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Abstract: A locale (frame) L has a largest spatial sublocale generated by the
primes (spectrum points), the spatial part SpL. In this paper we discuss some of
the properties of the embeddings SpL ⊆ L. First we analyze the behaviour of the
spatial parts in the assembly: the points of L and of S(L)op (∼= the congruence
frame) are in a natural one-one correspondence while the topologies of SpL and
Sp(S(L)op) differ. Then we concentrate on some special types of embeddings of SpL
into L, namely in the questions when SpL is complemented, closed, or open. While
in the first part L was general, here we need some restrictions (weak separation
axioms) to obtain suitable formulas.
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Introduction

The largest spatial sublocale of a frame L, the spatial part SpL, is the sublo-
cale generated by all the primes of L. More concretely: the primes p in
a frame L lead to one-point1 sublocales {p, 1}, and SpL is the join of all of
them. It can be obtained from the spectrum ΣL of L as the image of the Ω-Σ
adjunction (which gives rise to the obvious spatial reflection). This paper is
concerned with some aspects of its behaviour.
In Preliminaries we introduce the basic concepts and notation. In particu-

lar, we recall the necessary facts on sublocales of frames viewed as generalized
subspaces of generalized spaces.

Received May 6, 2023.
1At the first sight it may be slightly confusing that one-point subobject (sublocale, generalized

subspace) has two elements. The top 1 is technical, and has to be in every sublocale. Thus, the
void generalized subspace is the one-element set {1}.
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2 I. ARRIETA, J. PICADO AND A. PULTR

In the natural extension of frame to the congruence frame (viewed here
as the dual of the co-frame of subspaces, S(L)op, the first step in the well-
known assembly) the S(L)op is typically much bigger than L. But the system
of primes of S(L)op remains the same (up to isomorphism) and one might
expect that the spatial part will do the same. In Section 3 this is analyzed
in detail and shown, among others, that it is not the case: the topology of
Sp(S(L)op) is in fact (isomorphic to) the front topology of the original one.
While the first part concerned quite general frames, in the sequel, where

we deal with the ways SpL can be embedded into L, we need some (weak)
special properties to get suitable technical formulas for the supplement SpL#

in S(L). They are the very weak separation axioms T1 and TD. The next
section is devoted to their properties and relations with the more standard
ones (subfitness, fitness, Hausdorff type properties). Then, in Section 5 we
obtain expedient formulas and use them in Section 6 to characterize the L
for which SpL are complemented, closed, or open (in particular we learn that
the Sp(S(L)op) is always open in S(L)op).

1. Preliminaries

1.1. Notation. A join (supremum) of a subset A ⊆ (X,≤), if it exists, will
be denoted by

∨
A, and we write a ∨ b for

∨
{a, b}; similarly we write

∧
A

and a ∧ b for meets (infima). We write "a for {x | x ≥ a}.
The smallest element of a poset (the supremum

∨
∅), if it exists, will be

denoted by 0, and the largest one (the infimum
∧

∅) will be denoted by 1.

1.1.1. An element b is a pseudocomplement (resp. supplement) of a if

a ∧ x = 0 iff x ≤ b resp. a ∨ x = 1 iff x ≥ b.

We will denote it by a∗ (resp. a#). The element b is a complement of a if
a ∧ b = 0 and a ∨ b = 1.

In a distributive lattice, a complement, if it exists, is uniquely
determined and it is both a pseudocomplement and a supple-
ment.

We will denote the complement of an element a, when it exists, by ac.
Exact meets in a distributive lattice L are the meets

∧
i ai such that for all

b ∈ L, (
∧

i ai) ∨ b =
∧

i(ai ∨ b).



NOTES ON THE SPATIAL PART OF A FRAME 3

1.2. Frames. Recall that a frame is a complete lattice L satisfying the dis-
tributivity rule

(
∨
A) ∧ b =

∨
{a ∧ b | a ∈ A} (frm)

for all A ⊆ L and b ∈ L, and that a frame homomorphism h : L ! M
preserves all joins and all finite meets. The resulting category is denoted by
Frm. A typical frame is Ω(X), the lattice of open subsets of a space X. A
frame is spatial if it is isomorphic to an Ω(X).
A coframe satisfies (cofrm), the condition (frm) with the roles of joins and

meets reversed.

1.2.1. Recall that monotone maps ℓ : X ! Y and r : Y ! X are adjoint (ℓ
to the left, r to the right) if one has ℓ(x) ≤ y iff x ≤ r(y) and that if X, Y
are complete lattices then left adjoints are precisely the maps preserving
suprema, and right adjoints are precisely the maps preserving infima. The
equality (frm) states that for every b ∈ L the mapping − ∧ b = (x 7!
x ∧ b) : L ! L preserves all joins (suprema). Hence each of the mappings
−∧ b has a right Galois adjoint resulting in a Heyting operation ! satisfying

a ∧ b ≤ c ⇔ a ≤ b ! c,

and each frame is a Heyting algebra (note that, however, the frame homo-
morphisms do not coincide with the Heyting ones so that Frm differs from
the category of complete Heyting algebras).
Similarly, every coframe is a co-Heyting algebra with the co-Heyting oper-

ation ∖ (usually referred to as the difference) satisfying

a∖ b ≤ c iff a ≤ b ∨ c.

