⋐M φ1(s) whenever r < s.
(iv) There exist σ-scales φ1 and φ2 generating g and h, respectively, and a

separating Katětov relation R on C(L) such that φ2(r)Rφ1(s) when-
ever r < s.

Proof : (i)⇒(ii): If there is a measurable function f such that g ≤ f ≤ h,
then for each p < q, h(p,—)∗ ⊆ f(p,—)∗ and f(—, q) ⊆ g(—, q). Hence,
h(p,—)∗ ⋐M g(—, q).
(ii)⇒(iii): Define φ1(r) := g(—, r) and φ2(r) := h(r,—)∗ for all r ∈ Q. Then
φ1 and φ2 are σ-scales in C(L) generating g and h, respectively. Moreover,
φ2(r) = h(r,—)∗ ⋐M g(—, s) = φ1(s) if r < s.
(iii)⇒(iv): Immediate, because ⋐M is a separating Katětov relation.
(iv)⇒(i): By Katětov Lemma, there is a family (φ(r))r∈Q in C(L) such that
φ2(r) ⊆ φ(s), φ(r)Rφ(s) and φ(r) ⊆ φ1(s) whenever r < s. Because R is
separating, if r < s, there exists a closed congruence ∇rs such that φ(r) ⊆
∇rs ⊆ φ(s). Hence, φ(r)∧∇∗

rs ⊆ ∇rs∧∇∗
rs = 0 and ∇∗

rs∨φ(s) ⊇ ∇∗
rs∨∇rs =

1. Therefore φ is also a σ-scale in C(L). The function f : L(R) → C(L)
generated by φ not only satisfies g ≤ f ≤ h but is also measurable by the
previous proposition.

Note that in case the functions are finite-valued, the obtained σ-scale φ in
the proof above of (iv)⇒(i) is finite since∨

r∈Q

∨
s>r

∇∗
rs ⊇

∨
r∈Q

∨
s>r

φ(s)∗ =
∨
s∈Q

φ(s)∗ ⊇
∨
s∈Q

φ1(s)
∗ = 1

and ∨
r∈Q

φ(r) ⊇
∨
r∈Q

φ2(r) = 1.

As a consequence, we have a similar result for finite-valued functions:

Theorem 5.6. Given functions g, h : L(R) → C(L) on a σ-frame L such that
g ≤ h, the following statements are equivalent:

(i) There exists a measurable function f : L(R) → L such that g ≤ f ≤ h.
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(ii) For each p < q, h(p,—)∗ ⋐M g(—, q).
(iii) There exist finite σ-scales φ1 and φ2 generating g and h, respectively,

such that φ2(r) ⋐M φ1(s) whenever r < s.
(iv) There exist finite σ-scales φ1 and φ2 generating g and h, respectively,

and a separating Katětov relation R on C(L) such that φ2(r)Rφ1(s)
whenever r < s.

In particular, inserting a measurable function between two characteristic
functions yields the following result:

Corollary 5.7. Let θA, θB be complemented congruences on a σ-frame L such
that θA ⊆ θB. There exists a measurable function f : L(R) → L satisfying
χθA ≤ f ≤ χθB if and only if θ∗B ⋐M θ∗A.

Proof : It follows from Theorem 5.6, taking g = χθA and h = χθB , and
from the fact that χθB(p,—)

∗ ⋐M χθA(—, q) for each p < q if and only if
χθB(p,—)

∗ ⋐M χθA(—, q) for 0 ≤ p < q ≤ 1, that is, θ∗B ⋐M θ∗A.

Now, we want to extend a measurable function on a σ-sublocale S ⊆ L to
a measurable function on L. For that, consider the σ-frame homomorphism
qS : C(L) → C(S) given by qS(θ) = θ ∨ θS.

Definition 5.8. Let f : L(R) → C(S) be a function on S. We say that a

function f̃ : L(R) → C(L) is an extension of f over L if f = qS ◦ f̃ .

Recalling that L is isomorphic to ∇[L] and ∇[S] = {∇a ∨ θS : a ∈ L} is
isomorphic to L/θS, the restriction of qS to ∇[L] is precisely the quotient

map qS |L : L → L/θS. As a result, f̃ : L(R) → L is a measurable extension

of f : L(R) → S if it is measurable and f = qS |L ◦ f̃ , that is,

f(p,—) = f̃(p,—) ∨ θS and f(—, q) = f̃(—, q) ∨ θS for every p, q ∈ Q.

