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1. Introduction

In a companion paper (see [2]), we give new tractable sufficient conditions for
the monotonicity with respect to a real parameter of zeros of classical orthogo-
nal polynomials (COP) on linear, quadratic, q-linear, and q-quadratic grids. In
particular, we analyze in a simple and unified way the monotonicity of the zeros
of Hahn, Charlier, Krawtchouk, Meixner, Racah, dual Hahn, q-Meixner, quan-
tum q-Krawtchouk, q-Krawtchouk, affine q-Krawtchouk, q-Charlier, Al-Salam-
Carlitz, q-Hahn, little q-Jacobi, little q-Laguerre/Wall, q-Bessel, q-Racah and
dual q-Hahn polynomials. However, these results do not allow us to compare
the zeros of the elements of two different sequences of COP. For this purpose we
need a "comparison theorem" of Sturm type. For the linear grid, there is a wide
variety of results in this direction, e.g., [1, 4, 5, 14]. However, for the general
case, as far as we know, this problem has not yet been considered. The funda-
mental purpose of this note is to establish the first results in this direction. To
achieve this objective, as in [2], our starting point is the hypergeometric-type
difference equation introduced by Nikiforov and Uvarov introduced in [10, (5)]
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(see also [11, p. 127] and [9, p. 71]):

ã(x(s))
∆

∆x(s− 1/2)

(∇y(x(s))

∇x(s)

)
+ b̃(x(s))

(
∆y(x(s))

∆x(s)
+

∇y(x(s))

∇x(s)

)

+c y(x(s)) = 0,

or, equivalently,

a(s)
∆

∆x(s− 1/2)

(∇y(x(s))

∇x(s)

)
+ b(s)

∆y(x(s))

∆x(s)
+ c y(x(s)) = 0, (1.1)

where

a(s) = ã(x(s))− 1

2
b̃(x(s))∆x(s− 1/2), b(s) = b̃(x(s)),

x(s) defines class of grids with, generally nonuniform, step ∆x(s) = x(s+1)−
x(s), ∇x(s) = x(s)− x(s− 1), ã(x(s)) and b̃(x(s)) are polynomials of degree
at most 2 and 1 in x, respectively, and c is a constant. In what follows, we
assume that x is a real-valued function defined on an interval of the real line.
For similar purposes, in [2, (2.1)], we rewrite (1.1) in the following useful way:

A(s)y(x(s− 1)) + B(s)y(x(s+ 1)) + C(s)y(x(s)) = 0, (1.2)

where

A(s) =
a(s)

∇x(s)∆x(s− 1/2)
, B(s) =

a(s) + b(s)∆x(s− 1/2)

∆x(s)∆x(s− 1/2)
,

C(s) = c−B(s)− A(s). (1.3)

Fix a ∈ R and N ∈ {3, 4, . . .}∪ {+∞}. Set si = a+ i (i = 0, 1, . . . , N − 1),
S = {s0, s1, . . . , sN−1} and S ′ = S \ {s0, sN−1}. Assume A(s) 6= 0 and B(s) 6=
0 for each s ∈ S ′. Set y = u v on S, v being the new unknown function and u
so that v satisfy

∆∇v(x(s)) + λ(s) v(x(s)) = 0 (1.4)

on S. Direct calculation gives that

A(s)u(x(s− 1)) = B(s)u(x(s+ 1)) (1.5)
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for

u(x(sk)) =





u(x(a))

k/2∏

j=1

A(s2j−1)

B(s2j−1)
, k even,

u(x(a+ 1))

(k−1)/2∏

j=1

A(s2j)

B(s2j)
, k odd,

(1.6)

with arbitrary initial condition u(x(a)) 6= 0 and u(x(a + 1)) 6= 0. Hence, we
can rewrite (1.2) as

v(x(s+ 1)) + v(x(s− 1)) +G(s)v(x(s)) = 0, (1.7)

with the initial conditions that v(x(a)) 6= 0 is arbitrarily chosen and

v(x(a+ 1)) = −C(a)

B(a)

u(x(a))

u(x(a+ 1))
v(x(a)),

where

G(sk) =





u(x(a))

u(x(a+ 1))

C(sk)

B(sk)

k/2∏

j=1

A(s2j−1)

B(s2j−1)

k/2∏

j=1

B(s2j)

A(s2j)
, k even,

u(x(a+ 1))

u(x(a))

C(sk)

B(sk)

(k−1)/2∏

j=1

A(s2j)

B(s2j)

(k+1)/2∏

j=1

B(s2j−1)

A(s2j−1)
, k odd.

(1.8)

(Note that (1.7) can be transform in (1.4) taking G(s) = λ(s)− 2.)
Although our main motivation are the polynomial solutions of (1.1), the

results presented in Section 3 are slightly more general. In Section 2 we give
new sufficient conditions for the monotonicity with respect to a real parameter
of nodes of COP. Finally, in Section 4 we apply our results to some families of
COP.