The operation ! and some of its basic properties (e.g. a ! a = 1, a !
b = 1 iff a ≤ b, 1 ! a = a, and a ! (b ! c) = (a ∧ b) ! c) will be used in
the sequel.

Note that every frame has pseudocomplements, namely a∗ = a ! 0 and
every coframe has supplements, namely a# = 1∖ a.

1.2.2. An element p ̸= 1 is said to be prime if a ∧ b ≤ p only if a ≤ p or
b ≤ p; it is maximal if p < x ≤ 1 implies that x = 1. Obviously,

every maximal element is prime.
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On the other hand, for instance for regular2 frames each prime is maximal.
For more details about this see Section 4.

The set of all prime (resp. maximal) elements of L will be denoted by

Prm(L) resp. Max(L).

1.2.3. An element a ∈ L is said to be covered if there is a b ∈ L such that
a < x iff b ≤ x (cf. [10]).

Observation. An element a is covered if and only if for any meet a =
∧

i xi
there is an i with a = xi. Consequently, every covered element is prime.

(If a is covered and a =
∧

i xi then we cannot have xi > a for all i; on the
other hand, if the other statement holds then b =

∧
{x | a < x} covers a.)

A frame is said to be TD (see [2]) if every prime is covered; more about it
in Section 4.

1.2.4. An easy but important observation. Let p be prime in a frame.
Then

a ! p =

{
1 if a ≤ p

p otherwise

(if a ≰ p we have, because a ∧ (a ! p) ≤ p, a ! p ≤ p ≤ a ! p).

1.3. Localic maps, the category Loc. The functor Ω: Top ! Frm from
the category of topological spaces and continuous maps into that of frames
(Ω(f) sending an open set U ⊆ Y to f−1[U ] for a continuous map f : X ! Y
in Top) is a full embedding on an important and substantial part of Top,
the subcategory of sober spaces. This justifies to regard frames as a natural
generalization of spaces. Since Ω is contravariant, one introduces the category
of locales Loc as the dual of the category of frames. Often one just considers
the formal Frmop but it is of advantage to represent it as a concrete category
with specific maps as morphisms. For this purpose one defines a localic map
f : L ! M as the (unique) right Galois adjoint of a frame homomorphism
h = f ∗ : M ! L. This can be done since frame homomorphisms preserve
suprema; but of course not every mapping preserving infima is a localic one.
We refer to [14] for more information about the category of locales and details
to the sublocales below.

2A frame is regular if every a can be written as a =
∨
{x | x ≺ a}, where x ≺ a stands for the

existence of a u such that x ∧ u = 0 and u ∨ a = 1 (for details see e.g [15]). A space is regular in
the standard sense iff the frame Ω(X) is regular.
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1.4. Sublocales. A sublocale of a frame L is a subset S ⊆ L such that

(1) M ⊆ S implies
∧
M ∈ S, and

(2) if a ∈ L and s ∈ S then a ! s ∈ S

(such subsets S ⊆ L are precisely those for which the embedding j : S ⊆ L
is a localic map). The system

S(L)

of all sublocales of L is a coframe (hence it has supplements S#), with the
lattice operations∧

i∈I
Si =

⋂
i∈I

Si and
∨
i∈I

Si = {
∧

A |A ⊆
⋃
i∈I

Si},

and the frame S(L)op is regular (see the footnote in 1.2.2).
The top element of S(L) is L and the bottom is the least sublocale O = {1}.

1.4.1. Open and closed sublocales. We have the open sublocales

o(a) = {a ! x |x ∈ L} = {x |x = a ! x}

and the closed sublocales

c(a) ="a = {x |x ≤ a}

(they are complements of each other and correspond to open and closed
subspaces of classical spaces, and to the Isbell’s open and closed parts from
[9]). It is easy to see that the closure S of S is equal to

⋂
{"x | S ⊆"x} ="

∧
S.

Furthermore, we denote by int(S) the interior of S, namely the join of all
the open sublocales contained in S. In this context, we point out that the
formula

int(S)# = S#

holds for each sublocale S of L (see [8, p. 29]).
We have that

c(a) ⊆ o(b) iff a ∨ b = 1, (1.4.1)

and every sublocale can be written as S =
⋂

i(c(ai) ∨ o(bi)).
A sublocale S is fitted (Isbell, [9]) if it is a meet of open ones. For a

sublocale S ⊆ L, the fitting of S ([6]) is the sublocale
⋂
{o(a) |S ⊆ o(a)}.
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1.4.2. Further we will need the

b(a) = {x ! a |x ∈ L}.

b(a) is obviously the smallest sublocale containing a and one has that

the b(a)’s are precisely the Boolean sublocales of L (see e.g.
[14]).