The Basic Insertion Theorem entails the following counterpart of Mrówka
Extension Theorem for σ-frames:

Theorem 5.9. Let S be a complemented σ-sublocale of a σ-locale L and let
f : L(R) → S be a measurable function such that 0S ≤ f ≤ 1S. The following
statements are equivalent:

(i) f has a finite-valued measurable extension over L.
(ii) For each p < q, f(p,—)∗L ⋐M f(—, q) in C(L).
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Proof : (i)⇒(ii): If f has a finite-valued measurable extension f̃ over L, then

f(p,—)∗L ⊆ f̃(p,—)∗L and f̃(—, q) ⊆ f(—, q) for every p < q.

(ii)⇒(i): Consider a measurable function f : L(R) → C(S) satisfying 0S ≤
f ≤ 1S and the corresponding functions g := gf and h := hf given by
Example 3.11, that is,

h(p,—) =


1 if p < 0

f(p,—) if 0 ≤ p < 1

0 if p ≥ 1

, h(—, q) =


0 if q ≤ 0

θ∗S ∧ f(—, q) if 0 < q ≤ 1

1 if q > 1,

g(p,—) =


1 if p < 0

θ∗S ∧ f(p,—) if 0 ≤ p < 1

0 if p ≥ 1

, g(—, q) =


0 if q ≤ 0

f(—, q) if 0 < q ≤ 1

1 if q > 1.

We have that 0 ≤ g ≤ h ≤ 1. Moreover, h(p,—)∗ ⋐M g(—, q) in C(L) for
every pair p < q. Indeed, if p < 0 or p ≥ 1, the relation is trivially verified
through the function 0 ∈ M(L). If 0 ≤ p < 1, then there is some r ∈ Q such
that p < r < (1 ∧ q), and

h(p,—)∗ ⊆ h(—, r) = θ∗S ∧ f(—, r) ⊆ f(r,—)∗L ⋐M f(—, q) ⊆ g(—, q).

Consequently, by Theorem 5.6, there exists a measurable function f̃ : L(R) →
L such that g ≤ f̃ ≤ h. All that is left to show is that f = qS ◦ f̃ , that is,
f(—, q) = f̃(—, q) ∨ θS for every q ∈ Q.

If q ≤ 0, then f̃(—, q) ⊆ g(—, q) = 0 and f(—, q) ⊆ 0S(—, q) = θS, thus,

f(—, q) = f̃(—, q) ∨ θS. If q > 1, then 1 = h(—, q) ⊆ f̃(—, q) and 1 =

1S(—, q) ⊆ f(—, q), so f(—, q) = f̃(—, q) ∨ θS. Finally, if 0 < q ≤ 1, then

θ∗S ∧ f(—, q) = h(—, q) ⊆ f̃(—, q) ⊆ g(—, q) = f(—, q), hence

f(—, q) ∨ θS = (θ∗S ∧ f(—, q)) ∨ θS ⊆ f̃(—, q) ∨ θS ⊆ f(—, q) ∨ θS
⇒ f̃(—, q) ∨ θS = f(—, q) ∨ θS = f(—, q).

Corollary 5.10. The following statements are equivalent for a complemented
σ-sublocale S of a σ-locale L:

(i) Each measurable function f : L(R) → S such that 0S ≤ f ≤ 1S has a
finite-valued measurable extension over L.

(ii) For each θA, θB ∈ C(S), θA ⋐M θB in C(S) implies (θ∗SA )∗L ⋐M θB in
C(L).
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Proof : (i)⇒(ii): If θA ⋐M θB in C(S), then there exists g ∈ M(S) such that
θA ⊆ g(0,—)∗S and g(—, 1) ⊆ θB. Set f := (0S ∨ g) ∧ 1S. We have that
f ∈ M(S) satisfies 0S ≤ f ≤ 1S. Thus f has a finite-valued measurable

extension f̃ over L, and

f̃(0,—) ⊆ f(0,—) = g(0,—) ⊆ θ∗SA , f̃(—, 1) ⊆ f(—, 1) = g(—, 1) ⊆ θB.

Consequently, (θ∗SA )∗L ⋐M θB in C(L) through f̃ .

(ii)⇒(i): Let f : L(R) → C(S) be a measurable function on S such that
0S ≤ f ≤ 1S. For each p < q, f(p,—)∗S ⋐M f(—, q) in C(S). Hence,
recalling that f(p,—) is complemented in C(S), by (ii) we get that f(p,—)∗L =
((f(p,—)∗S)∗S)∗L ⋐M f(—, q) in C(L). Applying Theorem 5.9, we obtain the
claimed.

Finally, our Basic Insertion Theorem also entails separation results for
general σ-frames.

