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1. Introduction

Given an independent and identically distributed sample of angles X1, . . . ,
Xn ∈ [0, 2π[ from some absolutely continuous circular random variable X
with unknown probability density function f , we are interested in this paper
in the Parzen–Rosenblatt type estimator of f (hereafter, PR-type estimator,
in short; Rosenblatt, 1956, Parzen, 1962) defined, for θ ∈ [0, 2π[, by

f̂n(θ; h) =
dh(K)

n

n
∑

i=1

Kh(θ −Xi), (1)

where h = hn > 0 is a sequence of strictly positive real numbers converging
to zero as n tends to infinity, Kh is a real-valued periodic function on R, with
period 2π, such that Kh(θ) = K(θ/h)/h, for θ ∈ [−π, π[, with K a kernel
on R, that is, an integrable real-valued function on R with

∫

R
K(u)du > 0

(not necessarily a probability density function), and dh(K) is a normalizing
constant depending on the kernel K and the bandwidth h which is chosen
so that f̂n(·; h) integrates to unity. Despite being structurally closed to the
PR-estimator for linear data, the periodicity imposed to Kh makes estimator
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2 C. TENREIRO

f̂n(·; h) well adapted to deal with circular data by automatically correcting
the potential boundary problems that may occur at the extreme points of the
distribution support when the standard PR-estimator is used to estimate f .
Although the rationale behind its definition can be found in Silverman (1986,
pp. 29–32), to the best of our knowledge estimator (1) was for the first time
explicitly proposed and studied in Tenreiro (2022). Note that the PR-type
estimator (1) is closely related with the standard kernel density estimator for
circular data defined, for θ ∈ [0, 2π[, by

f̃n(θ; g) =
cg(L)

n

n
∑

i=1

L

(

1− cos(θ −Xi)

g2

)

, (2)

where L : [0,+∞[→ R is such that L(t) = K(
√
t), g = h/

√
2 and cg(L),

depending on the kernel L and the bandwidth g, is chosen so that f̃n(·; g)
integrates to unity. Kernel estimators of this form for estimating densities
of q-dimensional unit spheres, for q ≥ 1, were initially studied in Beran
(1979), Hall et al. (1987), Bai et al. (1988) and Klemela (2000), the last
work being restricted to q ≥ 2, and more recently by Garćıa-Portugués et al.
(2013) and Garćıa-Portugués (2013). If we take for K the Gaussian kernel
K(u) = e−u2

, L is the so-called von Mises kernel L(t) = e−t and (2) is the
density estimator considered in Taylor (2008) and Oliveira et al. (2012). In
this case the estimator is a combination of circular normal or von Mises
densities with mean directions Xi and concentration parameters equal to g−2

as it takes the form

f̃n(θ; g) =
1

n

n
∑

i=1

fvM(θ;Xi, g
−2),

where

fvM(θ;µ, κ) =
1

2πI0(κ)
exp

(

κ cos(θ − µ)
)

, (3)

is the von Mises density with mean direction µ ∈ [0, 2π[ and concentration
parameter κ ≥ 0, and Ir(ν) is, for ν ≥ 0 and r ≥ 0, the modified Bessel
function of order r defined by

Ir(ν) =
1

2π

∫ 2π

0

cos(rθ) exp(ν cos θ)dθ.
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Figure 1. Estimates for the cross-bed density by using estima-
tors f̂n(·; h) and f̃n(·; g) where K(u) = e−u2

, L(t) = e−t, h =
√
2g

and g = 0.175 (left), g = 0.35 (centre) and g = 0.7 (right).

The close connection between estimators (1) and (2) is illustrated in Figure
1 where estimates for the cross-bed density based on 104 cross-bed measure-
ments from the Himalayan molasse in Pakistan (see Fisher, 1993, Measure-
ments of Chaudan Zam large bedforms, pp. 250–251) are produced for three
different bandwidths.
Unlike the selection of the kernel, the choice of the bandwidth is crucial to

the performance of each one of the previous estimators (see Tenreiro, 2022,
pp. 387–388). As for any density estimator, the closeness of the PR-type
estimator (1) to its target density f can be measured through the mean
integrated squared error (MISE) which is defined by

MISE(f ; h, n) := E
(

ISE(f ; h, n)
)

= E

∫ 2π

0

{

f̂n(θ; h)− f(θ)
}2
dθ. (4)

According to this error criterion a natural choice for h is the minimiser of
the real-valued function h 7→ MISE(f ; h, n), defined for h ∈ ]0,+∞[, when-
ever such a minimiser exists. The existence of such a minimiser, we denote
henceforth by hMISE(f ;K, n), is the first question we address in this paper.
Unlike the case of linear data considered in Chacón et al. (2007), who proved
that under general conditions on the kernel K, there exists an exact optimal
bandwidth for all square integrable density f and all sample sizes, we will see
that the same does not occur in the context of circular data. Nevertheless, an
exact optimal bandwidth hMISE(f ;K, n) always exists for large enough sam-
ple sizes, and we provide a sufficient condition on K and f for the existence
of hMISE(f ;K, n) for all sample sizes. To the best of our knowledge similar
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results are not available in the literature for the standard kernel estimator
for circular data (2).
Under some regularity conditions on f and moment conditions on K, it

has been proved in Tenreiro (2022, Theorem 3.4) that the MISE (4) admits
the asymptotic expansion

