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RESPIRATORY PARTICLES: FROM ANALYTICAL
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Abstract: Respiratory particles containing infectious pathogens are responsible
for a large number of diseases. To define health politics and save lives, it is im-
portant to study their transmission mechanisms, namely the path of particles once
expelled. This path depends on several driving factors as intrinsic properties of par-
ticles, environmental aspects and morphology of the scenario. Following physical
arguments and taking into account the results of experimental works, we consider
a mathematical drift model, where the mixture composed by two phases-air and
particles- is viewed as a whole. The relative motion between the two phases is de-
scribed by a kinematic constitutive relation. We prove the stability of the model
for fixed times and establish an a priori estimate for the total number of infectious
particles. The upper bound of this estimate exhibits sound physical dependencies
on the driving factors, in agreement with the experimental literature. Namely, we
confirm that the amount of particles expelled and their emission rate can explain
why some people are superspreaders. Several numerical simulations illustrate the
theoretical results.
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1. Introduction
Biological Motivation
A large number of diseases are spread by respiratory particles, due to the

possible presence of infectious pathogens, virus, bacteria or fungi, in their
nuclei. These particles can be exhaled by all kind of respiratory events from
breathing and talking, to the most violent ones as coughing and sneezing. In
the last decades, the problem of air quality and airborne diseases transmis-
sion - as for example influenza, tuberculosis, measles or Covid-19 - drew the
attention of a very large number of researchers working in different applied
and experimental areas [5]-[26]. During Covid-19 pandemics the focus on the
topic, essentially by researchers outside the field of mathematics, has hugely
increased. The results produced had a crucial role in informing health pol-
itics and saving lives. We mention, without being exhaustive [4]-[16]. Our
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objective in this paper is to establish analytically those experimental results,
from the study of a model based on a system of ordinary differential equations
and a system of partial differential equations.

To achieve such a goal we must understand what happens to respiratory
droplets once exhaled. After exhalation, the space-time evolution of respira-
tory droplets depends on several driving factors: properties of droplets, envi-
ronmental factors and morphology of the scenario. Regarding these driving
factors, we find several references in the literature as for example:

(i) Properties of droplets: amount, size, emission rate and viral load of
exhaled particles [3], [4], [25];

(ii) Environmental factors: relative humidity (RH), temperature and ven-
tilation [4], [19];

(iii) Morphology of the scenario: obstacles and materials [1], [13], [26].

We proceed to make some comments about those factors. The droplet
radii, measured in different experimental works (for example [25]) are re-
ported to range in the interval [0.5, 1000] where the units are micrometers
(µm). However around 95% have radii in the interval [1, 60]. This size dis-
tribution appears largely independent of the type of respiratory event. On
the contrary, the number of exhaled droplets depends mainly on the type of
respiratory event: a few thousand for a cough, up to a million for a sneeze.
The fate of respiratory droplets, emitted by an infected person during a res-
piratory event is different for ”large” and ”small” particles. The definition
of “small” and “large” is based on experimental results and the radius size
cut-off has variations from study to study. Currently the World Health Or-
ganization guidelines define this cut-off at 5 µm. “Large” particles fall on
available deposition surfaces, within a short time, and can produce contami-
nation by direct contact; “small” particles stay suspended in the air for longer
periods and can be inhaled by other people in the same space ([3]). This type
of contamination is called airborne transmission. Regarding environmental
factors, laboratorial results suggest that temperature and relative humidity
influence the persistence of a large number of virus as is the case of SARS-
CoV-2. Temperature increases the decay of enveloped viruses. However, as
our focus in this paper is airborne contamination in indoor spaces, we assume
that the indoor temperature is regulated and consequently that the main en-
vironmental driver of transmission is RH. In fact RH influences the fate of
respiratory particles for two different reasons. Firstly, low RH accelerates
evaporation, reduces the radius of particles and consequently their weight,
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what makes them stay suspended in the air longer. Secondly, RH governs the
survival of pathogens inside the droplets. The relation between RH and virus
inactivation rate is a complex one represented by an U- shaped function, for
a large number of virus ([1]). As what concerns ventilation, different systems
can be considered from passive to forced ventilation. With reference to the
morphology of the scenario, several aspects could be considered as deposition
on the vertical walls, on the floor, or on the furniture. To keep the model as
simple as possible, while taking into account the main phenomena involved,
we will use a simplified description of deposition based on a global deposi-
tion rate ([1]). Figure 1 shows a diagram of the main factors governing the
trajectory of respiratory particles.

Figure 1. The space-time evolution of respiratory particles depends on
several driving factors.

