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ABSTRACT: We study effective descent V-functors for cartesian monoidal categories
V with finite limits. This study is carried out via the properties enjoyed by the
2-functor V — Fam(V), results about effective descent of bilimits of categories, and
the fact that the enrichment 2-functor preserves certain bilimits. Since these results
rely on an understanding of (effective) descent morphisms in Fam(V), we briefly
study those epimorphisms when V is a regular category.
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Let C be a category with pullbacks. For each morphism p: x — y, we have
a change-of-base functor along p:

p:Cly—Clx
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2 R. PREZADO

Via these functors, we are able to provide a description of the basic bifibration
of C. Thanks to the Bénabou-Roubaud theorem [3] (see also [17, page 258| or
|25, Theorems 7.4 and 8.5| for generalisations), the descent category for p with
respect to the basic bifibration, denoted Desc(p), is equivalent to the Eilenberg-
Moore category for the monad induced by the adjunction p, - p*. This allows
us to say that the morphism p is effective for descent if the comparison functor
KP in the Eilenberg-Moore factorisation (1)

Cly S > Desc(p)
N )
Clx

is an equivalence of categories; here, U? is the functor which forgets descent
data.

Janelidze-Galois theory [4] and Grothendieck descent theory [18, 25] feature
the use of effective descent morphisms, requiring the knowledge of some (or
all) such morphisms in the category of interest, and are the main motivation
to undertake the study of finding sufficient conditions or even characterising
effective descent; see [16, 17| for introductions to the subject.

As an example, if C is a locally cartesian closed category, or an exact cat-
egory (in the sense of Barr [1]), the effective descent morphisms are precisely
the regular epimorphisms. However, the characterisation of effective descent
morphisms in a given category C is a notoriously difficult problem in general;
for instance, see the characterisation in [29] and a subsequent reformulation [9]
for the case C = Top.

Motivated by this reformulation, [7, 6, 8, 10| study this characterisation
problem for more general notions of spaces: these works provide various results
about effective descent in (7', V)-categories (originally defined in [12]). Due to
their concerns with topological results, the study was restricted to the case in
which the enriching category V is a quantale.

From the perspective of internal structures, we have the work of Le Creurer
[21], in which he studies the problem of effective descent morphisms for es-
sentially algebraic structures internal to a category B with finite limits. In
particular, the author provides sufficient conditions for effective descent mor-
phisms in C = Cat(B), and confirms these conditions provide a complete char-
acterisation with the added requirement that B is extensive and has a (regular
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epi, mono)-factorization system. Generalisations of these results to internal
multicategories were studied in [28].

Making use of Le Creurer’s results, Lucatelli Nunes, via his study on effective
descent morphisms for bilimits of categories, provides sufficient conditions for

effective descent morphisms in C = V-Cat via the following pseudopullback (see
|25, Lemma 9.10, Theorem 9.11]):

V-Cat —55 Cat(V)

obl [ (2)

for suitable extensive categories V with finite limits.

The central contribution of this paper is to extend [25, Theorem 9.11] to all
categories V' with finite limits, in Theorem 3.3. We highlight the use of the
following three tools, used in the proof of Lemma 3.1, which are the skeleton of
the argument: the properties of familial 2-functors, in particular, of the endo-
2-functor Fam: CAT — CAT studied in [32]; results about effective descent
morphisms in bilimits of categories (see |25, Theorem 9.2 and Corollary 9.5]);
and preservation of pseudopullbacks via enrichment (Theorem 2.1).

Since Theorem 3.3 relies on understanding (effective) descent morphisms in
Fam(V), it naturally raises the problem of studying these classes of epimor-
phisms in the free coproduct completion of V. Lemma 4.1 and Theorem 4.3
provide a couple of improvements, which we first illustrate in Theorem 4.7
for V a (co)complete Heyting lattice (a new proof direction of [7, Theorem
5.4]), and then we apply to obtain the more general Theorem 4.9, providing an
improvement on Theorem 3.3 for regular categories V.

In Section 1, we recall the notion of pseudopullback in the restricted context
of the 2-categories Cat and MndCat, we fix some terminology and notation for
(strong) monoidal functors, used in the proofs of the results in Section 2, and
we recall a couple of results from [25] and [32], restated in a convenient form,
which are part of our toolkit in Section 3.

Section 2 is devoted to establishing some technical results on preservation of
pseudopullbacks (Theorem 2.1), full faithfulness (Lemma 2.2) by the 2-functor
(—)-Cat: MndCat — CAT, and preservation of descent morphisms by suitable
functors (Lemma 2.3), which complete our toolkit.
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As alluded to above, we establish our main result in Section 3; this is The-
orem 3.3. We restate it here; if V is a cartesian monoidal category with finite
limits, a V-functor F' such that

— I is an effective descent morphisms on hom-objects,
— F' is a descent morphism on composable pairs of hom-objects,
— F'is an almost descent morphism on composable triples of hom-objects,

is an effective descent morphism in V-Cat.

