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Abstract: Motivated by circular complex interval arithmetic, some operations on
closed balls in Cn are considered. Essentially, the properties of possible multiplica-
tions for closed balls in Cn, related either to the Hadamard product of vectors or
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equations involving the defined multiplications are solved.
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1. Introduction
Circular complex interval arithmetic, as can be seen in the books [2], due

to Alefeld and Herzberger, and [19], by Petković and Petković, deals with
closed balls in C. Over the years, research related to interval mathematics,
namely [13], [17] and [18], has been produced. In reference [13], Gargantini
and Henrici apply circular complex interval arithmetic to the determination
of polynomial zeros. Johansson, in [17], exhibits the advantages of ball arith-
metic for rigorous algebraic computation with real numbers. Reference [18],
whose editor is Pedrycz, compiles works in the context of granular comput-
ing. More recently, in [6], Beites, Nicolás and Vitória presented an arithmetic
for closed balls in Rn; the particular case n = 2 can be identified with C.
In the present work, some operations on closed balls in Cn are considered.

In particular, known results for closed balls in Rn are extended to closed
balls in Cn. To start with, in section 2, we recall definitions and results
related to the complex vector space Cn endowed with a 2-fold vector cross
product when n ∈ {3, 7}, closed balls and the Hadamard product of vectors.
Vector cross products, as referred in [4] and other works cited therein, appear
in control theory and in the description of spacecraft attitude control. The
latter product, as also mentioned in reference [4], can be found in applications
to machine learning and lossy compression algorithms for JPEG images.
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Recall that 2-fold vector cross products exist only for d-dimensional vector
spaces with d ∈ {1, 3, 7} (d = 1 is the trivial case), [10]. This fact is a con-
sequence of the generalized Hurwitz Theorem: over a field of characteristic
different from 2, if A is a finite dimensional composition algebra with iden-
tity (or Hurwitz algebra, [3]), then A is isomorphic either to the base field,
a separable quadratic extension of the base field, a generalized quaternion
algebra or a generalized octonion algebra, [16]. For other aspects connected
with vector cross products, Hadamard products and composition algebras,
see for instance, respectively, references: [4], [5], [7], [8], [9], [10], [14]; [15],
[20]; [3], [11], [12].
In section 3, an addition for closed balls in Cn is examined. In section 4,

properties of possible multiplications for these closed balls, related either to
the Hadamard product of vectors or to the 2-fold vector cross product when
n ∈ {3, 7}, are established. (Anti-)Commutativity, (power-)associativity, ex-
istence of neutral element and reciprocal of each element, and also its square
root(s), are studied. Inclusion monotonicity – the basis for diverse applica-
tions of interval arithmetic, [2] – holds for two out of four of the considered
multiplications, as well as for the addition. Moreover, the (sub)distributivity
of each multiplication relative to the addition is analysed. Finally, certain
equations involving the defined multiplications are solved.

2. Preliminaries
Throughout the work, consider the usual complex vector space Cn. In

addition, Cn×n denotes the set of all n×n complex matrices, and we identify
Cn×1 with Cn.
The complex vector space Cn, together with the standard Hermitian inner

product (·, ·)h : (Cn)2 → C, is a complex inner product space. Recall that,

for all x =
[
x1 . . . xn

]T
, y =

[
y1 . . . yn

]T ∈ Cn,

(x, y)h =
n∑

t=1

xtyt

and, for all x, y, z ∈ Cn, α, β ∈ C,

(αx+ βy, z)h = α(x, z)h + β(y, z)h (linearity in the first coordinate), (1)

(x, y)h = (y, x)h (conjugate or Hermitian symmetry), (2)

(x, x)h ∈ R+
0 and (x, x)h = 0 ⇔ x = 0 (positive definiteness). (3)
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Also, (1) and (2) imply conjugate or Hermitian linearity in the second coor-
dinate, that is,

(x, αy + βz)h = α(x, y)h + β(x, z)h. (4)

The complex vector space Cn, together with the norm ∥ · ∥ : Cn → R
induced by (·, ·)h, is also a normed linear space. Recall that, for all x ∈ Cn,

∥x∥ =
√
(x, x)h,

where
√
· stands for the real, positive or null root, and, for all x, y ∈ Cn,

α ∈ C,
∥x∥ ∈ R+

0 and ∥x∥ = 0 ⇔ x = 0, (5)

∥αx∥ = |α|∥x∥, (6)

∥x+ y∥ ≤ ∥x∥+ ∥y∥ (triangle inequality), (7)

where | · | stands for the modulus of a complex number.
The closed ball A in Cn with center a ∈ Cn and radius r ∈ R+

0 is defined
by

A = ⟨a; r⟩ = {x ∈ Cn : ∥x− a∥ ≤ r}.
The set of closed balls in Cn is denoted byB, and byB+ orB0 if, respectively,
r ∈ R+ or r = 0.
Let A = ⟨a; r1⟩, B = ⟨b; r2⟩ ∈ B. The closed balls A and B are equal

(A = B) if set-theoretic equality holds, that is, a = b and r1 = r2. A is
contained in B (A ⊆ B) if set-theoretic inclusion is valid.

Let x =
[
x1 . . . xn

]T ∈ Cn. The ∞-norm ∥ · ∥∞ of x is defined by
∥x∥∞ = max

i∈{1,...,n}
|xi| ∈ R+

0 , where | · | stands for the modulus of a complex

number.
Let x =

[
x1 . . . xn

]T
, y =

[
y1 . . . yn

]T ∈ Cn. The Hadamard (com-
ponentwise) product ◦ of x and y is x ◦ y ∈ Cn with i, 1 entry, i ∈ {1, . . . , n},
given by xiyi.
Endow the complex vector space Cn with the nondegenerate symmetric

bilinear form (·, ·) defined by

(x, y) = (x, y)h.