MISE(f ; h, n) = (nh)−1
d1(K)+

h4

4
d2(K)

∫ 2π

0

f ′′(θ)2dθ+o
(

(nh)−1+h4
)

, (5)

whenever the bandwidth satisfies the classical conditions h → 0 and nh →
+∞, as n → +∞, where

d1(K) =

∫

R

K(u)2du

(
∫

R

K(u)du

)−2

(6)

and

d2(K) =

(
∫

R

u2K(u)du

)2(∫

R

K(u)du

)−2

. (7)

Then, we deduce that the asymptotic optimal bandwidth for estimator (1),
that is, the bandwidth that minimises the leading terms of (5), called asymp-
totic MISE,

AMISE(f ; h, n) = (nh)−1
d1(K) +

h4

4
d2(K)

∫ 2π

0

f ′′(θ)2dθ, (8)

is given by

hAMISE(f ;K, n) = d(K)

(
∫ 2π

0

f ′′(θ)2dθ

)−1/5

n−1/5, (9)

where

d(K) =

(
∫

R

K(u)2du

)1/5(∫

R

u2K(u)du

)−2/5

,

whenever f is not the circular uniform distribution. The fact that hAMISE(f ;
K, n) minimises the leading terms of (5) does not enable us to conclude by
itself that the two bandwidths hAMISE(f ;K, n) and hMISE(f ;K, n) are asymp-
totically equivalent. This is the second question we address in this paper.
Under some additional assumptions on f and K we establish such an asymp-
totic equivalence and we obtain the order of convergence of the relative error
hAMISE(f ;K, n)/hMISE(f ;K, n)− 1, which agrees with the corresponding or-
der of convergence for the case of linear data. As a by-product of this result
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we conclude that any plug-in bandwidth selector, such as the Fourier series-
based plug-in bandwidth selector introduced in Tenreiro (2022), which is a
consistent estimator of hAMISE(f ;K, n), is also a consistent estimator of the
exact optimal bandwidth hMISE(f ;K, n). As the previous results are asymp-
totic in nature, it is relevant to assess the quality of hAMISE as a surrogate for
hMISE for small- and moderate-sample sizes. This is the third question we ad-
dress in this paper. For that we consider some of the circular density models
introduced in Oliveira et al. (2012). When the underlying density presents
complex distributional characteristics, we conclude that only for large sam-
ple sizes the asymptotic optimal bandwidth hAMISE is a suitable surrogate
for hMISE. This is quite a striking conclusion since hAMISE is the usual target
bandwidth for plug-in bandwidth selection methods for the estimation of f .
The rest of the paper is as follows. In Section 2 we derive an expansion for

the exact MISE of the estimator (1) which enables to prove that the asymp-
totic expansion (5) is valid for a broader class of kernels than that considered
in Tenreiro (2022, Theorem 3.4). Such an exact MISE expansion is used in
Section 3 to discuss the existence of an optimal bandwidth for a fixed sample
size n. The limit behaviour of the optimal bandwidth as n tends to infinity
is studied in Section 4, where we also establish the order of convergence of
hAMISE/hMISE−1. To assess the quality of hAMISE as a surrogate for hMISE, we
present in Section 5 some small- and moderate-sample-size comparisons be-
tween the two bandwidths when the underlying density function is a mixture
of von Mises densities. Finally, in Section 6 we draw some overall conclu-
sions. For convenience of exposition all the proofs are deferred to Section
7. The plots shown in this paper were carried out using the R software (R
Development Core Team, 2019).

2. Exact and asymptotic expansions for the MISE

In this section we derive one exact and two asymptotic expansions for the
MISE of the PR-type estimator (1) that generalize expansion (5) obtained
in Tenreiro (2022, Theorem 3.4). Here and henceforth in the paper, a kernel
on R is an integrable real-valued function on R with

∫

R
K(u)du > 0. First

recall that the MISE (4) can be written as

MISE(f ; h, n) = IV(f ; h, n) + ISB(f ; h),
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where

IV(f ; h, n) :=

∫ 2π

0

Varf̂n(θ; h) dθ

and

ISB(f ; h) :=

∫ 2π

0

{

Ef̂n(θ; h)− f(θ)
}2
dθ,

are, respectively, the integrated variance and integrated squared bias of f̂n.
Similarly to the PR-estimator for linear data, if K is square integrable on R

(K ∈ L2(R)) and f is square integrable on [0, 2π[ (f ∈ L2([0, 2π[)), the bias

and variance of f̂n at a point θ can be expressed in terms of the convolution
between Kh and the circular density f . Recall that if α and β are real-valued
functions with period 2π defined on R, the convolution of α and β is defined,
for x ∈ R, by