What is the interplay between those factors? Particles are expelled from
the respiratory system, dispersed in the air and the water vapor flow. Once
expelled, particles enter unsaturated air, travel under the action of convec-
tion, diffusion and gravity. They start to evaporate and the radius decreases:
the largest particles are deposed on available surfaces and the smallest par-
ticles stay suspended in the air. The amount by which a particle radius
decreases depends on its initial radius, the fraction of non volatile matter in
the droplet nuclei-including pathogens, sugars, proteins, lipids - and on the
relative humidity in the domain ([26]). As the radius shrinks, the droplet
loses water vapor, and its density increases because nuclei are denser than
the water vapor where they are entrapped: the higher RH, the lower is the
evaporation rate (Figure 2).
Mathematical models in the literature
The flow of respiratory droplets suspended in the air can be considered

a two-phase disperse flow. To model disperse flows, two main approaches
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Figure 2. Particles and non-volatile nuclei: the influence of RH ([4]).

can be found in the literature: trajectory models and two-fluid models. In
the trajectory models, the motion of the disperse phase - the particles - is
governed by Newton’s second law, taking into account gravity, buoyancy, drag
force and the force responsible for the momentum destruction of vapour due
to evaporation. The models based on this physical description, are described
by two coupled ordinary differential equations (ODE) for each particle. One
of the equations is used to compute the velocity and the other to define the
position occupied by the particle ([3], [6], [21]-[23]). The ODE systems for
the velocity up and the position s of a particle, with a certain initial radius,
are of the form 

d (mpup)

dt
= Fg + Fb + Fd + Fs

ds

dt
= up,

(1)

where mp represents the time-dependent mass of the particle, Fg stands for
the gravity force, Fb represents the buoyancy, Fd the drag force and Fs rep-
resents the force responsible for the momentum destruction of vapour due
to evaporation. System (1) is closed with initial conditions for u and s. Re-
garding trajectory models, we mention without being exhaustive, a number
of formulations based on system (1), found in the literature and progressively
more realistic:

(i) The simplest description considers that after leaving the exhaled flow
the respiratory droplets move in a static indoor air, following a bal-
listic trajectory ([6]). The path of large droplets is dominated by
gravity while the trajectories of small droplets can remain longer sus-
pended in the air, leading to a greater dissemination. This means
that large droplets tend to fall in seconds, depositing on surfaces and
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small droplets can travel for a longer period, being eventually inhaled
by someone else. The conclusions are qualitatively in agreement with
experimental results.

(ii) The experimental set up in [3] and [23] suggests that the path of
particles is influenced by the respiratory flow. Following this rationale,
system (1) was modified by including in the drag force Fd a velocity
for the expelled air: an empiric velocity ([23]), or a velocity described
by Navier-Stokes equations ([20] and [21]).

(iii) In a third type of trajectory models found in the literature, the fluid
flow behavior of droplets is modelled using two different systems, one
for large and the other for small droplets. For large droplets it is used
Newton’s Law, where the velocity of the expelled air is computed by
Navier-Stokes equations as in (ii); however the path of single small
particles is omitted and it is identified with the fluid flow governed by
Navier-Stokes and mass transfer equations ([15], [20]).

The second approach found in the literature, to describe disperse flows,
is two fluid models, where the discrete nature of particles is overlooked and
the disperse phase is treated as a continuous phase. In this approach, con-
servation equations are developed for the two flows, which presents many
difficulties related to the interactions between the two phases ([12]). A sim-
plified version of two-fluid models are drift-flux models where the mixture
is considered as a whole, rather than two separate phases. The formulation
involves two mass conservation equations, one for each phase, and one mo-
mentum equation for the mixture. The mass conservation of the dispersed
phase is modelled by using a drift equation, that includes the relative ve-
locity between the phases. The approach is largely used in the literature
(for example [5], [8], [26], [27]) and the simulations presented therein are in
agreement with experimental results ([13], [15], [17]). Specifically, the model
has been validated for indoor particle dissemination ([13]).
The present contribution
In the present paper, we are interested in indoor propagation of respiratory

particles possibly leading to airborne contamination. We adopt a drift-flux
model and our focus is the study of mathematical aspects related to the-
oretical estimates. Namely, we want to analyse if, from these theoretical
estimates, it is possible to conclude the type of dependence on the driving
factors, established by experimentalists.
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The topic of airborne contamination has always attracted the attention
of a very large number of researchers from applied areas, contributing with
laboratorial results or numerical simulations. We believe that our approach
represents an original contribution as it shows that the mathematical analysis
of a priori estimates exhibits sound physical properties, leading to results in
line with laboratory experiments.

The paper is structured as follows. In Section 2 we establish the equations,
following the principles of drift-flux models for disperse flows. The stability
of the mathematical model is then deduced in Section 3. An a priori estimate
of the total number of particles highlights the relative weight of the different
driving factors, and supports a number of health guidelines adopted to block
disease spread. The estimates are numerically illustrated and compared with
results in the experimental literature. In Section 4 several numerical experi-
ments are presented. In Section 5 some conclusions are addressed.