Now consider n ∈ {3, 7} and equip Cn also with the 2-fold vector cross
product × : (Cn)2 → Cn. Recall that × is the bilinear map that, for any
x, y ∈ Cn,

(x× y, x) = (x× y, y) = 0, (8)
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(x× y, x× y) =

∣∣∣∣ (x, x) (x, y)
(y, x) (y, y)

∣∣∣∣ . (9)

The trilinear map (· × ·, ·) is skew-symmetric due to (8), and so × is anti-
commutative, [10].
The 2-fold vector cross product in Cn, n ∈ {3, 7}, can be approached from

a matrix point of view, [7, 14]. Let a =
[
a1 . . . an

]T ∈ Cn. Consider the
linear mapping

a× : Cn → Cn

x 7→ a×(x) = a× x.

For each a ∈ Cn, there exists a unique matrix Sa ∈ Cn×n such that

a× x = Sax, (10)

where, for n = 3,

Sa =

 0 −a3 a2
a3 0 −a1

−a2 a1 0

 (11)

and, for n = 7,

Sa =



0 −a3 a2 −a5 a4 −a7 a6
a3 0 −a1 −a6 a7 a4 −a5

−a2 a1 0 a7 a6 −a5 −a4
a5 a6 −a7 0 −a1 −a2 a3

−a4 −a7 −a6 a1 0 a3 a2
a7 −a4 a5 a2 −a3 0 −a1

−a6 a5 a4 −a3 −a2 a1 0


. (12)

These skew-symmetric matrices, and other related matrices, were studied by
Beites, Nicolás and Vitória in [7] for n = 7, namely regarding invertibility,
index and nullspace. An earlier study for n = 3 can be found in [14], article
due to Gross, Trenkler and Troschke.

3. Addition
Throughout this section, consider the usual complex vector space Cn. Con-

sider also the binary operation +B : B×B → B, hereinafter called addition
+B, defined by

A+B B = ⟨a; r1⟩+B ⟨b; r2⟩ := ⟨a+ b; r1 + r2⟩.
The subsequent results establish several properties related to +B.
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Theorem 3.1. The addition +B is commutative and associative. Moreover,
⟨0; 0⟩ is the neutral element relative to +B.

Proof : Owing to the commutativity and to the associativity of the addition in
Cn, as well as to the commutativity and to the associativity of the addition in
C, it is straightforward to prove that, for all A,B,C ∈ B, A+BB = B+BA
and (A +B B) +B C = A +B (B +B C). Taking into account the neutral
elements of Cn and C relative to the respective additions, it is also direct to
prove that ⟨0; 0⟩ is the neutral element relative to +B.

Corollary 3.2. The set of elements of B which possess reciprocal relative to
the addition +B is B0. Furthermore, the reciprocal of ⟨a; 0⟩ ∈ B0 relative to
+B is ⟨−a; 0⟩.

Proof : Let E = ⟨0; 0⟩. Let A = ⟨a; r1⟩ ∈ B. Suppose that A′ = ⟨a′; r′1⟩ ∈ B
is the reciprocal of A relative to +B. We have

A+B A′ = E ⇔ ⟨a+ a′; r1 + r′1⟩ = ⟨0; 0⟩.

Thus, a′ = −a and r′1 = −r1.

Lemma 3.3. Let A,B ∈ B. Then A+B B = {x+ y : x ∈ A ∧ y ∈ B}.

Proof : (⊆) Let A = ⟨a; r1⟩, B = ⟨b; r2⟩ ∈ B. Let u ∈ A +B B. Then
∥u− (a+ b)∥ ≤ r1+ r2. If r1+ r2 = 0 then u = a+ b and the inclusion holds.
If r1+ r2 ̸= 0, then consider u = v+(u− v) with v = αu+(1−α)(a+ b)− b,
where α = r1

r1+r2
. Then we obtain

∥v − a∥ = α∥u− (a+ b)∥ ≤ r1

and

∥u− v − b∥ = (1− α)∥u− (a+ b)∥ ≤ r2.

Consequently, v ∈ A and u− v ∈ B, and, once again, the inclusion holds.
(⊇) Let x ∈ A = ⟨a; r1⟩ and y ∈ B = ⟨b; r2⟩. Then ∥x − a∥ ≤ r1,

∥y− b∥ ≤ r2 and ∥x+ y− (a+ b)∥ ≤ ∥x− a∥+ ∥y− b∥ ≤ r1 + r2. Therefore,
x+ y ∈ A+B B = ⟨a+ b; r1 + r2⟩.

Theorem 3.4. The addition +B is inclusion monotonic.
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Proof : Let Am, Bm ∈ B such that Am ⊆ Bm, m ∈ {1, 2}. Hence, A1+BA2 ⊆
B1 +B B2 since, applying Lemma 3.3 twice, we have

A1 +B A2 = {x+ y : x ∈ A1 ∧ y ∈ A2}
⊆ {x+ y : x ∈ B1 ∧ y ∈ B2}
= B1 +B B2.

4.Multiplications
Throughout this section, unless stated otherwise, consider the usual com-

plex vector space Cn. We start with an auxiliary result for the following
subsections, each devoted to a possible multiplication for closed balls in Cn.

Lemma 4.1. Let A = ⟨a; r1⟩, B = ⟨b; r2⟩ ∈ B. Then A ⊆ B if and only if
∥a − b∥ ≤ r2 − r1. In particular, if A and B are concentric then A ⊆ B if
and only if r1 ≤ r2.

Proof : (⇒) Suppose that A ⊆ B. Assume that ∥a− b∥ > r2 − r1. Consider
the line passing through a and b. This line intersects the border of A at a
point x such that ∥x − b∥ = ∥a − b∥ + ∥x − a∥ > r2 − r1 + r1 = r2, which
leads to the contradiction x /∈ B.
(⇐) Let x ∈ A. Then ∥x− a∥ ≤ r1. Hence, x ∈ B since

∥x− b∥ = ∥x− a+ a− b∥ ≤ ∥x− a∥+ ∥a− b∥ ≤ r2.