(α ∗ β)(x) =
∫ 2π

0

α(x− y)β(y)dy,

whenever this integral exists. As the integrand is periodic with period 2π, the
previous definition does not depend on the considered interval of integration
with length 2π. The convolution (α ∗ β)(x) exists for almost every x ∈ R

whenever α and β are integrable on [0, 2π[, and it exists and is continuous for
every x ∈ R, whenever α and β are square integrable on [0, 2π[. Obviously,
the convolution is a periodic function if it exists (see Butzer and Nessel, 1971,

§0.4). Therefore, for all θ ∈ [0, 2π[, the mean of f̂n is given by

Ef̂n(θ; h) = dh(K)

∫ 2π

0

Kh(θ − u)f(u)du = dh(K)(Kh ∗ f)(θ), (10)

and, for almost all θ ∈ [0, 2π[, the variance of f̂n is given by

Varf̂n(θ; h) = n−1dh(K)2
(
∫ 2π

0

Kh(θ − u)2f(u)du− (Kh ∗ f)(θ)2
)

, (11)

where for the sake of simplicity we also denote by f the periodic extension of
f to R given by f(θ) = f(θ − 2kπ), whenever θ ∈ [2kπ, 2(k + 1)π[, for some

k ∈ Z. From these equations, it turns out that the mean and variance of f̂n
has the same form as the mean and variance of the ordinary kernel estimator
for linear data (see Wand and Jones, 1995, formulas (2.4) and (2.5)). Hence,
we can easily deduce exact expansions for the integrated variance (IV) and
integrated squared bias (ISB) of the estimator (1) which are at the basis of
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the main results presented in this paper. If g is a real-valued function on R,
we denote by ḡ the function defined by ḡ(u) = g(−u), for u ∈ R.

Theorem 1. If f ∈ L2([0, 2π[) and K ∈ L2(R) is a kernel, then for all n ∈ N

and h > 0 with
∫ π/h

−π/hK(u)du 6= 0, we have

IV(f ; h, n) = (nh)−1dh(K)2dh(K
2)−1 − n−1dh(K)2C(f ; h), (12)

and

ISB(f ; h) = dh(K)2C(f ; h)− 2dh(K)D(f ; h) +

∫ 2π

0

f(θ)2dθ, (13)

where

dh(K)−1 :=

∫ π

−π

Kh(θ)dθ =

∫ π/h

−π/h

K(u)du,

C(f ; h) :=

∫ 2π

0

(Kh ∗ f)(θ)2dθ =

∫ π/h

−π/h

∫ π/h

−π/h

K(u)K(v)(f̄ ∗ f)(h(u− v))dudv

and

D(f ; h) :=

∫ 2π

0

(Kh ∗ f)(θ)f(θ)dθ =
∫ π/h

−π/h

K(u)(f̄ ∗ f)(hu)du.

Combining equations (12) and (13) we obtain an exact formula for the
MISE of the estimator (1) given by

MISE(f ; h, n) = (nh)−1dh(K)2dh(K
2)−1 +

(

1− n−1
)

dh(K)2C(f ; h)

− 2dh(K)D(f ; h) +

∫ 2π

0

f(θ)2dθ, (14)

which is the analogue of formula (2.2) in Marron and Wand (1992) (see also
Wand and Jones, 1995, formula (2.8)) for the kernel density estimator of
linear data. This exact formula will be useful to explore the existence and
limit behaviour of the optimal bandwidth we discuss in Sections 3 and 4.
Before that, we show that the asymptotic expansion (5) can be established
under slightly weaker conditions than those considered in Theorem 3.4 of
Tenreiro (2022).

Theorem 2. Let us assume that f ∈ L2([0, 2π[) and K ∈ L2(R) is a kernel.
If h → 0 and nh → ∞, as n → ∞, then MISE(f ; h, n) → 0. Moreover, (5)
is valid whenever K is symmetric with

∫

R
u2|K(u)|du < ∞, and f is such

that f ′ is absolutely continuous on [0, 2π[ with f ′′ ∈ L2([0, 2π[).
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Similarly to the case of linear data, the order of convergence to zero of the
integrated squared bias of the PR-type estimator (1) can be improved if a
higher-order kernel is taken forK. Next we assume thatK is a kernel of order
k with bounded support, for some integer k ≥ 2, that is, K : R → R is an in-
tegrable function with bounded support such that

∫

R
|u|k|K(u)|du < ∞, with

∫

R
K(u)du > 0,

∫

R
ujK(u)du = 0, for j = 1, . . . , k−1, and

∫

R
ukK(u)du 6= 0.

Theorem 3. For some integer k ≥ 2 let us assume that f (k−1) is absolutely
continuous on [0, 2π[ with f (k) ∈ L2([0, 2π[) and K ∈ L2(R) is a kernel of
order k with bounded support. If h → 0 and nh → ∞, as n → ∞, then

MISE(f ; h, n) = (nh)−1
d1(K)+

h2k

(k!)2
dk(K)

∫ 2π

0

f (k)(θ)2dθ+o
(

(nh)−1+h2k
)

,

where d1(K) is given by (6) and dk(K) is defined by (7) with ukK(u) instead
of u2K(u).

The previous formulas for the MISE of the PR-type estimator for circular
data are the analogue of the well known formulas for the MISE of the PR-
estimator for linear data (see Wand and Jones, 1995, pp. 21, 33) showing the
close relationship between these two kernel density estimators.

