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K-SPLINES ON SPD MANIFOLDS

MARGARIDA CAMARINHA, LUÍS MACHADO AND FÁTIMA SILVA LEITE

Abstract: The generalization of Euclidean splines to Riemannian manifolds was
initially motivated by trajectory planning problems for rigid body motion. The
increased interest in non-Euclidean splines was essentially due to its relevance in
many areas of science and technology. Lie groups and symmetric spaces play an
important role in this context. The manifold of symmetric positive definite (SPD)
matrices is used, in particular, in computer vision, with emphasis in medical imag-
ing. Different Riemannian structures have been considered in the SPD, in part to
reduce the computational effort. In this paper, we first review the theory of high-
order geometric splines for general Riemannian manifolds and its specialization to
Lie groups. We then solve the variational problem that gives rise to spline curves
on the manifold of symmetric positive definite matrices, equipped with the Log-
Cholesky metric and having a Lie group group structure introduced in [4]. This
enables considerable simplifications and, as a consequence, closed form expressions
for higher-order polynomial splines are obtained.

Keywords: SPD manifolds, variational approach, Riemannian splines, Cholesky
decomposition, Log-Cholesky metric, Lie group structures.

1. Introduction
Symmetric positive definite (SPD) matrices are widely used in data science

applications. In computer vision, for instance, image and video information
is encoded by SPD matrices. Identified as diffusion tensors, the SPD matri-
ces are fundamental tools in medical imaging for many neuroscientific stud-
ies, including schizophrenia, multiple sclerosis, autism, depression, hypoxia-
ischemia, trauma, Alzheimer’s disease and other dementias. More details
about these applications can be found, for instance, in [11] and references
therein. An essential task in image processing requires to interpolate known
data to obtain new data. In this context, developing interpolation schemes
for SPD matrices is clearly very important. But working on the interpola-
tion of SPD matrices can be quite demanding, since the geometry of the SPD
space has to be chosen to comply with the specific area of application and
properties of the data.
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The most natural geometric framework is given by a Riemannian metric,
and in this context Lie groups and symmetric spaces also play a role. Different
Riemannian and Lie group structures on the SPD space have been considered
in the literature (see for instance the recent work of Lin [4], Lin et al. [5],
Pennec [12], Thanwerdas and Pennec [15], and Arsigny et al. [1]). The
choice of the metric should be guided by the invariance and computational
properties that are important for each specific application. This analysis can
be given by observing different effects that can occur (swelling, fattening and
shrinking effects). One inconvenient feature of Frobenius and other metrics
is the swelling effect in the geodesics connecting two SPD matrices. The
swelling can hinder the correct interpretation of the information carried by
the SPD matrices, with evident consequences in data interpolation problems.
The Log-Cholesky and Log-Euclidean metrics were designed to eliminate this
setback. A comparison of the properties of the most commonly used metrics
in the SPD space can be found in [12, 15].

The main objective of this paper is to study high-order interpolation on
SPD manifolds. A high-order interpolation method in Riemannian manifolds
based on the optimization properties of the Euclidean splines was introduced
in Camarinha et al. [2]. This method gave rise to the so-called geometric
splines. The generalization of Euclidean splines to Riemannian manifolds,
initiated with the work of Noakes et al. [7] and Crouch and Silva Leite [3],
was motivated by trajectory planning problems for rigid body motion, but
quickly became quite relevant in many other areas of science and technology.
In SPD manifolds, geometric splines were studied in Zhang and Noakes [16]
and in Machado and Silva Leite [6].

In this paper, we first review the theory of high-order geometric splines for
general Riemannian manifolds and its specialization to Lie groups, based on
the work of Camarinha et al. [2] and Popiel [14], respectively. We then study
geometric splines in SPD manifolds, by considering the Log-Cholesky metric
and the Lie group structure introduced in [4]. Using that geometric struc-
ture, we derive a necessary and sufficient condition for a curve in SPD to be
a geometric spline. We also present a closed form expression for cubic poly-
nomials satisfying boundary conditions on position and velocity. The choice
of the Log-Cholesky metric enables to obtain easy-to-compute expressions
for higher order interpolation curves. The Cholesky factor representation of
SPD matrices reduces substantially the computational costs in comparison



K-SPLINES ON SPD MANIFOLDS 3

with other metrics, which makes possible to work with larger dimensional
input data.