Indeed, these conditions on F' are statements about (effective) (almost) de-
scent morphisms in Fam(V), leading us to studying such morphisms in the
coproduct completion of V. We devote Section 4 to provide tractable de-
scriptions of these classes of epimorphisms, with an illustrative application
to (co)complete Heyting lattices. We obtain Theorem 4.9, which refines Theo-
rem 3.3 for regular categories, with further simplifications for infinitary coherent
categories, exact categories or locally cartesian closed categories.

Finally, we have a couple of concluding remarks in Section 6, where we sketch
some possible lines of future research, with regard to extending the result to
all symmetric monoidal categories, or to generalized multicategories.

Acknowledgments. The author is deeply grateful to Fernando Lucatelli Nunes
and Maria Manuel Clementino for their helpful comments regarding this work.

1. Preliminaries

Let F: C — € and G: D — & be functors. The pseudopullback of F, G,
denoted by PsPb(F, G) may be succintly defined as the full subcategory of the
comma category (F | G) whose objects are isomorphisms. To be explicit,
PsPb(F,G) has

— objects given by isomorphisms &: Fe = Gd, where ¢ € C and d € D,

— morphisms ((: Fa — Gb) — (£: Fc — Gd) given by a pair of mor-
phisms f: a — cand ¢g: b — d such that £ o F'f = Ggo (.

— identities and composition given componentwise from C and D.

Let V, W be monoidal categories. We recall that a monoidal functor F':'V —
W consists of a functor F' between the underlying categories, together with

— an isomorphism e: Iy — F1y,
— an isomorphism m¥: Fa ® Fy — F(z ®y),

satisfying naturality and coherence conditions (see |2, page 1889]).
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Moreover, we will denote the unit and composition morphisms of a V-category
Chbyue: I —C(x,z)and c¢: C(y, 2) @ C(x,y) — C(x, 2).

We denote MndCat to be the 2-category of monoidal categories, monoidal
functors, and their natural transformations. We further highlight that since
MndCat — Cat is pseudomonadic [22, Section 3.1], [24, Remark 4.3, it cre-
ates bilimits. In particular, the underlying category of the pseudopullback of
a cospan of monoidal functors is the pseudopullback of the underlying ordi-
nary functors, and fully faithful morphisms in MndCat (monoidal functors) are
precisely those whose underlying functor is fully faithful in Cat.

Finally, we recall the following results of [25] and [32], restated in a format
suitable for our purposes:

Proposition 1.1 ([25, Corollary 9.6]). Suppose Diagram (3) below is a pseu-
dopullback of categories with pullbacks and pullback-preserving functors

A—L+B

T ®

CT>D

Let f be a morphism in A. If

— F'f is effective for descent,
— Hf is effective for descent,
- KFf=GHf is a descent morphism,

then f is effective for descent.
Proposition 1.2 (|32, Proposition 5.15]). The canonical embeddings ny: V —

Fam(V), where V is a category, form a 2-natural cartesian transformation, in
the sense that for all functors F:'V — W, Diagram (4) below is a 2-pullback.

YV — Fam(V)

Fl lFam(F) (4)

2. Preservation of bilimits and descent

Theorem 2.1. The enrichment 2-functor (—)-Cat: MndCat — CAT preserves
pseudopullbacks.
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Proof: We desire to confirm that PsPb(F, G)-Cat ~ PsPb(F}, G)); let ®: B =
G\C be an isomorphism of W-categories, where B is a U-category and C is a
V-category. We define a PsPb(F, G)-category Dg with

— set of objects given by obDg = ob B,

— hom-object given by Dg(x,y) = .0 FB(x,y) = GC(Px, Py) at x,y €
ob D@,

— unit object and composition given by the pairs (ug, uc), (cg,c¢) of the
respective unit objects and compositions from B and C; these pairs are
well-defined morphisms of PsPb(F, ), since F, G are monoidal functors
and ® is a W-functor.

To be more precise with this last point, note that the following diagrams com-
mute:

Iy

URB ug,c

Fk‘ Guc

» GC(Dx, Ba)

(I)z,z

F(B(y.2) ® Bla.y)) +™— FB(y,2) ® FB(x,y) “3"GC(dy, z) ® GC(Px, Dy)
FCB\L CRB — €G\c - \me (6>
FB(z,z) > GC(Px, Pz) NEe T G(C(Py, Pz) ® C(Px, Py))

. -
Since identity and associativity laws of Dg are precisely those of B and C, it
follows that Dg is indeed well-defined.

The underlying U-category of Dg is B itself, while the its underlying V-
category is isomorphic to C: it is given by ob ® on the sets of objects, and
identity on the hom-objects.