3. Existence of an exact optimal bandwidth

In the context of linear data, Chacón et al. (2007, Theorem 1) proved that
under mild conditions on the kernel K there exists an optimal bandwidth
minimising the MISE for all square integrable density f and all sample sizes.
As suggested by the graphics displayed in Figure 2 about the MISE of the
PR-type estimator with K(u) = e−u2

for the circular density model M14
considered in Oliveira et al. (2012), which is a mixture of four von Mises
densities, such an exact optimal bandwidth may not exist in the context of
circular data when the sample size is small (the same behaviour was ob-
served for the parabolic kernel K(u) = (1 − u2)I(|u| ≤ 1)). Nevertheless,
as established in the following result, an exact optimal bandwidth always
exists whenever the sample size is large enough and K satisfies the following
assumptions:

(K.1) K is such that
∫ λ

−λK(u)du 6= 0, for all λ > 0;

(K.2) K is continuous at zero with K(0) > 0.
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Figure 2. MISE behaviour as a function of h for the circular
density model M14 (von Mises mixture with four components)
with n = 10 (left) and n = 20 (right) when K(u) = e−u2

.

Taking into account that λ 7→
∫ λ

−λK(u)du is continuous on ]0,+∞[ with

limλ→∞
∫ λ

−λK(u)du =
∫

R
K(u)du > 0, from (K.1) we have

∫ λ

−λK(u)du > 0,
for all λ > 0. Moreover, if K is continuous at zero, we necessarily have
K(0) ≥ 0.

Theorem 4. Let us assume that f ∈ L2([0, 2π[) is not the uniform density
and K ∈ L2(R) is a kernel satisfying assumptions (K.1) and (K.2). Then
there exists m ∈ N such that, for all n ≥ m there exists hMISE = hMISE(f ;n) >
0 such that

MISE(f ; hMISE, n) ≤ MISE(f ; h, n), for all h > 0.

Notice that the previous result says nothing about the uniqueness of the
optimal bandwidth. Likely, as in Marron and Wand (1992), it could be
possible to find an example where the optimal bandwidth is not unique.
However we do not pursue this further in this paper.
The case of the circular uniform distribution is a special one. For this dis-

tribution the integrated squared bias is equal to zero and the exact MISE is
simply given by MISE(f ; h, n) = n−1

(

dh(K)2dh(K
2)−1h−1 − 1/(2π)

)

. There-
fore, we have MISE(f ; h, n) = o(1) even when the smoothing parameter does
not converge to zero as n tends to infinity. More precisely, if h → λ ∈ [0,+∞],
the fastest rate of convergence is obtained when λ = +∞, in which case we
get MISE(f ; h, n) = o(n−1). From the previous expression for the MISE we
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also conclude that an exact optimal bandwidth does not exist for the circular
uniform distribution.
Below we present a sufficient condition on K and f for the existence of

an exact optimal bandwidth for all n ∈ N. For that we need the following
additional assumption on K:

(K.3) For some p > 0, the limit

lim
h→∞

hp
(

K(u/h)−K(0)
)

=: ℓK(u),

exists and is finite for all u ∈ [−π, π[, where ℓK is not zero almost everywhere
(with respect to the Lebesgue measure), and for some H ≥ 0 we have

sup
h>H

sup
u∈[−π,π[

hp
∣

∣K(u/h)−K(0)
∣

∣ < ∞.

Note that if K satisfies assumption (K.3) then K is necessarily continuous
at zero. However, no differentiability at zero is imposed on K. For example,
the triangular kernelK(u) = (1−|u|)I(|u| ≤ 1) fulfills assumption (K.3) with
ℓK(u) = −|u|. Nevertheless, if K is continuously differentiable up to order
p ∈ N in a neighbourhood of the origin with K(j)(0) = 0, for j = 1, . . . , p−1,
andK(p)(0) 6= 0, thenK satisfies assumption (K.3) with ℓK(u) =

1
p!K

(p)(0)up.

Therefore, for the Gaussian kernel K(u) = e−u2

, as well as for the parabolic
kernel K(u) = (1− u2)I(|u| ≤ 1), we have ℓK(u) = −u2.

Theorem 5. Let us assume that f ∈ L2([0, 2π[) and that K ∈ L2(R) satisfies
assumptions (K.1), (K.2) and (K.3). If

∫ π

−π

ℓK(x)
(

f̄ ∗ f(x)− 1

2π

)

dx > 0, (15)

then for all n ∈ N there exists hMISE = hMISE(f ;K, n) > 0 such that

MISE(f ; hMISE, n) ≤ MISE(f ; h, n), for all h > 0.

If the kernel K is such that ℓK(u) = −u2, the condition (15) is satisfied
by all the models considered in Oliveira et al. (2012) with the exception of
models M1 (circular uniform), M7, M14 and M20. As it follows from Figure
2, an exact optimal bandwidth does not necessarily exist for model M14
when the sample size is small. As illustrated in Figure 3, the same is true
for models M7 and M20.
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Figure 3. MISE behaviour as a function of h for the circular
density models M7 (von Mises mixture with two components) with
n = 3 (left) and M20 (mixture of two wrapped skew-Normal and
two wrapped Cauchy) with n = 10 (right), when K(u) = e−u2

.