The particular result for concentric balls is immediate.

4.1.Multiplication ◦B,r. Consider the binary operation ◦B,r : B×B → B,
hereinafter called multiplication ◦B,r, defined by

A ◦B,r B = ⟨a; r1⟩ ◦B,r ⟨b; r2⟩ := ⟨a ◦ b+ r2a+ r1b; r1r2⟩.
Even though ◦B,r is not inclusion monotonic, the following properties hold
for ◦B,r.

Theorem 4.2. The multiplication ◦B,r is commutative and associative. More-
over, ⟨0; 1⟩ is the neutral element relative to ◦B,r.

Proof : As the Hadamard product ◦ of vectors is commutative and associative
on Cn, so is the multiplication ◦B,r. It is straightforward that, for all ⟨a; r1⟩ ∈
B, ⟨a; r1⟩ = ⟨a; r1⟩ ◦B,r ⟨0; 1⟩.

Theorem 4.3. The set of elements of B which possess reciprocal relative to

the multiplication ◦B,r is R = {A = ⟨a; r1⟩ ∈ B+ : a =
[
a1 . . . an

]T ∈



MULTIPLICATION OF CLOSED BALLS IN Cn 7

Cn ∧ al ̸= −r1, l ∈ {1, . . . , n}}. Furthermore, the reciprocal of ⟨a; r1⟩ ∈
R relative to ◦B,r is ⟨b; 1

r1
⟩ with b =

[
b1 . . . bn

]T ∈ Cn such that bl =

− al
r1(r1+al)

, l ∈ {1, . . . , n}.

Proof : Let A=⟨a; r1⟩ ∈ B+. Let b =
[
b1 . . . bn

]T ∈ Cn such that ⟨a; r1⟩◦B,r

⟨b; 1/r1⟩ = ⟨0; 1⟩. As a ◦ b+ 1
r1
a+ r1b = 0, we get

albl +
1

r1
al + r1bl = 0, l ∈ {1, . . . , n}.

Let A ∈ B. We define the powers of A relative to ◦B,r by

A0 = ⟨0; 1⟩ and Ak = Ak−1 ◦B,r A for k ∈ N.

Denote
[
1 . . . 1

]T
by a◦0 and a◦(k−1) ◦ a by a◦k for k ∈ N.

Theorem 4.4. The multiplication ◦B,r is power-associative.

Proof : Due to Theorem 4.2, for all A ∈ B, A2 ◦B,r A = A ◦B,r A
2 and

(A2 ◦B,r A) ◦B,r A = A2 ◦B,r A
2 are valid. The result follows from [1].

Theorem 4.5. Let A = ⟨a; r1⟩ ∈ B. Relative to the multiplication ◦B,r, for

all k ∈ N, Ak = ⟨
∑k

i=1

(
k
i

)
rk−i
1 a◦i; rk1⟩.

Proof : We use induction on k. The equality obviously holds for k = 1.
Suppose that it is true for k. Then we have

Ak+1 = Ak ◦B,r A

= ⟨
∑k

l=1

(
k
l

)
rk−l
1 a◦l; rk1⟩ ◦B,r ⟨a; r1⟩

= ⟨
∑k

l=1

(
k
l

)
rk−l
1 a◦(l+1) +

∑k
l=1

(
k
l

)
rk+1−l
1 a◦l + rk1a; r

k+1
1 ⟩

= ⟨a◦(k+1) +
∑k

l=2

[(
k

l−1

)
+
(
k
l

)]
rk+1−l
1 a◦l + (k + 1)rk1a; r

k+1
1 ⟩

= ⟨
∑k+1

l=1

(
k+1
l

)
rk+1−l
1 a◦l; rk+1

1 ⟩.

Theorem 4.6. Let A = ⟨a; r1⟩ ∈ B with a =
[
a1 . . . an

]T ∈ Cn. The

square roots of A relative to the multiplication ◦B,r are given by A1/2 =

⟨b;√r1⟩, with b =
[
b1 . . . bn

]T ∈ Cn such that bl = −√
r1 ±

√
r1 + al for

l ∈ {1, . . . , n}, where
√
· stands, accordingly, for the real, positive or null root

and for the complex roots.

Proof : Let B = ⟨b; s⟩ ∈ B such that A = B2. As ⟨a; r1⟩ = ⟨b◦2 + 2sb; s2⟩,
we have s2 = r1 and b2l + 2sbl − al = 0 for l ∈ {1, . . . , n}. Thus, bl =
−s±

√
s2 + al.
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Theorem 4.7. The multiplication ◦B,r is distributive with respect to the ad-
dition +B.

Proof : Let A = ⟨a; r1⟩, B = ⟨b; r2⟩ and C = ⟨c; r3⟩ ∈ B. Then we have

A ◦B,r (B +B C) = ⟨a; r1⟩ ◦B,r (⟨b; r2⟩+B ⟨c; r3⟩)
= ⟨a ◦ (b+ c) + (r2 + r3)a+ r1(b+ c); r1(r2 + r3)⟩
= ⟨a ◦ b+ a ◦ c+ r2a+ r3a+ r1b+ r1c; r1r2 + r1r3⟩
= ⟨a ◦ b+ r2a+ r1b; r1r2⟩+B ⟨a ◦ c+ r3a+ r1c; r1r3⟩
= (A ◦B,r B) +B (A ◦B,r C).

Theorem 4.8. Let A = ⟨a; r1⟩ ∈ B+ such that a =
[
a1 . . . an

]T ∈ Cn

with ak ̸= −r1, k ∈ {1, . . . , n}. Let B = ⟨b; r2⟩ ∈ B. Then the unique
solution of the equation A ◦B,r X = B is given by X = ⟨x; r3⟩ ∈ B, where

x =
[
x1 . . . xn

]T ∈ Cn, with

xk = (ak + r1)
−1(bk − r3ak), k ∈ {1, . . . , n}

and
r3 = r−1

1 r2.