Finally we will need the one-point sublocales

p̃ = {p, 1}

with p prime element of L (recall 1.2.4). These are precisely the sublocales
with exactly two elements (with exactly one non-trivial element). Thus, in
particular, for a prime element p,

b(p) = p̃.

1.5. From [16, 14] recall the

Sc(L) = {
∨
i

c(ai) | ai ∈ L} ⊆ S(L).

It is always a frame.

A sublocale S is said to be smooth ([9]) if it is a join of complemented
sublocales. Recall from [1, 2] the

Sb(L) = {S |S smooth in S(L)}.

One has that

Sb(L) is the (co)Booleanization of S(L).

2. Spectrum and the spatial sublocale

2.1. We have o(0) = O, o(1) = L, o(a ∧ b) and o(
∨

i ai) =
∨

i o(ai). Hence
the system of all open sublocales constitutes on L a sort of topology (with the
proviso that the joins do not coincide with set unions, and the zero O = {1}
is not void as a set; this is sometimes called a lattice topology).
Hence we may think of a frame as of a (lattice based) topological space

(L, {o(a) | a ∈ L}).
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2.1.1. Note. In fact, the lattice-topological nature of frames is deeper. Lo-
calic maps f : L ! M create naturally adjoint image and preimage maps
f [−] : S(L) ! S(M) and f−1[−] : S(M) ! S(L) and the preimage preserves
open and closed sublocales (see e.g. [14]). Moreover, localic maps can be
identified as (set) maps L ! M respecting closed and open sublocales in
preimages ([7]).

2.2. A well known fact. If f : L ! M is a localic map then

f [Prm(L)] ⊆ Prm(M).

(Indeed, if a ∧ b ≤ f(p) then f ∗(a) ∧ f ∗(b) ≤ p, hence, say, f ∗(a) ≤ p and
a ≤ f(p).)

2.3. Spectrum. Recall that the spectrum of L can be understood as

ΣL = (Prm(L), {Σa | a ∈ L}) where Σa = {p ∈ Prm(L) | a ≰ p},
and for a localic map f : L ! M , Σf is simply the restriction of f to a
mapping Prm(L) ! Prm(M).
By 1.2.4, a ≰ p iff a ! p = p, that is, iff p ∈ o(a). Hence

Σa = o(a) ∩ Prm(L).

Therefore, if we consider L as a topological space endowed with the (lattice)
topology as in 2.1 (constituted by the open sublocales), the spectrum is the
subspace (now a standard one, the carrier lattice is that of all subsets of
Prm(L)) carried by the subset Prm(L).

2.4. Moreover, since a prime p is not in Σb iff b ≤ p we have

Prm(L)∖ Σb ="b ∩ Prm(L) = c(b) ∩ Prm(L)

and hence

(o(a) ∩ c(b)) ∩ Prm(L) = Σa ∩ (Prm(L)∖ Σb). (2.4.1)

By 1.2.3, we have for a TD-frame generally

(
∨
i

Si) ∩ Prm(L) = (
⋃
i

Si) ∩ Prm(L) =
⋃
i

(Si ∩ Prm(L))

(since if p ∈
∨

i Si ∩ Prm(L) then p =
∧

i xi with xi ∈ Si and hence for some
j, p = xj ∈ Sj).
Recall that the front topology τ f associated with a topology τ is the topol-

ogy generated by all open and all closed subsets (open and closed elements
in the lattice topology). Thus we have in particular
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2.4.1. Proposition. If L is a TD-frame then the front topology on Prm(L)
is the subspace topology of the front topology on L.

(Indeed,
⋃

i(Σai ∩ (Prm(L) ∖ Σbi)) = (
∨

i(o(ai) ∩ c(bi))) ∩ Prm(L); use also
(2.4.1)).

2.5. The spatial part of L. The mapping

σ = (a 7! Σa) : L ! ΩΣL

is an onto frame homomorphism. The associated localic map γ : ΩΣL ! L
is defined by

σ(a) ⊆ U iff a ≤ γ(U)

and hence for any u such that U = Σu,

a ≤ γ(U) iff a ≰ p ⇒ u ≰ p iff u ≤ p ⇒ a ≤ p iff a ≤
∧
{p |u ≤ p}.

Consequently we see that

γ(U) =
∧
{p |u ≤ p} for any u such that U = Σu.

2.5.1. The largest spatial sublocale of L. The sublocale associated with
the surjection σ (the imprint of the one-to-one localic map γ) is the set of all
a ∈ L such that a = γ(Σa) =

∧
{p | a ≤ p}, that is, it is the sublocale

SpL =
∨
{{p, 1} | p ∈ Prm(L)}.

We will call it the spatial part of L (obviously it is the smallest sublocale of
L containing all the points).

3. Spatial part of S(L)op

The fact that the primes of L are in a natural correspondence with the
(co)primes in the lattice of sublocales is well-known (see e.g. [19, Lemma 11]).
We describe the correspondence in detail in 3.2 in the notation we need.