Moreover, let X', )V be PsPb(F, G)-categories, and let H: Xy — Yy be a U-
functor and K : Ay — Yy be a V-functor between the underlying U-categories
and V-categories of X and ) respectively, such that ob H = ob K and

GK,yoX(z,y) =Y(Hz,Hy)o FH,,. (7)

Note that there exists a unique PsPb(F, G)-functor ®: X — ) with underlying
U-functor and V-functor given by H and K, respectively. Indeed, let ®: X —
Y be defined as follows:
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—ob® =o0b H,
— ®,, is given by the pair H,,, K, ,, which is a morphism

(X(ZL’,y)Z FXu(iL‘,y) = GXV(xay)) - (y(Hvay) FyM(Hxa Hy) = GyV(HxaHy»

in PsPb(F, G), due to (7).

The laws that make ® into a PsPb(F,G)-functor are precisely given by the
laws that make H into a U-functor and K into a V-functor.

If : X — Y is a PsPb(F,G)-functor with H as underlying U-functor and
K as underlying V-functor, we necessarily get & = ¥ by comparing their hom-
morphisms. ]

Lemma 2.2. The enrichment 2-functor (—)-Cat: MndCat — CAT preserves
fully faithful functors.

Proof: Let F':' YV — VW be a fully faithful monoidal functor. To prove
Fr: V-Cat — W-Cat

is fully faithful, let C, D be V-categories, and let ¢: FiC — Fi'D be a W-functor.
It consists of the following data:

— A function ¥: obC — ob D,
— A morphism ¢, ,: FC(z,y) = FD(¢x,vy) for each pair x,y € obC.

Since F' is fully faithful, there exists a unique ¢,,: C(x,y) = D(Yx, y) such

that F'o,, = 1.
With this, we define a V-functor ¢: C — D given

— on objects by the function ¢ = 1: obC — obD,
— on morphisms by ¢, ,: C(z,y) = D(¢z, ¢y) for each pair z,y € obC.

This is a V-functor: note that the following diagrams commute

I
e TN
_FI (8)
Fu

C(z,y) 7 (¢x oY)
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FC(y,2) @ FC(x,y) =58 FD(¢y, 6z) ® FD(px, dy)
F(C(y, 2) ® Cl.y)) "9 P(D(6y, 62) ® D, o)) (9)
Fec Fe
FC(z,z) 7 > FD(¢x, ¢z)

so, by fully faithfulness of F, plus invertibility of e/ and m’’, we confirm that
¢ is a V-functor. Moreover, by definition, it is the unique V-functor such that
Fi¢ = 1, which concludes our proof. |

Lemma 2.3. Given a string of adjoint functors L 4 F 4 R between categories
with finite limits, if L (and therefore R) is fully faithful, then F preserves
descent morphisms.

Before providing the proof, we recall that descent morphisms in categories

with finite limits are precisely the pullback-stable regular epimorphisms (see,
for instance, [16, 21]).

Proof: Let p: x — y be a descent morphism. Since F'is a left adjoint, we may
conclude that F'p is a regular epimorphism; we just need to prove it is stable
under pullback.

To do so, let f: z — Fy be a morphism, and we consider the following
pullback diagram:

F*(Fx) f*(Fp) .

| lf (10)

We wish to prove that f*(Fp) is a regular epimorphism. Indeed, note that
FLf*(Fp) = f*(Fp), and since F reflects pullbacks (via R), we have a pullback

Lf*(Fr) %

i lfﬁ (11)

—>y

so that Lf*(Fp) = (f*)*(p) is a regular epimorphism; which is preserved by
F', hence f*(Fp) must be a regular epimorphism, as desired. ]
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Remark 2.4. We highlight one application of Lemma 2.3: for a category B
with finite limits, the underlying object-of-objects functor

(—)o: Cat(B) — B

has fully faithful left and right adjoints: these assign to each object b of B its
respective discrete and indiscrete internal categories with b as the underlying
object of objects; see [15, 7.2.6]. Thus, we conclude that (—), preserves descent
morphisms.

This observation can be used to verify that V-Cat — Cat(V) reflects effective
descent morphisms for extensive categories ¥ with finite limits with —-1: Set —
V fully faithful, without requiring V to have a (regular epi, mono)-factorization
system, using the same argument in the proof of [25, Theorem 9.11].

3. Descent for enriched categories

Throughout this section, fix a category V with finite limits, and consider the
canonical embedding n: V — Fam(V), as defined in Proposition 1.2.

Lemma 3.1. The functor n: V-Cat — Fam(V)-Cat refiects effective descent.
Proof: By Proposition 1.2, Diagram (12) below

YV —— Fam(V)

|

1 —— Set

is a 2-pullback. Since Fam(V) — Set is an isofibration, it follows that Dia-
gram (12) is a pseudopullback, by [30, Theorem 1]. It is preserved by (—)-Cat,
as shown in Theorem 2.1, so obtain the pseudopullback given in (13) below:

V-Cat —— Fam(V)-Cat

obl | (13)

Set — Set-Cat

To conclude the proof, note that since (—)-Cat is a 2-functor, it preserves
adjoints, which, together with Lemma 2.2, guarantees that the functor

Fam(V)-Cat — Set-Cat
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has fully faithful left and right adjoints, thus it preserves descent morphisms
by Lemma 2.3. It is well-established that n: Set — Set-Cat reflects descent

morphisms, and descent morphisms in Set are effective for descent.
This places us under the conditions of Proposition 1.1, so the result follows.
|

Lemma 3.2. The category Fam(V) is extensive with finite limits, and — -
1: Set — Fam(V) is fully faithful.

