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PERVIN SPACES AND FRITH FRAMES:

BITOPOLOGICAL ASPECTS AND COMPLETION

CÉLIA BORLIDO AND ANNA LAURA SUAREZ

Abstract: A Pervin space is a set equipped with a bounded sublattice of its pow-
erset, while its pointfree version, called Frith frame, consists of a frame equipped
with a generating bounded sublattice. It is known that the dual adjunction between
topological spaces and frames extends to a dual adjunction between Pervin spaces
and Frith frames, and that the latter may be seen as representatives of certain
quasi-uniform structures. As such, they have an underlying bitopological structure
and inherit a natural notion of completion. In this paper we start by exploring the
bitopological nature of Pervin spaces and of Frith frames, proving some categorical
equivalences involving zero-dimensional structures. We then provide a conceptual
proof of a duality between the categories of T0 complete Pervin spaces and of com-
plete Frith frames. This enables us to interpret several Stone-type dualities as a
restriction of the dual adjunction between Pervin spaces and Frith frames along
full subcategory embeddings. Finally, we provide analogues of Banaschewski and
Pultr’s characterizations of sober and TD topological spaces in the setting of Pervin
spaces and of Frith frames, highlighting the parallelism between the two notions.
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1. Introduction
The category of Pervin spaces is introduced in [10, 18] as an isomorph

of the category of transitive and totally bounded quasi-uniform spaces. Its
pointfree analogue, whose objects are named Frith frames, was later defined
in [7]. In this setting, we have a full embedding of the category of Frith frames
in that of transitive and totally bounded quasi-uniform frames, which is a
coreflection but not an equivalence. It is also shown in [7] that the classical
dual adjunction between topological spaces and frames naturally extends to
a dual adjunction between Pervin spaces and Frith frames. In fact, this is
what justifies calling Frith frames the pointfree version of Pervin spaces.
Since both Pervin spaces and Frith frames may be seen as quasi-uniform

structures, they come equipped with an underlying bitopological structure
as well [9, Chapter 3]. The study of such bitopological structure is the main
content of Section 3. In Section 3.1, we start by assigning a bitopological
space to each Pervin space, and show that this is a functorial assignment
with a left adjoint. When studying the categorical equivalence induced by
such adjunction, strong exactness (for Pervin spaces) and zero-dimensionality
(for bitopological spaces) appear as crucial concepts. More precisely, we show
that the categories of the so-called strongly exact Pervin spaces and of zero-
dimensional bitopological spaces are equivalent. We then consider the point-
free version of these results and show that strongly exact Frith frames are
a full coreflective subcategory of the category of zero-dimensional biframes,
leaving as an open problem to describe the underlying categorical equiva-
lence. Noting that topological spaces and frames may be seen as bitopo-
logical spaces and biframes, respectively, in Section 3.2, we specialize the
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results of the previous section in the monotopological setting. In particu-
lar, we show that the categories of zero-dimensional topological spaces and
of strongly exact symmetric Pervin spaces are equivalent, and so are those of
zero-dimensional frames and of strongly exact symmetric Frith frames.
As representatives of quasi-uniform structures, Pervin spaces and Frith

frames also inherit natural notions of completeness. It is observed in [18] that
T0 and complete Pervin spaces can be identified with spectral spaces, while
in [7] it is shown that complete Frith frames can be identified with bounded
distributive lattices. In particular, thanks to Stone duality for bounded dis-
tributive lattices, it follows that the categories of T0 and complete Pervin
spaces and of complete Frith frames are dual to each other. In Section 4,
we provide a direct and conceptual proof of this duality, which is based on a
characterization of complete Pervin spaces and of complete Frith frames, and
does not invoke Stone duality. On the other hand, since the categories of T0

complete Pervin spaces and of complete Frith frames are full subcategories
of the categories of Pervin spaces and of Frith frames, respectively, we may
then see Stone duality as a restriction of the Pervin-Frith dual adjunction
along full subcategory embeddings (unlike what happens when seeing it as
a restriction of the dual adjunction between topological spaces and frames).
In Section 5, we exhibit several Stone-type dualities as suitable restrictions
of the dual adjunction along full subcategory embeddings. Section 5.1 is de-
voted to the already mentioned Stone duality, Section 5.2 to Priestley duality,
and Section 5.3 to bitopological duality. In Section 5.4, we provide the global
picture of the results thus obtained. It is our concern in Sections 4 and 5 to
point out where the assumption of the Prime Ideal Theorem is needed.
Finally, in Section 6, starting from Banaschewski and Pultr’s characteriza-

tions of sober and TD topological spaces [5, Proposition 4.3], which highlights
the parallelism between the two notions, we state and prove analogous results
for Pervin spaces, where sober is replaced by complete and TD by Pervin-TD

(the latter notion having been introduced in [7, Section 4.5]). When look-
ing for a pointfree version of such results, we are naturally led to consider
the notion of locale-based Frith frame, which will replace Pervin-TD in our
statement.
We readily warn the reader that, although we implicitly have in mind the

quasi-uniform interpretation of Pervin spaces and of Frith frames (namely,
when considering their bitopological nature and the property of being com-
plete), we will avoid mentioning quasi-uniformities throughout the paper.
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This reduces the amount of background required from the reader, leaving
the details of existing connections for those already familiar with quasi-
uniformities. For a detailed study of Pervin spaces, Frith frames, and corre-
sponding quasi-uniform structures, we refer to [7, 10, 18].

2. Preliminaries
The material in this section is presented mostly to set up the notation. We

assume the reader to be familiar with frame and locale theory.

2.1. Basic notation. The content of this section may be found in [12, 17].
A frame is a complete lattice L such that for every a ∈ L and {bi}i∈I ⊆ L

the following distributivity law holds:

a ∧
∨
i∈I

bi =
∨
i∈I

(a ∧ bi).

A frame L is always a complete Heyting algebra, with the Heyting implication
given by

a → b =
∨

{x ∈ L | x ∧ a ≤ b},
for every a, b ∈ L. The element a → 0, called the pseudocomplement of a,
will be denoted by a∗. When a ∨ a∗ = 1, we say that a is complemented and
a∗ is the complement of a. A frame homomorphism is a map h : L → M
that preserves finite meets and arbitrary joins. We will denote by Frm the
category of frames and frame homomorphisms. A frame homomorphism h :
L → M is dense provided h(a) = 0 implies a = 0. In general, a frame
homomorphism need not preserve the Heyting implication. We have however
the following:

h(a → b) ≤ h(a) → h(b), (1)

for every a, b ∈ L. Moreover, since every frame homomorphism h preserves
arbitrary joins, it has a right adjoint h∗, and the equality

a → h∗(x) = h∗(h(a) → x) (2)

holds, for every a ∈ L and x ∈ M . This is usually called the Frobenius
identity.
We say that an element a ∈ L is compact if whenever a ≤

∨
i∈I ai there

exists a finite subset I ′ ⊆ I such that a ≤
∨

i∈I ′ ai. A frame L is compact if its
top element is compact. If the set of compact elements of L is closed under
finite meets and join-generates L, then we say that L is coherent. A frame L
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is zero-dimensional if it is join-generated by its sublattice of complemented
elements.
The opposite category of Frm, is usually denoted by Loc. Its objects

are called locales, and morphisms h : L → M are the right adjoints of the
corresponding frame maps. Locales will only be mentioned in Section 6.
For our purposes, the notion of sublocale will be enough. A sublocale of L
is a subset K ⊆ L that is closed under arbitrary joins and contains every
element of the form a → x, with a a ∈ L and x ∈ K. A sublocale K is itself a
frame, but not a subframe of L, as joins may be computed differently. Every
sublocale is uniquely determined by a frame quotient q : L ↠ K whose right
adjoint is the localic embedding K ↪→ L. In particular, q(x) = x, whenever
x ∈ K.
Since sublocales correspond to frame quotients, these may also be defined

via frame congruences, which will be widely used throughout the paper.
The set CL of all frame congruences on L is itself a frame when ordered
by inclusion. For every element a ∈ L, we may define two congruences:

∇a := {(x, y) ∈ L×L | a∨x = a∨y} and ∆a := {(x, y) ∈ L×L | a∧x = a∧y}.

Congruences of the form ∇a are called closed, while those of the form ∆a

are open. Open and closed congruences suffice to generate CL, as a frame.
The functions ∇ : a 7→ ∇a and ∆ : a 7→ ∆a from L to CL are, respectively,
a frame embedding and an injection that turns finite meets into finite joins
and arbitrary joins to arbitrary meets. Given a subset S ⊆ L, we denote
by ∇S and by ∆S the subframes of CL generated by {∇s | s ∈ S} and by
{∆s | s ∈ S}, respectively. The subframe of CL generated by ∇L ∪ ∆S
will be denoted by CSL. The following generalizes the well-known universal
property of the congruence frame.

Proposition 2.1 ([23, Theorem 16.2]). For every frame L and subset S ⊆ L,
the frame CSL has the following universal property: whenever h : L → M is
a frame map such that h(s) is complemented for all s ∈ S, there is a unique

frame homomorphism h̃ : CSL → M making the following diagram commute.

L CSL

M

∇

h̃
h
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Finally, we have an idempotent adjunctionΩ : Top ⇆ Frmop : pt between
the category Top of topological spaces and continuous functions and the
category opposite to Frm. Given a topological space (X, τ) (or simply X if
no confusion arises), Ω(X) is the frame Ω(X) consisting of the open subsets
of X (ordered by ⊆) and, for a continuous function f : X → Y , Ω(f) = f−1

is the preimage frame homomorphism. In the other direction, given a frame
L, pt(L) is the set pt(L) of points of L (here seen as frame homomorphisms

p : L → 2) equipped with the topology L̂ := {â | a ∈ L}, where â := {p ∈
pt(L) | p(a) = 1}, and given a frame homomorphism h : L → M , pt(h)
maps p ∈ pt(M) to p ◦ h ∈ pt(L). The fixpoints of Ω ⊣ pt are the so-called
sober spaces and spatial frames, respectively.