Proposition 5.11. Given a σ-frame L and closed congruences ∇a ⊆ ∇b,
there exists a measurable f : L(R) → L satisfying χ∇a

≤ f ≤ χ∇b
if and only

if a≺≺ b.

Proof : First of all, notice that analysing the inequalities χ∇a
(p,—) ⊆ f(p,—) ⊆

χ∇b
(p,—) for each p ∈ Q yields

χ∇a
≤ f ⇔

{
a ≤ ep if 0 ≤ p < 1

ep = 1 if p < 0
and f ≤ χ∇b

⇔

{
ep ≤ b if 0 ≤ p < 1

ep = 0 if p ≥ 1,

where ep := f(p,—). Thus, as φ(r) = er is a finite descending σ-scale in L
generating f , it is straightforward to check that there exists an f ∈ M(L)
such that χ∇a

≤ f ≤ χ∇b
if and only if there exists a finite descending σ-scale

φ : Q → L such that 
φ(r) = 1 if r < 0

a ≤ φ(r) ≤ b if 0 ≤ r < 1

φ(r) = 0 if r ≥ 1.

(∗)

Now, suppose that a≺≺ b, that is, that there are ap ∈ L, p ∈ [0, 1] ∩ Q,
such that a0 = a, a1 = b and ap ≺ aq whenever p < q.
Take φ : Q → L where φ(r) = 1 if r < 0, φ(r) = a1−r if 0 ≤ r < 1 and

φ(r) = 0 otherwise. It is clear that
∨

r∈Q φ(r) = 1. Moreover, as φ(s) ≺ φ(r)
whenever r < s, there are csr ∈ L such that φ(s)∧ csr = 0 and csr∨φ(r) = 1.
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Since csr = 1 for 1 < r < s (because φ(r) = 0 and csr = csr ∨ φ(r) = 1), we
have

∨
s∈Q

∨
r<s csr = 1. Hence, φ is a finite descending σ-scale in L satisfying

(∗), and therefore the function f generated by φ is such that χ∇a
≤ f ≤ χ∇b

.
Conversely, if there exists a measurable function f : L(R) → L such that

χ∇a
≤ f ≤ χ∇b

, φ : r 7→ f(r,−) is a finite descending σ-scale in L satisfying
(∗). Consider the elements ap ∈ L, p ∈ [0, 1] ∩ Q, where a0 = a, a1 = b and
ap = f(1 − p,—) otherwise. For p < q, p, q ∈ (0, 1) ∩ Q, ap = f(1 − p,—) ≺
f(1 − q,—) = aq and a0 = a ≤ ap ≺ aq ≤ b = a1. Hence ap ≺ aq whenever
p < q, and thus a≺≺ b.
Combining the previous proposition with Corollary 5.7 and Lemma 5.2

yields a similar result for open congruences.

Proposition 5.12. Given a σ-frame L and open congruences ∆a ⊆ ∆b, there
exists a measurable f : L(R) → L satisfying χ∆a

≤ f ≤ χ∆b
if and only if

b≺≺a.

6. Insertion results for normal and extremally discon-
nected σ-frames

Recall that a σ-frame L is normal [8] if for all a, b ∈ L such that a∨ b = 1,
there are u, v ∈ L such that u ∧ v = 0 and a ∨ u = 1 = b ∨ v; dually, we say
that L is extremally disconnected if for all a, b ∈ L such that a∧ b = 0, there
are u, v ∈ L such that u ∨ v = 1 and a ∧ u = 0 = b ∧ v.
We will now apply our Basic Insertion Theorem to characterise normality

and extremally disconnectedness.
Let L be a σ-frame. Consider the relations ⋐N and ⋐D on C(L) given by

θA ⋐N θB ≡ ∃ u, v ∈ L : θA ⊆ ∆u ⊆ ∇v ⊆ θB

and θA ⋐D θB ≡ ∃ u, v ∈ L : θA ⊆ ∇u ⊆ ∆v ⊆ θB.

When L is normal, the relation ⋐N is a separating Katětov relation on C(L)
([27], Corollary VIII.4.2.2). By complementation, if L is extremally discon-
nected, then the relation ⋐D is also a separating Katětov relation.

Lemma 6.1. For any σ-frame L, ⋐M ⊆ ⋐N ∩ ⋐D.

Proof : Suppose that θA ⋐M θB, witnessed by a function f ∈ M(L). As
f(0,—)∗, f(12 ,—)

∗

∈ ∆[L], f(—, 12), f(—, 1) ∈ ∇[L] and

θA ⊆ f(0,—)∗ ⊆ f(—, 12) ⊆ f(12 ,—)
∗ ⊆ f(—, 1) ⊆ θB,



26 RAQUEL BERNARDES

it is clear that θA ⋐N θB and θA ⋐D θB.