Proof: We have already confirmed that —-1: Set — Fam(V) is fully faithful in
Remark 2.4, because V has a terminal object. Moreover, extensivity of Fam()V)
is well-established; see, for instance, [5, Proposition 2.4|.

Existence of finite limits is a direct corollary of |13, Theorem 4.2]; we consider
the fibration Fam()) — Set. The base category Set has all (finite) limits, the
fiber at a set X is V¥, which has finite limits as well, and these are preserved
by the inclusions V¥ — Fam(V). See also [4, Sections 6.2, 6.3]. n

Lemmas 3.1 and 3.2, together with [25, Theorem 9.11] and Remark 2.4, con-
firm that we have a string of functors which reflect effective descent morphisms:

V-Cat —— Fam(V)-Cat —— Cat(Fam(V)) (14)

Thus, a V-functor is effective for descent in V-Cat, provided it satisfies suitable
“surjectivity” conditions on tuples of composable morphisms. In particular,
these concern stable (regular) epimorphisms and effective descent morphisms.

We note that the aforementioned classes £ of epimorphisms are closed under
coproducts and stable under pullback. Thus, to verify membership of a given
morphism (f, ¢): (Xi)ier = (Yj)jes in &, it is necessary and sufficient to verify
that o = (1, ¢): (Xi)ies-; = Yj, isin € for all j. Hence, we restrict our attention
to morphisms with J = 1.

Theorem 3.3. Let F': C — D be a V-functor for V finitely complete. If
(I) F induces an effective descent morphism on hom-objects; that is,
F: (C(x07x1))$i€F*yi — D(y()a yl)
is effective for descent for all pairs yy, y1 of objects in D,
(IT) F induces a descent morphism on pairs of composable hom-objects; that
is, the family
F' x F: (C(x1,72) X C(w0,21))a,erey — D(y1,y2) X D(yo, v1)

is a descent morphism for all triples yo, y1,yo of objects in D,
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(IIT) F' induces an almost descent morphism on triples of hom-objects; that
18,
FxF xF: (C(xe,x3) X C(x1,22) X C(T0, 1)) ;e Fry,
— D(y2,y3) X D(y1,y2) x D(yo, y1)

is an almost descent morphism for all quadruples yo, y1, Y2, y3 of objects
i D,
then F is effective for descent.

Proof: Let F be a V-functor, and write F for the value of F' via the composite
(14). One finds that, via explicit calculation, that Fy, Fy and Fj are precisely
the coproducts of the morphisms in Fam(V) given by (I), (II) and (III).

By [21, Corollary 3.3.1], plus the initial remarks of [28, Section 5|, the
above hypotheses on F guarantee that F' is an effective descent morphism
in Cat(Fam(V)), and hence so is F, first via |25, Theorem 9.11] (together with
Remark 2.4 and Lemma 3.2) and then Lemma 3.1. |

4. Familial descent morphisms

Theorem 3.3 raises the question of understanding (stable) regular epimor-
phisms and effective descent morphisms in Fam()) for a category V with finite
limits, with the goal of providing more tractable methods to verify conditions
(D), (IT), (III).

The key ideas for many of the applications are given in the next couple of
lemmas. We begin by noting that the kernel pair of a morphism ¢: (X;);e; — Y
in Fam(V) is calculated by considering the pullback

0

i
X; Xy X] — X]

U ]l l@ (15)

X, ———Y

for each 7,7 € I. Then, the kernel pair of ¢, denoted by ker ¢, is given by
(p1,7r1
(Xi Xy Xj)ijerxr é (Xi)ier
Po,T

where p,: I x I — I for n = 0,1 is the projection which forgets the nth
component.
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Lemma 4.1. Let ¢: (X;)icr = Y be a morphism in Fam()V). We consider the
diagram Dy: Jr — V where
Cob Ty =IxT +1,
— for each pairi,j € I, we have two arrows (i,j) — i and (i,7) — j,
— the values of Dy at (i,7) — i and (i,j) — j are defined to be 7TZ-1J- and
0

™, respectively.

¢ is a (stable) regular epimorphism if and only if Dy has a (stable) colimit and
colimDy =Y.

Proof: We begin by recalling that a morphism in a category with finite limits
is a regular epimorphism if and only if it is the coequalizer of its kernel pair.