2. Mathematical model
In this section we present the mathematical model that describes the evo-

lution of the number density of respiratory droplets exhaled indoors, during
a violent respiratory event - coughing or sneezing. It is assumed that par-
ticles are laden with virus and that evaporation takes place after expulsion.
Moreover we assume that ventilation is guaranteed by a passive system.

We consider a drift-flux model ([5], [8], [10], [12]) where the mixture com-
posed by two phases - air and particles - is viewed as a whole and the relative
motion between the two phases is described by a kinematic constitutive re-
lation.

2.1. Convection-diffusion-reaction equation for the dispersed phase.
Let Ω ⊂ IR2 represents the physical domain where the evolution of respiratory
droplets is studied. Let the boundary ∂Ω be decomposed in

∂Ω = ∂ΩW ∪ ∂ΩD ∪ ∂ΩF ∪ ∂Ωwa
∪ ∂ΩMf

∪ ∂ΩMb

as represented in Figure 3. The boundaries ∂ΩW and ∂ΩD represent two
openings of a passive ventilation system, a window and a door respectively;
∂ΩF stands for the floor of the room. ΩM stands for the location of the
emission source and its boundary satisfies ∂ΩM = ∂ΩMf

∪∂ΩMb
, where ∂ΩMf

represents the entry of the respiratory flow in Ω. Finally ∂Ωwa
represents the

remaining boundaries.
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Figure 3. A vertical slice of the domain.

We consider an arbitrary reference domain A ⊆ Ω. The respiratory parti-
cles are assumed spherical with radius R(t) and density ρp(t). We suppose
that evaporation takes place as the particles are expelled, which explains that
radius and density are time dependent. We also assume that particles, while
evaporating, keep their spherical shape. To guarantee that the particles can
be considered in the continuum regime and that the usual equations of con-
tinuum mechanics can be applied, we assume that the Knudsen number, kn,
satisfies kn � 1. As kn = λ

R(t) , where λ is the mean free path of air molecules,

we obtain R0 � 0.0651µm ([9]) and consequently the continuum regime can
be used for particles with radii exceeding this value.

Let C(x, t) stand for the number density of respiratory particles with in-
fectious nuclei and with initial radius R0, in x ∈ Ω at time t. The total mass
of particles, with infectious nuclei and with initial radius R0, in A is given
by

M(t) =

∫
A

mp(t)C(x, t) dx, (2)

where mp(t) represents the mass of a particle, that is defined by mp(t) =
4
3πR

3(t)ρp(t). The variation of M(t) in A is due to the flux J that crosses the
boundary ∂A of A, to the deposition, to the inactivation of pathogens and
the loss of mass by evaporation. J is a convection-diffusion flux that will be
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defined later in this paper. To take into account these phenomena we write

M ′(t) = −
∫
∂A

mp(t)J(x, t).η ds−
∫
A

mp(t)KC(x, t) dx

−
∫
A

mp(t)V C(x, t) dx−
∫
A

mp(t)L(t)C(x, t) dx.
(3)

The sinks of the model, K and V , stand for the deposition of particles
and the inactivation rate of the pathogens, respectively. The deposition of
particles K, defined later in this section, is represented by a global deposition
rate depending on several parameters. Regarding the inactivation rate V , we
focus on its dependence on relative humidity. It is represented, for most virus,
by an U-shaped function. In Figure 4 is exhibited a plot of the inactivation
rate of SARS-CoV-2 as a function of RH. In equation (3), η stands for the
exterior unit normal.

Figure 4. Inactivation rate of SARS-CoV-2 as a function of RH ([1]).

As already mentioned in Section 1, we assume that, indoors, the tempera-
ture is regulated and that the inactivation rate depends essentially on relative
humidity ([1], [19]). In the last term of the second member of equation (3),
that quantifies mass loss by evaporation, the time function L = L(t) stands
for the rate of evaporation.

From equation (2) and equation (3) we have

mp
∂C

∂t
+
dmp

dt
C = −mpdiv(J)−mpKC −mpV C −mpLC, (4)

where we omitted the time and space variables. We recall that C and J are
space-time functions, mp and L are time functions, K and V are constants
depending on several parameters.
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Let us assume that the droplets don’t evaporate completely, that is mp(t) 6=
0, ∀t ∈ [0, Te]. This assertion will be justified in what follows.

As m′p(t) < 0, the rate of evaporation L can be defined by

L(t) = −
m′p
mp

(5)

and we deduce from equations (4) and (5) that the number density of particles
with infectious nuclei satisfies

∂C

∂t
= −div(J)− (K + V )C in Ω× (0, Te]. (6)

The emission of virus laden particles is represented by a boundary condition
active on ∂ΩMf

as the respiratory event lasts (Figure 3).