Theorem 6.2. A σ-frame L is normal if and only if for any g ∈ UM(L) and
h ∈ LM(L) such that g ≤ h, there exists an f ∈ M(L) such that g ≤ f ≤ h.

Proof : Suppose that L is normal. Let g ∈ UM(L) and h ∈ LM(L) such that
g ≤ h, and define φg(r) = g(—, r) and φh(r) = h(r,—)∗ for all r ∈ Q. Then
φg and φf are σ-scales in C(L) generating g and h, respectively. Moreover,
g ≤ h implies

φh(r) = h(r,—)∗ ⊆ g(r,—)∗ ⊆ g(—, s) = φg(s) for r < s.

Hence, since h(r,—)∗ ∈ ∆[L] and g(—, s) ∈ ∇[L], we have that φh(r) ⋐N

φg(s) whenever r < s. Thus, as ⋐N is a separating Katětov relation (because
L is normal), there exists f ∈ M(L) such that g ≤ f ≤ h, by Theorem 5.5.

Conversely, consider a, b ∈ L such that a ∨ b = 1. Then χ∆b
≤ χ∇a

, with
χ∆b

∈ UM(L) and χ∇a
∈ LM(L). Hence, there is a measurable function

f ∈ M(L) such that χ∆b
≤ f ≤ χ∇a

; that is, ∆a ⋐M ∇b by Corollary 5.7.
But as ⋐M ⊆ ⋐D, there exist u, v ∈ L such that ∆a ⊆ ∇u ⊆ ∆v ⊆ ∇b, which
means that u ∧ v = 0 and a ∨ u = 1 = v ∨ b.

Theorem 6.3. The following statements are equivalent for a σ-frame L.

(i) L is normal.
(ii) (Normal Insertion) For any g ∈ UM(L) and h ∈ LM(L) such that

g ≤ h, there exists an f ∈ M(L) such that g ≤ f ≤ h.
(iii) (Normal Separation) For every a, b ∈ L, a∨ b = 1 implies that ∆a ⋐M

∇b.
(iv) (Normal Extension) For each closed σ-sublocale S of L, every f ∈

M(S) such that 0S ≤ f ≤ 1S has a finite-valued measurable extension
over L.

Proof : (i)⇒(ii): By Theorem 6.2, there exists f ∈ M(L) such that g ≤ f ≤ h.
As g and h are finite-valued, f is also finite-valued.
(ii)⇒(iii): If ∆a, ∆b are disjoint, then χ∆b

≤ χ∇a
, with χ∆b

∈ UM(L) and
χ∇a

∈ LM(L). Therefore, there exists f ∈ M(L) such that χ∆b
≤ f ≤ χ∇a

; in
other words, ∆a ⋐M ∇b, by Corollary 5.7.
(iii)⇒(iv): Let S be a closed σ-sublocale of L, and consider an f ∈ M(S)
such that 0S ≤ f ≤ 1S. The fact that f is measurable and θS is closed
implies that

f(p,—), f(—, q) ∈ ∇[S] ⊆ ∇[L]
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for all p, q ∈ Q. As a result, for each p < q, f(p,—)∗L and f(—, q)∗L are
disjoint open congruences because

f(p,—)∗L ∧ f(—, q)∗L = (f(p,—) ∨ f(—, q))∗L = 1∗L = 0L.

Thus f(p,—)∗L ⋐M f(—, q); equivalently, f has a finite measurable extension
over L (by Theorem 5.9).
(iv)⇒(i): Let a, b ∈ L be such that a ∨ b = 1. Set θS := ∇a∧b, and consider
the function f : L(R) → C(S) defined in Example 3.12:

f(p,—) =


1 if p < 0

∇a if 0 ≤ p < 1

∇a∧b if p ≥ 1

and f(—, q) =


∇a∧b if q ≤ 0

∇b if 0 < q ≤ 1

1 if q > 1.

Since f ∈ M(S) and it is such that 0S ≤ f ≤ 1S, there exists a measurable

extension f̃ ∈ M(L) of f to L. Therefore, ∆a ⋐M ∇b through f̃ , but as
⋐M ⊆⋐D, there are u, v ∈ L such that ∆a ⊆ ∇u ⊆ ∆v ⊆ ∇b. In other
words, u ∧ v = 0 and a ∨ u = 1 = v ∨ b.