3.1. Since S(L)op is a regular frame, the primes are the maximal elements,
in other words,

they are the minimal elements of S(L).

For each a ∈ L, the smallest sublocale containing a of S(L) is the

b(a) = {x ! a |x ∈ L}.
Thus,
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the minimal elements of S(L) are the b(a) such that

∀x ∈ b(a), b(x) = b(a).

3.1.1. Consequently

For each minimal element b(a) of S(L) and x ≰ a there is a
y ∈ L such that a = y ! (x ! a).

3.2. Proposition. The primes in K = S(L)op are precisely the b(p) with
p ∈ Prm(L).

Proof : Let b(a) satisfy 3.1.1. Then for each x ≰ a there exists a y with
a = y ! (x ! a). The standard inequalities

a = y ! (x ! a) ≥ x ! a ≥ a

yield x ! a = x for any x ≰ a, and for x ≤ a trivially x ! a = 1. Hence
{a, 1} is a sublocale which is the characterization of primes.
On the other hand, b(p) = {x ! p |x ∈ L} with p prime is {p, 1} and thus

trivially minimal.

3.2.1. Hence in the assembly tower

L −! S(L) −! S
2
(L) −! · · · −! S

α
(L) −! · · ·

(where S(L) = S(L)op, S
α+1

= S S
α
and in the limit case S

λ
(L) is the di-

rected sum of the previous members, and the arrows represent the natural
embeddings a 7! c(a)) the primes are isomorphically copied; for more see
3.3.1 below. By [17, 1.1] there exist spatial L with strictly increasing tower,
hence any such spatial L can be epimorphically embedded as a subframe into
arbitrarily large frames M .

3.3. The front topology of ΣL. The natural correspondence

β = (p 7! b(p)) : Prm(L) ∼= Prm(S(L)op)

does not make ΣL homeomorphic with Σ(S(L)op). One has instead the fol-
lowing ([19, Theorem 12]):

Proposition. β carries a homeomorphism

(Prm(L),Ωf(ΣL)) ∼= Σ(S(L)op)

of the front topology of ΣL with the spectrum of S(L)op.
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Proof : Since p /∈"a iff a ≰ p, we have β−1[Σc(a)] = Σa. Moreover, p /∈ o(a)
iff a ≤ p since (p ∨ a) ∧ (a ! p) = p implies p ∨ a ≤ p or a ! p ≤ p
and the latter would lead to the contradiction p = a ! p ∈ o(a). Hence
β−1[Σo(a)] = Prm(L)∖Σa and for any S ∈ S(L)op, with S =

⋂
i(c(ai)∨ o(bi)),

β−1[ΣS] = β−1[
⋃
i

(Σc(ai) ∩ Σo(bi))] =
⋃
i

(Σai ∩ (Prm(L)∖ Σbi)) ∈ Ωf(ΣL)).

On the other hand,

β(Σa) = {b(p) | p ∈ Prm(L), a ≰ p} = Σc(a) ∈ ΩΣ(S(L)op)

and

β(Prm(L)∖ Σa) = {b(p) | p ∈ Prm(L), a ≤ p} = Σo(a) ∈ ΩΣ(S(L)op).

3.3.1. Note that, because of the fact that for T0 spaces the second front
topology is discrete, in the 3.2.1 the spatial parts starting with the second
step are discrete.

3.4. For each localic map f : L ! M , the cokernel of f is the sublocale
ff ∗[M ] of M . This is indeed a sublocale:

(1) For any xi = ff ∗(ai) ∈ ff ∗[M ],

ff ∗(
∧
i

xi) ≤
∧
i

ff ∗(xi) =
∧
i

ff ∗ff ∗(ai) =
∧
i

ff ∗(ai) =
∧
i

xi

hence
∧

i xi ∈ ff ∗[M ].

(2) If b ∈ M and x = ff ∗(a) ∈ ff ∗[M ] then

b ! x = b ! ff ∗(a) = ff ∗(b ! ff ∗(a))

since

ff ∗(b ! ff ∗(a)) ∧ b ≤ ff ∗(b ! ff ∗(a)) ∧ ff ∗(b) =

= ff ∗((b ! ff ∗(a)) ∧ b) = ff ∗(b ∧ ff ∗(a)) ≤
≤ ff ∗ff ∗(a) = ff ∗(a).

3.4.1. Let

dL : S(L)
op ! L

denote the map given by S 7!
∧

S (the dissolution map ([9, 17]). We will need
the following well-known property (it appeared first in [19]), here presented
for localic maps:
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Proposition. Let f : M ! L be a localic map such that f ∗(x) is comple-

mented for every x ∈ L. Then there exists a unique f̃ ∈ Loc that makes the
following triangle commutative.

S(L)op
dL // L

M

f

<<

f̃

OO

Proof : For each y ∈ M take f̃(y) as the cokernel of the composite

c(y)
jc(y)
↪−! M

f
−! L,

that is, f̃(y) = fj∗c(y)f
∗[L]. The checking is a straightforward exercise.