2.2. Particle radius and density: the effect of evaporation. Let us
justify that is an acceptable physical assumption to consider mp(t) 6= 0, ∀t ∈
[0, Te].

Following for example [26], [4] and [18], the evolution of R(t) can be de-
scribed, in a simplified form, by

R(t) =


R0(1−

θ(1−RH)t

R2
0

)
1
2 , t ≤ tev

R0(
φ0

1−RH
)
1
3 , t > tev.

(7)

In equation (7), R0 is the initial radius of the particle, θ is a physical parame-
ter ([4]) and RH represents relative humidity. Respiratory particles are liquid
droplets that contain non-volatile nuclei, composed by sugars, proteins, lipids
and pathogens. The typical volume proportion of the non volatile content,
φ0, satisfies

1% ≤ φ0 ≤ 10%,

and a dried particle devoid of water has a radius R0(
φ0

1−RH )
1
3 ([4]). The

previous arguments justify that R(t) 6= 0, for every t and consequently that
mp(t) 6= 0 in (0, Te]. The evaporation time, tev, is obtained from equations
(7) by assuming continuity of R(t).

As the radius R(t) shrinks the density of the particles, ρp(t), increases be-
cause the nuclei are denser than the evaporating water (Figure 2). Assuming
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that particles keep a spherical shape, while evaporating, we have

ρp(t) =

 1 + (ρnp − 1)
R3

0φ0

R3(t)(1−RH)
, t ≤ tev

ρnp , t > tev,
(8)

where ρnp is the density of the non-volatile nuclei, that is the final density of
the particle. The expression for ρp(t) for t ≤ tev is easily deduced from

ρp(t) =
(R3(t)−R3

0φ
∗
0) +R3

0φ
∗
0ρ
n
p

R3(t)
, (9)

where φ∗0 = φ0/(1−RH). Values for ρnp depend on the nuclei composition and
can be found in experimental studies. For example for Sars-Cov-2 a density
of 1.3 g/ml is suggested in [22].

We illustrate the time behaviour of R, ρp and mp in Figure 5 for R0 = 60
microns and RH = 0.5. It can be observed that R and mp are decreasing
functions and ρp is an increasing function of time.

Figure 5. Plots of R(t), ρp(t) and mp(t) during 12 seconds.

2.3. The drift flux model. In the present paper we use a drift-flux model
([8], [10]). The principles underlying this class of models are the following:

1. One momentum equation is established for the mixture;
2. Conservation of mass is established for the two phases;
3. Relative motion of the particles, with respect to airflow, is essentially

due to the gravitational settling of the dispersed phase.
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The mixture momentum equation and the mass conservation for the airflow
are given by {

∂(ρfuf)

∂t
+∇.(ρfuf) = ∇.(µeff∇uf)−∇p

∇.(ρfuf) = 0, in Ω× (0, Te],
(10)

where uf is the air flow velocity, ρf stands for air density, µeff represents
the effective diffusion and p represents the pressure. We observe that a
simplification is made, when considering that ρf represents air density and
not the mixture density. The approximation is justified by the small volume
of respiratory particles when compared with the air volume in Ω.

Following principle 3, the velocity field u, that represents the velocity of
particles, is defined as u = uf + upf , where upf is the relative velocity of
particles with respect to airflow that is defined as the settling velocity, us
([26], [27]), given by the steady state solution of system (1), which equation
we will deduce in what follows.

From equation (6) we can conclude that mass conservation of evaporating
particles, with non-volatile nuclei, is equivalent to a convection-diffusion-
reaction equation for the density number of particles that reads

∂C

∂t
+∇.((uf + us)C) = ∇.(D∇C)− (K + V )C in Ω× (0, Te]. (11)

In (11), D represents a diffusion coefficient. For high Reynolds number of
the flow, Re, D = DB + ε , where DB is the Brownian diffusion and ε is the
eddy diffusivity ([26]).

To compute the settling velocity of the particle, us, let us now return to
system (1). As Fs, the force responsible for the moment destruction of vapor
due to evaporation, is defined by −m′p(t)up(t), we have from (1)

mpu
′
p = Fg + Fb + Fd, (12)

where the gravity force, Fg, the buoyancy, Fb, and the drag force, Fd, are
defined respectively by

Fg =
4

3
πR3gρp,

Fb = −4

3
πR3gρf ,

Fd =
1

2
CdρfπR

2‖uf − up‖[L2]2(uf − up),

(13)
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In (13), ‖.‖[L2]2 denotes the usual norm in L2(Ω) × L2(Ω), R and ρp are
time functions that represent the particle’s radius and density respectively,
g = (0, 0,−9.8) and Cd is the drag coefficient defined by ([6])

Cd =
21.12

Rep
+

6.3√
Rep

+ 0.25. (14)

Figure 6. The behaviour of the drag constant CD as a function of Rep .
Image from https://www.grc.nasa.gov/www/k-12/airplane/dragsphere.html.