4. Asymptotic behaviour of the exact optimal bandwidth

In this section we study the limit behaviour of the exact optimal band-
width hMISE(f ;K, n), which existence has been established in Theorem 4.
We first prove that it satisfies the classical conditions hMISE(f ;K, n) → 0
and nhMISE(f ;K, n) → +∞, as n → +∞. For that we follow the approach
of Chacón et al. (2007).

Theorem 6. If f ∈ L2([0, 2π[) is not the uniform density and K ∈ L2(R)
satisfies assumptions (K.1) and (K.2), then

lim
n→+∞

nhMISE(f ;K, n) = +∞.

For the study of the limit behaviour of hMISE(f ;K, n), as n → +∞, we
will restrict our attention to the important case where K is a symmetric
and nonnegative kernel. Thus, from now on the estimator (1) is a circular

probability density function for each sampleX1, . . . , Xn, that is, f̂n is a proper
circular density estimator.

Theorem 7. If f ∈ L2([0, 2π[) is not the uniform density and K ∈ L2(R) is
a nonnegative and symmetric kernel, satisfying assumption (K.2), then

lim
n→+∞

hMISE(f ;K, n) = 0.
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In the following result we prove that hMISE(f ;K, n) is asymptotically equiv-
alent to the asymptotic optimal bandwidth hAMISE(f ;K, n) given by (9),
and we obtain the order of convergence of the relative error hAMISE(f ;K, n)
/hMISE(f ;K, n)− 1. This order of convergence is equal to the corresponding
order of convergence for the standard PR-estimator (see Hall and Marron,
1991, p. 160).

Theorem 8. Under the conditions of Theorems 2 and 7, we have

0 < lim inf
n→+∞

n1/5hMISE(f ;K, n) ≤ lim sup
n→+∞

n1/5hMISE(f ;K, n) < ∞

and

lim
n→∞

hAMISE(f ;K, n)

hMISE(f ;K, n)
= 1.

Moreover, if f is three-times continuously differentiable on [0, 2π[ and K has
bounded support, then

hAMISE(f ;K, n)

hMISE(f ;K, n)
− 1 = O

(

n−2/5
)

.

Note that although the kernel K(u) = e−u2

has an unbounded support, it
can be proved that the second part of Theorem 8 also applies to this kernel.
The derivation of such result is considerably more complicated than when the
kernel has bounded support, but its proof follows closely that of the bounded
support case.

5. Some finite sample comparisons

Our goal in this section is to compare the finite sample performance of
the two bandwidths, hMISE and hAMISE. To this end we work with the exact
MISE formula (14) within the class of von Mises mixture densities, that is, the

class of densities f that can be written as f(θ) =
∑k

ℓ=1wℓfvM(θ;µℓ, κℓ), where
∑k

ℓ=1wℓ = 1 with wℓ > 0, and fvM(·;µ, κ) denotes the von Mises density with
mean direction µ ∈ [0, 2π[ and concentration parameter κ ≥ 0 given by (3).
This set of densities is very rich, containing densities with a wide variety
of distribution features such as multimodality, skewness and/or peakedness.
The formula (14), where we always take for K the Gaussian kernel K(u) =
e−u2

, enables us to compare the exact MISE and its minimiser hMISE with
AMISE and hAMISE, given by (8) and (9), respectively. To analyse their
finite sample performance, we use the circular densities models M2, M8, M13
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Figure 4. Comparisons of MISE(h) (solid curve) and
AMISE(h) (dashed curve), plotted on the log10(h) scale with ker-
nel K(u) = e−u2

, for the circular density models M2, M8, M13
and M19 (von Mises mixtures with 1, 2, 3 and 5 components,
respectively).

and M19 introduced in Oliveira et al. (2012), which are von Mises mixture
densities with 1, 2, 3 and 5 components, respectively, therefore presenting an
increasing distributional complexity from the simplest M2 model to the more
complex M19 model. For a careful description of these models and the plots
of the corresponding circular densities, see Oliveira et al. (2012, pp. 3901,
3902, 3907).
Figure 4 shows the graphs of MISE(h) and AMISE(h) plotted on the

log10(h) scale, for a sample size n = 50. Note that the approximation of these
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Figure 5. log3(MISE(hMISE)) (solid curve) and
log3(MISE(hAMISE)) (dashed curve) as a function of log3(n) for
the circular density models M2 and M19 (von Mises mixtures
with 1 and 5 components, respectively) with kernel K(u) = e−u2

.