Proof : From the definition of ◦B,r, the equation A ◦B,r X = B assumes the
form

⟨a ◦ x+ r3a+ r1x; r1r3⟩ = ⟨b; r2⟩,
which leads to (ak + r1)xk = bk − r3ak, k ∈ {1, . . . , n}, and r1r3 = r2.

Theorem 4.9. Let B = ⟨b; r2⟩, C = ⟨c; r1⟩ ∈ B. Then, the solutions of
the equation X2 = B ◦B,r X + C are given by X = ⟨x; r3⟩ ∈ B, where
x = [x1 . . . xn]

T ∈ Cn, with

xk = 2−1

(
bk −

√
r22 + 4r1 ±

√
(bk + r2)2 + 4(r1 + ck)

)
, k ∈ {i, . . . , n},

r3 = 2−1

(
r2 +

√
r22 + 4r1

)
and r3 = 0 if r1 = 0.

Proof : From the definition of ◦B,r, the equation X2 = B ◦B,r X + C takes
the form

⟨x ◦ x+ 2r3x; r
2
3⟩ = ⟨b ◦ x+ r3b+ r2x+ c; r3r2 + r1⟩.

So, r23 − r2r3 − r1 = 0 and r3 = 2−1
(
r2 +

√
r22 + 4r1

)
. Also, since r2 −√

r22 + 4r1 ∈ R+
0 if and only if r1 = 0, we have r3 = 0 if r1 = 0. On the other
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hand, for each k ∈ {1, . . . , n}, we have x2k+(2r3−bk−r2)xk− (r3bk+ck) = 0,
which leads to

xk = 2−1

(
bk −

√
r22 + 4r1 ±

√
(bk + r2)2 + 4(r1 + ck)

)
.

Corollary 4.10. Let E = ⟨0; 1⟩. Then the solutions of the equation X2 =

X+E are given by the golden balls X = ⟨x; 1+
√
5

2 ⟩, with x =
[
x1 . . . xn

]T ∈
Rn such that xk ∈ {−

√
5, 0} for k ∈ {1, . . . , n} and where

√
· stands for the

real, positive root.

Proof : By Theorem 4.2, the equation X2 = X + E can be rewritten as
X2 = E ◦B,r X + E. Then, the result follows from Theorem 4.9.

4.2.Multiplication ◦B,c. Consider the binary operation ◦B,c : B×B → B,
hereinafter called multiplication ◦B,c, defined by

A ◦B,c B = ⟨a; r1⟩ ◦B,c ⟨b; r2⟩ := ⟨a ◦ b; r1∥b∥∞ + r2∥a∥∞ + r1r2⟩.

Although ◦B,c is not associative, as presented below, ◦B,c possesses diverse
properties.

Theorem 4.11. The multiplication ◦B,c is commutative. Moreover, ⟨1; 0⟩ is
the neutral element relative to ◦B,c.

Proof : As the Hadamard product ◦ of vectors is commutative on Cn, it is

clear that ◦B,c is commutative. Denote
[
1 . . . 1

]T ∈ Cn by 1. Let A =
⟨a; r⟩ ∈ B. Then we get A ◦B,c ⟨1; 0⟩ = ⟨a ◦ 1; r⟩ = A.

Theorem 4.12. The set of elements of B which possess reciprocal relative

to the multiplication ◦B,c is R = {A = ⟨a; 0⟩ ∈ B0 : a =
[
a1 . . . an

]T ∈
Cn∧al ̸= 0, l ∈ {1, . . . , n}}. Furthermore, the reciprocal of ⟨a; 0⟩ ∈ R relative
to ◦B,c is ⟨b; 0⟩ with bl = a−1

l , l ∈ {1, . . . , n}.

Proof : Let A = ⟨a; r⟩ ∈ B. Suppose that B = ⟨b; s⟩ is the reciprocal of A
relative to ◦B,c. Then we have

A ◦B,c B = ⟨a; r⟩ ◦B,c ⟨b; s⟩ = ⟨a ◦ b; r∥b∥∞ + s∥a∥∞ + rs⟩ = ⟨1; 0⟩.

Hence, bl = a−1
l , l ∈ {1, . . . , n}, whenever al ̸= 0. In addition, r∥b∥∞ +

s∥a∥∞ + rs = 0, which allows to arrive at r = s = 0.
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Let A ∈ B. We define the powers of A relative to ◦B,c by

A0 = ⟨1; 0⟩ and Ak = Ak−1 ◦B,c A for k ∈ N.

Denote
[
1 . . . 1

]T
by a◦0 and a◦(k−1) ◦ a by a◦k for k ∈ N.

Theorem 4.13. The multiplication ◦B,c is power-associative.

Proof : To prove that, for all A ∈ B and for all m, s ∈ N, As ◦B,cA
m = As+m,

invoking [1], it suffices to show that A2 ◦B,cA = A◦B,cA
2 and (A2 ◦B,cA)◦B,c

A = A2 ◦B,c A
2. By Theorem 4.11, the former equality holds. As for the

latter equality, let A = ⟨a; r⟩ ∈ B. On the one hand, we obtain

A2 ◦B,c A = ⟨a◦2; 2r∥a∥∞ + r2⟩ ◦B,c ⟨a; r⟩
= ⟨a◦3; r∥a◦2∥∞ + ∥a∥∞(2r∥a∥∞ + r2) + r(2r∥a∥∞ + r2)⟩
= ⟨a◦3; 3r∥a∥2∞ + 3r2∥a∥∞ + r3⟩

and

(A2 ◦B,c A) ◦B,c A = ⟨a◦3; 3r∥a∥2∞ + 3r2∥a∥∞ + r3⟩ ◦B,c ⟨a; r⟩
= ⟨a◦4; 4r∥a∥3∞ + 6r2∥a∥2∞ + 4r3∥a∥∞ + r4⟩.