2.2. Bitopological spaces and biframes. We refer to [20] and to [4, 21]
for further reading on bitopological spaces and on biframes, respectively.
A bitopological space, or bispace, is a triple X = (X, τ+, τ−), where X is a

set and τ+ and τ− two topologies on that set. Morphisms between bitopolog-
ical spaces are functions between their underlying sets that are continuous
with respect to both topologies. We denote by BiTop the category thus
obtained. The topology τ+ ∨ τ− on X generated by τ+ ∪ τ− is called the
patch topology. We call τ+ the positive topology, and τ− the negative one.
Accordingly, elements of τ+ are called positive opens, and a positive open
whose complement is a negative one is called a positive clopen. The collec-
tion of positive clopen subsets of X will be denoted by Clop+(X ). Negative
(cl)opens and Clop−(X ) are defined similarly, in the obvious way.
We say that a bispace is T0 (respectively, compact) if its patch topology

is T0 (respectively, compact). We say that a bispace (X, τ+, τ−) is zero-
dimensional if every element in τ+ is a union of positive clopens, and every
element in τ− is a union of negative clopens.1

A biframe is a triple L = (L, L+, L−) such that all three components are
frames, together with subframe inclusions L+ ⊆ L and L− ⊆ L, and such
that every element of L is a join of finite meets of elements of L+ ∪L−. The
frame L is called the main component of the biframe, while L+ and L− are,
respectively, the positive and negative components. Accordingly, elements of

1These notions are not consistent over all the literature. For instance, in [6] our notions of T0

and compact are named join T0 and join compact, respectively, while compact is named pairwise
compact in [20]. Moreover, in [19, 6] our notion of zero-dimensional is named pairwise zero-
dimensional.
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L+ are positive and those of L− are negative. We say that an element a ∈ L+

is positive bicomplemented when it is complemented in L with complement
in L−. Negative bicomplemented elements are defined similarly. We denote
by B+(L) and by B−(L) the lattices of positive and negative bicomplemented
elements of L, respectively. A morphism h : (L, L+, L−) → (M, M+, M−)
between biframes is a frame homomorphism h : L → M such that h[L+] ⊆
M+ and h[L−] ⊆ M−. The category of biframes and biframe homomorphisms
will be denoted by BiFrm. We say that h is dense if its underlying frame
homomorphism is dense.
We say that a biframe L = (L,L+, L−) is compact if its main component L

is compact, and that it is zero-dimensional if both L+ and L− are join-
generated by their bicomplemented elements.
Finally, we also have an adjunction Ωb : BiTop ⇆ BiFrmop : ptb between

bitopological spaces and biframes, which extends the classical adjunction
between topological spaces and frames (here, we identify a topological space
(X, τ) with the bispace (X, τ, τ), and a frame L with the biframe (L,L, L)).
Given a bitopological space X = (X, τ+, τ−), Ωb(X ) is the biframe (τ+ ∨
τ−, τ+, τ−), while for a biframe L = (L,L+, L−), ptb(L) = (pt(L), L̂+, L̂−),

where for P ∈ {L+, L−}, we denote P̂ := {â | a ∈ P}. On morphisms, Ωb

and ptb are defined as expected.

2.3. The Prime Ideal Theorem. One of the main features of pointfree
topology is that it often avoids the use of the Axiom of Choice, thereby
leading to constructive results. Sometimes, a strictly weaker version known
as the Prime Ideal Theorem is however needed. It may be stated as follows:

Let D be a bounded distributive lattice. Then, every proper
ideal of D may be extended to a prime ideal.

In Sections 4 and 5, some results are valid only under the assumption of the
Prime Ideal Theorem. The following equivalent statements will be useful in
there.

Theorem 2.2. The following statements are equivalent:

(a) The Prime Ideal Theorem holds.
(b) For every set X, every proper filter of P(X) can be extended to an

ultrafilter.
(c) Every frame of the form Idl(D), where D is a bounded distributive lattice,

is spatial.
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Relevant references for the equivalence between these statements are [2, 8,
11, 12].

2.4. Pervin spaces and Frith frames. A Pervin space is a pair (X,S)
where X is a set and S a sublattice of its powerset. A morphism f : (X,S) →
(Y, T ) of Pervin spaces is a set function f : X → Y such that f−1(T ) ⊆ S.
Since a topology on a set X is, in particular, a bounded sublattice of its
powerset, the category Top of topological spaces fully embeds in the category
Pervin of Pervin spaces.

Proposition 2.3 ([7, Section 3]). Let f : (X,S) → (Y, T ) be a map of Pervin
spaces. Then,

(a) f is an epimorphism if and only if its underlying set map is surjective;
(b) f is an extremal monomorphism if and only if its underlying set map is

injective and every element of S is of the form f−1(T ) for some T ∈ T .

In particular, f is an isomorphism if and only if its underlying set map is a
bijection and f [S] = T .

A Frith frame is a pair (L, S), where L is a frame and S is a join-dense
bounded sublattice of L. A morphism of Frith frames h : (L, S) → (M,T ) is a
frame homomorphism between the underlying frames that satisfies h[S] ⊆ T .
The category of Frith frames and their morphisms is denoted Frith, and we
have a full embedding Frm ↪→ Frith obtained by identifying a frame L with
the Frith frame (L,L).

Proposition 2.4 ([7, Section 4.4]). Let h : (L, S) → (M,T ) be a homomor-
phism of Frith frames. Then,

(a) h is a monomorphism if and only if so is its underlying frame homo-
morphism;

(b) h is an extremal epimorphism if and only if it satisfies h[S] = T .

In particular, h is an isomorphism if and only if it is injective and satisfies
h[S] = T .

The classical dual adjunction between topological spaces and frames may
then be extended to a dual adjunction Ω : Pervin ⇆ Frith : pt between
Pervin spaces and Frith frames as follows. For a Pervin space (X,S), Ω(X,S)
is the Pervin space (ΩS(X),S), where ΩS(X) denotes the topology on X
generated by S. For a morphism f : (X,S) → (Y, T ), Ω(f) is the preimage
map f−1 : (ΩT (Y ), T ) → (ΩS(X),S). In the other direction, for a Frith
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frame (L, S), pt(L, S) is the Pervin space (pt(L), Ŝ), where Ŝ := {ŝ | s ∈ S}.
Finally, given a morphism of Frith frames h : (L, S) → (M,T ), pt(h) maps
p ∈ pt(M) to p ◦ h ∈ pt(L).

Theorem 2.5 ([7, Proposition 4.3]). There is an adjunction Ω : Pervin ⇆
Frithop : pt with Ω ⊣ pt, whose fixpoints are, respectively, the Pervin spaces
(X,S) such that (X, ΩS(X)) is sober and the Frith frames (L, S) such that L
is spatial. These will be called, respectively, sober Pervin spaces and spatial
Frith frames.

2.5. Symmetrization. Symmetrization is for Pervin spaces and Frith frames,
what uniformization is for quasi-uniform spaces and quasi-uniform frames,
respectively. This has been considered in [18] for Pervin spaces and in [7]
for Frith frames. In particular, it has been shown that the categories of
symmetric Pervin spaces and of symmetric Frith frames are equivalent to
the categories of transitive and totally bounded uniform spaces and frames,
respectively.
Recall that a Pervin space (X,B) is symmetric if B is a Boolean algebra,

and the full subcategory of Pervin determined by the symmetric Pervin
spaces will be denoted by Pervinsym. A Frith frame (L,B) is symmetric if
B is a Boolean algebra, and the full subcategory of Frith determined by the
symmetric Frith frames will be denoted by Frithsym.
We define a functor SymPerv : Pervin → Pervinsym as follows. For an

object (X,S), we let SymPerv(X,S) be the Pervin space (X,S), where S
is the Boolean subalgebra of the powerset P(X) generated by the elements
of S. On morphisms, we simply map a function to itself.

Proposition 2.6 ([7, Proposition 3.4]). The functor SymPerv is right adjoint
to the embedding Pervinsym ↪→ Pervin.

The pointfree version of SymPerv is defined as follows. For a Frith frame
(L, S) we set SymFrith(L, S) := (CSL, S), where S denotes the sublattice
of CSL generated by the elements of the form ∇s together with their com-
plements. For a morphism of Frith frames h : (L, S) → (M,T ) we set
SymFrith(h) := h, where h is the unique extension of h to a frame homomor-
phism h : CSL → CTM (recall Proposition 2.1).

Proposition 2.7 ([7, Proposition 6.5]). The functor SymFrith is left adjoint
to the embedding Frithsym ↪→ Frith.
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2.6. Forgetful functors. Both Pervin spaces and Frith frames encode two
kinds of structures - topological and lattice-theoretical. It is then natural to
consider several forgetful functors on the categories Pervin and Frith.
Every Pervin space (X,S) defines a topology ΩS(X) on X. This assign-

ment can be extended to a functor UPervin : Pervin → Top which leaves
functions unaltered.2 The pointfree version of this functor is the functor
UFrith : Frith → Frm, which acts as (L, S) 7→ L on objects, and which
leaves frame maps unaltered. The relationship between UPervin and UFrith is
depicted in the following commutative diagrams:

Pervin Top

Frithop Frmop

UPervin

ΩΩ

UFrith

Pervin Top

Frithop Frmop

UPervin

ptpt

UFrith

Proposition 2.8 ([7]). The functor UPervin is right adjoint to the embed-
ding Top ↪→ Pervin, and the functor UFrith is left adjoint to the embedding
Frm ↪→ Frith.

Given a topological property, we will often say that a Pervin space has that
property provided so does its underlying topological space. For instance, a
Pervin space (X,S) is T0 if (X,ΩS(X)) is T0. The same applies to the notion
of dense morphism. We say that a morphism f : (X,S) → (Y, T ) is dense if
the image of UPervin(f) : (X,ΩS(X)) → (Y,ΩT (Y )) is dense in (X,ΩT (Y )),
that is, if f [X] intersects every nonempty open subset of (Y,ΩT (Y )). The
following characterization of density for Pervin morphisms is easy to prove.
We will use it without further mention.

Lemma 2.9. For a map f : (X,S) → (Y, T ) of Pervin spaces, the following
are equivalent.

(a) The map f is dense;
(b) f [X] intersects every nonempty element of T ;
(c) We have f−1(T ) = ∅ implies T = ∅ for all T ∈ T .

We may also forget the topological structures, thereby obtaining functors
LPervin : Pervin → DLatop and LFrith : Frith → DLat defined in the
expected way.

2Under the identification of Pervin spaces with transitive and totally bounded quasi-uniform
spaces, this functor forgets the quasi-uniform structure.
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In [7, Proposition 4.6], we have proved that LFrith is right adjoint to the
functor Idl : DLat → Frith acting on objects as S 7→ (Idl(S), S) and
assigning to each morphism f : S → T its unique extension to a frame
morphism Idl(S) → Idl(T ). The component of the counit of this adjunction
at a Frith frame (L, S) is the morphism

c(L,S) : (Idl(S), S) → (L, S), J 7→
∨

J. (3)

We now discuss the point-set version of this result. To define the right
adjoint of LPervin, we introduce some notation. Given a lattice D, we denote
by pf(D) the set of all prime filters of D, and we consider the map

ΦD : D → P(pf(D)), a 7→ ã := {F ∈ pf(D) | a ∈ F}. (4)

We denote as D̃ := {ã | a ∈ D}. It is well-known that ΦD is a lattice
homomorphism and it is an embedding if and only if D is isomorphic to a
sublattice of the powerset P(X) for some set X (see e.g. [8, Chapter 10]). If
we further assume that the Prime Ideal Theorem holds, then ΦD is always
an embedding.
We define the functor pf : DLatop → Pervin as the one mapping each

lattice D to the Pervin space (pf(D), D̃), and each lattice homomorphism f :

D1 → D2 to the preimage map pf(f) := f−1 : (pf(D2), D̃2) → (pf(D1), D̃1).
This is well-defined as preimages of prime filters are prime filters and, for

every a ∈ D1, pf(f)
−1(ã) = f̃(a).