Equation (14) represents an empirical relation that holds for particles with
Reynolds number, Rep, such that 0.2 < Rep < 2× 103. We define ([23])

Rep =
2ρfR(t)‖uf(t)− up(t)‖[L2]2

υ
, (15)

where υ is the kinematic viscosity of air. As Rep is not constant because
radius and velocity are time dependent, we illustrate in Table I, the maximum
value of the Reynolds number for particles with initial radii R0 = 1µm
and R0 = 60µm for a constant norm of the velocity of expelled particles
(10m/s), where the air is considered static. We select these two values of R0

as representative of expelled particles because around 95% of these particles
have radii that stay in the interval [1, 60].

Table I: Maximum value of particle’s Reynolds number (Rep).
R0 (µm) Max Rep
1 2.688
60 80.6

The settling velocity, us, is the steady solution of (12), (13) under quiescent
conditions, that is when uf = 0 ([27]). We obtain
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|us| =

√
8|g|R0(

φ0
1−RH )

1
3 (ρnp − ρf)

3C∗dρf
. (16)

In (16), |.| denotes the euclidian norm for vectors, C∗d is the value of the drag
coefficient Cd corresponding to the steady state. The velocity us has the same
direction as gravity: it points downward, perpendicularly. As the particle’s
Reynolds number at the steady state is defined by 2R0(φ

∗
0)

1/3|us|/v, the exact
settling velocity can be calculated only iteratively from (16). For the pur-
poses of the theoretical estimates presented in Section 3, we circumvent such
difficulty, by using superior and inferior bounds for C∗d , computed from the as-
sumption that of the particle’s Reynolds number satisfies 0.2 < Rep < 2×103.
That is, if Remin < Rep < Remax then

Cd,min < C∗d < Cd,max, (17)

where Cd,i, i = min,max, is calculated from (14) with a Reynolds number
Rei, i = max, min.

2.4. Initial and Boundary Conditions. The boundary conditions of the
model are defined by:

• for the velocity uf (defined by (10)){
uf = uw on ∂ΩW × (0, Te],
uf = ufin on ∂ΩMf

× (0, Te],
(18)

and a no-slip boundary condition for uf on (∂Ω \ (∂ΩW ∪ ∂ΩMf
)) ×

(0, Te]. In equation (18), uw represents the passive ventilation velocity
and ufin stands for the velocity of the respiratory airflow.
• for the concentration C

J.η = αWC on ∂ΩW × (0, Te]
J.η = αDC on ∂ΩD × (0, Te]
J.η = 0 on ∂ΩF × (0, Te]
J.η = 0 on (∂Ωwa

∪ ∂ΩMb
)× (0, Te]

J.η = − E(t)

|∂ΩMf
|
on ∂ΩMf

× (0, td]

J.η = 0 on ∂ΩMf
× (td, Te],

(19)

where J = −D∇C + C(uf + us), td is the duration of the respiratory
event, E represents the number of particles emitted by time unit and
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|∂ΩMf
| stands for the measure of ∂ΩMf

. The rate constants αW and
αD are positive.

Null initial conditions are assumed for the velocity uf and for the total
number of particles per volume unit, C.

3. Qualitative behaviour
An energy estimate that proves the stability of the model for finite times is

presented in this section. An expression for the total number of particles is
also established. An upper bound of this expression depends on a number of
parameters that characterize the driving factors (Figure 1).The qualitative
behaviour of this estimate leads to results in agreement with experimental
literature.

We begin by establishing an energy estimate for the concentration C. Mul-
tiplying equation (11) by C and taking the integral in Ω we have

1

2

d

dt
‖C‖2 +

∫
Ω

∇.((uf + us)C)C dx =

∫
Ω

∇.(D∇C)C dx− S‖C‖2, (20)

where the sink S is defined by

S = K + V, (21)

and ‖.‖ denotes the usual norm in L2(Ω). In (21), V represents the inactiva-
tion rate of the pathogen and K represents a global deposition rate, defined
in ([1]) by

K =
|us|
|H|

, (22)

where us stands for the perpendicular settling velocity computed from (16),
and |H| is the height of the emission source. We recall the us points downward
perpendicularly. From (16), (21) and (22) we deduce that S is defined by

S(RH,R0) =
[8

3

R0

C∗D

( φ0

1−RH
)1/3|g|

ρnp − ρf
ρf

] 1
2 1

|H|
+ V, (23)

where the dependence of S onRH andR0 is explicited. In (23), C∗D represents
the drag coefficient corresponding to the steady state of system (12).