2. Riemannian Splines
Let (M, 〈·, ·〉) be a n-dimensional Riemannian manifold. Denote by D

dt the
covariant derivative along a curve associated with the Levi-Civita connection

on M , and by R the curvature tensor. For a curve x in M , the notation
Di+1x

dti+1

will be used to represent
Di

dti

(dx
dt

)
, i ≥ 0.

We consider the following natural generalization of the variational problem
that gave rise to the Euclidean splines of odd degree.

Problem (P):

min
x∈Γ

1

2

∫ 1

0

〈Dmx

dtm
,
Dmx

dtm

〉
dt, (1)

over the class Γ of C2m−3 paths x on M satisfying x|[ti,ti+1] is
smooth,

x(ti) = xi, 0 ≤ i ≤ N, (2)

for a distinct set of points xi ∈ M and fixed times ti, 0 ≤ i ≤
N , where 0 = t0 < t1 < · · · < tN−1 < tN = 1, and, in addition,

Djx

dtj
(0) = vj0,

Djx

dtj
(1) = vj1, 1 ≤ j ≤ m− 1, (3)

where vji , with i = 0, 1 and 1 ≤ j ≤ m − 1, are fixed tangent
vectors.

Proposition 1. ([2]) A necessary condition for x to be a minimizer of the
functional (1) is that x is C2m−2 and, for 0 ≤ i ≤ N − 1,

D2mx(t)

dt2m
+

m∑
j=2

(−1)jR

(
D2m−jx(t)

dt2m−j
,
Dj−1x(t)

dtj−1

)
dx(t)

dt
= 0, ∀t ∈ [ti, ti+1]. (4)

Definition 1. We say that a curve x ∈ Γ is a geometric spline of degree
2m− 1 on M if x is C2m−2 and each curve segment x|[ti,ti+1] satisfies equation
(4).
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In the absence of interpolating points, these curves are smooth and we
naturally call them geometric polynomials of degree 2m− 1. Hence, geomet-
ric splines of degree 2m − 1 can be described as C2m−2 curves obtained by
concatenation of geometric polynomials at the interpolating points.

Geometric polynomials of degree one are geodesics in a Riemannian mani-
fold and geometric polynomials of degree three are given through the equation

D4x

dt4
+ R

(D2x

dt2
,
dx

dt

)dx
dt

= 0. (5)

These curves were studied in Noakes et al. in [7] and Crouch and Silva Leite
[3], to develop dynamical interpolation schemes on Lie groups and symmetric
spaces.

Suppose now that the Riemannian manifold M is a connected Lie group G
endowed with a bi-invariant metric and denote by g its Lie algebra. Equation
(4) can be reduced to a 2m− 1 order differential equation in g using the so-
called Lie reduction of a vector field along a curve. Given a curve x in G, we
define the curve in g by V = d`−1

x ◦ dxdt , where `x denotes the left translation in

G. We denote by V (s) the usual s-order derivative of V . In order to write the
reduced equation in V for all values of m, we define V0 := V and introduce
the following auxiliary variables Vk, k = 1, . . . , 2m− 2, and Zm.

Vk = V
(1)
k−1 +

1

2
[V, Vk−1], k = 1, . . . , 2m− 2, (6)

Zm = V2m−2 + Ym, (7)

with Ym =
1

2

m∑
j=2

(−1)j[V2m−j−1, Vj−2]. This method was proposed in [14] and

permits to express the equation (4) in terms of a Lax equation.

Proposition 2. ([14]) A curve x is a geometric polynomial of degree 2m− 1
iff

dx

dt
= d`x ◦ V (8)

Z(1)
m = [Zm, V ], (9)

with Zm given by (6–7).