Lemma 2.10. We have an idempotent adjunction

LPervin : Pervin ⇆ DLatop : pf

with LPervin ⊣ pf .

Proof : With a routine computation one can show that, given a lattice D, the
co-restriction of ΦD to a map D → D̃ is a universal morphism from LPervin

to D and thus, the counit of the adjunction at D. To conclude that the
adjunction is idempotent, we only have to note that ΦD is an isomorphism
whenever D is a sublattice of some powerset and that is the case for every
lattice component of a Pervin space (X,S).
We further remark that the component of the unit of the adjunction LPervin ⊣

pf at a Pervin space (X,S) is the neighborhood morphism of Pervin spaces
defined by

N(X,S) : (X,S) → (pf(S), S̃), x 7→ {S ∈ S | x ∈ S}. (5)
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We finish this section by providing an alternative representation of the
Pervin space pf(D), based on the well-known correspondence between prime
filters of D and points of Idl(D).

Lemma 2.11. There is a one-to-one correspondence between prime filters of
D and points of Idl(D) and, under this identification, ã corresponds to â, for
every a ∈ D. In particular, pf(D) is isomorphic to pt(Idl(D), D).

2.7. Open intersections and strongly exact meets. For a Pervin space
(X,S) we say that an intersection of elements in S is open if it is so in the
topological space (X,ΩS(X)). We will denote by [S ]op the collection of all
elements of ΩS(X) that are open intersections of elements of S. It is easy to
see that this collection is closed under open intersections and so, [S ]op may
be seen as the closure of S under open intersections.
Let now L be a frame and P ⊆ L. The meet

∧
P is strongly exact if the

corresponding intersection of open sublocales (=open pointfree subspaces) is
open, or equivalently, if the congruence

∨
s∈P ∆s is open (cf. [1, Section 4.5]).

Note that, if ∆a =
∨

s∈P ∆s for some P ⊆ L, then the meet
∧

P is, by
definition, strongly exact, and we necessarily have a =

∧
P . Given a Frith

frame (L, S), we denote by [S ]se the set of elements of L that may be written
as a strongly exact meet of elements of S. Again, [S ]se can be thought of as
the closure of S under strongly exact meets.
Finally, we say that a Pervin space (X,S) (respectively, Frith frame (L, S))

is strongly exact if the lattice S (respectively, S) is closed under open intersec-
tions of S (respectively, strongly exact meets of S). We denote by Pervinse

and by Frithse the full subcategories of Pervin and of Frith determined by
the strongly exact objects.
The next result implies that the contravariant functorΩ : Pervin → Frith

restricts and co-restricts to a functor Pervinse → Frithse.

Proposition 2.12 ([1, Proposition 5.3]). Let (X, τ) be a topological space
and U ⊆ Ω(X) be a family of open subsets. If

∧
U is a strongly exact meet

in the frame Ω(X), then
⋂
U is an open subset of X.

We do not know whether the functor pt : Frith → Pervin restricts and
co-restricts to a functor Frithse → Pervinse.
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3. The bitopological point of view
3.1. Strong exactness and zero-dimensionality. A Pervin space (X,S)
defines the bitopological space (X, ΩS(X), ΩSc(X)), where Sc denotes the
lattice {Sc | S ∈ S} formed by the complements in X of the elements of S.3
The Skula functor SkPervin : Pervin → BiTop is then defined by assigning
(X, ΩS(X), ΩSc(X)) to the Pervin space (X,S), and mapping each function
to itself.
In the other direction, we may define a functor Clop+ : BiTop → Pervin

by assigning to each bitopological space X = (X, τ+, τ−) the Pervin space
(X, Clop+(X )) and keeping morphisms unchanged.
It is easily seen that these are well-defined functors. Let us prove that

Clop+ is left adjoint to SkPervin.

Lemma 3.1. The functor Clop+ is left adjoint to SkPervin : Pervin →
BiTop.

Proof : Let X = (X, τ+, τ−) be a bitopological space. We first observe that

SkPervin ◦Clop+(X ) = (X, ΩClop+(X )(X), ΩClop−(X )(X)).

Since the inclusions Clop+(X ) ⊆ τ+ and Clop−(X ) ⊆ τ− hold, the identity
function onX induces a morphism of bitopological spaces ηX : X → SkPervin◦
Clop+(X ). Let us show that (Clop+(X ), ηX ) is a universal morphism from
X to SkPervin. Let (Y, T ) be a Pervin space and f : X → SkPervin(Y, T ) be
a morphism of bitopological spaces. Since f−1(T ) ⊆ τ+ and f−1(T c) ⊆ τ−,
the underlying set function of f defines a morphism g : Clop+(X ) → (Y, T ).
Clearly, g is the unique morphism satisfying SkPervin(g) ◦ ηX = f , and this
proves our claim.

We now describe the equivalence of categories determined by Clop+ ⊣
SkPervin.

Proposition 3.2. The fixpoints of the adjunction Clop+ : BiTop ⇆ Pervin :
SkPervin are, respectively, the zero-dimensional bispaces and the strongly exact
Pervin spaces.

Proof : It follows from the proof of Lemma 3.1 that the unit of the adjunction
Clop+ ⊣ SkPervin at a bispace X = (X, τ+, τ−) is the morphism

ηX : (X, τ+, τ−) → (X, ΩClop+(X )(X), ΩClop−(X )(X))

3For the interested reader, this is the underlying bitopological space of the quasi-uniform space
represented by (X,S).



14 C. BORLIDO AND A. L. SUAREZ

defined by the identity map on X. Thus, X is a fixpoint of the adjunction if
and only if τ+ = ΩClop+(X )(X) and τ− = ΩClop−(X )(X), that is, if and only if
X is zero-dimensional.
Let us now exhibit the counit of Clop+ ⊣ SkPervin. It is easy to see that

the positive clopens of SkPervin(X,S) = (X, ΩS(X), ΩSc(X)) are the open
intersections of S. Since S ⊆ [S ]op, the identity on X defines a morphism

ε(X,S) : (X, [S ]op) → (X,S)
of Pervin spaces, which can be shown to be the counit of the adjunction. In
particular, we have that (X,S) is a fixpoint if and only if S = [S ]op, that is,
if and only if (X,S) is a strongly exact Pervin space.

Corollary 3.3. The categories BiTopZ and Pervinse of zero-dimensional
bitopological spaces and of strongly exact Pervin spaces are equivalent.

We finally remark that, since, for every Pervin space (X,S), we have

SkPervin ◦Clop+ ◦ SkPervin(X,S) = SkPervin(X, [S ]op)

= (X,Ω[S ]op(X),Ω([S ]op)c(X))

= SkPervin(X,S),
the unit ηSkPervin(X,S) is always an isomorphism, and thus, the adjunction
Clop+ ⊣ SkPervin is idempotent.
Let us now look at the pointfree version of the Skula functor and its left

adjoint. For a Frith frame (L, S) we set SkFrith(L, S) = (CSL,∇L,∆S).4

In order to define SkFrith on morphisms, we first observe that, by Propo-
sition 2.1, every morphism of Frith frames h : (L, S) → (M,T ) uniquely
extends to a frame homomorphism h : CSL → CTM satisfying

h[∇L] = ∇h[L] and h[∆S] = ∆h[S].

Therefore, h defines a biframe homomorphism

h : SkFrith(L, S) → SkFrith(M,T )

and we may set SkFrith(h) = h.
In the other direction, we define B+ : BiFrm → Frith as follows. For

a biframe L = (L,L+, L−), we set B+(L) = (⟨B+(L)⟩Frm, B+(L)), where
⟨B+(L)⟩Frm denotes the subframe of L+ generated by the lattice B+(L) of
positive bicomplemented elements of L. In order to define B+ on morphisms,

4As for spaces, this is the underlying biframe of the quasi-uniform frame defined by (L, S).
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notice that, if h : L → K is a biframe homomorphism then, since positive
bicomplemented elements of L are mapped to positive bicomplemented ele-
ments ofK, the suitable restriction and co-restriction of h induces a morphism
of Frith frames B+h : B+(L) → B+(K).
Next we will see that, as for Pervin spaces, the functors SkFrith and B+

define an adjunction between the categories of Frith frames and of biframes.
However, while the fixpoints of Frith are still easy to describe, the same
does not happen with those of BiFrm. We leave it as an open problem to
describe the categorical equivalence underlying this adjunction.
Before proceeding, we prove the following technical result:

Lemma 3.4. Let (L, S) be a Frith frame and a ∈ L. Then, ∇a is a positive
bicomplemented element of (CSL,∇L,∆S) if and only if a is a strongly exact
meet of elements of S.

Proof : Since CSL is a subframe of CL, we have that ∇a is bicomplemented
if and only if ∆a ∈ ∆S, that is, if and only if there is some P ⊆ S such that
∆a =

∨
s∈P ∆s. But this is the same as saying that

∧
P is a strongly exact

meet and a =
∧
P .

We are now able to prove that SkFrith is indeed the left adjoint of B+.

Lemma 3.5. The functor SkFrith is left adjoint to B+ : BiFrm → Frith.

Proof : It follows from Lemma 3.4 that

B+ ◦ SkFrith(L, S) = (∇L, {∇a | a ∈ [S ]se})
and thus, the isomorphism ∇ : L → ∇L induces an embedding of Frith
frames

η(L,S) : (L, S) → B+ ◦ SkFrith(L, S).

To conclude that SkFrith ⊣ B+, it suffices to show that η(L,S) is universal
from (L, S) to B+, that is, that for every biframe K and every morphism
h : (L, S) → B+(K), there exists a unique h′ : SkFrith(L, S) → K such
that B+(h

′) ◦ η(L,S) = h. But the underlying frame homomorphism of such
an h′ has to be an extension h′ : CSL → K of h. Since h[S] consists of
complemented elements of K, by Proposition 2.1, there exists exactly one
such morphism, which is easily seen to define a biframe homomorphism h′ :
SkFrith(L, S) → K.

Corollary 3.6. The fixpoints of Frith for the adjunction SkFrith ⊣ B+ are
the strongly exact Frith frames.
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Proof : It follows from the proof of Lemma 3.5 that the unit of the adjunction
SkFrith ⊣ B+ is

η(L,S) : (L, S) → (∇L, {∇a | a ∈ [S ]se}), a 7→ ∇a.

Clearly, this is an isomorphism if and only if (L, S) is strongly exact.