As∫
Ω

∇.((uf + us)C)C dx = −
∫

Ω

(uf + us)C.∇C dx+

∫
∂Ω

(uf + us).ηC
2 dω,
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and ∫
Ω

∇.(D∇C)C dx = −
∫

Ω

D‖∇C‖2
[L2]2 dx+

∫
∂Ω

DC∇C.η dω,

from (20) we have

1

2

d

dt
‖C‖2 = −D‖∇C‖2

[L2]2 +

∫
Ω

(uf + us)C.∇C dx+

∫
∂Ω

CJ.η dw − S‖C‖2.

(24)
Assuming that uf(t) + us ∈ [L∞(Ω)]2, we have from (24)

d

dt
‖C‖2 + (2D − ε2)‖∇C‖2

[L2]2 − h(t)‖C‖2 + 2
∑
i=W,D

αi‖C‖2
L2(∂Ωi)

−2

∫
∂ΩMf

E(t)

|∂ΩMf
|
C dω < 0, t ∈ (0, Te],

(25)

where ε 6= 0 is an arbitrary constant. In equation (25), h(t) =
‖uf(t) + us‖[L∞(Ω)]2

ε2
−

2S(RH,R0) and E(t) = 0, t > td, where td stands for the duration of the res-
piratory event.

The last integral term in the first member of (25) satisfies

2

∫
∂ΩMf

E(t)

|∂ΩMf
|
Cdω ≤ 1

δ2

1

|∂ΩMf
|
E2(t) + δ2‖C‖2

L2(∂ΩMf
), (26)

where δ 6= 0 and for Γ ⊆ ∂Ω, ‖.‖L2(Γ) denotes the usual norm is L2(Γ).
Replacing (26) in (24) we obtain

d

dt
‖C‖2 + (2D − ε2 − δ2)‖∇C‖2

[L2]2 − (h(t) + δ2KT )‖C‖2 ≤ −2
∑
i=W,D

αi‖C‖2
L2(∂Ωi)

+
1

δ2

1

|∂ΩMf
|
E2(t),

(27)
where KT is a constant resulting from the application of a Trace Theorem
([7]) to ‖C‖2

L2(∂ΩMf
). Selecting ε and δ such that 2D − ε2 − δ2KT > 0 we

establish
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‖C‖2 ≤
∫ t

0

e
∫ t

s
(h(µ)+δ2KT )dµ 1

δ2

1

|∂ΩMf
|
E2(s)ds, t ∈ [0, Te], (28)

and

‖C‖2 ≤
∫ t

0

e−2S(RH,R0)(t−s)e
∫ t

s
(‖uf (µ)+us‖[L∞]2+δ2KT )dµ 1

δ2

1

|∂ΩMf
|
E2(s)ds. (29)

Inequality (29) proves the stability, for fixed time Te, of the initial boundary
value problem defined by equation (11) with the boundary conditions (19).

Let us now estimate the total number of respiratory particles in the room.
The total number of respiratory particles in suspended in the air with

initial radius R0, N , is represented by

∫
Ω

Cdx. Integrating the two members

of equation (11) in Ω, we have

N ′(t) =

∫
∂Ω

−J.η dω − S(RH,R0)N(t). (30)

Computing then a solution of (30) we have

N(t) =

∫ t

0

e−S(RH,R0)(t−s)
[
E(s)−

∑
i=W,D

αi

∫
∂Ωi

C dω
]
ds. (31)

As αi ≥ 0, i = W,D, from (17) and (31) we conclude

N(t) ≤
∫ t

0

e−S(RH,R0)(t−s)E(s)ds, (32)

where in S(RH,R0), C
∗
d is replaced by Cd,max.

From (23) and (32) we can establish the following conclusions:

(1) N(t) is a decreasing function of the initial radius R0. The conclusion
has a sound physical meaning because large droplets deposit first and
consequently are not suspended in the air ([6]). The plots in Figure 8
and 9 illustrate the result.

(2) N(t) is a decreasing function of RH, the relative humidity. Higher is
RH, lower is the evaporation rate and therefore particles, fall first to
the floor, and consequently are not suspended in the air ([4]). This
result is illustrated in Figure 10.
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(3) The total number of particles N(t) increases with Ê, that is the to-
tal number of particles emitted during the event. The result is il-
lustrated in Figure 11 and shows why large emissions characterize
super-spreader’s events. The increase of N(t) with the rate of exhala-
tion, defined in (18), can be established from (29). However, for the
parameters used in the numerical simulations, the influence of ufin is
not meaningful (Figure 12).