On the other hand, we get

A2 ◦B,c A
2 = ⟨a◦2; 2r∥a∥∞ + r2⟩ ◦B,c ⟨a◦2; 2r∥a∥∞ + r2⟩

= ⟨a◦4; 4r∥a∥3∞ + 6r2∥a∥2∞ + 4r3∥a∥∞ + r4⟩.

Theorem 4.14. Let A = ⟨a; r⟩ ∈ B. Relative to the multiplication ◦B,c, for
all k ∈ N, Ak = ⟨a◦k; (∥a∥∞ + r)k − ∥a∥k∞⟩.

Proof : We proceed by induction on k. The equality clearly holds for k = 1.
Suppose that it is also valid for k. Then we have

Ak+1 = Ak ◦B,c A

= ⟨a◦k;
∑k

l=1

(
k
l

)
rl∥a∥k−l

∞ ⟩ ◦B,c ⟨a; r⟩
= ⟨a◦(k+1); r∥a◦k∥∞ +

∑k
l=1

(
k
l

)
rl∥a∥k+1−l

∞ +
∑k

l=1

(
k
l

)
rl+1∥a∥k−l

∞ ⟩
= ⟨a◦(k+1); (k + 1)r∥a∥k∞ +

∑k
l=2

[(
k
l

)
+
(

k
l−1

)]
rl∥a∥k+1−l

∞ + rk+1⟩
= ⟨a◦(k+1);

∑k+1
l=1

(
k+1
l

)
rl∥a∥k+1−l

∞ ⟩
= ⟨a◦(k+1); (∥a∥∞ + r)k+1 − ∥a∥k+1

∞ ⟩.

Theorem 4.15. Let A = ⟨a; r⟩ ∈ B with a =
[
a1 . . . an

]T ∈ Cn. The

square roots of A relative to the multiplication ◦B,c are given by A1/2 =

⟨a◦1/2;
√
r + ∥a∥∞ −

√
∥a∥∞⟩, with a◦1/2 = (

√
a1, . . . ,

√
an), where

√
· stands,

accordingly, for the real, positive or null root and for the complex roots.
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Proof : LetB = ⟨b; s⟩ ∈ B such thatA = B2. From ⟨a; r⟩ = ⟨b◦2; s2 + 2s∥b∥∞⟩
we have b = a◦1/2 and s2 + 2

√
∥a∥∞s− r = 0.

Theorem 4.16. The multiplication ◦B,c is inclusion monotonic.

Proof : Let Am = ⟨am; rm⟩, Bm = ⟨bm; sm⟩ ∈ B such that Am ⊆ Bm, m ∈
{1, 2}. We aim to prove that A1 ◦B,c A2 ⊆ B1 ◦B,c B2. By Lemma 4.1,
∥bm − am∥ ≤ sm − rm, m ∈ {1, 2}, and it is enough to prove that

∥b1 ◦ b2 − a1 ◦ a2∥ ≤ s1∥b2∥∞ + s2∥b1∥∞ + s1s2 − r1∥a2∥∞ − r2∥a1∥∞ − r1r2.

Observe that

∥b1 ◦ b2 − a1 ◦ a2∥ = ∥b1 ◦ b2 − b1 ◦ a2 + b1 ◦ a2 − a1 ◦ a2∥
≤ ∥b1 ◦ (b2 − a2)∥+ ∥(b1 − a1) ◦ a2∥
≤ ∥b1∥∞∥b2 − a2∥+ ∥a2∥∞∥b1 − a1∥
≤ ∥b1∥∞(s2 − r2) + ∥a2∥∞(s1 − r1).

In addition, we have

s1∥a2∥∞ ≤ s1∥b2∥∞ + s1∥a2 − b2∥∞ ≤ s1∥b2∥∞ + s1(s2 − r2),
−r2∥b1∥∞ ≤ −r2∥a1∥∞ + r2∥a1 − b1∥∞ ≤ −r2∥a1∥∞ + r2(s1 − r1).

The former and the latter inequalities lead to the result.

Theorem 4.17. The multiplication ◦B,c is subdistributive with respect to the
addition +B.

Proof : Let A = ⟨a; r1⟩, B = ⟨b; r2⟩, C = ⟨c; r3⟩ ∈ B. Applying Lemma 4.1,

A◦B,c (B +B C) = ⟨a; r1⟩ ◦B,c (⟨b; r2⟩+B ⟨c; r3⟩)
= ⟨a ◦ (b+ c); r1∥b+ c∥∞ + (r2 + r3)∥a∥∞ + r1(r2 + r3)⟩
= ⟨a ◦ b+ a ◦ c; r2∥a∥∞ + r1r2 + r3∥a∥∞ + r1r3 + r1∥b+ c∥∞⟩
⊆ ⟨a ◦ b+ a ◦ c; r1∥b∥∞ + r2∥a∥∞ + r1r2 + r1∥c∥∞ + r3∥a∥∞ + r1r3⟩
= (A ◦B,c B) +B (A ◦B,c C).

Theorem 4.18. Let A = ⟨a; r1⟩ ∈ B such that a =
[
a1 . . . an

]T ∈ Cn

with ak ̸= 0, k ∈ {1, . . . , n}. Let B = ⟨b; r2⟩ ∈ B. Then the unique solution
of the equation A ◦B,c X = B is given by X = ⟨x; r3⟩ ∈ B, where x =[
x1 . . . xn

]T ∈ Cn, with

xk = a−1
k bk, k ∈ {1, . . . , n},

and
r3 = (∥a∥∞ + r1)

−1(r2 − r1∥x∥∞).
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Proof : The rewriting of the equation A ◦B,c X = B leads to

⟨a ◦ x; r1∥x∥∞ + r3∥a∥∞ + r1r3⟩ = ⟨b; r2⟩

From here, we have akxk = bk, k ∈ {1, . . . , n}, and (∥a∥∞ + r1)r3 = r2 −
r1∥x∥∞.