The fibration Fam(V) — Set is a left adjoint functor, hence preserves colimits.
In particular, if ¢: (X;);e; — Y is a regular epimorphism, then

[x[%§1—>1 (16)
0

must be a coequalizer, and this is the case only when [ is non-empty:.
Note we have a natural isomorphism

Nat(ker ¢, A(z,),.,.) = > Nat(Dy, Az,),
keK

which is fibered over K: an element from either is completely determined by
an element £ € K and a morphism w: (X;)ie; — Zi in Fam(V) satisfying
w; 7rz-17 j = wjo 772 ; forall 4,7 € I. Given such an element, any morphism
(q,Y): (Z)kex — (W))ier provides an element gk € L and a morphism v, o
w: (X;)ier = Wy satisfying ¢y, o w; o 7TZ~17]- = Ypow;o ng for all 7, 5.

Thus, if ker ¢ has a colimit, its underlying set is necessarily a singleton by
(16), so we denote it as an object @ of V. We have

Z Nat(Dy, Az,) = Fam(V)(Q, (Z))kek) ZV Q, Zy),

keK keK

and since this isomorphism is fibered over K, we conclude Q) is a colimit of Dy.
Conversely, if () is a colimit of Dy, then we have

Nat(Dg, Az)e) = D V(Q, Zy) = Fam(V)(Q, (Zi)i)
keK
which confirms @) is a colimit of ker ¢.
Regarding stability, we assume ¢ is a regular epimorphism. Given a morphism
w: Z — Y, the colimits of ker w*(¢) and D,(4) are isomorphic whenever either
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exist, so the stability of one colimit is the equivalent to the other. Taking

coproducts in Fam(}), we confirm the same holds for any morphism (Z;) e —
Y. |

Understanding effective descent morphisms in Fam(V) is a more difficult
problem, as is to be expected. However, we can reduce the study of the category
of descent data of a morphism ¢: (X;)ie; — Y to the full subcategory of
connected descent data, an idea made precise by the following result.

Lemma 4.2. Let ¢: (X;)ier — Y be a morphism in Fam(V), with I non-
empty. We have an equivalence Desc(¢) ~ Fam(Desceonn(¢)), where Desceonn ()
is the full subcategory of connected objects of Desc(¢).

Proof: Given descent data (f,~), (h,&) as in the following diagram

(h,€)
(Wi Xy Xj)kjerxxi —= (Wi)ker
(po,mo)
l l(fﬁ) (17)

(plvﬂ-l)
(Xi xy Xj)ijerxr Fﬁ (Xi)ier —— Y
Po,To

be descent data for ¢, from which we obtain descent data (f, h) for the unique
morphism I — 1. Since [ is non-empty, this morphism is effective for descent,
so that K = J x [ for a set J, and we may take f = py: J x I — I and
h = py:J x 1 x1I — Jx1I tobe projections (recall p, forgets the nth
component).

Thus, taking the pullback of this descent data along ((j, —),id): (Wj)ier —
(W;i)jiesx1, we obtain the following descent data for ¢:

(plag',—,—)
(Wi Xy Xi)ikersi ——= (Wja)ier

l (po,mo) l(id%_) (18)

(p1,m1)
(Xi Xy Xp)ikerxr ?ﬁ (Xi)ier T> Y
Po,To

for each j € J.
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Now, we claim descent data of the form

(pl,o
(Vi xy Xj)ijerxi —= (Vi)ier

[ (19

p1,m1
(Xi ¥y Xj)ijerxi %i (Xi)ier — Y
0,770
is connected in Desc(¢). More concretely, we wish to prove that any morphism
of descent data (q,x): (Vi)ier = (Wj,i)jicsxr factors through ((j,—),id) for
some j € J. This gives a morphism of descent data ¢: (id,p1) — (po, p2) for
the unique morphism I — 1. Note that ¢ is uniquely determined by a function
j: 1 — J, whose value provides the desired factorization.
Having verified all descent data is a coproduct of connected descent data, the
result follows. m

Theorem 4.3. Let ¢: (X;)ier — Y be a morphism in Fam(V). Then the
following are equivalent:

(a) ¢ is effective for descent.
(b) We have an equivalence VY =~ DesCeonn ().

Proof: Note that the full subcategory of connected objects of Fam(V)/Y is
precisely V/Y, and any object on Fam(}V)/Y is a coproduct of such connected
objects. Thus, Fam(V)/Y ~ Fam(V/Y'), and we may conclude (b) = (a),
since

Fam(V)/Y ~ Fam(V/Y") ~ Fam(Desceonn(¢)) =~ Desc(¢)

The converse lies on the fact that the comparsion X?: Fam(V)/Y — Desc(¢)
is of the form Fam(KZ ) for a functor K2 : V/Y — Desceonn(¢). Since
Fam reflects equivalences (because the 2-natural embedding C — Fam(C) is

2-cartesian), we conclude (a) = (b). m

Frames: Effective descent morphisms in V-Cat were studied in |7, Section 5|,
for Heyting lattices V. As an illustration of our tools, we provide a second proof
that *-quotient morphisms in V-Cat (that is, surjective on objects V-functors
that satisfy condition (21) below for all yg, y1, y2) are effective for descent when
V is a (co)complete Heyting lattice.