Let L = (L,L+, L−) be a biframe and B+(L) = (M,T ). Since the elements
of T are complemented in L, by Proposition 2.1, the frame embedding M ↪→
Lmay be uniquely extended to a frame homomorphism CTM → L. It is easily
seen that this map induces a biframe homomorphism εL : (CTM,∇M,∆T ) →
(L,L+, L−). We leave it for the reader to verify that εL is the component
at L of the counit of the adjunction SkFrith ⊣ B+. In particular, if (L, S) is a
Frith frame then, since {∆s | s ∈ S} and {∆a | a ∈ [S ]se} generate the same
subframe of CL, by Lemma 3.4, we have that SkFrith ◦ B+ ◦ SkFrith(L, S) =
SkFrith(L, S) and εSkFrith(L,S) is the identity map. Therefore, the adjunction
SkFrith ⊣ B+ is idempotent and, as such, it induces an equivalence between
the images of the two involved functors.
While it is clear that every biframe of the form SkFrith(L, S) is zero-

dimensional, it is not the case that every zero-dimensional biframe is of that
form.

Example 3.7. 5 Let X be a topological space such that the congruence
frame of its frame of opens is not spatial (see [15, Theorem 3.4] for a char-
acterization of the frames whose congruence frame is not spatial). We let
L = (L,L+, L−) be the Skula biframe of X, that is: L+ is the frame of opens
of X, L− is the subframe of P(X) generated by the complements of the el-
ements of L+, and L is the subframe of P(X) generated by L+ ∪ L−. To
show that L is not a fixpoint of the adjunction SkFrith ⊣ B+, we first recall
that the underlying frame homomorphism of the counit of SkFrith ⊣ B+ at
a biframe L = (L,L+, L−) is the unique frame extension εL : CTM → L of
the embedding M ↪→ L, where (M,T ) = B+(L). Since, in this case, we have
B+(L) = (L+, L+), L is a fixpoint if and only if the unique frame homo-
morphism CL+ → L extending L+ ↪→ L is an isomorphism. But that is not
the case because L is spatial and CL+ is not. A concrete example is given
by taking for X the real line R equipped with the Euclidean topology Ω(R).

5This example was borrowed from [7, Example 5.13]. The interested reader may show that the
fixpoints of the adjunction SkFrith ⊣ B+ are precisely the underlying biframes of the quasi-uniform
frames representable by a Frith frame in the sense of [7, Proposition 5.6].
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Since the Booleanization of Ω(R) is a pointless nontrivial sublocale, by the
characterization of [15], its congruence frame is not spatial.

Also, the fixpoints of SkFrith ⊣ B+ need not be compact as SkFrith(L, S) is
not compact if neither is L. We may however show that every compact and
zero-dimensional biframe is a fixpoint.

Proposition 3.8. Let L = (L,L+, L−) be a biframe and

εL : (CTM,∇M,∆T ) → (L,L+, L−)

be the component at L of the counit of the adjunction SkFrith ⊣ B+, where
(M,T ) = B+(L). Then,

(a) εL is dense,
(b) if L is zero-dimensional, then εL[∇M ] = L+ and εL[∆T ] = L−.

In particular, if L is compact and zero-dimensional, then εL is an isomor-
phism and thus, L is a fixpoint of the adjunction SkFrith ⊣ B+.

Proof : Let a ∈ M and t ∈ T be such that εL(∇a ∧ ∆t) = 0. By definition
of εL, this is the same as having that the equality a∧ t∗ = 0 holds in L. Since
t is complemented in L, this is equivalent to a ≤ t which, in turn, implies
∇a ∧∆t = 0. This proves that εL is dense.
Now, again by definition of εL, we have that εL[∇M ] ⊇ T and εL[∆T ] ⊇

T ∗. Since T is the lattice of bicomplemented elements of L+, if L is zero-
dimensional, this implies that εL[∇M ] = L+ and εL[∆T ] = L−. Thus, (b)
holds.
Finally, recall that εL is an isomorphism of biframes provided its underlying

frame homomorphism is injective and satisfies εL[∇M ] = L+ and εL[∆T ] =
L−. Thus, it suffices to show that if L is compact and zero-dimensional then
εL is injective. But it is well-known that dense frame homomorphisms with
zero-dimensional domain (which is the case of CTM) and compact codomain
are injective (see e.g. [17, Chapter VII, Proposition 2.2.2]).6

The following is as close as we will get to a pointfree version of the result
stated in Corollary 3.3.

Corollary 3.9. Strongly exact Frith frames are a full coreflective subcategory
of the category of zero-dimensional biframes.

6The result cited is stated for a regular domain, but every zero-dimensional frame is regular.
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We finish this section by relating the point-set and pointfree versions of
the functors we have considered.

Proposition 3.10. The following squares commute up to natural isomor-
phism.

BiTop Pervin

BiFrm Frith

Clop+

ΩΩb

B+

Pervin BiTop

Frith BiFrm

SkPervin

ptbpt

SkFrith

Proof : Commutativity of the left-hand side diagram follows easily from com-
puting the functors B+◦Ωb and Ω◦Clop+. To show that the right-hand side
diagram commutes up to natural isomorphism, we define a natural isomor-
phism β : SkPervin ◦pt =⇒ ptb ◦SkFrith as follows. For a Frith frame (L, S),
we define

β(L,S) : SkPervin ◦ pt(L, S) → ptb ◦ SkFrith(L, S), p 7→ p̃

where p̃ is the unique morphism making the following diagram commute (cf.
Proposition 2.1).

L CSL

2

∇

p̃p

By uniqueness of each p̃, this correspondence establishes a bijection between
the points of L and the points of CSL. Let us show that this is a homeo-
morphism with respect to the first topology of SkPervin ◦ pt(L, S). We first
note that the positive open subsets of SkPervin ◦ pt(L, S) are the subsets of

the form â, while those of ptb ◦ SkFrith(L, S) are the subsets of the form ∇̂a,
where a ∈ L. Now, given a ∈ L and p ∈ pt(L), using commutativity of the
triangle above, we have

p ∈ β−1
(L,S)(∇̂a) ⇐⇒ p̃(∇a) = 1 ⇐⇒ p(a) = 1 ⇐⇒ p ∈ â.

Since β(L,S) is a bijection, this implies that β(L,S) is both continuous and
open with respect to the first topologies, thus a homeomorphism. Showing
that β(L,S) is also a homeomorphism with respect to the second topology is
analogous, and we leave it for the reader.
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Now, β is a natural transformation provided the following square commutes
for every morphism h : (M,T ) → (L, S) of Frith frames.

SkPervin ◦ pt(L, S) ptb ◦ SkFrith(L, S)

SkPervin ◦ pt(M,T ) ptb ◦ SkFrith(M,T )

β(L,S)

(−) ◦ SkFrith(h)(−) ◦ h

β(M,T )

That is indeed the case because, for every p ∈ pt(L) and x ∈ M , we have
the following equalities:

p̃ ◦ SkFrith(h)(∇x) = p̃(∇h(x)) = p ◦ h(x) = p̃ ◦ h(∇x).

Proposition 3.10 makes it natural to ask whether the corresponding dia-
grams for the spectrum and open-set functors also commute. The answer is
negative, as shown by the next example.

Example 3.11. For the first diagram, consider the biframe L = (3,3,2),
where 3 denotes the 3-element chain. Then, pt ◦B+(L) is a space with one
point, while Clop+ ◦ ptb(L) has two, so these cannot be isomorphic. For
the second diagram, we let X be a topological space as in Example 3.7 and
observe that Ωb ◦SkPervin(X,Ω(X)) is the Skula biframe L of X. As already
argued, L is not in the image of SkFrith, thus, Ωb ◦ SkPervin(X,Ω(X)) is not
isomorphic to SkFrith ◦Ω(X,Ω(X)).

3.2. The monotopological case. In this section, we will investigate the
monotopological version of the results of Section 3.1. Under the identifica-
tions Top ↪→ BiTop and Frm ↪→ BiFrm, these will follow as a consequence
of the latter.
Let us consider the restrictions Clop : Top → Pervin and B : Frm →

Frith of the functors Clop+ and B+ defined in Section 3.1. Explicitly,
Clop maps a topological space (X, τ) to the Pervin space Clop+(X, τ, τ) =
(X, Clop(X, τ)), where Clop(X, τ) denotes the Boolean algebra of clopen
subsets of X for the topology τ , and a morphism to itself. On the other
hand, given a frame L, B(L) is the pair (⟨B(L)⟩Frm, B(L)), where ⟨B(L)⟩Frm
denotes the subframe of L generated by the lattice of complemented ele-
ments B(L) of L, and a frame homomorphism h : L → K is sent to the
morphism of Frith frames Bh : B(L) → B(K) induced by the suitable re-
striction and co-restriction of h. Then, the adjunctions Clop+ : BiTop ⇆
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Pervin : SkPervin and SkFrith : Frith ⇆ BiFrm : B+ studied in Section 3.1
restrict, respectively, to adjunctions Clop : Top ⇆ Pervin′ : U′

Pervin and
U′

Frith : Frith
′ ⇆ Frm : B, where

◦ Pervin′ denotes the full subcategory of Pervin determined by the Pervin
spaces (X,S) such that SkPervin(X,S) belongs to the image of Top ↪→
BiTop,

◦ Frith′ denotes the full subcategory of Frith determined by the Frith frames
(L, S) such that SkFrith(L, S) belongs to the image of Frm ↪→ BiFrm,

◦ U′
Pervin is the suitable restriction and co-restriction of SkPervin, and

◦ U′
Frith is the suitable restriction and co-restriction of SkFrith.

The following result, whose proof is trivial, explains our choice of notation for
the functorsU′

Pervin andU′
Frith: these are nothing but the suitable restrictions

of the functors UPervin and UFrith defined in Section 2.6.

Lemma 3.12. The following statements hold:

(a) a Pervin space (X,S) belongs to Pervin′ if and only if ΩS(X) = ΩSc(X),
(b) a Frith frame (L, S) belongs to Frith′ if and only if ∇L = ∆S.

In particular, given (X,S) ∈ Pervin′ and (L, S) ∈ Frith′, the following
equalities hold:

U′
Pervin(X,S) = (X, ΩS(X)) and U′

Frith(L, S) = L.

We will now characterize the categorical equivalences induced by the ad-
junctions Clop ⊣ U′

Pervin and U′
Frith ⊣ B. Recall that we have seen in

Section 3.1 that both Clop+ ⊣ SkPervin and SkFrith ⊣ B+ are idempotent
and, therefore, so are their restrictions.

Proposition 3.13. The categories of zero-dimensional topological spaces and
that of strongly exact symmetric Pervin spaces are equivalent.