curves is good for small h, but poor for large h. For the simpler circular mod-
els, hAMISE provides a quite reliable approximation to hMISE. However, the
quality of hAMISE as surrogate for hMISE deteriorates as the complexity of the
underlying model increases. In the case of model M19, which is a von Mises
mixture density with 5 components, hAMISE is a very poor approximation
to hMISE. These findings are stressed in Figure 5 where we plot the values
log3(MISE(hMISE)) and log3(MISE(hAMISE)) versus log3(n) for the circular
models M2 and M19. The MISE(hAMISE) curves are almost linear for moder-
ate and large sample sizes both having slope −4/5, but with much different

intercepts because the quadratic functional
∫ 2π

0 f ′′(θ)2dθ, which magnitude
can be taken as a measure of how difficult a circular density is to estimate
(Wand and Jones, 1995, pp. 36–39), is much bigger for density M19 than
for density M2. For the circular model M19, which density presents com-
plex distributional characteristics, only for large sample sizes the asymptotic
optimal bandwidth hAMISE is a good surrogate for hMISE. Similarly to the
case of linear data (see Marron and Wand, 1992, pp. 719–725), this is quite
a striking conclusion since hAMISE is the usual target bandwidth for plug-in
bandwidth selection methods for the estimation of f (see Tenreiro, 2022).
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6. Conclusions

For the PR-type density estimator for circular data we establish in this
paper the existence of a minimiser of its exact MISE, called exact optimal
bandwidth. Under mild conditions we show that the exact and the asymp-
totic optimal bandwidths are asymptotically equivalent, and we obtain the
order of convergence of the corresponding relative error. As a by-product of
these results we deduce that any plug-in bandwidth selector based on the
asymptotic optimal bandwidth expression, which is a consistent estimator
of this target bandwidth, is also a consistent estimator of the exact optimal
bandwidth. Some small- and moderate-sample-size comparisons between the
two bandwidths are also presented in this paper when the underlying density
is a mixture of von Mises densities. They enable us to conclude that the
asymptotic optimal bandwidth might not be a suitable surrogate for exact
optimal bandwidth when the underlying density presents complex distribu-
tional characteristics and the sample size is not large. This is quite a striking
conclusion since the asymptotic optimal bandwidth is the usual target band-
width for plug-in bandwidth selection methods for estimating the underlying
probability density function.

7. Proofs

Proof of Theorem 1: From (10) and (11) we have

nIV(f ; h, n) = dh(K)2
(
∫ 2π

0

∫ 2π

0

Kh(θ − u)2f(u)dudθ− C(f ; h)

)

,

and

ISB(f ; h) = dh(K)2C(f ; h)− 2dh(K)D(f ; h) +

∫ 2π

0

f(θ)2dθ,

where, by using the 2π-periodicity of Kh and f , we have

dh(K)−1 =

∫ π

−π

Kh(θ)dθ (16)

=

∫ π/h

−π/h

K(u)du, (17)
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C(f ; h) =

∫ 2π

0

(Kh ∗ f)(θ)2dθ

=

∫ 2π

0

∫ 2π

0

∫ 2π

0

Kh(θ − x)Kh(θ − y)f(x)f(y)dxdydθ

=

∫ 2π

0

∫ θ

θ−2π

∫ θ

θ−2π

Kh(u)Kh(v)f(θ − u)f(θ − v)dudvdθ

=

∫ π

−π

∫ π

−π

Kh(u)Kh(v)(f̄ ∗ f)(u− v)dudv (18)

=

∫ π/h

−π/h

∫ π/h

−π/h

K(u)K(v)(f̄ ∗ f)(h(u− v))dudv, (19)

and

D(f ; h) =

∫ 2π

0

Kh ∗ f(θ)f(θ)dθ

=

∫ 2π

0

∫ 2π

0

Kh(θ − x)f(x)f(θ)dxdθ

=

∫ 2π

0

∫ θ

θ−2π

Kh(u)f(θ− u)f(θ)dudθ

=

∫ π

−π

Kh(u)(f̄ ∗ f)(u)du (20)

=

∫ π/h

−π/h

K(u)(f̄ ∗ f)(hu)du. (21)

Finally, it is enough to see that
∫ 2π

0

∫ 2π

0

Kh(θ − u)2f(u)dudθ =

∫ 2π

0

∫ π

−π

Kh(v)
2f(u)dudv = h−1dh(K

2)−1. �

In the following lemmas we summarise the behaviour of the functions h 7→
dh(K), h 7→ C(f ; h) and h 7→ D(f ; h). The continuity of these functions
and their limit behaviour as h → 0 follow from (17), (19) and (21) by using
the integrability of K and the continuity of f̄ ∗ f . Their limit behaviour as
h → +∞ follows from (16), (18) and (20).
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Lemma 1. If K is a kernel on R, then

lim
h→0

dh(K)−1 =

∫

R

K(u)du, (22)

and the function h 7→ dh(K) is continuous on ]0,+∞[ whenever
∫ π/h

−π/hK(u)du

6= 0, for all h > 0. Moreover, if K is continuous at zero then

lim
h→+∞

hdh(K)−1 = 2πK(0).

Lemma 2. If f ∈ L2([0, 2π[) and K is a kernel on R, then the functions
h 7→ C(f ; h) and h 7→ D(f ; h) are continuous on ]0,+∞[ with

lim
h→0

C(f ; h) =

(
∫

R

K(u)du

)2 ∫ 2π

0

f(θ)2dθ (23)

and

lim
h→0

D(f ; h) =

∫

R

K(u)du

∫ 2π

0

f(θ)2dθ. (24)

Moreover, if K is continuous at zero we have

lim
h→+∞

h2C(f ; h) = 2πK(0)2,

and
lim

h→+∞
hD(f ; h) = K(0).