Theorem 4.19. Let B = ⟨b; r2⟩, C = ⟨c; r1⟩ ∈ B. Then, the solutions
of the equation X2 = B ◦B,c X + C are given by X = ⟨x; r3⟩ ∈ B, where

x =
[
x1 . . . xn

]T ∈ Cn, with

xk = 2−1

(
bk ±

√
b2k + 4ck

)
, k ∈ {1, . . . , n},

r3 = 2−1
(
r2 + ∥b∥∞ − 2∥x∥∞ +

√
(r2 + ∥b∥∞ − 2∥x∥∞)2 + 4(r1 + r2∥x∥∞)

)
,

where
√
· stands for the real, positive root, and

r3 = 0 if r1 = 0 and r2∥x∥∞ = 0.

Proof : From the definition of ◦B,c, the equation X2 = B ◦B,c X + C takes
the form

⟨x ◦ x; 2r3∥x∥∞ + r23⟩ = ⟨b ◦ x+ c; r2∥x∥∞ + r3∥b∥∞ + r2r3 + r1⟩.

So, r23 + (2∥x∥∞ − ∥b∥∞ − r2) r3 − ∥x∥∞r2 − r1 = 0. Solving this equation,
we have

r3 = 2−1
(
∥b∥∞ + r2 − 2∥x∥∞ +

√
(∥b∥∞ + r2 − 2∥x∥∞)2 + 4(r1 + r2∥x∥∞)

)
.

Notice that ∥b∥∞+r2−2∥x∥∞−
√
(∥b∥∞ + r2 − 2∥x∥∞)2 + 4(r1 + r2∥x∥∞) ∈

R+
0 if and only if r1 + r2∥x∥∞ = 0, in which case r3 = 0. On the other hand,

for each k ∈ {1, . . . , n} we must have that x2k = bkxk + ck, which leads to

xk = 2−1(bk ±
√

b2k + 4ck).

Corollary 4.20. Let E = ⟨1; 0⟩. Then the solutions of the equation X2 =

X + E are given by the balls X = ⟨x; 0⟩, with x =
[
x1 . . . xn

]T ∈ Rn

such that xk = 2−1(1±
√
5) for k ∈ {1, . . . , n}, where

√
· stands for the real,

positive root.

Proof : By Theorem 4.11, the equation X2 = X + E can be rewritten as
X2 = E ◦B,c X + E. Then, the result follows from Theorem 4.19.
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4.3. Multiplication ×B,r. Throughout this subsection, consider the usual
complex vector space Cn with n ∈ {3, 7}. Consider also the binary operation
×B,r : B×B → B, hereinafter called multiplication ×B,r, defined by

A×B,r B = ⟨a; r1⟩ ×B,r ⟨b; r2⟩ := ⟨a× b+ r2a+ r1b; r1r2⟩.
Despite the fact that commutativity, anti-commutativity, associativity and
inclusion monotonicity do not hold, ×B,r satisfies the subsequent properties.

Theorem 4.21. The neutral element relative to the multiplication ×B,r is
⟨0; 1⟩.

Proof : Let A = ⟨a; r1⟩ ∈ B. Then we have

⟨a; r1⟩ ×B,r ⟨0; 1⟩ = ⟨a; r1⟩ = ⟨0; 1⟩ ×B,r ⟨a; r1⟩.

Corollary 4.22. The set of elements of B which possess reciprocal relative
to the multiplication ×B,r is B

+. Furthermore, the reciprocal of ⟨a; r1⟩ ∈ B+

relative to ×B,r is ⟨− 1
r21
a; 1

r1
⟩.

Proof : Let A = ⟨a; r1⟩ ∈ B+. Then we obtain

⟨a; r1⟩ ×B,r

〈
− 1

r21
a;

1

r1

〉
= ⟨0; 1⟩ =

〈
− 1

r21
a;

1

r1

〉
×B,r ⟨a; r1⟩.

Let A ∈ B. We define the powers of A relative to ×B,r by

A0 = ⟨0; 1⟩ and Ak = Ak−1 ×B,r A for k ∈ N.

Theorem 4.23. The multiplication ×B,r is power-associative.

Proof : To prove that, for all A ∈ B and for all m, s ∈ N, As ×B,r A
m =

As+m, invoking [1], it suffices to show that A2 ×B,r A = A ×B,r A
2 and

(A2 ×B,r A)×B,r A = A2 ×B,r A
2.

Let A = ⟨a; r1⟩ ∈ B. Then we get

A2 ×B,r A = ⟨2r1a; r21⟩ ×B,r ⟨a; r1⟩
= ⟨3r21a; r31⟩
= ⟨a; r1⟩ ×B,r ⟨2r1a; r21⟩
= A×B,r A

2
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and

(A2 ×B,r A)×B,r A = ⟨3r21a; r31⟩ ×B,r ⟨a; r1⟩
= ⟨4r31a; r41⟩
= ⟨2r1a; r21⟩ ×B,r ⟨2r1a; r21⟩
= A2 ×B,r A

2.

Theorem 4.24. Let A = ⟨a; r1⟩ ∈ B. Relative to the multiplication ×B,r,
for all k ∈ N, Ak = ⟨krk−1

1 a; rk1⟩.
Proof : Let A = ⟨a; r1⟩ ∈ B. It is easy to see that the base case holds.
Concerning the induction step, we have

Ak = Ak−1 ×B,r A = ⟨(k − 1)rk−2
1 a; rk−1

1 ⟩ ×B,r ⟨a; r1⟩ = ⟨krk−1
1 a; rk1⟩.

Theorem 4.25. Let A = ⟨a; r⟩ ∈ B+. The square root of A relative to

the multiplication ×B,r is A1/2 =

〈
1

2
√
r
a;
√
r

〉
, where

√
· stands for the real,

positive root.

Proof : Let A = ⟨a; r⟩ ∈ B+. Let B = ⟨b; s⟩ ∈ B such that B2 = A. Thus,
s2 = r and Sbb + 2sb = a, which leads to the result by [7, Proposition 4,
Property 6] and [14, Property (A)].