Proof : Since Clop ⊣ U′
Pervin is a restriction of Clop+ ⊣ SkPervin, by Proposi-

tion 3.2, it induces an equivalence between the categories of topological spaces
that are zero-dimensional when seen as bitopological spaces, and the cate-
gory determined by the Pervin spaces (X,S) ∈ Pervin′ that are strongly
exact. The former are easily seen to be the zero-dimensional topological
spaces. We argue that (X,S) ∈ Pervin′ is strongly exact if and only if it is
a strongly exact symmetric Pervin space. Clearly, Pervin′ contains all sym-
metric Pervin spaces, thus the backwards implication is trivial. Conversely, if
(X,S) ∈ Pervin′ is strongly exact then, being a fixpoint of the idempotent
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adjunction Clop ⊣ U′
Pervin, it belongs to the image of Clop. Hence, it is

symmetric, as required.

Proposition 3.14. The categories of zero-dimensional frames and that of
strongly exact symmetric Frith frames are equivalent.

Proof : Since the adjunction U′
Frith ⊣ B is idempotent, its fixpoints in Frm

are the frames of the form U′
Frith(L, S) = L, for (L, S) ∈ Frith′. Noticing

that the inclusion ∇L ⊇ ∆S holds if and only if S consists of complemented
elements, these are easily seen to be the zero-dimensional ones. On the other
hand, an argument similar to that used in the proof of Proposition 3.13 shows
that the fixpoints of U′

Frith ⊣ B in Frith′ are strongly exact symmetric Frith
frames.

4. Complete Pervin spaces and complete Frith frames
In this section we will show that the dual adjunction Ω : Pervin ⇆ Frith :

pt induces a duality between T0 complete Pervin spaces on the one hand
and complete Frith frames on the other. We use the following definition
from [10, 18].

Definition 4.1 ([10, 18]). Let (X,S) be a Pervin space. A filter F ⊆ P(X) is
a Cauchy filter if it is proper and, for every S ∈ S, either S or its complement
is in F . We say that a Cauchy filter F converges to the point x ∈ X if
every open neighborhood U ∈ ΩS(X) of x belongs to F . Finally, a Pervin
space (X,S) is said to be Cauchy complete if every Cauchy filter converges,
and a Cauchy completion of (X,S) is a dense extremal monomorphism c :
(X,S) ↪→ (Y, T ) into a Cauchy complete Pervin space (Y, T ).7

The following is an easy observation that we state for later reference.

Lemma 4.2. Let (X,S) be a Pervin space, and F ⊆ P(X) be a Cauchy
filter. Then, F converges to x if and only if x belongs to

⋂
(F ∩ S).

Note that a filter is Cauchy with respect to (X,S) if and only if it is
Cauchy with respect to (X,S). Therefore, a Pervin space is Cauchy complete
if and only if so is its symmetrization. As observed in [10, 18], one may
show that this notion of Cauchy complete Pervin space correctly captures
the notion of a complete quasi-uniform space. It is known that complete

7In [10] Cauchy complete and Cauchy completion are simply named complete and completion,
respectively.
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quasi-uniform spaces may be equivalently characterized via dense extremal
monomorphisms. In the case of Pervin spaces, the suitable definitions are
the following.

Definition 4.3. A symmetric Pervin space (X,B) is complete if every dense
extremal monomorphism (X,B) ↪→ (Y, C), with (Y, C) a T0 symmetric Pervin
space is an isomorphism. More generally, we say that a Pervin space (X,S)
is complete if so is its symmetrization.

Our next goal is to show that Definitions 4.1 and 4.3 are equivalent. Before
we move on, we need to prove a couple of technical lemmas.

Lemma 4.4. Let m : (X,S) ↪→ (Y, T ) be a dense extremal monomorphism.
If F ⊆ P(Y ) is a Cauchy filter, then so is m−1(F ).

Proof : Let F ⊆ P(Y ) be a Cauchy filter. Since m is dense and F is proper,
m−1(F ) is, by Lemma 2.9, a proper filter too. Now, given S ∈ S, since
m is an extremal monomorphism, we have S = m−1(T ) for some T ∈ T .
Since F is Cauchy, it contains either T or T c and thus, m−1(F ) contains
either S = m−1(T ) or Sc = m−1(T c). This shows that m−1(F ) is Cauchy as
well.

Recall the neighborhood map N(X,S) : (X,S) → (pf(S), S̃) from (5), that
is, the unit of the adjunction LPervin ⊣ pf .

Lemma 4.5. For a T0 Pervin space (X,S), the map N(X,S) is an extremal
monomorphism of Pervin spaces whose symmetrization is dense.

Proof : If (X,S) is T0, then different points have different neighborhood fil-
ters in S, and so N(X,S) is injective. Since, for every S ∈ S, we have

N−1
(X,S)(S̃) = S, the map N(X,S) is an extremal monomorphism. To show

that SymPerv(N(X,S)) is dense, suppose that N−1
(X,S)(S̃1 ∩ S̃2

c
) = S1 ∩ Sc

2 = ∅,
that is, S1 ⊆ S2. Then, there is no prime filter containing S1 and omitting S2,

which means that S̃1 ∩ S̃2
c
must be empty.

We remark that, for every T0 Pervin space (X,S), the map

N(X,S) : (X,S) ↪→ (pf(S), S̃)
is the completion of (X,S) (cf. [10, 18]).
We may now prove the following characterization of T0 complete Pervin

spaces.
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Theorem 4.6. Let (X,S) be a T0 Pervin space. Then, the following are
equivalent:

(a) (X,S) is Cauchy complete;
(b) (X,S) is complete;
(c) Every extremal monomorphism (X,S) ↪→ (Y, T ) into a T0 Pervin space

whose symmetrization is dense is an isomorphism;
(d) (X,S) is isomorphic to pf(S);
(e) (X,S) is isomorphic to pt(Idl(S),S);
(f) (X,S) is isomorphic to a Pervin space of the form pt(Idl(D), D), for

some lattice D;
(g) (X,S) is isomorphic to a Pervin space of the form pf(D), for some

lattice D.

Proof : Noting that extremal monomorphisms are preserved under symmetri-
zation, the equivalence between (b) and (c) follows. That (c) implies (d) is
a consequence of Lemma 4.5. The equivalences between (d) and (e) and
between (f) and (g) follow from Lemma 2.11, while that (e) implies (f) is
trivial. It remains to show that (a) implies (b) and that (g) implies (a).
Suppose that (a) holds, and let m : (X,S) ↪→ (Y, C) be a dense extremal

monomorphism into a symmetric T0 Pervin space (Y, C). We need to show
thatm is an isomorphism, that is, thatm is surjective. Given y ∈ Y , consider
the filter Fy := ↑{C ∈ C | y ∈ C}. Since C is a Boolean algebra, Fy is a
Cauchy filter. By Lemma 4.4, the filter m−1(Fy) is Cauchy as well. Since
(X,S) is Cauchy complete, m−1(Fy) converges to some point x ∈ X. We
claim that y = m(x). Since (Y, C) is T0 and C is a Boolean algebra, we have
that y = m(x) provided y ∈ C implies m(x) ∈ C, for every C ∈ C. We let
C ∈ C be such that y ∈ C. Then, m−1(C) belongs to m−1(Fy)∩S and, since
m−1(Fy) converges to x, by Lemma 4.2, it follows that x ∈ m−1(C), that is,
m(x) ∈ C, as required.
Finally, let us assume that we have a Pervin space of the form pf(D) =

(pf(D), D̃), with D a distributive lattice. Suppose that F ⊆ P(pf(D)) is a
Cauchy filter and set P := {a ∈ D | ã ∈ F}. Clearly, P is a filter of D.
Let us show that P is prime. Let a, b ∈ D be such that a ∨ b ∈ P , and

suppose that a /∈ P . Equivalently, a, b are such that ã ∨ b = ã ∪ b̃ ∈ F and
ã /∈ F . Since F is Cauchy, it follows that (ã)c belongs to F and thus, so

does b̃ ⊇ (ã)c ∩ b̃ = (ã)c ∩ (ã ∪ b̃). This shows that b ∈ P as required. We
now claim that F converges to P . By Lemma 4.2, it suffices to show that
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P ∈ ã∩ (̃b)c whenever a, b ∈ D are such that ã∩ (̃b)c ∈ F . Since F is proper,

having ã ∩ (̃b)c ∈ F implies that ã ∈ F and b̃ /∈ F . But by definition of P ,

this means that P ∈ ã ∩ (̃b)c, as required.

From now on, we will drop the use of Cauchy complete and call complete
Pervin space every Pervin space satisfying the equivalent conditions of The-
orem 4.6.
In turn, completeness of Frith frames is discussed in [7], where a charac-

terization of complete Frith frames using both dense extremal epimorphisms
and Cauchy maps is given. Here, it will suffice to consider the following
definitions:

Definition 4.7 ([7]). We say that a symmetric Frith frame (L,B) is com-
plete if every dense extremal epimorphism (M,C) ↠ (L,B) with (M,C)
symmetric is an isomorphism. More generally, a Frith frame (L, S) is com-
plete provided its symmetric reflection SymFrith(L, S) is complete. A comple-
tion of (L, S) is a complete Frith frame (M,T ) together with a dense extremal
epimorphism (M,T ) ↠ (L, S).

The fact that completeness of a Frith frame (L, S) is equivalent to complete-
ness of the associated quasi-uniform frame is shown in [7, Proposition 7.2].
Moreover, every Frith frame (L, S) has a unique, up to isomorphism, com-
pletion, which is given by the counit (3) of the adjunction Idl ⊣ LFrith. Also
in [7], we have shown the following:

Theorem 4.8 ([7, Proposition 4.6 and Theorem 7.7]). Let (L, S) be a Frith
frame. Then, the following are equivalent:

(a) (L, S) is complete;
(b) (L, S) is coherent;
(c) L is isomorphic to the ideal completion Idl(S) of S.

Part (c) of this characterization, together with Theorem 4.6(f), yield the
following:

Corollary 4.9. A Pervin space is T0 and complete if and only if it is of the
form pt(L, S), for some complete Frith frame (L, S).

In particular, the functor pt : Frith → Pervin restricts and co-restricts
to a functor CFrith → CPervin. In order to show that Ω, too, restricts
correctly, we will need to use the Prime Ideal Theorem.
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Proposition 4.10. The following are equivalent.

(a) The Prime Ideal Theorem holds;
(b) If (X,S) is a T0 complete Pervin space, then the Frith frame Ω(X,S) is

complete.
(c) If (X,B) is a T0 complete symmetric Pervin space, then the Frith frame

Ω(X,B) is complete.