Taking into account Theorem 1 and the limit behaviour, as h → 0, of the
functions h 7→ dh(K), h 7→ C(f ; h) and h 7→ D(f ; h), stated in Lemmas 1
and 2, the proofs of Theorems 2 and 3 follow from standard arguments. They
are presented here for completeness reasons.

Proof of Theorem 2: Taking into account (22), (23) and (24), from (12)
and (13) we get

IV(f ; h, n) = (nh)−1
d1(K) + o

(

(nh)−1
)

, (25)

and ISB(f ; h, n) = o(1), as h → 0, where d1(K) is given by (6). The stated
convergence to zero of MISE(f ; h, n), as n tends to infinity, follows from the
assumption nh → +∞, as n → +∞. Moreover, if K is symmetric with
∫

R
u2|K(u)|du < ∞, from (10) and standard reasoning based on the Taylor

expansion of f we have

Ef̂n(θ; h)− f(θ) = dh(K)h2

∫ π/h

−π/h

v2K(v)

∫ 1

0

(1− t)f ′′(θ − thv)dtdv,
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from which we get

ISB(f ; h)

= dh(K)2h4

∫ π/h

−π/h

∫ π/h

−π/h

∫ 1

0

∫ 1

0

u2K(u)v2K(v)(1− s)(1− t)

× (f̄ ′′∗f ′′)(h(su− tv))dsdtdudv

=
h4

4
d2(K)

∫ 2π

0

f ′′(θ)2dθ + o
(

h4
)

, as h → 0, (26)

by using the continuity of f̄ ′′ ∗ f ′′ at the origin, that follows from the square
integrability of f ′′ on [0, 2π[, and d2(K) is given by (7). The stated expansion
for MISE(f ; h, n) follows from (25) and (26). �

Proof of Theorem 3: Assuming that K has support [−M,M ], for some
M > 0, we have

Kh ∗ f(θ) =
∫ π/h

−π/h

K(v)f(θ− vh)dv =

∫

R

K(v)f(θ− vh)dv,

for 0 < h ≤ π/M . Therefore, for small values of h the convolution Kh ∗ f
has the same form as the corresponding convolution for the kernel estimator
of linear data. Again, using the standard arguments based on the Taylor
expansion of f we have

Ef̂n(θ; h)−f(θ) = dh(K)
1

(k − 1)!
hk

∫

R

∫ 1

0

ukK(u)(1−t)k−1f (k)(θ−tuh)dtdu,

from which we deduce the expansion

ISB(f ; h) =
h2k

(k!)2
dk(K)

∫ 2π

0

f (k)(θ)2dθ + o
(

h2k
)

, as h → 0, (27)

by using the continuity of f (k) ∗ f (k) at the origin. The stated expansion for
MISE(f ; h, n) follows from (25) and (27). �

Proof of Theorem 4: As the kernel K satisfies (K.1) and (K.2), from
Lemmas 1 and 2, (12) and (13) we deduce that for each n ∈ N the functions
h 7→ IV(f ; h, n) and h 7→ ISB(f ; h), and therefore h 7→ MISE(f ; h, n), are
continuous on ]0,+∞[ with

lim
h→0

IV(f ; h, n) = +∞, lim
h→+∞

IV(f ; h, n) = 0,
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lim
h→0

ISB(f ; h, n) = 0, lim
h→+∞

ISB(f ; h, n) =

∫ 2π

0

(

f(θ)− 1

2π

)2

dθ (28)

lim
h→0

MISE(f ; h, n) = +∞ and lim
h→+∞

MISE(f ; h, n) =

∫ 2π

0

(

f(θ)− 1

2π

)2

dθ>0.

(29)
Taking into account that IV(f ; h, n) = n−1IV∗(f ; h), where IV∗(f ; h) is

independent of n, from (28) and the continuity of h 7→ ISB(f ; h) we conclude
that there exist h′ > 0 and m ∈ N such that for all n ≥ m we have

MISE(f ; h′, n) = n−1IV∗(f ; h′) + ISB(f ; h′) <

∫ 2π

0

(

f(θ)− 1

2π

)2

dθ.

Therefore, from (29) and the continuity of h 7→ MISE(f ; h, n) on ]0,+∞[,
we conclude that for all n ≥ m there exists hMISE(f ;K, n) > 0 such that
MISE(f ; hMISE(f ;K, n), n) ≤ MISE(f ; h, n), for all h > 0. �

Proof of Theorem 5: Using the fact that K fulfills assumption (K.3), from
(16), (18) and (20) we have

lim
h→+∞

hp
(

hdh(K)−1 − 2πK(0)
)

=

∫ π

−π

ℓK(x)dx,

lim
h→+∞

hp
(

h2C(f ; h)− 2πK(0)2
)

= 2K(0)

∫ π

−π

ℓK(x)dx

and

lim
h→+∞

hp
(

hD(f ; h)−K(0)
)

=

∫ π

−π

ℓK(x)f̄ ∗ f(x)dx.