We point out that the Normal Separation result is equivalent to saying
that for all a, b ∈ L such that a ∨ b = 1, there exists f : L(R) → L satisfying
f((—, 0) ∨ (1,—)) = 0, f(0,—) ≤ a and f(—, 1) ≤ b since we can choose
f ∈ M(L) in a way that 0 ≤ f ≤ 1.

Reformulating the previous proofs, we can obtain similar (almost “dual”)
results for extremally disconnected σ-frames, by replacing ⋐N with ⋐D and
closed congruences with open congruences. In general, such reformulation
is straightforward; but some exceptions arise in some details (arguments),
which are described in the following results.

Theorem 6.4. A σ-frame L is extremally disconnected if and only if for any
g ∈ LM(L) and h ∈ UM(L) such that g ≤ h, there exists an f ∈ M(L) such
that g ≤ f ≤ h.

Theorem 6.5. The following statements are equivalent for a σ-frame L.

(i) L is extremally disconnected.
(ii) (ED Insertion) For any g ∈ LM(L) and h ∈ UM(L) such that g ≤ h,

there exists an f ∈ M(L) such that g ≤ f ≤ h.
(iii) (ED Separation) For every a, b ∈ L, a∧ b = 0 implies that ∇a ⋐M ∆b.
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(iv) (ED Extension) For each open σ-sublocale S of L, every f ∈ M(S)
such that 0S ≤ f ≤ 1S has a finite-valued measurable extension over
L.

Proof : We can easily show that (i)⇒(ii) and (ii)⇒(iii) using similar argu-
ments to the ones used to prove Theorem 6.3. To prove that (iii)⇒(iv),
take an open S and an f ∈ M(S) such that 0S ≤ f ≤ 1S. Note that
f(p,—)∗S , f(—, q)∗S ∈ ∆[L] for all p, q ∈ Q. Hence, for each p < q, picking
r, s ∈ Q such that p < r < s < q, we verify that (f(s,—)∗S)∗L, (f(—, r)∗S)∗L

are disjoint closed congruences, and therefore

f(p,—)∗L ⊆ (f(—, r)∗S)∗L ⋐M f(s,—)∗S ⊆ f(—, q).

The claim then follows from Theorem 5.9.
Finally, to show (iv)⇒(i), taking a, b ∈ L such that a ∧ b = 0, set θS :=

∆a∨b. Then ∇b ⋐M ∆a through the measurable extension of f over L, where
f : L(R) → C(S) is the measurable function on S generated by the finite
σ-scale in C(S) given by

φ(r) =


∆a∨b if r ≤ 0

∇b ∨∆a∨b if 0 < r ≤ 1

1 if r > 1.

And because ⋐M ⊆⋐N , we obtain the claimed.

7. Insertion results for G-perfect and F-perfect σ-frames
Extending the notions of perfectness in [16] from locales to σ-locales, we say

that a σ-locale L is F-perfect [16] if each open σ-sublocale is a countable join
of closed σ-sublocales, that is, for each a ∈ L there is a sequence (ai)i∈N ⊆ L
such that

∆a =
∧
i∈N

∇ai.

Similarly, L is G-perfect if each closed σ-sublocale is a countable meet of open
σ-sublocales, that is, for each a ∈ L there is a sequence (ai)i∈N ⊆ L such that

∇a =
∨
i∈N

∆ai.

G-perfectness is, in general, stronger than F -perfectness, but the equiva-
lence happens in some cases, namely, when L is normal (see [16] for more
details).
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Proposition 7.1. Let L be a σ-frame.

(1) If L is G-perfect, then L is F-perfect.
(2) If L is normal, then L is F-perfect if and only if L is G-perfect.

We start this section by characterising F -perfect σ-frames L in terms of an
insertion result for upper measurable and lower measurable functions on L.
The proof of the following lemma is a straightforward reformulation of the
proof of its counterpart for frames in [17].

Lemma 7.2. Given a σ-frame L, consider a function f : L(R) → C(L) such
that 0 ≤ f . If there exists an increasing sequence (∆n)n∈N in ∆[L] such that

∆n ⊆ f( 1n ,—),

then there exists u : L(R) → C(L) such that 0 ≤ u ≤ f and u ∈ UM(L).
Moreover,

(1) If
∧
n∈N

∇n ⊆ f(0,—)∗, then u(0,—)∗ = f(0,—)∗ = (f − u)(0,—)∗.

(2) If f(0,—) ⊆
∨
n∈N

∆n, then u(0,—) = f(0,—) = (f − u)(0,—).