3.4.2. In particular, for any space X and

qX = (U 7! intΩ(X)(U)) : Ωf(X) ! Ω(X)

there exists a unique q̃X ∈ Loc such that the triangle

S(ΩX)op
dΩX // ΩX

ΩfX

qX

::

q̃X

OO
(3.4.2)

commutes. Note that qX(U) = {V ∈ Ω(X) | intΩ(X)(V ∪ U) = V } for every
U ∈ Ω(X). In particular, for U ∈ Ω(X),

qX(U) = {V ∈ Ω(X) | U ⊆ V } = cΩ(X)(U)

and
qX(X ∖ U) = {V ∈ Ω(X) | intΩ(X)(V ∪ (X ∖ U)) = V } =

= {V ∈ Ω(X) | U ! V = V } = oΩ(X)(U).

3.4.3. It is easy to see that (dL)L is a natural transformation from the as-
sembly functor S : Loc ! Loc into the identity functor. Putting it together
with triangle (3.4.2), for X = ΣL, and the homeomorphism from 3.3 we
get the following commutative diagram with the embeddings SpL ⊆ L and
Sp(S(L)op) ⊆ S(L)op:



12 I. ARRIETA, J. PICADO AND A. PULTR

S(L)op
dL // L

Sp(S(L)op)
, �

55

SpL
. N

hh

S(ΩΣL)op
dΩΣL //

S(γL)

OO

ΩΣL

γL

OO

γL

AA AA

ΩΣ(S(L)op)

γS(L)op

MM MM

γS(L)op

FF

Ωf(ΣL)//
∼=oo

q̃ΣL

OO

qΣL

;;

4. Some separation axioms,
in particular the very weak T1 and TD

The short proofs in this section are either folklore or already in literature
(e.g. in [15, 2, 21]). We present them for convenience of the reader.

4.1. Subfitness. A frame is subfit ([9], conjunctive in [20], for history see
e.g. [15]) if

a ≰ b ⇒ ∃c, a ∨ c = 1 and b ∨ c ̸= 1. (sfit)

4.1.1. Recall 1.5. By [16, 14], for a subfit L the mapping

κ = (S 7!
∨
{"a | "a ⊆ S}) : S(L) ! Sc(L)

is a coframe homomorphism, Sc(L) is Boolean, and

for any S ∈ S(L), κ(S) = S##.

4.1.2. If L is subfit then Sb(L) = Sc(L). Consequently, in the subfit case,
Sc(L) is the (co)Booleanization of S(L).

4.2. Fitness. See [9] (or, e.g. [15]). A frame L is fit if

a ≰ b ⇒ ∃c, a ∨ c = 1 & c ! b ≰ b. (fit)

This is a property stronger than subfitness and weaker than the well known
regularity.
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4.3. Hausdorff type axioms. The strong Hausdorff axiom (sH) [9] re-
quires, mimicking the characteristic property in spaces, that the diagonal
in the square L × L in Loc is closed. We will get by with the weaker one,
usually called simply Hausdorff, requiring that for all a ̸= 1,

a =
∨
{x |x < a} where x < a means x ≤ a & x∗ ≰ a (H)

(Johnstone-Sun [12], Paseka-Šmarda [13]), or the even weaker point Hausdorff
(Rosicky-Šmarda [18]), denoted (pH), requiring that

every semiprime element is maximal (pH)

(an element p is semiprime if a ∧ b = 0 only if a ≤ p or b ≤ p). One has the
implications

(sH) ⇒ (H) ⇒ (pH)

(the first implication is standard, for the second one, if p is semiprime and
p < a ̸= 1 then there is an x < a such that x ≰ p and we have x∗ ≤ p < a,
a contradiction) and both (H) and (pH) are for spaces equivalent with the
classical Hausdorff property.

4.4. Axiom T1. A frame L satisfies T1 if every prime element in L is maxi-
mal. Thus, L is T1 if and only if each one-point sublocale p̃ = {p, 1} = b(p)
(p prime, recall 1.4.2) is closed.

4.4.1. Proposition. Each Hausdorff frame and each fit one is T1.

Proof : The first follows from the implication (H)⇒(pH) above but because
the property of fitness is incomparable with (H) it has to be considered
separately. By (fit), if p is prime and p < a then there is a c with a∨c = 1 and
c ! p ≰ p. Since c∧ (c ! p) ≤ p we have c ≤ p and hence a = a∨ p = 1.

4.5. Axiom TD. The axiom TD appeared in the classical context already
in [3] and in a way played from the very beginning a role in delimiting the
spaces that can be well investigated without points: TD-topological spaces
with isomorphic lattices of open sets are isomorphic ([22]), subspaces of TD

spaces are correctly represented by sublocales ([4] – and probably sooner).
Later it appeared as an intrinsic characteristic of frames in the study of the
difference between general spatial frames and those that can be represented
by a TD-one. Only quite recently this was extended to an axiom concerning
a general frame in [2].
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4.5.1. Recall that a frame is TD if

every prime element in L is covered. (TD)

4.5.2. Proposition. The following are equivalent for a frame L:

(1) L is TD.
(2) For every prime p, b(p) = c(p) ∩ o(a) for some a.
(3) For every prime p, b(p) is complemented.