Let V be a thin category (ordered set). A morphism (X;);e; — Y in Fam(V)
is simply the assertion “for all : € I, X; < Y”. Thus, we simply write (X;);e; <
Y in this context.
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Lemma 4.4. Let (X;)ier <Y be a morphism in Fam(V).
— It is an epimorphism if and only if I is non-empty.
— If 1t 1s an epimorphism, it is also stable.
— It is a regular epimorphism if and only if \/,c; X; =Y.
— If it 1s a reqular epimorphism, it is stable if and only if the above join
s distributive, that s,

ZA\/Xi=\/Z A X, (20)

forall Z LY.

Proof: Note that (X;);c; <Y is an epimorphism if and only if the underlying
function I — 1 is surjective, and this is the case exactly when I be non-empty.

So, if I is non-empty, we confirm (X;);e; < Y is a stable epimorphism: given
Z <Y we can produce an epimorphism (Z A X;);e; < Z, since V has meets.
By taking coproducts, the same holds for all (Z;);e; < Y.

We immediately deduce from Lemma 4.1, that (X;);e; < Y is a regular
epimorphism if and only if \/,.; X; = Y, and stability under pullbacks is exactly
the condition (20), so there’s nothing to verify. _

We say a thin category V is a Heyting semilattice (also known as implicative
semilattices |27 and Brouwerian semilattices [19]) if it has finite limits (has
meets and is bounded) and is cartesian closed (has implication). In particular,
this means that a A — is a left adjoint functor for each a € V), which must
preserve colimits (joins). As a corollary, we conclude that:

Corollary 4.5. If V is a Heyting semi-lattice, reqular epimorphisms in Fam())
are stable.

Proof: Condition (20) is automatically satisfied, by the previous remark. =

Corollary 4.6. If V is a (co)complete Heyting (semi-)lattice, then reqular
epimorphisms in Fam(V) are effective for descent.

Proof: Let (X;)ier <Y be a regular epimorphism. Given connected descent
data id: (V[/i)iEI — (Xi)ie], T (I/VZ A Xj)i’jejxj — (I/Vi)ieb we may define
Z = \/iel W;.

Note that it is enough to prove that X; A Z < W, for all ©+ € I. Indeed, by
distributivity, we have

XZ/\Z%J\/XZ/\W]<WZ

jer
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Now, Theorem 4.3 and [28, Corollary 2.3] complete our proof. _
With this, we obtain one direction of |7, Theorem 5.4]:

Theorem 4.7. LetV be a (co)complete Heyting (semi-)lattice, and let F: C —
D be a V-functor. If F is surjective on objects and we have an isomorphism

\/ Clx1,22) AC(xg,71) = D(y1,92) A D(yo, y1) (21)

xiEF*yi
for all yo, y1,yo, then F is effective for descent.

Proof: Due to Lemma 4.4, we may conclude that

— condition (III) is satisfied, since F' is surjective on objects, and
— condition (II) is given by (21), plus the stability of regular epimorphisms
provided by Corollary 4.5.

Condition (I) remains to be verified. Taking y; = y2 above, so that D(y1, y2) =
1, we have

Dlyo,yn) = \/ Clar,22) AC(wg,11) < \/ Clao, 1),

x;€F*y; szF*?h

and since we have C(xg,z1) < D(yo,y1) for all x; € F*y;, we conclude that
(C(z0, 21))z;er+y < D(yo,y1) is a regular epimorphism in Fam(V), and there-
fore is effective for descent by Corollary 4.6. |

Regular categories: The ideas behind the previous results generalize to reg-
ular categories V), via their (regular epi, mono)-factorization system, which
allow us to reduce statements about epimorphisms ¢: (X;);e; — Y in Fam(V)
to families of monomorphisms. The following result makes this precise:

Lemma 4.8. Suppose V is a reqular category, and let ¢: (X;)ier — Y be a
morphism in Fam(V). For each i € I, consider the following factorization

X /= M; =Y (22)
where m; is a reqular epimorphism and v; 1s a monomorphism for all i € I.
— ¢ is a (stable) epimorphism if and only if v is a (stable) epimorphism.
— ¢ is a (stable) reqular epimorphism if and only if \/,.; M; =Y (and the
join is stable).
— If m; is an effective descent morphism in V' for all i € I, then ¢ is

an effective descent morphism if and only if v is an effective descent
morphism.

el
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Proof: The factorizations (22) for each ¢ € I give a factorization ¢ = v o (id, 7)
in Fam(V). Note that (id,7) is a coproduct of stable regular epimorphisms,
hence ¢ is a (stable) (regular) epimorphism if and only if ¢ is a (stable) (regular)
epimorphism (see [16, Propositions 1.3, 1.5]).

Moreover, if 7; is effective for descent for all ¢ € I, taking coproducts will
guarantee (id, ) is effective for descent as well, meaning that ¢ is effective for
descent if and only if ¢ is effective for descent (see [18, Section 4]).