Theorem 7.3. A σ-frame L is F-perfect if and only if for any −u, l ∈ LM(L)
such that l and −u are sum compatible and 0 ≤ l−u, there exist u1 ∈ UM(L)
and l1 ∈ LM(L) such that 0 ≤ u1 ≤ l − u, u− l + u1 ≤ l1 ≤ 0 and

(l − u)(0,—)∗ = u1(0,—)
∗ = (−l1)(0,—)∗.

Proof : To prove the sufficient condition, for any a ∈ L, take u := 0 and
l := χ∇a

. As l and −u are sum compatible and 0 ≤ l−u, with −u, l ∈ LM(L),
there exists a u1 ∈ UM(L) satisfying u1(0,—)

∗ = χ∇a
(0,—)∗, and

∆a = ∇∗
a = χ∇a

(0,—)∗ = u1(0,—)
∗ =

( ∨
p>0

u1(p,—)
)∗

=
( ∨
q>0

u1(—, q)
∗)∗ = ∧

q>0
u1(—, q) =

∧
n∈N

u1(—,
1
n).

Hence, L is F -perfect since u1(—,
1
n) is closed for all n ∈ N.

Conversely, since l,−u ∈ LM(L), then (l−u) ∈ LM(L) and (l−u)(1i ,—)
∗ ∈

∆[L] for all i ∈ N. Consequently, by the F -perfectness of L, there exists a
sequence (∇ij)j∈N in ∇[L] such that

(l − u)(1i ,—)
∗ =

∧
j∈N

∇ij.
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Setting Fn :=
∧

i,j≤n

∇ij, (Fn)n∈N is a decreasing sequence of closed congruences

such that

Fn ⊇
∧
i≤n

∧
j∈N

∇ij =
∧
i≤n

(l − u)(1i ,—)
∗ =

( ∨
i≤n

(l − u)(1i ,—)
)∗

= (l − u)( 1n ,—)
∗,∧

n∈N
Fn =

∧
i,j∈N

∇ij =
∧
i∈N

(l − u)(1i ,—)
∗ =

( ∨
i∈N

(l − u)(1i ,—)
)∗

= (l − u)(0,—)∗.

Therefore, Lemma 7.2 implies the existence of some u1 ∈ UM(L) such that
0 ≤ u1 ≤ (l − u) and

(l − u)(0,—)∗ = u1(0,—)
∗ = (l − u− u1)(0,—)

∗.

Now, since u1 is finite-valued, (l − u) and −u1 are sum compatible and
0 ≤ l − u− u1, with l − u,−u1 ∈ LM(L). So applying a similar argument to
the inequality 0 ≤ l − u − u1, we obtain a function v1 ∈ UM(L) such that
0 ≤ v1 ≤ l − u− u1 and

(l − u− u1)(0,—)
∗ = v1(0,—)

∗ = (l − u− u1 − v1)(0,—)
∗.

Consider l1 := −v1 ∈ LM(L). Then u1 + u− l ≤ l1 ≤ 0 and (l − u)(0,—)∗ =
u1(0,—)

∗ = (−l1)(0,—)∗.

We are now ready to characterise F -perfectness via insertion, extension
and separation conditions for semimeasurable functions.

Theorem 7.4. The following statements are equivalent for a σ-frame L.

(i) L is F-perfect.
(ii) For any u ∈ UM(L) and l ∈ LM(L) such that u ≤ l, there exist

u′ ∈ UM(L) and l′ ∈ LM(L) such that u ≤ u′ ≤ l′ ≤ l and

(u′ − u)(0,—)∗ = (l − l′)(0,—)∗ = (l − u)(0,—)∗.

(iii) For each closed σ-sublocale S of L, every f ∈ M(S) with 0S ≤ f ≤
1S has an upper measurable extension u′ : L(R) → C(L) and a lower
measurable extension l′ : L(R) → C(L) such that 0 ≤ u′ ≤ l′ ≤ 1 and

θ∗S ∨ u′(0,—)∗ = θ∗S ∨ l′(—, 1)∗ = θ∗S.
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(iv) For any a, b ∈ L such that a ∨ b = 1, there are u′ ∈ UM(L) and
l′ ∈ LM(L) such that 0 ≤ u′ ≤ l′ ≤ 1,

u′(0,—)∗ ∨ l′(—, 1)∗ ⊆ ∆a∧b,

∆a ⊆ u′(p,—) ∧ l′(—, q) for all p < 0, q > 0,

and ∆b ⊆ u′(p,—) ∧ l′(—, q) for all p < 1, q > 1.