Proof : (1)⇒(2): Let a cover p. By 1.2.4, p ∈ o(a). But if x ̸= p, 1 and
x ∈ o(a), that is, x = a ! x then x ≱ a and hence x ≱ p.
(2)⇒(3) is trivial.
(3)⇒(1): Let S be the complement of b(p) = {p, 1}. Then p /∈ S but for
all x > p one has to have x ∈ S (else it would not be in S ∨ b(p)). Thus,
b =

∧
{x | p < x} is in S and has to cover p.

4.5.3. Observation. Subfit plus TD implies T1.

(If p is prime covered by b and if p < x then there is a c such that b ∨ c =
1 ̸= p ∨ c; p < p ∨ c would give b ≤ p ∨ c and hence 1 = b ∨ p ≤ p ∨ c a
contradiction. Hence, p = p ∨ c so that c ≤ p, and b = b ∨ p ≥ b ∨ c = 1.)

5. SpL under low separation axioms

5.1. Recall from 4.4 that L is T1 if

Prm(L) = Max(L), (T1)

that is, if every one-point sublocale p̃ = {p, 1} is closed.

Note. Although the formula for T1 is in simple lattice terms, the concept
does not play much of a role just in itself. For instance, in the subfit context
it states only that the spectrum is T1 in the classical sense (this is not true
quite generally, though: for instance, if B is a locale without points and L
is B extended by a new bottom element ⊥ then Prm(L) = {⊥} so that the
spectrum is T1; but L is not a T1-locale because ⊥ is not maximal). But the
concept is of importance as a consequence of essentially point-free conditions
as the point-free variants of Hausdorff axiom, or fitness (recall 4.4.1).

Thus, in the T1-case we will work with

SpL =
∨
{c(p) ="p | p ∈ Prm(L)}. (T1-Sp)
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5.2. For subfit locales a covered prime is always maximal; hence under
subfitness TD-locales and T1-locales are equivalent concepts (recall 4.5.3).

5.3. The largest pointless sublocale. (cf. [10]). A locale is pointless if it
does not contain any prime element. Recall 4.5.2(3). We have

5.3.1. Proposition. Each TD-locale has the largest pointless sublocale, namely

ΦL =
⋂
{b(p)̧ | p ∈ Prm(L)}.3

In particular, for T1-locales we have

ΦL =
⋂
{o(p) | p ∈ Prm(L)}.

Proof : Since b(p)∩ b(p)c = O, p is not in b(p)c and hence ΦL∩ Prm(L) = ∅,
that is, ΦL is pointless. Now let S contain no prime element. Then by 1.2.4,
S ∩ b(p) = O for all p ∈ Prm(L) and hence S ⊆ b(p)c for all p ∈ Prm(L).

5.3.2. Proposition. Let L be a TD-locale. Then SpL = ΦL#. Hence it is in
the Booleanization Sb(L) of S(L), and SpL# = ΦL##.
Thus we have for the supplement of the spatial part the formula

SpL# =
∨
{c(a) ∩ o(b) | ∀p ∈ Prm(L), a ≰ p or b ≤ p}.

If L is subfit, then SpL# ∈ Sc(L) and

SpL# =
∨
{c(a) | ∀p ∈ Prm(L), a ∨ p = 1} =

∨
{c(a) |Σa = L}.

Proof : We have

ΦL# = (
⋂
{b(p)c | p ∈ Prm(L)})# =

=
∨
{b(p)cc | p ∈ Prm(L)}) =

∨
{b(p) | p ∈ Prm(L)}) = SpL

and hence SpL# = ΦL##.
Now recall (1.4.1). We have

SpL# =
∨
{c(a) ∩ o(b) | c(a) ∩ o(b) ⊆ ΦL} =

=
∨
{c(a) | ∀p ∈ Prm(L), p ̸∈ c(a) ∩ o(b)} =

=
∨
{c(a) ∩ o(b) | ∀p ∈ Prm(L), a ̸≤ p or b ≤ p}.

3This intersection has been used by R. Ball in his study of the point-free reflection.
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In the subfit case recall 4.1.1: by [16, 14] the double supplement of S in S(L)
is S## =

∨
{c(a) | c(a) ⊆ S}. Hence we have by 5.3 and (1.4.1)

SpL# = ΦL## =
∨
{c(a) | c(a) ⊆

⋂
{o(p) | p ∈ Prm(L)}} =

=
∨
{c(a) | ∀p ∈ Prm(L), c(a) ⊆ o(p)} =

=
∨
{c(a) | ∀p ∈ Prm(L), a ∨ p = 1} =

∨
{c(a) | ∀p ∈ Prm(L), a ≰ p}.