2. Monotonicity theorem

From now on, we assume that x is a continuous strictly increasing function
on an interval of the real line containing the discrete set of points S. To deal
with a discrete analogue of Sturm’s separation theorem, Hartman (see [6])
introduced the notion of generalized zeros: either an actual zero or where the
solution changes its sign. Here we work with some specific generalized zeros,
the familiar notion of “node” used by Porter [12] (see also [4, p. 131]). Of



4 A. SUZUKI

course, the interval (x(s′ − 1), x(s′)] (s′ ∈ S \ {s0}) contains a zero of a COP
solution of (1.1) on S if and only if it contains a node (see Lemma 4.1).

Definition 2.1. Let v be a solution of (1.7) on S. Assume that v changes its
sign on the interval (x(s′− 1), x(s′)] (s′ ∈ S \ {s0}). The point of intersection
of the x-axis with the line segment with endpoints (x(s′− 1), v(x(s′− 1))) and
(x(s′), v(x(s′))) is called a node of v (see Figure 1).

Figure 1. The node (white point) between x(s′ − 1) and x(s′).

We assume that the functions A, B, C appearing in (1.2) depend on a pa-
rameter t varying in a non-degenerate open interval of the real line. The next
theorem was proved by Porter (see [12]) for the linear grid x(s) = s.

Theorem 2.1. For each s ∈ S, let G(s, t) be a decreasing function of a real
parameter t varying in a non-degenerate open interval of the real line. Assume
that v(·, t) is a nonzero continuous function of t for each s ∈ S and satisfies

v(x(s+ 1), t) + v(x(s− 1), t) +G(s, t)v(x(s), t) = 0. (2.1)

Suppose also that v(x(a + 1), t)/v(x(a), t) is an increasing function of t and
v(x(a), t) 6= 0 for all t. Then the nodes of v(·, t) are increasing functions of t.

Proof : Define vǫ(x(s), t) = v(x(s), t+ ǫ) for ǫ > 0 sufficiently small. Hence,

vǫ(x(s+ 1), t) + vǫ(x(s− 1), t) +G(s, t+ ǫ)vǫ(x(s), t) = 0. (2.2)

Multiplying (2.1) by vǫ(x(s), t), (2.2) by v(x(s), t) and subtracting the results,
we get

v(x(s), t)vǫ(x(s+ 1), t)− vǫ(x(s), t)v(x(s+ 1), t)

= (G(s, t)−G(s, t+ ǫ))v(x(s), t)vǫ(x(s), t)

+ v(x(s− 1), t)vǫ(x(s), t)− vǫ(x(s− 1), t)v(x(s), t). (2.3)
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Applying recursively (2.3), we have

v(x(sj), t)vǫ(x(sj + 1), t)− vǫ(x(sj), t)v(x(sj + 1), t)

=

j∑

i=1

(G(si, t)−G(si, t+ ǫ))v(x(si), t)vǫ(x(si), t)

+ v(x(a), t)vǫ(x(a), t)

(
vǫ(x(a+ 1), t)

vǫ(x(a), t)
− v(x(a+ 1), t)

v(x(a), t)

)
, (2.4)

for each sj ∈ S. Thus, under our assumption, it follows easily that

v(x(s), t)vǫ(x(s+ 1), t)− vǫ(x(s), t)v(x(s+ 1), t) > 0

on S. Assume that v(·, t) has a node on (x(s′), (x(s′ + 1)) (s′ ∈ S). Hence
sgn v(x(s′), t) = −sgn v(x(s′ + 1), t). We leave it to the reader to verify that
from (2.4), and making use of our assumptions, we can conclude that v(x(s′+
1), t)/v(x(s′), t) is a strictly increasing function of t. Now we consider the line
segment with endpoints (x(s′), v(x(s′), t)) and (x(s′ + 1), v(x(s′ + 1), t)), i.e.,

V (X)− v(x(s′), t) =
v(x(s′ + 1), t)− v(x(s′), t)

x(s′ + 1)− x(s′)
(X − x(s′)).

If V (X ′) = 0, then

X ′ =
x(s′ + 1)− x(s′)

1− v(x(s′ + 1), t)

v(x(s′), t)

+ x(s′).

Since v(x(s′ + 1), t)/v(x(s′), t) < 0 is a strictly increasing function of t, X ′

moves to the right when t increases. We reach the same conclusion easily if
v(x(s′), t) = 0 for some t, which concludes the proof.

3. Comparison theorems

Definition 3.1. [3, Definition 7.8] We say that a solution y of (1.1) (or (1.7))
has a generalized zero at x(s′) (s′ ∈ S \ {s0}) if if either y(x(s′)) = 0 or
y(x(s′ − 1))y(x(s′)) < 0

The next result is known as a discrete version of Sturm’s comparison theorem
for solutions of (1.7) (see [1]). It will be used to prove a similar result for
solutions of (1.1).
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Lemma 3.1. Let v1 and v2 be non-trivial solutions on S of

v1(x(s+ 1)) + v1(x(s− 1)) + F1(s)v1(x(s)) = 0, (3.1)

v2(x(s+ 1)) + v2(x(s− 1)) + F2(s)v2(x(s)) = 0, (3.2)

respectively. Let x(s′) < x(s′′) be two consecutive generalized zeros of v1. If
F2(s) ≥ F1(s) for each s ∈ S such that s′ ≤ s ≤ s′′ − 1, then v2 has at least
one node on (x(s′ − 1), x(s′′)).