Proof : (i)⇔(ii): This is a consequence of Theorem 7.3: if u, l are finite-
valued, then all the involved functions are in F(L), where all the operations
are compatible. So taking u′ = u1 + u and l′ = l+ l1, we obtain the claimed.

(ii)⇒(iii): Let θS := ∇a for some a ∈ L, and pick a function f : L(R) → C(S)
measurable on S such that 0S ≤ f ≤ 1S. Recall Example 3.11, and consider
the functions u, l : L(R) → C(L) given by u = gf and l = hf :

l(p,—) =


1 if p < 0

f(p,—) if 0 ≤ p < 1

0 if p ≥ 1

, l(—, q) =


0 if q ≤ 0

∆a ∧ f(—, q) if 0 < q ≤ 1

1 if q > 1,

u(p,—) =


1 if p < 0

∆a ∧ f(p,—) if 0 ≤ p < 1

0 if p ≥ 1

, u(—, q) =


0 if q ≤ 0

f(—, q) if 0 < q ≤ 1

1 if q > 1.

Observe that 0 ≤ u ≤ l ≤ 1. Moreover, because f is measurable on S, we
have that l ∈ LM(L) and u ∈ UM(L). Consequently, there exist u′, l′ ∈ F(L)
such that

0 ≤ u ≤ u′ ≤ l′ ≤ l ≤ 1, u′ ∈ UM(L), l′ ∈ LM(L),

and (u′ − u)(0,—)∗ = (l − l′)(0,—)∗ = (l − u)(0,—)∗.

Now, because 0S ≤ f ≤ 1S and u ≤ u′ ≤ l, u′ is an upper measurable
extension of f over L. Similarly, as 0S ≤ f ≤ 1S and u ≤ l′ ≤ l, l′ is a
lower measurable extension of f over L. Hence, all that is left to show is that
∆a ∨ u′(0,—)∗ = ∆a ∨ l′(—, 1)∗ = ∆a. But

(l − u)(0,—)∗ =
( ∨
t∈Q

l(t,—) ∧ u(—, t)
)∗

=
( ∨
0<t<1

f(t,—) ∧ f(—, t)
)∗

= 0∗S = (∇a)
∗ = ∆a,
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and since u′ − u ≤ u′, l − l′ ≤ 1− l′ and (1− l′)(0,—) = l′(—, 1), we have

u′(0,—)∗ ⊆ (u′ − u)(0,—)∗ = (l − u)(0,—)∗ = ∆a

and l′(—, 1)∗ = (1− l′)(0,—)∗ ⊆ (l − l′)(0,—)∗ = (l − u)(0,—)∗ = ∆a.

(iii)⇒(iv): Suppose a ∨ b = 1. Let θS := ∇a∧b, and consider the function
f : L(R) → C(S) defined in Example 3.12:

f(p,—) =


1 if p < 0

∇a ∨∇a∧b if 0 ≤ p < 1

∇a∧b if p ≥ 1

, f(—, q) =


∇a∧b if q ≤ 0

∇b ∨∇a∧b if 0 < q ≤ 1

1 if q > 1.

It is clear that 0S ≤ f ≤ 1S. The upper measurable and lower measurable
extensions u′ : L(R) → C(L) and l′ : L(R) → C(L) obtained by (iii) satisfy
all the required conditions.
(iv)⇒(i): For any a ∈ L, a ∨ 1 = 1. Thus, there exist u′ ∈ UM(L) and
l′ ∈ LM(L) such that 0 ≤ u′ ≤ l′ ≤ 1, l′(—, 1)∗ ∨ u′(0,—)∗ ⊆ ∆a and
∆a ⊆ u′(p,—) ∧ l′(—, q) for all p < 1, q > 1.
Since ∆a ⊆ u′(p,—) ⊆ l′(p,—) for p < 1, and

∆a ⊇ l′(—, 1)∗ =
( ∨
q<1

l′(—, q)
)∗

=
( ∨
p<1

l′(p,—)∗
)∗

=
∧

0<p<1
l′(p,—),

we get that

∆a =
∧

0<p<1
l′(p,—) =

∧
n∈N

l′(1− 1
n ,—).

Reformulating the previous proofs yields similar characterisations for G-
perfect σ-frames.

Theorem 7.5. A σ-frame L is G-perfect if and only if for any −u, l ∈ LM(L)
such that l and −u are sum compatible and 0 ≤ l−u, there exist u1 ∈ UM(L)
and l1 ∈ LM(L) such that 0 ≤ u1 ≤ l − u, u− l + u1 ≤ l1 ≤ 0 and

(l − u)(0,—) = u1(0,—) = (−l1)(0,—).