The reduced equation in g is highly complex, but the auxiliary variable
Zm enables to rewrite it in Lax form and easily identify conserved quantities.
There are very few examples where a closed form expression for geometric
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polynomials is known, even for the lowest values of m. For the case m =
2, it is important to mention the extensive work done by Noakes and its
collaborators [8, 9, 10]. In this case, the equation (9) is

Z
(1)
2 = [Z2, V ], (10)

with Z2 = V2 + Y2 and V2 = V
(1)

1 − Y2. Then Z2 = V (2) and we have

V (3) = [V (2), V ]. (11)

Equation (11) was first obtained for G = SO(3) in [7] and for general Lie
groups in [3].

When the Lie group G is Abelian, the equations (6)-(9) simplify substan-
tially. Geometric polynomials are then obtained through Euclidean polyno-
mials in the Lie algebra. Moreover, they give rise to the solution of Problem
(P), since the necessary condition in Proposition 1 is also sufficient.

In the next section, we obtain geometric splines in SPD manifolds endowed
with the so-called Log-Cholesky metric introduced by Lin in [4].

3. Splines on SPD manifolds
3.1. Geometry of SPD with respect to the Log-Cholesky metric. In
this subsection, we review the results introduced in [4] that are most relevant
to establish our main result.

Given a n × n real matrix A = [ai,j], we use L(A) to represent the n × n
matrix whose (i, j) element is aij whenever i > j and 0 otherwise. We also
use D(A) to denote the diagonal matrix whose (i, i) element is aii.

Denote by t(n) the set of n×n lower triangular matrices. A matrix X ∈ t(n)
can be written as X = L(X) + D(X), where L(X) is the strictly lower
triangular part and D(X) is the diagonal part of X.

Now, denote by t+(n) the subset of t(n) with positive diagonal elements.
A matrix L ∈ t+(n) can be parametrized by a lower triangular matrix via
the diffeomorphism

D : t+(n) −→ t(n)
L 7−→ D(L) = L(L) + log(D(L)).

(12)

We can use the map D to pull back to t+(n) the additive product in t(n),
obtaining the following product � in t+(n)

L�K = L(L) + L(K) + D(L)D(K), (13)
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which gives an Abelian Lie group structure to t+(n). Then the diffeomor-
phism D becomes an isomorphism between the Lie groups (t+(n),�) and
(t(n),+).

The tangent map of the left translation `L at K ∈ t+(n) is given by

d(`L)K(Y ) = L(Y ) + D(L)D(Y ), for Y ∈ TKt
+(n), (14)

where the tangent space of t+(n) at a point K is identified with t(n).
Let 〈 . , . 〉F denote the Frobenius inner product on t(n), given by
〈A,B〉F = Tr(A>B). The following defines an inner product on each tan-
gent space of t+(n), obtained throughout the diffeomorphism D ,

� X, Y �L = 〈L(X),L(Y )〉F
+〈D(L)−1D(X),D(L)−1D(Y )〉F , L ∈ t+(n).

(15)

Consequently, t+(n) is a Riemannian manifold with bi-invariant metric
� ·, · �.

Now, let s(n) be the set of n × n real symmetric matrices and s+(n) the
open convex half cone of symmetric and positive definite matrices. Given
P ∈ s+(n), there exists a unique L ∈ t+(n), such that P = LL>. The matrix
L is called the Cholesky factor of P . The Cholesky map is the following
diffeomorphism,

L : s+(n) −→ t+(n)
P 7−→ L (P ) = L,

(16)

where P = LL>. Its inverse is defined by

S : t+(n) −→ s+(n)
L 7−→ S (L) = LL>.

(17)

The composition D ◦L gives the Log-Cholesky parametrization presented in
[13]. Using this single chart, a matrix P = LL> ∈ s+(n) can be represented
by the lower triangular matrix L(L) + log(D(L)).