Theorem 4.26. The multiplication ×B,r is distributive relative to the addi-
tion +B.

Proof : Let A = ⟨a; r1⟩, B = ⟨b; r2⟩, C = ⟨c; r3⟩ ∈ B. Then we obtain

A×B,r (B +B C) = ⟨a; r1⟩ ×B,r ⟨b+ c; r2 + r3⟩
= ⟨a× (b+ c) + (r2 + r3)a+ r1(b+ c); r1(r2 + r3)⟩
= ⟨a× b+ r2a+ r1b+ a× c+ r3a+ r1c; r1r2 + r1r3⟩
= A×B,r B +B A×B,r C

A similar reasoning provides the proof of the right distributivity.

Lemma 4.27. Let a ∈ Cn and α ∈ C. The matrix Sa + αIn is invertible if
and only if α ̸= 0 and α is not a square root of −(a, a)h.

Proof : From [7, Lemma 9], the result is valid for n = 7. For n = 3, a
straightforward calculation of det(Sa + αI3) leads to α(α2 + (a, a)h). In the
stated conditions, det(Sa+αI3) = 0 if and only if α = 0 or α2 = −(a, a)h.
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Theorem 4.28. Let a ∈ Cn. Let α ∈ C\{0} such that α is not a square root
of −(a, a)h. Then

(Sa + αIn)
−1 = −(α2 + (a, a)h)

−1(Sa − αIn − α−1aaT ). (13)

Proof : By [7, Theorem 10], the result holds for n = 7. Now consider n = 3.
From Lemma 4.27, Sa + αI3 is invertible. Invoking [14, Property (A) and
Property (3.1)], we get

(Sa + αI3)(−(α2 + (a, a)h)
−1(Sa − αI3 − α−1aaT ))

= −(α2 + (a, a)h)
−1(S2

a − αSa − α−1Saaa
T + αSa − α2I3 − aaT )

= −(α2 + (a, a)h)
−1(−(a, a)hI3 − α2I3)

= I3.

Theorem 4.29. Let A = ⟨a; r1⟩ ∈ B+ such that r1 is not a square root of
−(a, a)h. Let B = ⟨b; r2⟩ ∈ B. Then the unique solution of the equation
A×B,r X = B is given by X = ⟨x; r3⟩ ∈ B, with

x = −(r21 + (a, a)h)
−1(Sa − r1In − r−1

1 aat)(b− r3a) and r3 = r−1
1 r2.

Proof : By (10), the equation A×B,r X = B assumes the form

⟨Sax+ r3a+ r1x; r1r3⟩ = ⟨b; r2⟩,

where Sa is given by (11)-(12). From here, we arrive at (Sa+r1In)x = b−r3a
and r1r3 = r2. As r1 ∈ C\{0}, since r1 ∈ R+, and r1 is not a square root
of −(a, a)h, by Theorem 4.28, Sa + r1In is invertible and (Sa + r1In)

−1 =
−(r21 + (a, a)h)

−1(Sa − r1In − r−1
1 aat).

Theorem 4.30. Let B = ⟨b; r2⟩, C = ⟨c; r1⟩ ∈ B. Then,

• if r1 = 0, r2 ∈ R+ and r2 is not a square root of −(b, b)h, then the
unique solution of the equation X2 = B ×B,r X + C is given by X =
⟨x; r3⟩ ∈ B, with

x = (r22 + (b, b)h)
−1(Sb − r2In − r−1

2 bbt)c and r3 = 0;

• if r22 +4r1 ∈ R+ and
√

r22 + 4r1 is not a square root of −(b, b)h, where√
· stands for the real, positive root, then the unique solution of the

equation X2 = B ×B,r X + C is given by X = ⟨x; r3⟩ ∈ B, with

x = ((r2 − 2r3)
2 + (b, b)h)

−1(Sb − (r2 − 2r3)In − (r2 − 2r3)
−1bbt)(c+ r3b)
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and

r3 = 2−1

(
r2 +

√
r22 + 4r1

)
.

Proof : From (10), the equation X2 = B ×B,r X + C may be written as

⟨Sxx+ 2r3x; r
2
3⟩ = ⟨Sbx+ r3b+ r2x+ c; r2r3 + r1⟩,

where Sa is given by (11)-(12). On the one hand, we have r23 = r2r3 + r1,

which leads to r3 = 2−1(r2 ±
√

r22 + 4r1), and r2 −
√
r22 + 4r1 ∈ R+

0 if and
only if r1 = 0. On the other hand, taking into account [7, Proposition 4,
Property 6] and [14, Property (A)], we have (Sb + (r2 − 2r3)In)x = −r3b− c.
As r2 − 2r3 ∈ C\{0} and r2 − 2r3 is not a square root of −(b, b)h under
the stated assumptions, by Theorem 4.28, Sb + (r2 − 2r3)In is invertible and
(Sb + (r2 − 2r3)In)

−1 = −((r2 − 2r3)
2 + (b, b)h)

−1(Sb − (r2 − 2r3)In − (r2 −
2r3)

−1bbt).

Corollary 4.31. Let E = ⟨0; 1⟩. Then the unique solution of the equation

X2 = X + E is given by the golden ball X = ⟨0; 1+
√
5

2 ⟩, where
√
· stands for

the real, positive root.

Proof : By Theorem 4.21, the equation X2 = X + E can be rewritten as
X2 = E ×B,r X + E. The result then follows from Theorem 4.30.

4.4. Multiplication ×B,c. Throughout this subsection, consider the usual
complex vector space Cn with n ∈ {3, 7}. Consider also the binary operation
×B,c : B×B → B, hereinafter called multiplication ×B,c, defined by

A×B,c B = ⟨a; r1⟩ ×B,c ⟨b; r2⟩ := ⟨a× b; r2∥a∥+ r1∥b∥+ r1r2⟩.
Despite the fact that commutativity, anti-commutativity, associativity, exis-
tence of neutral element and power-associativity do not hold, ×B,c satisfies
the subsequent properties.