Proof : We first show that (a) implies (b). Let (X,S) be a T0 complete Pervin
space. By Theorem 4.6, we may assume, without loss of generality, that
(X,S) = pt(Idl(S),S). Since we are assuming that the Prime Ideal Theorem
holds, by Theorem 2.2, Idl(S) is a spatial frame, and thus so is (Idl(S),S)
(cf. Theorem 2.5). Therefore, we have

Ω(X,S) = Ω ◦ pt(Idl(S),S) ∼= (Idl(S),S),
which, by Theorem 4.8, is a complete Frith frame.
Clearly, (b) implies (c). Finally, suppose that (c) holds, and let X be a

set. By Theorem 2.2, it suffices to show that every proper filter F on X is
contained in a prime filter. For the sake of readability, we set B := P(X).
Note that showing that F is contained in some prime filter is equivalent to
showing that the intersection

⋂
S∈F S̃ is nonempty. For that, we consider the

T0 symmetric Pervin space (pf(B), B̃). By Theorem 4.6, this is complete,

and by hypothesis, so is the Frith frame Ω(pf(B), B̃) = (ΩB̃(pf(B)), B̃). In
particular, the topological space (pf(B),ΩB̃(pf(B))) is compact, and thus, it

suffices to show that {S̃ | S ∈ F} has the finite intersection property. In
turn, since F is closed under finite meets, this is the same as showing that
S̃ ̸= ∅ for every S ∈ F . But since F is proper, every S ∈ F is nonempty, and
given x ∈ S, we have ↑{x} ∈ S̃ and S̃ is nonempty as well. This finishes the
proof.

Corollary 4.11. The following are equivalent.

(a) The Prime Ideal Theorem holds;
(b) If (X,S) is a T0 complete Pervin space, then the compact open subsets

of (X, ΩS(X)) are precisely the elements of S.

Proof : By the equivalence between (a) and (b) of Proposition 4.10, it suffices
to show that Ω(X,S) is a complete Frith frame if and only if the compact
open subsets of (X, ΩS(X)) are precisely the elements of S. Observe that, by
Theorem 4.8, Ω(X,S) = (ΩS(X), S) is complete if and only if it is coherent.
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Thus, S is the set of compact elements of the frame ΩS(X), hence of compact
open subsets of the topological space (X, ΩS(X)).

We have just proved the following:

Corollary 4.12. If the Prime Ideal Theorem holds, then the adjunction Ω :
Pervin ⇆ Frith : pt restricts and co-restricts to an adjunction between T0

complete Pervin spaces and complete Frith frames.

We may now show the main result of this section.

Theorem 4.13. If the Prime Ideal Theorem holds, then the adjunction Ω :
Pervin ⇆ Frith : pt restricts and co-restricts to a duality between the
categories CFrith of complete Frith frames and CPervin of T0 complete
Pervin spaces.

Proof : Recall from Theorem 2.5 that the adjunctionΩ ⊣ pt induces a duality
between sober Pervin spaces and spatial Frith frames. Thus, because of
Corollary 4.12, it remains to show that T0 complete Pervin spaces are sober
and complete Frith frames are spatial. By Theorem 4.6, a T0 Pervin space
is complete if and only if it is isomorphic to the Pervin space pt(Idl(D), D),
for some lattice D, and thus a complete Pervin space is sober. In turn,
complete Frith frames are spatial because, by Theorem 4.8, they are of the
form (Idl(D), D) for some lattice D and, by the Prime Ideal Theorem, these
are spatial Frith frames (cf. Theorems 2.2 and 2.5).

5. Stone-type dualities
In this section we will see how several Stone-type dualities relate to the

duality between complete Frith frames and T0 complete Pervin spaces shown
in the previous section (cf. Theorem 4.13). Note that the fact that every T0

complete Pervin space defines a spectral, a Priestley, and a pairwise Stone
space is already observed in [18], but no proof is provided. Here, we will give
the functorial details of this assignment, and use Theorem 4.13 to interpret
Stone-type dualities as a restriction an co-restriction of the dual adjunction
Ω : Pervin ⇆ Frith : pt along full subcategory embeddings.

5.1. Stone duality. Stone duality establishes that the categories of bounded
distributive lattices and of spectral spaces are dually equivalent. We recall
that a topological space is spectral if it is sober, and its compact open subsets
are closed under finite intersections and form a basis of the topology. The
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category of spectral spaces together with those continuous functions such
that the preimages of compact open subsets are compact will be denoted by
Spec. By identifying each lattice with the coherent frame given by its ideal
completion, Stone duality may be seen as a restriction and co-restriction of
the dual adjunction Ω : Top ⇆ Frm : pt, but not along full inclusions,
as not every continuous function is a morphism of spectral spaces, and mor-
phisms of coherent frames are required to preserve compact elements. We will
now see that this duality may also be seen as a restriction and co-restriction
of the dual adjunction Ω : Pervin ⇆ Frith : pt, the advantage being that
spectral spaces and bounded distributive lattices form full subcategories of
Pervin and Frith, respectively.
It follows straightforwardly from Theorem 4.8 (by identifying each lattice

S with the Frith frame (Idl(S), S)) that the categories of complete Frith
frames and of bounded distributive lattices are equivalent, and by definition
of morphism of Frith frames, this is indeed a full subcategory of Frith (see
also [7, Proposition 4.6]). Given the Prime Ideal Theorem, we also have that
every T0 complete Pervin space defines a spectral space.

Lemma 5.1. If the Prime Ideal Theorem holds, then the functor UPervin :
Pervin → Top restricts and co-restricts to a functor CPervin → Spec.

Proof : Let (X,S) be a T0 complete Pervin space. By Theorem 4.13, (X,S)
is a fixpoint of the adjunction Ω ⊣ pt and thus, it is sober, that is to say that
the topological space (X,ΩS(X)) is sober (recall Theorem 2.5). By Corol-
lary 4.11, the lattice S is the set of compact open elements of (X, ΩS(X)).
Therefore, (X,ΩS(X)) is spectral. Finally, note that this also implies that
if f : (X,S) → (Y, T ) is a morphism of T0 complete Pervin spaces, then is
induces a morphism f : (X,ΩS(X)) → (Y,ΩT (Y )) of spectral spaces.

It remains then to show that the categories of T0 complete Pervin spaces
and of spectral spaces are, in fact, isomorphic. Consider the functor KO :
Spec → CPervin which sends a spectral space (X, τ) to the Pervin space X
equipped with the lattice of compact open subsets of X. It is easily seen that
KO is well-defined. We may further prove the following:

Proposition 5.2. If the Prime Ideal Theorem holds, then the functors UPervin

and KO establish an isomorphism of categories between Spec and CPervin.

Proof : Let (X,S) be a T0 complete Pervin space. By Corollary 4.11, KO ◦
UPervin is the identity functor on CPervin. For a spectral space (X, τ),
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we have that UPervin ◦ KO(X, τ) is the set X equipped with the topology
generated by the lattice of compact open subsets of (X, τ). But by definition
of spectral space, this is (X, τ) itself.

Corollary 5.3. If the Prime Ideal Theorem holds, then Stone duality for
bounded distributive lattices may be seen as a restriction along full subcategory
embeddings of the dual adjunction Ω : Pervin ⇆ Frith : pt.

5.2. Priestley duality. Another duality for bounded distributive lattices,
due to Priestley, uses the so-called Priestley spaces in place of spectral spaces.
A Priestley space is a compact topological space equipped with a partial order
relation on its points satisfying the Priestley separation axiom, which states
that for points x ≰ y there is a clopen upper set (“upset” hereon) containing
x and omitting y. A morphism of Priestley spaces is a continuous map which
is monotone with respect to the order. We denote by Priest the category of
Priestley spaces and corresponding morphisms. We have already seen that
T0 complete Pervin spaces form a category equivalent to spectral spaces, and
it is well-known that the latter form a category equivalent to Priest. It is
the goal of this section to explicitly exhibit the correspondence between T0

complete Pervin spaces and Priestley spaces, thereby providing yet another
way of understanding Priestley duality.
As noticed in [18], every Pervin space (X,S) comes naturally equipped

with a preorder given by

x ≤S y if and only if x ∈ S implies y ∈ S for all S ∈ S,
which is a partial order exactly when (X,S) is T0. In the case where (X,S)
is T0 and complete, this is the underlying partial order of the corresponding
Priestley space, and its topology is the patch topology of the bitopological
space SkPervin(X,S).

Lemma 5.4. If the Prime Ideal Theorem holds, then there is a well-defined
functor P : CPervin → Priest defined by P(X,S) = (X, ΩS(X), ≤S) on
objects, and mapping each morphism to the morphism defined by its under-
lying set function.

Proof : If (X,S) is T0 complete, then so is its symmetrization (X,S) and, by
Corollary 4.11, X ∈ S is a compact element of ΩS(X). Thus, (X, ΩS(X))
is compact. Since elements of S are clopen upsets of (X, ΩS(X), ≤S), the
relation ≤S satisfies the Priestley separation axiom. Therefore, P(X,S) is a
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Priestley space. It is not hard to see that P is well-defined on morphisms,
too.

In the other direction, we have the following:

Lemma 5.5. There is well-defined functor CUp : Priest → CPervin that
assigns to each Priestley space (X, τ, ≤) the Pervin space X equipped with
the lattice of clopen upsets of X, and keeps morphisms unchanged.

Proof : It is easy to verify that CUp is well-defined on morphisms. Let us
argue that CUp is well-defined on objects. Fix a Priestley space (X, τ,≤).
By the Priestley separation axiom, we have that (X,S) := CUp(X, τ,≤)
is T0. To show that (X,S) is complete, we show that every Cauchy filter
converges. Indeed, if F ⊆ P(X) is a Cauchy filter then, since it is proper, it
has the finite intersection property. Thus, F ∩S is a family of closed subsets
ofX with the finite intersection property. Since Priestley spaces are compact,
it follows that

⋂
(F ∩ S) is nonempty and, by Lemma 4.2, F converges.

We leave it for the reader to verify that the functors P and CUp are
mutually inverse. The reader may also check that, by composing the functors

Priest
CUp−−−−→ CPervin

UPervin−−−−→ Spec

and
Spec

P−−−−→ CPervin
KO−−−−→ Priest

one obtains the well-known isomorphism between the categories of spectral
and of Priestley spaces.

Proposition 5.6. If the Prime Ideal Theorem holds, then the functors P and
CUp establish an isomorphism of categories between Priest and CPervin.

Corollary 5.7. If the Prime Ideal Theorem holds, then Priestley duality
may be seen as a restriction along full subcategory embeddings of the dual
adjunction Ω : Pervin ⇆ Frith : pt.