Under this light, the results are immediate consequences of Lemma 4.1. =

Theorem 4.9. Let V be a reqular category, and let F': C — D be a V-functor.
We consider the following (reqular epi, mono )-factorizations

Pa: ,T Ix , T
C(l’o,fL‘l) L) ]\4;607951 L) D(Fxo,Fxl)

I.'K ZT1,T
C(SUl,I'Q) X C(Io,l’l) S ]\4:130’1;1@2 R D(FZL‘l,FZL"Q) X D(Fl'o,Fl’l)

C(x9,x3) X C(x1,2) X C(x0, 1)

L,

]\455075517332@3 A > D(Fl’g, FZL‘3) X D(Fxl, Fil?g) X D(FZE(), FZL’l)

of the hom-morphisms Fy, ;... : C(xi, xiy1) — D(Fx;, Faip) (and respective
products), for each quadruple xq, 1, x2, 3 of objects. If
(1) Py, 2, is an effective descent morphism for each pair of objects g, 1,
(ii) V /D (Yo, y1) =~ Desceonn(1); that is, 1: (Myy ) )zicry: — D(yo,y1) is an
effective descent morphism for all yo, 1,
(i1i) The join \/ , c pey. My, 2, €xisls, is stable and is isomorphic to D(y1, y2) x

‘ D(y()) yl) .
(10) It (Mg, 05,052y — D(Y2,3) X D(y1,y2) x D(yo, y1) is an almost
descent morphism for all yg, y1, yo, Y3,

then F is effective for descent.
Proof: The goal is to verify that properties (I), (I) and (III) are satisfied, so
we can apply Theorem 3.3. Indeed, due to Lemma 4.8, we have that

— (I) follows as a consequence of (i) and (ii),
— (IT) is a consequence of (iii),
— (III) is a consequence of (iv),

so the result follows. ]
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In case V satisfies further properties, we can simplify the above list:

— If V is infinitary coherent (has stable, arbitrary unions of subobjects),
then the join in (iii) exists and is stable; one only needs to verify if the
isomorphism exists.

— If V is exact, or locally cartesian closed, then (i) is redundant, since
regular epimorphisms are effective for descent.

5. Enrichment in cartesian monoidal categories

Theorem 3.3 extends Lucatelli’s result [25] about effective descent V-functors,
leaving out the extensivity requirement. Thus, we restrict our examples to such
non-extensive, cartesian monoidal categories V with finite limits (excluding
examples such as V = Set, Top, Cat), dedicating this section to the study of
such categories V-Cat.

Thin categories: Thin categories )V with cartesian monoidal structures are
(essentially) bounded meet-semilattices, which we have previously discussed in
Section 4, as an illustrative example. We only briefly repeat here that the
result for (co)complete Heyting lattices V admit a particularly nice description
(Theorem 4.7), which was already provided in |7] using other techniques.

Colax-pointed categories: We consider the colax comma category 1//Cat.
To be explicit, this has

— objects: pairs (C, ¢) where C is a category and ¢ € obC.

— morphisms (C,c) — (D,d): pairs (F, f) where F' is a functor and
f: Fc — dis a morphism in D.

— identity on (C, ¢): the pair (id, id).

— composite of (F, f): (C,c) — (D,d) with (G,g): (D,d) — (€,e): the
pair (Go F,go Gf).

This is the category of strict algebras and colax morphisms for the 2-monad
1 + — on Cat (the dual and codual notion is present in [14, 31, 11]). Hence,
by [20, Corollary 4.9], 1//Cat — Cat creates products, hence 1//Cat admits a
cartesian monoidal structure.

However, 1//Cat is not an extensive category, since it doesn’t have an initial
object. It doesn’t even have coproducts for any pair of objects: let (Cy, ¢1) and
(Ca, ¢2) be pointed categories, and we assume this pair has a coproduct (C, ¢)
in 1//Cat, with coprojections (I, ¢;): (C;, ;) — (C,¢) for i = 1,2.
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Let F;: C; — D be functors, and suppose we have morphisms f;: F¢; — d for
i = 1,2. These define morphisms (F;, f;): (Ci, ¢;) — (D, d) for i = 1,2, so the
universal property guarantees there exists a unique morphism (G, g): (C, &) —
(D, d) satistying GI; = F; and f; = g o Gy;.

In fact, we can prove that G¢ = Fecy + Feo: if h: G¢ — d is such that
fi = hoGu; for i = 1,2, then (G, h) o (I;,1;) = (F}, f;), and by the universal
property, (G, g) = (G, h), hence g = h.