4. Numerical illustrations
The problem is solved in the two-dimensional geometry represented in Fig-

ure 3, using Comsol Multiphysics software. A quadratic piecewise finite ele-
ment method for the concentration equation is considered. A triangular mesh
automatically generated with 40957 elements is used to obtain a consistent
mesh. We note that for the conditions considered in the numerical simula-
tions presented in this section, the Reynolds number of the airflow does not
exceed 2600. The time integration is performed with a backward difference
method, with variable order ranging between 1 and 2 and an adaptative time
step. To compute the numerical solutions of the Navier-Stokes equations and
of the concentration equation, streamline diffusion and crosswind diffusion
stabilizers were used in both equations.

The values used for the parameters in the numerical simulations are pre-
sented in Table II.
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Table II: Variables and parameters used in the simulations
Variable/Parameter Value Unit Description
mp g mass of a particle
C n/m3 number density of particles
K 1/s deposition rate
V 0.01, 0.017 1/s inactivation rate
J n/(m2s) convection diffusion flux
R0 2, 60 µm initial radius
φ0 0.1 - percent of non volatile content
RH 0.5, 0.7 - relative humidity
tev s evaporation time
ρnp 998.6 Kg/m3 nucleus density
D 1.8× 10−5 m2/s diffusion coefficient
ρf 1.2077 Kg/m3 fluid density
µ 1.488× 10−5 m2/s effective viscosity
p P pressure
g 9.8 m/s2 gravity acceleration
Cd drag coefficient
us m/s settling velocity of the particles
ufin m/s inlet velocity profile ([11]) - cough event
uw m/s velocity of room passive ventilation
αW , αD 0.01 m/s transfer coefficient - particle’s flux

Convergence tests have been carried out with meshes of decreasing size
to verify that the solution is mesh independent. In Table III we present the
relative errors for the concentrations considering a reference solution obtained
with a mesh with 51997 elements in [0, 10]. We observe that an increase in
the number of elements leads to a decreasing of the relative error. An increase
of 3.75 times of the number of elements leads to a decrease in the relative
error of 68 times for t = 5, of 132 times at t = 7 and of 325 times for t = 10.

Table III: Relative error with respect to the L∞ norm at t=5, 7 and 10.

Number of elements t = 5 t = 7 t = 10
10931 0.34 0.66 1.30
22417 0.13 0.25 0.46
30799 0.127 0.22 0.37
40957 0.005 0.005 0.004

The problem is solved for small and large particles with two initial rep-
resentative radius of 2 and 60 microns (µm), respectively. To simulate a
respiratory event of cough, the velocity profile ufin presented in Figure 7 is
considered ([11]). The maximum velocity considered is 10.5m/s and the
event lasts for 0.5 seconds.
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Figure 7. Inlet velocity profile |ufin |, for a cough event, defined on the
boundary of ∂ΩMf

([11]).

In order to study the differences between the paths of large and small
particles, when a slight ventilation rate is considered (|uw| = 0.1), we exhibit
in Figure 8 the dependence of the total number of particlesN(t), on the initial
radius R0, during 10 seconds for R0 = 2 and R0 = 60 µm with RH = 0.5.
We note that N(t) is a decreasing function of R0: large particles deposit first
and don’t contribute to airborne dissemination.

Figure 8. The dependence of N(t) on R0 during 10 seconds with RH = 0.5.

To get a clearer view of the dependence of N(t) on R0 we exhibit in Fig-
ure 9 the space-time evolution of particle distribution for R0 = 2, 60 at
t = 0.5, 1, 3. These plots were obtained from the results in Figure 8. We
note that, as expected, deposition is more significant for large particles. In
addition large particles hit the floor at 0.5m; instead small particles remain
essentially suspended in the air. These simulations suggest that for large



20 J.A. FERREIRA, P. DE OLIVEIRA AND P. SILVA

particles the guidelines for a two meters social distancing, adopted by the
World Health Organization, during Covid-19 pandemic, prevents the spread
of disease. However for small particles this social distancing is not enough.

Figure 9. The effect of R0 on the concentration distribution at t =
0.5, 1, 3, |uw| = 0.1, RH = 0.5: small particles R0 = 2 - left, large parti-
cles R0 = 60 - right.

In what follows the dependence of N(t) on the relative humidity RH,
the total emission E and the velocity of room passive ventilation uw are
illustrated. As mentioned in Section 2 the numerical plots, in Figures 8,
9, 10 and 11, confirm the theoretical results deduced from estimate (32).
The reference values considered for the fixed parameters are R0 = 60, uw =
0, RH = 0.5 and an emission particles per unit time , E = 4000. The global
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number of particles emitted during an event that lasts td = 0.5, is 2000 as
represented in the plots.