In order to equip the SPD manifold s+(n) with a Riemannian structure,
define

S 1
2

:= L(S) +
1

2
D(S), for a square matrix S. (18)

The tangent map of S at L ∈ t+(n) is given by

dSL : TLt
+(n) −→ TLL>s

+(n)
X 7−→ XL> + LX>,

(19)
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with inverse
dLLL> : TLL>s

+(n) −→ TLt
+(n)

W 7−→ L(L−1WL−>) 1
2

. (20)

Now, given P = LL> ∈ s+(n) and V, W ∈ TPs
+(n), the diffeomorphism S

induces a Riemannian metric in s+(n), called Log-Cholesky metric, defined
by 〈

V,W
〉
P

=� L(L−1V L−>) 1
2
, L(L−1WL−>) 1

2
�L . (21)

This Riemannian structure is clearly based on the Log-Cholesky parametriza-
tion mentioned above.

Introducing the multiplication ⊗ on s+(n), such that the Log-Cholesky
map L is a homomorphism, (s+(n),⊗) becomes an Abelian Lie group and
the Log-Cholesky metric is bi-invariant.

These Riemannian and Lie structures are clearly based on the Log-Cholesky
parametrization mentioned above.

3.2. k-Splines on SPD manifolds with the Log-Cholesky metric. The
main goal of this section is to solve Problem (P) when the SPD manifold
s+(n) is equipped with the Lie group structure ⊗.

Theorem 1. A necessary and sufficient condition for x to be a minimizer
of the functional (1) over the class Γ of C2m−3 paths x on s+(n), such that
x|[ti,ti+1] is smooth, satisfies x(ti) = Pi, 0 ≤ i ≤ N, and also

Djx

dtj
(0) = V j

0 ,
Djx

dtj
(1) = V j

1 , 1 ≤ j ≤ m− 1,

is that, x is C2m−2, and, ∀t ∈ [ti, ti+1] and 0 ≤ i ≤ N−1, the following holds

x(t) = S
(
L(Li) +

2m−1∑
j=1

(t− ti)
j

j!
L(Yj) + D(Li) exp

(
2m−1∑
j=1

(t− ti)
j

j!
D(Yj)

))
, (22)

where Li = L (Pi) and Yj ∈ t(n), j = 1, . . . , 2m − 1, are determined by the
interpolation and boundary conditions.

Proof : Let us consider a curve x ∈ Γ satisfying the necessary conditions of
Proposition 1. Since the Log-Cholesky map L in (16) defines an isometry
between s+(n) and t+(n), the curve x̃ = L (x) in t+(n) also satisfies equation
(4). But, being (t+(n),�) an Abelian Lie group, the Lie bracket vanishes
identically and equations (6-9) simply reduce to

Ṽ (2m−1)(t) = 0, t ∈ [ti, ti+1], (0 ≤ i ≤ N − 1), (23)
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where Ṽ is the curve in t(n) defined by Ṽ = d`−1
x̃ ◦

dx̃

dt
. Therefore,

Ṽ (t) =
2m−2∑
j=0

(t− ti)
j

j!
Yj+1, with Yj ∈ t(n), j = 1, . . . , 2m− 1.

Writing Ṽ = L(Ṽ ) + D(Ṽ ), and using the expression (14) for the differential
of left translation, equation (23) can be decomposed in the following two
equations.

dL(x̃)

dt
= L(Ṽ ),

dD(x̃)

dt
= D(x̃)D(Ṽ ). (24)

On the other hand, the decomposition Yj = L(Yj)+D(Yj), j = 1, . . . , 2m−1,
allows us to obtain

L(Ṽ (t)) =
2m−2∑
j=0

(t− ti)
j

j!
L(Yj+1), D(Ṽ (t)) =

2m−2∑
j=0

(t− ti)
j

j!
D(Yj+1).

Now, integrating equations (24) in the interval [ti, ti+1], it is immediate to
conclude that x̃ is given explicitly by x̃(t) = L(x̃(t)) + D(x̃(t)), where

L(x̃(t)) = L(Li) +
2m−1∑
j=1

(t− ti)
j

j!
L(Yj),

D(x̃(t)) = D(Li) exp
(2m−1∑

j=1

(t− ti)
j

j!
D(Yj)

)
.