Theorem 4.32. Let A = ⟨0; r⟩ ∈ B. The square roots of A relative to the

multiplication ×B,c are given by A1/2 = ⟨b;−∥b∥+
√

∥b∥2 + r⟩, with b ∈ Cn,
where

√
· stands for the real, positive or null root.

Proof : Let A = ⟨0; r⟩ ∈ B. Let B = ⟨b; s⟩ ∈ B such that B2 = A. From

s2 + 2∥b∥s− r = 0, we have s = −∥b∥+
√

∥b∥2 + r ∈ R+
0 .

Theorem 4.33. The multiplication ×B,c is inclusion monotonic.
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Proof : Let Am = ⟨am; rm⟩, Bm = ⟨bm; sm⟩ ∈ B such that Am ⊆ Bm, m ∈
{1, 2}. We aim to prove that A1 ×B,c A2 ⊆ B1 ×B,c B2. From Lemma 4.1,
∥am − bm∥ ≤ sm − rm, m ∈ {1, 2}. We also have

A1 ×B,c A2 = ⟨a1 × a2; r2∥a1∥+ r1∥a2∥+ r1r2⟩
and

B1 ×B,c B2 = ⟨b1 × b2; s2∥b1∥+ s1∥b2∥+ s1s2⟩.
As

∥a1 × a2 − b1 × b2∥
= ∥ − b2 × (a1 − b1) + b1 × (a2 − b2) + (a1 − b1)× (a2 − b2)∥
≤ ∥b2∥∥a1 − b1∥+ ∥b1∥∥a2 − b2∥+ ∥a1 − b1∥∥a2 − b2∥
≤ ∥b2∥(s1 − r1) + ∥b1∥(s2 − r2) + (s1 − r1)(s2 − r2)

and

−∥bm∥ ≤ −∥am∥+ ∥am − bm∥ ≤ −∥am∥+ sm − rm,m ∈ {1, 2},
we obtain ∥a1 × a2 − b1 × b2∥ ≤ β − α, where β = s2∥b1∥+ s1∥b2∥+ s1s2 and
α = r2∥a1∥+ r1∥a2∥+ r1r2. Once again by Lemma 4.1, the result follows.

Theorem 4.34. The multiplication ×B,c is subdistributive with respect to the
addition +B.

Proof : Let A = ⟨a; r1⟩, B = ⟨b; r2⟩, C = ⟨c; r3⟩ ∈ B. By Lemma 4.1, we have

A×B,c (B +B C) = ⟨a; r1⟩ ×B,c ⟨b+ c; r2 + r3⟩
= ⟨a× (b+ c); (r2 + r3)∥a∥+ r1∥b+ c∥+ r1(r2 + r3)⟩
⊆ ⟨a× b+ a× c; r2∥a∥+ r1∥b∥+ r1r2 + r3∥a∥+ r1∥c∥+ r1r3⟩
= A×B,c B +B A×B,c C

Thus, left subdistributivity holds. An analogous reasoning leads to the right
subdistributivity.

Theorem 4.35. Let A = ⟨a; r1⟩, B = ⟨b; r2⟩ ∈ B such that ∥a∥ and r1 are
not simultaneously null, (a, a)h ̸= 0 and (a, b)h = 0. Then the solutions of
the equation A×B,c X = B are given by X = ⟨x; r3⟩ ∈ B, with

x = −(a, a)−1
h Sab+ λa, λ ∈ C,

and
r3 = (∥a∥+ r1)

−1(r2 − r1∥x∥).
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Proof : By (10), the equation A×B,c X = B assumes the form

⟨Sax; r3∥a∥+ r1∥x∥+ r1r3⟩ = ⟨b; r2⟩,

where Sa is given by (11)-(12). Hence, we have Sax = b and (∥a∥ + r1)r3 =
r2 − r1∥x∥. The stated solutions, as (a, a)h ̸= 0 and (a, b)h = 0, are a
consequence of [7, Theorem 14] and [14, Theorem 2] .

Theorem 4.36. Let B = ⟨b; r2⟩, C = ⟨c; r1⟩ ∈ B such that (b, b)h ̸= 0 and
(b, c)h = 0. Then the solutions of the equation X2 = B×B,c X +C are given
by X = ⟨x; r3⟩ ∈ B, with

x = (b, b)−1
h Sbc+ λb, λ ∈ C,

r3 = 2−1
(
r2 + ∥b∥ − 2∥x∥+

√
(r2 + ∥b∥ − 2∥x∥)2 + 4(r1 + r2∥x∥)

)
,

where
√
· stands for the real, positive or null root, and

r3 = 0 if r1 = 0 and r2∥x∥ = 0.

Proof : From (10), the equation X2 = B ×B,c X + C may be written in the
form

⟨Sxx; 2r3∥x∥+ r23⟩ = ⟨Sbx+ c; r2∥x∥+ r3∥b∥+ r2r3 + r1⟩,

where Sb is given by (11)-(12). Observe that, applying [7, Proposition 4,
Property 6] and [14, Property (A)], we have Sbx = −c, whose solutions
follow from [7, Theorem 14] and [14, Theorem 2] . In addition, we arrive at

r23 − (r2 + ∥b∥ − 2∥x∥)r3 − r1 − r2∥x∥ = 0,

that is,

r3 = 2−1
(
r2 + ∥b∥ − 2∥x∥ ±

√
(r2 + ∥b∥ − 2∥x∥)2 + 4r1 + 4r2∥x∥

)
.

Observe that

2−1
(
r2 + ∥b∥ − 2∥x∥ −

√
(r2 + ∥b∥ − 2∥x∥)2 + 4r1 + 4r2∥x∥

)
∈ R+

0

if and only if 4r1 + 4r2∥x∥ = 0.
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