Theorem 7.6. The following statements are equivalent for a σ-frame L.

(i) L is G-perfect.
(ii) For any u ∈ UM(L) and l ∈ LM(L) such that u ≤ l, there exist

u′ ∈ UM(L) and l′ ∈ LM(L) such that u ≤ u′ ≤ l′ ≤ l and

(u′ − u)(0,—) = (l − l′)(0,—) = (l − u)(0,—).
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(iii) For each closed σ-sublocale S of L, every f ∈ M(S) with 0S ≤ f ≤
1S has an upper measurable extension u′ : L(R) → C(L) and a lower
measurable extension l′ : L(R) → C(L) such that 0 ≤ u′ ≤ l′ ≤ 1 and

θS ∧ u′(0,—) = θS ∧ l′(—, 1) = θS.

(iv) For any a, b ∈ L such that a ∨ b = 1, there are u′ ∈ UM(L) and
l′ ∈ LM(L) such that 0 ≤ u′ ≤ l′ ≤ 1,

∇a∧b ⊆ u′(0,—) ∧ l′(—, 1),
∆a ⊆ u′(p,—) ∧ l′(—, q) for all p < 0, q > 0,

and ∆b ⊆ u′(p,—) ∧ l′(—, q) for all p < 1, q > 1.

Remark 7.7. We emphasise that although the study of insertion theorems
for perfectness has already been done in [17] for frames, with proofs that also
hold for σ-frames, the results above on separation and extension conditions
are novel in the point-free setting.

8. Insertion theorem for perfectly normal σ-frames
In this final section, we combine Theorems 6.3 and 7.6 to characterise

perfect normality of a σ-frame in terms of insertion, extension and separation
conditions. We will get, in particular, a σ-frame version of the point-free
Michael’s insertion theorem [15].
Perfectly normal σ-frames were originally introduced by Charalambous [8]

as the normal σ-frames L with the following property: for each a ∈ L, there
exists a sequence (an)n∈N in L such that for any b, c ∈ L, b ∧ a = c ∧ a if
and only if b ∨ an = c ∨ an for all n ∈ N. Gilmour [11] showed that these
σ-frames are precisely the regular σ-frames, that is, the σ-frames L such that
each a ∈ L can be written as a =

∨
n∈N an, with an ≺ a.

It is easy to check that perfectly normal σ-frames are exactly the normal
σ-frames with the F -perfectness property (or, equivalently, the G-perfectness
property), and this is the formulation that we adopt here as the definition of
a perfectly normal σ-frame.

Theorem 8.1. The following statements are equivalent for a σ-frame L.

(i) L is regular.
(ii) L is perfectly normal.
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(iii) For any u ∈ UM(L) and l ∈ LM(L) such that u ≤ l, there exists an
f ∈ M(L) such that u ≤ f ≤ l and

(f − u)(0,—) = (l − f)(0,—) = (l − u)(0,—).

(iv) For each closed σ-sublocale S of L, every f ∈ M(S) with 0S ≤ f ≤ 1S

has a measurable extension f̃ : L(R) → L such that

θS ⊆ f̃(0,—) ∧ f̃(—, 1).
(v) For every a, b ∈ L such that a ∨ b = 1, there exists an f ∈ M(L) such

that 0 ≤ f ≤ 1,

∆b ⊆ f(p,—) ∧ f(—, q) for all p < 1, q > 1,

∆a ⊆ f(p,—) ∧ f(—, q) for all p < 0, q > 0,

and ∇a∧b ⊆ f(0,—) ∧ f(—, 1).

Summing up, we have:

F -perfectness + Normality = Perfect normality

F -perfect insertion normal insertion perfectly normal insertion

F -perfect separation normal insertion perfectly normal separation

F -perfect extension normal insertion perfectly normal extension
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[2] S. Banach and A. Tarski, Sur la décomposition des ensembles de points en parties respective-

ment congruentes, Fund. Math. 6 (1924), 244–277.
[3] B. Banaschewski, σ-frames, unpublished manuscript, https://math.chapman.edu/CECAT/

members/BanaschewskiSigma-Frames.pdf, 1980, Accessed: 2022-12-22.

https://math.chapman.edu/CECAT/members/Banaschewski Sigma-Frames.pdf
https://math.chapman.edu/CECAT/members/Banaschewski Sigma-Frames.pdf


MEASURABLE FUNCTIONS ON σ-FRAMES 35

[4] B. Banaschewski, The real numbers in pointfree topology, Textos de Matemática, vol. 12,
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