Therefore, from (12) and (13) we get

lim
h→∞

hp

(

MISE(f ; h)−
∫ 2π

0

(

f(θ)− 1

2π

)2

dθ

)

= − 1

πK(0)

∫ π

−π

ℓK(x)
(

f̄ ∗ f(x)− 1

2π

)

dx < 0.

Hence, for all n ∈ N there exists h′ = h′(n) > 0 large enough such that

MISE(f ; h′, n) <
∫ 2π

0

(

f(θ)− 1
2π

)2
dθ, which concludes the proof. �

Proof of Theorem 6: We omit this proof because it is similar to the proof
of Theorem 2 in Chacón et al. (2007). We only mention the fact, used below,
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that it is based on the convergence

lim
n→+∞

MISE(f ; hMISE(f ;K, n), n) = 0, (30)

where hMISE(f ;K, n) > 0 is the exact optimal bandwidth. �

Proof of Theorem 7: We begin by proving that ISB(f ; h) > 0, for all
h > 0. For that, let us write ISB(f ; h) =

∫ π

−π{K̇h ∗ f(θ) − f(θ)}2dθ, where
K̇h = dh(K)Kh is a symmetric circular density for all h > 0. As K̇h ∗ f and
f are square integrable on [−π, π[, from Parseval’s identity (see Butzer and
Nessel, 1971, Proposition 4.2.2) we have

ISB(f ; h) =
1

2π

+∞
∑

k=−∞
|ϕK̇h∗f−f(k)|2 =

1

π

+∞
∑

k=1

|ϕK̇h
(k)− 1|2|ϕf(k)|2,

where ϕg(k) =
∫ π

−π g(u)e
ikudu, for k ∈ Z, is the Fourier transform of g ∈

L2([−π, π[) (see Butzer and Nessel, 1971, §4.2.1). If ISB(f ; h) = 0, for some
h > 0, we necessarily have |ϕf(k)| 6= 0, for some k ∈ N, as f is not the
uniform density. Thus, we must have ϕK̇h

(k) = 1 which contradicts the fact

that K̇h is a symmetric circular density.
Let us now prove that hMISE(n) := hMISE(f ;K, n) → 0, as n → ∞. Rea-

soning again by contradiction, suppose that hMISE(n) 6→ 0, as n tends to
infinity. Thus there exists a subsequence (hMISE(nk)) of (hMISE(n)) such
that hMISE(nk) → λ ∈ ]0,+∞]. From the continuity of h 7→ ISB(f ; h) on
]0,+∞[ and (28), we have limk→+∞ ISB(f ; h0(nk)) = ISB(f ; λ) > 0, with

ISB(f ;∞) :=
∫ 2π

0

(

f(θ)− 1
2π

)2
dθ, which contradicts (30). �

Proof of Theorem 8: This proof will be not fully detailed here because it
follows from the proof for the PR-estimator for linear data. The asymptotic
equivalence between the bandwidths hAMISE := hMISE(f ;K, n) and hMISE :=
hMISE(f ;K, n) follows directly from the asymptotic expansion (5) established
in Theorem 2 and the fact that hMISE satisfies the limit conditions established
in Theorems 6 and 7 (for the details, see Chacón, 2004, Teorema 2.33, pp. 44–
46). Assuming that the kernel K has support [−M,M ], for some M > 0,
from (14) we deduce that the MISE of estimator (1) can be written as

MISE(f ; h, n)

= (nh)−1
d1(K) + k−2

0

(

1− n−1
)

C(f ; h)− 2k−1
0 D(f ; h) +

∫ 2π

0

f(θ)2dθ,
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for 0 < h ≤ π/M , where k0 =
∫

R
K(u)du, C(f ; h) =

∫

R
ϕ(u)(f̄ ∗ f)(hu)du,

with ϕ(u) =
∫

R
K(u+ v)K(v)dv, and D(f ; h) =

∫

R
K(u)(f̄ ∗ f)(hu)du. Tak-

ing into account that f is three-times continuously differentiable on [0, 2π[,
we conclude that the function h 7→ MISE(f ; h, n) is twice continuously dif-
ferentiable on ]0, π/M [, with

MISE′(f ; h, n)

= −(nh2)−1
d1(K) + h3k−2

0 k22θ2(f)−
h5

4
k−2
0 k2k4θ3(f) + o

(

h5
)

+ O
(

n−1h
)

and

MISE′′(f ; h, n) = 2(nh3)−1
d1(K)− 3h2k−2

0 k22θ2(f) + o
(

h2
)

+ O
(

n−1
)

,

as h → 0, where kr =
∫

R
urK(u)du and θr(f) =

∫ 2π

0 f (r)(θ)2dθ. Thus, by the
Taylor expansion of MISE′(f ; h, n) about MISE′(f ; hMISE, n) = 0 we get

hAMISE/hMISE − 1 = h−1
MISEMISE′(f ; hAMISE, n)MISE′′(f ; h̃, n)−1,

with h̃ between hMISE and hAMISE. This enables us to conclude as hMISE =
O(n−1/5), MISE′(f ; hAMISE, n) = O(n−1) and MISE′′(f ; h̃, n) = O(n−2/5). �
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