(25)

Moreover, taking into account that diagonal matrices commute with each
other, one can also write the analytical expression of x̃, in the interval [ti, ti+1],
0 ≤ i ≤ N − 1, as

x̃(t) = L(Li) +
2m−1∑
j=1

(t− ti)
j

j!
L(Yj) + D(Li)

2m−1∏
j=1

exp
(

(t−ti)j
j! D(Yj))

)
.

Since the necessary conditions satisfied by x̃ are also sufficient and the
matrices Yj, j = 1, . . . , 2m− 1, are uniquely determined from the regularity
conditions and from the following interpolation and boundary conditions,

x̃(ti) = Li,
Djx̃

dtj
(0) = L0(L

−1
0 V j

0 L
−>
0 ) 1

2
,

Djx̃

dtj
(1) = L1(L

−1
1 V j

1 L
−>
1 ) 1

2
,

the result follows.
�
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The problem of finding the geodesic connecting two SPD matrices P0 and
P1 is the case m = 1 of Problem (P). Using the boundary conditions, we
obtain

L(Y1) =
L(L1)− L(L0)

t1 − t0
, D(Y1) =

log(D(L0)
−1D(L1))

t1 − t0
,

and the following holds.

Corollary 1. The geodesic in s+(n) connecting the point P0 (at t = t0) to
the point P1 (at t = t1) is given explicitly by

x(t) = S
(
L(L0)+

t− t0
t1 − t0

(L(L1)−L(L0))+D(L0) exp
(

t− t0
t1 − t0

log(D(L0)
−1D(L1))

))
,

where Li ∈ t+(n) is the Cholesky factor of Pi, i = 0, 1, t ∈ [t0, t1].

Corollary 2. The cubic polynomial x in s+(n) satisfying the boundary con-
ditions

x(t0) = P0,
Dx

dt
(t0) = V0, x(t1) = P1,

Dx

dt
(t1) = V1,

is given explicitly by

x(t) = S
(
L(L0) +

3∑
j=1

(t− t0)
j

j!
L(Yj) + D(L0) exp

(
3∑

j=1

(t− t0)
j

j!
D(Yj)

))
, t ∈ [t0, t1],

where Yi, i = 1, 2, 3, are given by

L(Y1) = L(X0),

L(Y2) = 2

(t1 − t0)2

(
3
(
L(L1)− L(L0)

)
− (t1 − t0)

(
2L(X0) + L(X1)

))
,

L(Y3) = 6

(t1 − t0)3

(
2(L(L0)− L(L1)) + (t1 − t0)

(
L(X0) + L(X1)

))
,

D(Y1) = D(X0)D(L0)
−1,

D(Y2) = 2
(t1−t0)2

(
(t0 − t1)(2D(L0)

−1D(X0) + D(L1)
−1D(X1)) + 3 log(D(L1)D(L0)

−1)
)
,

D(Y3) = 6
(t0−t1)3

(
(t0 − t1)(D(L0)

−1D(X0) + D(L1)
−1D(X1)) + 2 log(D(L1)D(L0)

−1)
)
,

where Li is the Cholesky factor of Pi and Xi = Li(L
−1
i ViL

−>
i ) 1

2
, i = 1, 2.

Figure 1 bellow illustrates geometric polynomials of degree 1 and 3 using
the Log-Cholesky metric and the ones obtained in [6] for the Log-Euclidean
metric. In Table 1, we register the corresponding determinants. With respect
to swelling effect, we don’t observe significant changes in the value of those
determinants when the degree of the polynomial increases.
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Figure 1. Interpolation through geodesics and geometric cubic polynomi-

als joining the same elements. First row: Log-Cholesky geodesic interpolation.

Second row: Log-Cholesky cubic interpolation. Third row: Log-Euclidean ge-

odesic interpolation. Fourth row: Log-Euclidean cubic interpolation.

Geodesic 36.3214 34.8781 33.4923 32.1615 30.8836 29.6564 28.4780 27.3465
Cubic 36.3214 32.7492 23.3877 15.4079 10.9067 9.6617 12.4752 27.3465

Table 1. Values of the determinant of each iteration of the curve
joining P0 to P1.