5.3. Bitopological duality. It has long been known [3] that the dual ad-
junction between bitopological spaces and biframes restricts and co-restricts
to a duality between T0, compact and zero-dimensional bitopological spaces
(denoted BiTopKZ) and compact and zero-dimensional biframes (denoted
BiFrmKZ). A few years later, Priestley duality was considered from a bitopo-
logical point of view [16], with Priestley spaces being identified with T0, com-
pact and zero-dimensional bitopological spaces, and lattices being identified
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with compact and zero-dimensional biframes. The point-set half of this cor-
respondence was then rediscovered in [6], where T0 compact zero-dimensional
bitopological spaces were named pairwise Stone spaces.8 It is then clear that
CPervin and CFrith are equivalent to BiTopKZ and BiFrmKZ, respec-
tively. In this section, we will make these equivalences explicit, using the
adjunctions derived in Section 3.1.
Let us start with the equivalence between T0 complete Pervin spaces and

T0, compact, and zero-dimensional bitopological spaces. Recall that we have
an idempotent adjunction Clop+ ⊣ SkPervin whose fixpoints are, respec-
tively, the zero-dimensional bitopological spaces and the strongly exact Per-
vin spaces. To conclude that this adjunction further restricts to an equiva-
lence between BiTopKZ and CPervin, it suffices to show that T0 complete
Pervin spaces are strongly exact (cf. Corollary 5.9) and that the equality
SkPervin[CPervin] = BiTopKZ holds (cf. Lemmas 5.8 and 5.10). For that,
we will need to assume the Prime Ideal Theorem.

Lemma 5.8. The following are equivalent.

(a) The Prime Ideal Theorem holds.
(b) For a T0 complete Pervin space (X,S), the bispace SkPervin(X,S) is

compact.
(c) For a T0 symmetric complete Pervin space (X,B), the bispace SkPervin(X,B)

is compact.

Proof : We first argue that (b) and (c) are equivalent. Clearly, (b) implies (c).
For the converse, we only need to remind the reader that a Pervin space
(X,S) is complete if and only if so is its symmetrization (X,S) and observe
that, by definition of compact bispace, SkPervin(X,S) is compact if and only
if so is SkPervin(X,S).
Now, taking the equivalence between statements (a) and (c) of Proposi-

tion 4.10 into account, it suffices to show that, for every T0 symmetric Pervin
space (X,B), the bispace SkPervin(X,B) is compact if and only if the Frith
frame Ω(X,B) is coherent (recall that, by Theorem 4.8, a Frith frame is co-
herent if and only if it is complete). If SkPervin(X,B) is compact, that is, if
the topological space (X,ΩB(X)) is compact, then every element of B is com-
pact in the frame ΩB(X). Indeed, if B =

⋃
U for some family U ⊆ ΩB(X),

then U ∪ {Bc} is an open cover of (X,ΩB(X)) and, if the latter is compact,

8Note that pairwise Stone spaces are the same as T0, compact and zero-dimensional bitopological
spaces only under the assumption of the Prime Ideal Theorem.
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then U ∪ {Bc} has a finite subcover U ′. This yields B =
⋃

U ′ \ {Bc}, with
U ′ \ {Bc} finite, thereby showing compactness of B. Thus, the Frith frame
Ω(X,B) = (ΩB(X),B) is coherent. Conversely, suppose that Ω(X,B) is co-
herent. In particular, its underlying frame ΩB(X) is compact. But this is
precisely the frame of opens of the patch topology of SkPervin(X,B). Thus,
the latter is compact as well.

As a consequence, we immediately obtain that, under the Prime Ideal
Theorem, every T0 complete Pervin space is strongly exact. We do not know
whether this is a necessary hypothesis.

Corollary 5.9. If the Prime Ideal Theorem holds, then T0 complete Pervin
spaces are strongly exact.

Proof : Let (X,S) be a Pervin space. By Lemma 5.8, we only need to show
that if SkPervin(X,S) is compact then (X,S) is strongly exact. Let

⋂
i∈I Si

be an open intersection of S, say
⋂

i∈I Si =
⋃

j∈J S
′
j, for some {Sj}j∈J ⊆ S.

Then, we have

X = (
⋂
i∈I

Si)
c ∪ (

⋂
i∈I

Si) =
⋃
i∈I

Sc
i ∪

⋃
j∈J

S ′
j

and, by compactness of SkPervin(X,S), it follows that there exists a finite
subset J ′ ⊆ J such that X =

⋃
i∈I S

c
i ∪

⋃
j∈J ′ S ′

j. But then, we have
⋂

i∈I Si =⋃
j∈J ′ S ′

j, and thus, the intersection
⋂

i∈I Si belongs to S, as required.
It only remains to show the inclusion SkPervin[CPervin] ⊇ BiTopKZ.

Lemma 5.10. If X = (X, τ+, τ−) is a compact bitopological space, then the
Pervin space Clop+(X ) is complete. In particular, every T0, compact, and
zero-dimensional bitopological space is of the form SkPervin(X,S), for some
T0 complete Pervin space (X,S).
Proof : We let τ denote the patch topology of X , and we suppose that X
is compact, that is, that the space (X, τ) is compact. We let (X,S) =
Clop+(X ) and F ⊆ P(X) be a Cauchy filter. Since F is proper, it has the
finite intersection property, and therefore, so does F ∩ S (which is a subset
of Clop(X, τ)). By compactness of (X, τ) it follows that the intersection⋂
(F ∩ S) is nonempty. Thus, by Lemma 4.2, F converges and (X,S) is

complete.
Finally, let X = (X, τ+, τ−) be a bitopological space. By Proposition 3.2,

if X is zero-dimensional, then it is isomorphic to SkPervin ◦ Clop+(X ). If
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furthermore X is compact then, by the first part of the claim, Clop+(X ) is
complete. It is also easy to see thatClop+(X ) is T0 provided X is T0 and zero-
dimensional. Thus, if X is T0, compact, and zero-dimensional, then (X,S) =
Clop+(X ) is a T0 complete Pervin space satisfying X ∼= SkPervin(X,S).
As already explained, we may thus derive the following:

Corollary 5.11. If the Prime Ideal Theorem holds, the adjunction Clop+ ⊣
SkPervin restricts to an equivalence BiTopKZ

∼= CPervin.

Let us now consider the pointfree setting. We have seen in Section 3.1
the existence of an idempotent adjunction SkFrith : Frith ⇆ BiFrm : B+.
Although we were not able to describe the underlying categorical equivalence,
we have shown that the fixpoints of Frith are the strongly exact Frith frames
and that every compact zero-dimensional biframe is a fixpoint of BiFrm.
Thus, we will follow the same strategy as for Pervin spaces and show that
complete Frith frames are strongly exact (cf. Lemma 5.14) and the equality
SkFrith[CFrith] = BiFrmKZ holds (cf. Lemmas 5.15 and 5.16).
Before proceeding, we need to state a technical result. Recall that a filter

F ⊆ L on a frame L is Scott-open if whenever D ⊆ F is a directed subset
whose join belongs to F , the intersection D ∩ F is nonempty.

Proposition 5.12 ([13, 14]). Scott-open filters are closed under strongly ex-
act meets.

Proof : It is shown in [13, Lemma 3.4] that every Scott-open filter F ⊆ L is
of the form {x ∈ L | ∆x ⊆

∨
a∈P ∆a}, for some subset P ⊆ L. In turn, filters

of this form are shown in [14, Theorem 4.5] to be closed under strongly exact
meets.

Remark 5.13. In the proof of Proposition 5.12 we invoked [13, Lemma 3.4],
whose proof uses ordinal induction (although no choice principles are re-
quired). A constructive alternative proof is provided in [22, Theorem 1.9].

We may now show that complete Frith frames are strongly exact.

Lemma 5.14. Complete Frith frames are strongly exact.

Proof : Let (L, S) be a complete Frith frame and P ⊆ S be such that a =
∧
P

is a strongly exact meet. Since, by Theorem 4.8, P consists of compact
elements and finite meets of compact elements are compact too, the filter F ⊆
L generated by P is Scott-open. By Proposition 5.12, a belongs to F . Thus,
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there exist s1, . . . , sn ∈ P such that a ≥ s1 ∧ · · · ∧ sn, and therefore also
a = s1 ∧ · · · ∧ sn. This means that a ∈ S, as required.

Lemma 5.15. If (L, S) is a complete Frith frame, then the biframe SkFrith(L, S)
is compact (and zero-dimensional).

Proof : By definition, (L, S) is complete if and only if so is SymFrith(L, S) =
(CSL, S). By Theorem 4.8, (CSL, S) is complete if and only if it is coherent. In
particular, if (L, S) is complete, then CSL is compact. But, by definition, this
means that SkFrith(L, S) = (CSL,∇L,∆S) is compact. Finally, SkFrith(L, S)
is clearly zero-dimensional, for every Frith frame (L, S).

Lemma 5.16. If L is a compact biframe, then the Frith frame B+(L) is
complete. In particular, every compact and zero-dimensional biframe is of
the form SkFrith(L, S), for some complete Frith frame (L, S).

Proof : Let L = (L,L+, L−) be a compact biframe and (M,T ) = B+(L) (that
is, T is the lattice of bicomplemented elements of L+ and M is the subframe
of L it generates). By Theorem 4.8, B+(L) is complete provided T consists
of compact elements of M . Since M is, by definition, a subframe of L+, it
suffices to show that bicomplemented elements of L+ are compact in L+. Let
then t ∈ L+ be bicomplemented and suppose that t ≤

∨
P , for some subset

P ⊆ L+. Then, we have 1 = t∨ t∗ ≤
∨

P ∨ t∗ and, since L is compact, there
exists a finite subset P ′ ⊆ P such that 1 ≤

∨
P ′ ∨ t∗. But this implies that

t ≤
∨

P ′, as required.
Finally, if L is compact and zero-dimensional then, by Proposition 3.8,

L ∼= SkFrith ◦ B+(L) and, in particular, it is of the form SkFrith(L, S) for
some complete Frith frame (L, S).

We may thus conclude the following:

Corollary 5.17. The adjunction SkFrith ⊣ B+ restricts to an equivalence
CFrith ∼= BiFrmKZ.

Corollary 5.18. If the Prime Ideal Theorem holds, then the duality between
compact zero-dimensional bitopological spaces and compact zero-dimensional
biframes may be seen as restriction and co-restriction of the dual adjunction
Ω : Pervin ⇆ Frith : pt along full subcategory embeddings.

We remark that, in [16], the duality between compact zero-dimensional
bispaces and compact zero-dimensional biframes is seen as a restriction and
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co-restriction of the classical dual adjunction Ωb : BiTop ⇆ BiFrm : ptb.
However, although bitopological spaces and biframes are related to Pervin
spaces and Frith frames (namely, via the functors SkPervin and SkFrith, re-
spectively), as seen in Example 3.11, the two extensions of the adjunction
Ω : Top ⇆ Frm : pt are not comparable. The situation is different when we
restrict to T0 complete and to T0 compact and zero-dimensional structures,
as in that case, both

Ωb : BiTop ⇆ BiFrm : ptb and Ω : CPervin ⇆ CFrith : pt

coincide, up to equivalence. Therefore, the duality of [16] ends up being
equivalent to ours.

5.4. Summary. We summarize in the diagram below the categorical equiv-
alences shown in Sections 5.1–5.3, which exhibit several Stone-type dualities
as restrictions of the dual adjunction between Pervin spaces and Frith frames.
The results marked with ∗ require the use of the Prime Ideal Theorem.