But there is no reason for D to have such a coproduct: consider the category
D given by the following graph

/\
\/

and observe that the pair d;, dy does not have a coproduct. Thus, we obtain
the desired contradiction by letting F;: C; — D be the constant functor to d;,
fori=1,2.
A (1 | Cat)-category is a 2-category B and
— for each z,y, an object hom(z,y) € B(z,y),
— for each z, a morphism e,: 1, — hom(z, x),
— for each x,y, z, a morphism m,, .: hom(y, z) - hom(z,y) — hom(z, z),
— the following diagrams commute for all w, x,y, 2:

hom(z,y) - 1 y - hom(z,y)

der | \ / |evid

hom(z, y) - hom(z, z) 77— hom(z,y) hom(z,y) <—— hom(y,y) - hom(z, y)

id My a0,y

Py.z (px,y 'pw,x) — Dy,z * Puy

(py7z ) p%y) ) pw,w Mw,y,z
mx,y,z-idl
px,z : pw,x > pw,z

May,x,z



20 R. PREZADO

which is a B-enriched category on the same set of objects.

Categories with zero object: Let ) be a category with a zero object, which
we denote by 1. Such categories are usually not extensive: if the zero object
were strict, we would have V ~ 1.
For a V-category C, we write p,,: 1 — C(z,y) for the uniquely determined
morphism. In particular, this implies u, = p, , for all z, and
(Py,2:Pzy) Ca,y,a
12 0y, ) x Ol ) —25 Cla, )
must also equal u,.

With this, we can confirm that all hom-objects must be isomorphic: the
isomorphism is given by:

Py,>Xid XPpy » Cw,y,z o(id x Cw,r,y)

C(z,y)

Thus, we conclude V-Cat has objects the empty V-category plus pairs (non-
empty set, V-monoid).

> C(y,2) X C(x,y) X C(w, x) > C(w, 2)

Eckmann-Hilton: Suppose V is the category of unital magmas. By the
Eckmann-Hilton argument, a V-monoid is precisely a commutative monoid.
Since V has a zero object, we conclude V-Cat essentially has objects the empty
V-category plus pairs (non-empty set, commutative monoid).

Coextensive products: We say a category V with finite limits

— has codisjoint products if V°P has disjoint coproducts,
— has a strict terminal object if V°P has a strict initial object,
— is finitely coextensive if VP is finitely extensive.

As expected, finitely coextensive categories V have codisjoint products and
a strict terminal object. This is the case for the categories of commutative
R-algebras for a ring R, as a class of examples.

We verify that categories V with codisjoint products and strict terminal ob-
ject do not provide an interesting enriching base with the cartesian monoidal
structure: we shall confirm that V-Cat ~ Set.

Let C be a V-category. For each x € ob(C, the unit morphism 1 — C(z, )
is an isomorphism, and for each pair z,y € ob(C, the composition morphism
C(z,y) xC(y,x) — 1 is uniquely determined. Thus, the associativity condition
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for C(z,y) x C(y,z) x C(z,y) translates to saying that the projections on the
first and third component

id x!

C(z,y) x C(y, =) x C(z,y) —= C(z,y)

Ixid

are equal. But since products are codisjoint, we must have C(z,y) = 1, for all
x,.

Categories of spaces: Since most varieties of algebras )V seem to have an
uninteresting V-Cat for the cartesian monoidal structure, we turn our attention
to categories of spaces. Our results can be instanciated with ¥V = CHaus of
compact Hausdorff spaces (which is a pretopos, and therefore exact, but not
(infinitary) extensive) or ¥ = Stn of Stone spaces (which is regular [26]).

6. Future work

Having established sufficient conditions for effective descent in V-Cat for
cartesian monoidal categories V), an obvious continuation would be to extend
this result to suitable monoidal categories V. We describe a strategy which
would rely on the present work; we denote CartCat and SymMndCat for the
2-categories of cartesian (monoidal) categories and symmetrical monoidal cat-
egories.

Provided CartCat has needed (strict) codescent objects, the left 2-adjoint
(biadjoint) (pseudo)functor of the forgetful 2-functor CartCat — SymMndCat
exists; the existence and an explicit description of such a left 2-adjoint (biad-
joint) would be provided via the biadjoint triangle theorem [23, Theorem 4.4]
(see also [24, Theorem 2.3]):

CartCat > SymMndCat

o~

Cat

where every 2-functor is forgetful. Both functors to Cat have left 2-adjoints
which are easy to describe.

So, if the existence of the left biadjoint F': SymMndCat — CartCat is guar-
anteed, we need to study the following questions:

— What conditions on V guarantee existence of pullbacks in F'V?
— Is the unit n: V — F'V fully faithful?
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After obtaining solutions to the above questions, we could then study the
functor
m: V-Cat — FV-Cat,

which raises the ultimate question: does it reflect effective descent morphisms?
An affirmative answer would provide a string of functors

V-Cat —— FV-Cat —— Fam(FV)-Cat —— Cat(Fam(FV))

that reflect effective descent. Then, since F'V is hypothetically a cartesian
monoidal category with finite limits, we obtain a more general result via The-
orem 3.3. Combined with an adequate study of effective descent morphisms in
FV, these results can be applied in the study of effective descent morphisms
in V-Cat for any symmetrical monoidal category V.
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