In Figure 10 the influence of relative humidity for small (R0 = 2) and large
particles (R0 = 60) is illustrated with slight ventilation (uw = 0.1). We
observe that an increase in the relative humidity implies a decrease in the
number of suspended particles in the room and that the influence of humidity
is more significant in the case of heavy particles. The decay of the number
of particles is larger in this case.

Figure 10. Influence of RH on N(t) for small (R0 = 2) and large (R0 =
60) particles during 10 seconds.

The effect on N(t), of the number of particles emitted per time unit, during

10 seconds is plotted in Figure 11 for Ê = 4000, Ê = 8000 and td = 0.5. As
expected, the larger the emitting source, the greater the number of particles
in the room.

Figure 11. Influence of the number of particles emitted, on N(t) during
10 seconds (R0 = 60, RH = 0.5, td = 0.5).
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In Figure 12 it is illustrated the influence of the velocity of the expired flow
(18), ufin, defined on the boundary of ∂ΩMf

. An increase in the expiration
rate leads to a very slight increase of N(t) during the two first seconds. We
observe that the expiration velocity acts only during the duration of the
event, td = 0.5, what can explain the very slight influence.

In some indoors respiratory events a single infected person, called a super-
spreader, is more likely to infect other people. Different reasons are invoked
to explain these super-spreader events. We begin by mentioning biological
reasons as a greater number of expelled particles, Ê, and higher rates of
emission E(t) ([2]). The plot in Figure 11 confirm this hypothesis.

Figure 12. The influence of the inlet velocity on N(t).

Another common feature of indoor super-spreader events is poor ventila-
tion ([24]). The dependence of N(t) on the ventilation, for small and large
particles, is illustrated in Figure 13 for |uw| = 0.1, 2 over 10 seconds, for
R0 = 2 on the left and R0 = 60 on the right (RH = 0.5). Ventilation keeps
small particles suspended, preventing them from deposition; the larger is |uw|
the longer they stay suspended. After an initial period, the particles arrive
at the door and leave the room. As particles transported by a ventilation
with |uw| = 2 arrive first, this can explain why after 10 seconds, in a well
ventilated room there are no more particles. However it is a sound physical
hypothesis that αD increases with uw. This assumption would have confirmed
the recommendations by health authorities, for efficient natural ventilation.
Regarding large particles, deposition is dominant; consequently as it does
not depend on uw, the difference is less significant. Notwithstanding this
difference can be again explained by the fact that particles transported by
an initial ventilation of |uw| = 2 get to the door first. The plots in Figure 13
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confirm the recommendations by health authorities, for an efficient natural
ventilation.

Figure 13. The effect of ventilation on N(t) over 10 seconds (R0 = 2 on
the left; R0 = 60 on the right).

5. Final Remarks
Inhaling indoor air is the primary mean by which people is exposed to

respiratory particles. Knowledge of the trajectory of respiratory particles
is essential to support the definition of guidelines that minimize airborne
transmission of diseases.The study of the trajectory of respiratory particles
is complex because it depends on a large number of phenomena and factors.
As with all mathematical models, it is important to keep the description of
phenomena as simple as possible, but exhibiting the main properties estab-
lished by physical laws. Based on several laboratorial studies we focus on a
small number of factors, related to intrinsic particle properties - initial radius
and expelling velocity - and environmental properties - relative humidity.

We summarize in what follows the main conclusions established from the
estimates, regarding the total number of airborne particles:

• The total number of airborne particles increases with the number of
particles emitted per time unit E(t) and with the total number of par-

ticles emitted, Ê. This conclusion is in agreement with the hypothesis
of some researchers, that a small percent of people are responsible for
a large number of infections. In fact researchers believe that, among
other biological causes, this could be a consequence of individuals -
the superspreaders - that emit a higher number of particles per time
unit. The plots in Figure 11 illustrate this influence.
• The total number of airborne particles decreases with RH. This con-

clusion is in agreement with a number of experimental studies ([19],
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[4]) and suggests an explanation for the seasonality of respiratory in-
fections. The rationale under this explanation is that in winter people
spends more time indoor, with warmer temperatures, that dry the
air coming from outdoors, which leads to a drop in RH. This causes a
large evaporation rate and consequently a higher number of suspended
respiratory particles. The numerical plots in Figure 10 illustrate the
influence of RH.
• The total number of airborne particles is a decreasing function of the

initial radius R0. The conclusion has a sound physical meaning be-
cause large droplets deposit first and consequently are not suspended
in the air ([3], [6]). The plot in Figure 8 illustrates the result.
• Ventilation reduces the number of respiratory particles indoors. The

plots in Figure 13 confirm the recommendations of health authorities
regarding ventilation.

Despite its simplicity, the model allows establishing results in accordance
with laboratory work.
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