BiTop Pervin Frith BiFrm

BiTopZ

BiTopKZ

?

BiFrmKZ

Pervinse

CPervin

Frithse

CFrith

DLatSpecPriest

∼ =
T
h
m
.
4.
8

∼=
P
rop.

5.2
∗

∼=

P
ro
p.
5.
6

∗

C
or
.
5.
9

∗

L
em

.
5.
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6. The Pervin-TD axiom and locale-based Frith frames
In [7, Section 4.5] the Pervin-TD axiom is introduced as a Pervin equivalent

of the TD axiom for topological spaces. A Pervin space is called Pervin-TD

if for every x ∈ X there is S ∈ S such that x ∈ S and S\{x} ∈ S. In there,
the following slight variants of this definition were shown to be equivalent:
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Lemma 6.1. Let (X,S) be a Pervin space. Then, the following are equiva-
lent:

(a) (X,S) is Pervin-TD,
(b) for every x ∈ X, there are distinct S1, S2 ∈ S such that S1 \ {x} =

S2 \ {x},
(c) for every x ∈ X, there are S1, S2 ∈ S such that S1 \ S2 = {x}.

On the other hand, in [5] the TD axiom is compared to sobriety and it is
highlighted that the two axioms are, in some sense, duals of each other. In
particular, the following is proven.

Proposition 6.2 ([5, Proposition 4.3]). Let X be a topological space. In the
category of T0 topological spaces we have the following:

(a) The space X is sober if and only if whenever we have an extremal
monomorphism f : X ↪→ Y such that Ω(f) is an isomorphism f must
be an isomorphism.

(b) The space X is TD if and only if whenever we have an extremal monomor-
phism f : Y ↪→ X such that Ω(f) is an isomorphism f must be an
isomorphism.

We will now show a Pervin version of this proposition, where sober is
replaced by complete and the TD-axiom is replaced by the Pervin-TD ax-
iom, being the next lemma the key ingredient. Recall the forgetful function
LPervin : Pervin → DLatop introduced in Section 2.6.

Lemma 6.3. Let f : (X,S) → (Y, T ) be a morphism of Pervin spaces. Then,

(a) LPervin(f) : T → S is injective if and only if SymPerv(f) : (X,S) →
(Y, T ) is dense;

(b) LPervin(f) : T → S is surjective if and only if Ω(f) : (ΩT (Y ), T ) →
(ΩS(X),S) is an extremal epimorphism of Frith frames. Moreover,
if (X,S) is T0, these are further equivalent to f being an extremal
monomorphism of Pervin spaces.

Proof : Let us start by proving (a). Since LPervin(f) is a lattice homomor-
phism, being injective is equivalent to having

∀T1, T2 ∈ T , f−1(T1) ⊆ f−1(T2) =⇒ T1 ⊆ T2,

which is easily seen to be equivalent to having

∀T1, T2 ∈ T , f−1(T1 ∩ T c
2 ) = ∅ =⇒ T1 ∩ T c

2 = ∅.
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Since T consists of the finite joins of elements of the form T1 ∩ T c
2 , with

T1, T2 ∈ T , this means that SymPerv(f) is dense, as required.
Finally, the first assertion of (b) is a trivial consequence of the characteriza-

tion of extremal epimorphisms of Frith frames (recall Proposition 2.4), while
the second one is the content of [7, Corollary 4.17].

Proposition 6.4. Let (X,S) and (Y, T ) be T0 Pervin spaces. We have the
following.

(a) The space (X,S) is complete if and only if whenever there is a map
f : (X,S) → (Y, T ) such that LPervin(f) is an isomorphism f must be
an isomorphism.

(b) The space (X,S) is Pervin-TD if and only if whenever there is a map
f : (Y, T ) → (X,S) such that LPervin(f) is an isomorphism f must be
an isomorphism.

Proof : Since (X,S) is T0, by Lemma 6.3, LPervin(f) is an isomorphism if and
only if f is an extremal monomorphism and SymPerv(f) is dense. Thus,
part (a) follows from Theorem 4.6(c).
To prove (b), let us first suppose that (X,S) is Pervin-TD and let f :

(Y, T ) → (X,S) be such that (Y, T ) is T0 and LPervin(f) is an isomorphism.
Since (Y, T ) is T0, by Lemma 6.3(b), f is an extremal monomorphism. Thus,
it suffices to show that f is an epimorphism, that is, surjective. Fix x ∈ X.
Since (X,S) is Pervin-TD, by Lemma 6.1(c), the singleton {x} belongs to S.
Since, by Lemma 6.3(a), SymPerv(f) is dense, it follows that {x} intersects
f [Y ] (recall Lemma 2.9), that is, x belongs to the image of f as we intended
to show. Conversely, let f : (Y, T ) ↪→ (X,S) be the extremal monomorphism
induced by Y := X \ {x}, that is, T = {S \ {x} | S ∈ S}. Clearly, (Y, T )
is T0 and f is not an isomorphism. Thus, by assumption, LPervin(f) cannot
be injective. That is to say that, there exist distinct S1, S2 ∈ S such that
S1 \ {x} = S2 \ {x} and thus, by Lemma 6.1(b), (X,S) is Pervin-TD.

We finish this section by exhibiting a pointfree version of Proposition 6.4,
which will now involve the forgetful functor LFrith : Frith → DLat (cf.
Section 2.6). Let us start with a version of Lemma 6.3 for Frith frames.

Lemma 6.5. Let h : (L, S) → (M,T ) be a homomorphism of Frith frames.
Then,

(a) LFrith(h) : S → T is injective if and only if SymFrith(h) : (CSL, S) →
(CTM,T ) is dense;
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(b) LFrith(h) : S → T is surjective if and only if h is an extremal epimor-
phism.

Proof : By definition of SymFrith, we have that SymFrith(h) is dense if and
only if for every s1, s2 ∈ S, having ∇h(s1)∧∆h(s2) = 0 implies that ∇s1∧∆s2 =
0. But this is easily seen to be equivalent to having that h(s1) ≤ h(s2) im-
plies that s1 ≤ s2, that is to say that LFrith(h) is injective. This proves (a).
Part (b) is a straightforward consequence of the definition of LPervin(h) and
of the characterization of extremal epimorphisms of Frith frames (cf. Propo-
sition 2.4).

We may then prove the following version of Proposition 6.4(a). In partic-
ular, note that it provides an alternative criterion for a Frith frame to be
complete, which does not depend on its symmetrization.

Proposition 6.6. A Frith frame (L, S) is complete if and only if for every
map h : (M,T ) → (L, S) such that LFrith(h) is an isomorphism, h is an
isomorphism.

Proof : We first observe that (L, S) is complete if and only if every dense
extremal epimorphisms (K,C) → (CSL, S), with (K,C) symmetric, is an
isomorphism. Suppose that (L, S) is complete and let h : (M,T ) → (L, S)
be such that LFrith(h) is an isomorphism. By Lemma 6.5(b), h is an extremal
epimorphism. Thus, we only need to show that it is also a monomorphism,
that is, injective. Consider the homomorphism SymFrith(h) : (CTM,T ) →
(CSL, S). Then, SymFrith(h) is an extremal epimorphism because so is h and,
by Lemma 6.5(a), it is dense. Thus, since (L, S) is complete, it is an isomor-
phism and, in particular, injective. Thus, its restriction h is also injective as
required. Conversely, let h : (K,C) → (CSL, S) be a dense extremal epimor-
phism, with (K,C) symmetric. Since h is already a morphism in Frithsym,
and thus, SymFrith(h) = h, by Lemma 6.5, LFrith(h) is an isomorphism. Thus,
by hypothesis, h is an isomorphism, which proves that (L, S) is complete.

In order to get an analogue of Proposition 6.4(b), we need to introduce the
notion of locale-based Frith frame, which will replace the Pervin-TD axiom in
our statement.
We say that a Frith frame (L, S) is locale-based if the smallest sublocale

of L that contains S is the whole frame L. It is not hard to see that such
sublocale consists of the arbitrary meets of elements of the form a → s, where
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a ∈ L and s ∈ S. As a consequence, we have the following characterization
of locale-based Frith frames, that we state for later reference.

Lemma 6.7. A Frith frame is locale-based if and only if, for every a ∈ L,
the following equality holds:

a =
∧

{b → s | b ∈ L, s ∈ S, and a ≤ b → s}.

The following technical result will also be useful:

Lemma 6.8. Let h : (L, S) → (M,T ) be a morphism of Frith frames. If
LFrith(h) is injective, then h∗ ◦ h(s) = s, for every s ∈ S.

Proof : Since h∗ is right adjoint to h, we have h ◦ h∗ ◦ h = h. Thus, the claim
follows from injectivity of LFrith(h).

We are now ready to show the already announced analogue of Proposi-
tion 6.4(b).

Proposition 6.9. A Frith frame (L, S) is locale-based if and only if for every
map h : (L, S) → (M,T ) such that LFrith(h) is an isomorphism, h is an
isomorphism.

Proof : Let (L, S) be a locale-based Frith frame, and h : (L, S) → (M,T ) be a
homomorphism such that LFrith(h) is an isomorphism. By Lemma 6.5(b), we
know that h is an extremal epimorphism. It remains to show it is injective or,
equivalently, that h∗◦h(a) ≤ a, for every a ∈ L. Let us fix a ∈ L. Since (L, S)
is locale-based, by Lemma 6.7, it suffices to show that h∗ ◦ h(a) ≤ b → s,
whenever b ∈ L and s ∈ S satisfy a ≤ b → s. That is indeed the case
because, given such b and s, we have the following:

h∗ ◦ h(a) ≤ h∗ ◦ h(b → s) (because h∗ and h are order-preserving)

≤ h∗(h(b) → h(s)) (by (1) and because h∗ is order-preserving)

= b → h∗ ◦ h(s) (by (2))

= b → s (by Lemma 6.8).

For the converse, suppose that (L, S) is such that all maps h : (L, S) →
(M,T ) such that LFrith(h) is an isomorphism are isomorphisms. We let ⟨S⟩Loc
be the smallest sublocale of L that contains S. Since ⟨S⟩Loc is a subposet
of L, each join computed in ⟨S⟩Loc is greater than or equal to the same
join computed in L. Thus, (⟨S⟩Loc, S) is also a Frith frame. Finally, we let
q : L ↠ ⟨S⟩Loc be the frame quotient defined by the sublocale embedding
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⟨S⟩Loc ↪→ L. Since the restriction of q to ⟨S⟩Loc is the identity, q induces
a morphism of Frith frames q : (L, S) → (⟨S⟩Loc, S). Clearly we have that
LFrith(q) is an isomorphism, and so, by hypothesis, h is an isomorphism. This
proves that (L, S) is locale-based, as required.
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