5.3.3. Let L be subfit and TD. Since x ≥ a and a ≰ p makes x ≰ p, the
last formula above can be rewritten as

SpL# = {
∧
i

ai | ∀i ∀p ∈ Prm(L), ai ≰ p}.

5.4. Note. SpL# = ΦL## is typically much smaller then ΦL. One has

Proposition. Let L be T1. Then ΦL ∩ SpL is the sublocale

{
∧

A |A ⊆ Prm(L) such that ∀p ∈ Prm(L),
∧
(A∖ #p) =

∧
A}.

Proof : An element of the intersection is a
∧

A, A ⊆ Prm(L) such that for all
p ∈ Prm(L),

∧
A ∈ o(p), that is, p !

∧
A =

∧
A. We have, by the formula

above

p !
∧
A =

∧
{p ! q | q ∈ A} =

∧
{p ! q | q ∈ A, q ≰ p} =

∧
(A∖ #p)

and this has to be
∧
A.

Let us illustrate it on the spatial case.
Consider a T1-space X. Then the primes in L = Ω(X) are the X ∖ {x}

and the
∧
A with A ⊆ Prm(L) are

int(
⋃
{X ∖ {x} |x ∈ M}) = int(X ∖M) = X ∖M.

Hence the U ∈ ΦL, because here SpL is the whole of Ω(X), are all the X∖M

with M closed such that X ∖M ∖ {x} ⊆ X ∖ {x} for all x ∈ M , that is

∀x ∈ M, x ∈ M ∖ {x}.
Since, however, Sp(Ω(X)) is the whole of Ω(X), ΦΩ(X)## is O.

6. Complemented, closed and open SpL

6.1. The sublocale SpL is complemented if and only if its supplement is a
complement, that is, SpL ∩ SpL# = O. Hence we obtain immediately from
5.3.3
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Proposition. If L is subfit and TD then SpL is complemented if and only if

∀M ⊆ Prm(L), if
∧
M =

∧
i

ai then ai ≤ q for some i and some q ∈ Prm(L).

6.2. Proposition. The following are equivalent for a subfit TD-locale L:

(1) SpL is complemented.
(2) If S ̸= O is a spatial sublocale, then intS(SpS) ̸= O (i.e. intS(SpS) has

a point).
(3) If S ̸= O is a spatial sublocale, then the smooth part of the pointless

part of S is not dense in S.

Proof : First, note that the equivalence between (2) and (3) follows from 1.4.1.
Let us check that (1) implies (3). Let S =

∨
i b(pi) ̸= O be spatial, and set

x =
∧

i pi ̸= 1. Assume, for sake of contradiction, that

ϕ(S)#S#S = (SpS)#S

is dense in S, that is,
∧

S = x ∈ ϕ(S)#S#S (the notation (−)#T denotes
supplements in S(T )). Since closed sublocales of a subfit locale are subfit
and x ∈ ϕ(S)#S#S we obtain from 5.3.3 (applied to S) a family {aj}j∈J such
that aj ̸≤ p for all j and p ∈ Prm(S) and x =

∧
j aj. Then, by Proposition 6.1,

there is a p ∈ Prm(L) and a j with aj ≤ p. This is a contradiction.
Finally, let us show that (3) implies (1). Let 1 ̸= x =

∧
i pi =

∧
j aj for

some {pi}i∈I ⊆ Prm(L) and {aj}j∈J ⊆ L. Assume, by way of contradiction,
that for all i, ai ̸≤ p for all p ∈ Prm(L). If we set S =

∨
i b(pi) ̸= O, we see

that cS(ai) ⊆ ϕ(S)#S#S for every i. Then∨
i

cS(ai) ⊆ ϕ(S)#S#S ,

and since the left hand side is (obviously) dense in S, so is ϕ(S)#S#S , which
yields a contradiction.

6.3. Let us say that a TD-locale L is weakly spatial if Φ(L)## is not dense.
Clearly, an L ̸= O which is spatial is also weakly spatial.

Corollary. A subfit TD-locale L has complemented spatial part if and only if
every nonzero closed sublocale with dense spatial part is weakly spatial.

6.4. Regarding the case whether the spatial part is closed, we have two
independent criteria, one for the subfit case and the other for the T1 case.
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6.4.1. Proposition. Let L be subfit. Then SpL is closed if and only if for
any a ∈ L such that Σa = Prm(L), one has a ∨

∧
Prm(L) = 1.

Proof : The condition Σa = Prm(L) is equivalent to SpL ⊆ o(a), and a ∨∧
Prm(L) = 1 is equivalent to

SpL = c(
∧

Prm(L)) ⊆ o(a).

Hence, the condition in the statement is equivalent to the fittings of SpL and
SpL being equal. The “only if” part thus follows trivially. For the “if” part,
note that if the fittings of SpL and SpL in L are equal, then the fitting of
SpL inside SpL is the whole SpL. But subfitness is hereditary w.r.t. closed
sublocales so it follows from [6, Thm. 5.1.2] that SpL = SpL.