4. Conclusion
In this article, we constructed high-order polynomial spline curves on the

SPD Riemannian manifold, equipped with the Log-Cholesky metric. These
smooth curves minimize a certain energy functional, interpolate a given set
of data points, and satisfy some boundary conditions.

The Abelian Lie group structure on the SPD manifold introduced in [4]
enables considerable simplifications. In particular, the variational problem
could be solved efficiently and closed form expressions for polynomial splines
were obtained.

With the chosen structure, the interpolation problem was reduced to the
Lie algebra, as shown in the proof of Theorem 1. This easily follows from the
fact that the Riemannian exponential map is a global diffeomorphism that
coincides at the identity with the Lie group exponential.
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Machado and Fátima Silva Leite has been supported by Fundação para a
Ciência e Tecnologia (FCT), under the project UIDP/00048/2020.

References
[1] Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Geometric Means in a Novel Vector Space

Structure on Symmetric Positive-Definite Matrices. SIAM J. Matrix Anal. Appl. 29(1), 328–
347 (2007)

[2] Camarinha, M., Silva Leite, F., Crouch, P.: Splines of class Ck on non-Euclidean spaces. IMA
J. Math. Control Inf. 12, 399–410 (1995)

[3] Crouch, P., Silva Leite, F.: The dynamic interpolation problem on Riemannian manifolds, Lie
groups and symmetric spaces. J. Dyn. Control Syst. 1(2), 177–202 (1995)

[4] Lin, Z.: Riemannian geometry of symmetric positive definite matrices via Cholesky decompo-
sition. SIAM J. Matrix Anal. Appl. 40(4), 1353–1370 (2019)

[5] Lin, Z., Müller, H.G., Park B.U.: Additive models for symmetric positive-definite matrices
and Lie groups. Biometrika. (2022), asac055, https://doi.org/10.1093/biomet/asac055

[6] Machado, L., Silva Leite, F.: Interpolation and polynomial fitting in the SPD manifold. In:
Proc. 52nd IEEE Conference on Decision and Control, Firenze, Italy, pp. 1150–1155 (2013)

[7] Noakes, L., Heinzinger, G., Paden, B.: Cubic splines on curved spaces. IMA J. Math. Control
Inform. 6, 465–473 (1989)

[8] Noakes, L.: Null cubics and Lie quadratics. J. Math. Phys. 44(3), 1436–1448 (2003)
[9] Noakes, L.: Duality and Riemannian cubics. Adv. Comput. Math. 25(1-3), 195–209 (2006)

[10] Noakes, L., Popiel, T.: Quadratures and cubics in SO(3) and SO(1, 2). IMA J. Math. Control
Inform. 23(4), 463–473 (2006)

[11] O’Donnell, L.J., Westin, C.F.: An introduction to diffusion tensor image analysis. Neurosurg
Clin N Am. 22(2), 185–196 (2011)

[12] Pennec, X.: Manifold-valued image processing with SPD matrices. In: Riemannian Geometric
Statistics in Medical Image Analysis, pp. 75–134, Academic Press (2020)

[13] Pinheiro, J. C., and Bates, D. M.: Unconstrained parametrizations for variance-covariance
matrices. Statistics and Computing 6, 289–296 (1996)

[14] Popiel, T.: Higher order geodesics in Lie groups, Math. Control Signals Syst. 19, 235–253
(2007)

[15] Thanwerdas, Y., Pennec, X.: Theoretically and computationally convenient geometries on
full-rank correlation matrices. SIAM J. Matrix Anal. Appl. 43(4), 1851–1872 (2022)

[16] Zhang, E., Noakes, L.: Riemannian cubics and elastica in the manifold SPD(n) of all n × n
symmetric positive-definite matrices. J. Geom. Mech. 11(2), 235–253 (2019)



12 M. CAMARINHA, L. MACHADO AND F. SILVA LEITE

Margarida Camarinha
University of Coimbra, CMUC, Department of Mathematics, 3000-143 Coimbra, Portugal

E-mail address: mmlsc@mat.uc.pt
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