6.4.2. Proposition. The following are equivalent for a T1-locale L:

(1) SpL is closed.
(2) The meet

∧
Prm(L) is exact.

(3) Each of the meets
∧
{p ∈ Prm(L) | a ≤ p} is exact.

Proof : (1)⇒(2): Let "a = SpL. Then, in particular, a ∈ SpL and since it is
smallest in SpL, a =

∧
Prm(L). Let x ∈ L be arbitrary. Then x ∨ a ∈ SpL

and hence

x ∨
∧
PrmL = x ∨ a =

∧
{p |x ∨ a ≤ p} =

∧
{p |x ≤ p}

since a ≤ p for all p. But we also have
∧
{x∨ p | p ∈ Prm(L)} =

∧
{p |x ≤ p}

because x ∨ p is, by maximality, equal to p if x ≤ p and 1 otherwise.
(2)⇒(1): Set a =

∧
Prm(L). If this meet is exact then for every x ≥ a,

x = x ∨
∧
Prm(L) =

∧
{x ∨ p | p prime and hence maximal} =

∧
{p |x ≤ p}

since if x ≰ p, x ∨ p = 1 by maximality. Thus, "a ⊆ SpL, while SpL ⊆"a
trivially.
Trivially (3)⇒(2), and (2)⇒(3) follows immediately by computing

(
∧
Prm(L)) ∨ a ∨ b =

∧
{p ∈ Prm(L) | a ≤ p} ∨ b.

6.5. Note. The question naturally arises what about strengthening (3) to:

Each of the meets
∧
M with M ⊆ Prm(L) is exact.

By using the fact that a meet
∧

A is exact if and only if the sublocale∨
a∈A c(a) is closed, it follows readily that the condition that each of the meets∧
M with M ⊆ Prm(L) is exact is equivalent to every spatial sublocale being

closed. This is in turn equivalent to the fact that
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SpL is closed and ΣL is discrete.

We have

6.5.1. Proposition. The following are equivalent for a T1-locale L:

(1) ΣL is discrete.
(2) For every M ⊆ Prm(L), "

∧
M = M .

(3) For every M ⊆ Prm(L) and every p ∈ Prm(L), (
∧

M) ∨ p =
∧
{m ∨

p |m ∈ M}.

Proof : (1)⇒(2): Let ΣL be discrete. Then for each M ⊆ Prm(L) there is
an x such that Prm(L) ∖ M = Σx. Then x ≰ p iff p /∈ M , hence x ≤ p iff
p ∈ M , and hence x ≤

∧
M . Thus,∧
M ≤ p ⇒ x ≤ p ⇒ p ∈ M,

and p ∈ M ⇒
∧

M ≤ p is trivial.
(2)⇒(3): We have (

∧
M) ∨ p = p iff

∧
M ≤ p and

∧
{m ∨ p |m ∈ M} iff

p ∈ M , and under (2)
∧

M ≤ p and b ∈ M are the same.
(3)⇒(1): For M ⊆ Prm(L) take N = Prm(L) ∖M . Then p ∈ M iff p /∈ N
iff

∧
N ≰ p iff p ∈ Σ∧

N
.

We may now apply Propositions 6.4.1 and 6.4.2 in order to obtain a char-
acterization of TD-locales L such that the spatial part of S(L)op is closed.

6.6. Corollary. The following are equivalent for a TD-locale L:

(1) SpS(L)op is closed.
(2) ΦL is complemented.
(3) SpL is totally spatial, that is, every sublocale of SpL is spatial.

Note. The conditions in the Corollary are very strong. This suggests that
a sufficient condition on L for SpL being closed in terms of a separation-
type property only does not seem possible (recall that S(L)op is always zero-
dimensional).

6.7. Open spatial parts.

6.7.1. Proposition. Let L be subfit. Then SpL is open if and only if there is
a least a ∈ L such that in the spectrum of L, Σa = Prm(L), more explicitly,
if and only if there is an a ∈ L such that

Σx = Prm(L) ⇔ x ≥ a.
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Proof : Since the condition Σx = ΣL is equivalent to SpL ⊆ o(x), the con-
dition of the proposition means that SpL ⊆ o(x) iff o(a) ⊆ o(x), but this
means precisely that the fitting of SpL is o(a). Under subfitness the latter
implies that SpL is open (see [6]).

Applying the result to a locale of the form S(L)op, we immediately obtain
the following

6.7.2. Corollary. A frame L has a largest pointless sublocale if and only if
Sp(S(L)op) is open. In particular, by 5.3.1, for any TD-locale, Sp(S(L)

op) is
open.
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[13] J. Paseka and B. Šmarda, T2-frames and almost compact frames, Czechoslovak Math. J. 42
(1992) 297–313.

[14] J. Picado and A. Pultr, Frames and Locales: topology without points, Frontiers in Mathematics,
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