Proof : Multiplying (3.1) by v2(x(s)), (3.2) by v1(x(s)) and subtracting the
results, we obtain

v2(x(s))(v1(x(s+ 1)) + v1(x(s− 1)))− v1(x(s))(v2(x(s+ 1)) + v2(x(s− 1)))

= (F1(s)− F2(s))v1(x(s))v2(x(s)).

We can check that

v1(x(s))(v2(x(s+ 1)) + v2(x(s− 1)))− v2(x(s))(v1(x(s+ 1)) + v1(x(s− 1)))

= v1(x(s))∆∇v2(x(s)) + v2(x(s))∆∇v1(x(s))

= ∆(v1(x(s))∇v2(x(s)))−∆v2(x(s))∆v1(x(s))

−∆(v2(x(s))∇v1(x(s))) + ∆v1(x(s))∆v2(x(s))

= ∆(v1(x(s))∇v2(x(s))− v2(x(s))∇v1(x(s)))

= ∆(v2(x(s))v1(x(s− 1))− v1(x(s))v2(x(s− 1))).

Hence

∆(v2(x(s))v1(x(s− 1))− v1(x(s))v2(x(s− 1)))

= (F1(s)− F2(s))y1(x(s))y2(x(s)). (3.3)

Summing both sides of (3.3) from s′ to s′′ − 1, we get

(v2(x(s))v1(x(s− 1))− v1(x(s))v2(x(s− 1)))
∣∣∣
s′′

s′

=
∑

s′≤s≤s′′−1

(F1(s)− F2(s))v1(x(s))v2(x(s)) = R(s′, s′′). (3.4)

There is no loss of generality in assuming v1(x(s)) > 0 for all s ∈ [s′+1, s′′−1].
Suppose that v2 has no nodes on (x(s′ − 1), x(s′′)). Hence, without loss of
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generality we can assume v2(x(s)) > 0 for all s ∈ (s′−1, s′′). Thus, R(s′, s′′) ≤
0 and

v2(x(s
′′))v1(x(s

′′ − 1))− v1(x(s
′′))v2(x(s

′′ − 1)) ≥ 0,

v2(x(s
′))v1(x(s

′ − 1))− v1(x(s
′))v2(x(s

′ − 1)) < 0,

which is a contradiction.

Lemma 3.2. Let y be a solution of (1.1). Set y = uv for s ∈ S, where u is
given by (1.6). Assume that u(x(a))u(x(a+1)) > 0 and A(s)B(s) > 0 on S ′.
Then, y has a node on (x(s′ − 1), x(s′)) (s′ ∈ S \ {s0}) if and only v has a
node on that interval. Moreover, y(x(s′)) = 0 if and only if v(x(s′)) = 0.

Proof : Follows immediately from (1.6).

The following theorem is our main result and will be used for COP. Note
that it is written in a more general way.

Theorem 3.1. Let y1 and y2 be non-trivial solutions of the difference equations

A1(s)y1(x(s− 1)) + B1(s)y1(x(s+ 1)) + C1(s)y1(x(s)) = 0 (3.5)

and

A2(s)y2(x(s− 1)) +B2(s)y2(x(s+ 1)) + C2(s)y2(x(s)) = 0, (3.6)

respectively, with A1(s)B1(s) > 0 and A2(s)B2(s) > 0 for each s ∈ S ′. For
i ∈ {1, 2}, set

Fi(sk) =





d
Ci(sk)

Bi(sk)

k/2∏

j=1

Ai(s2j−1)Bi(s2j)

Ai(s2j)Bi(s2j−1)
, k even,

1

d

Ci(sk)

Ai(sk)

(k−1)/2∏

j=1

Ai(s2j)Bi(s2j−1)

Ai(s2j−1)Bi(s2j)
, k odd,

where d > 0 is an arbitrarily chosen constant. Let x(s′) < x(s′′) be two
consecutive generalized zeros of y1. If F2(s) ≥ F1(s) for each s ∈ S such that
s′ ≤ s ≤ s′′ − 1, then y2 has at least one node on (x(s′ − 1), x(s′′)).

Proof : Let i ∈ {1, 2}. Since Ai(s)Bi(s) > 0 for each s ∈ S ′, ui(x(a)) > 0 and
ui(x(a + 1)) > 0, if we consider yi = uivi as in Section 1 and use Lemma 3.1
for v1 and v2, then the result follows from Lemma 3.2.

Remark 3.1. In the conclusion of Theorem 3.1, one may write



8 A. SUZUKI

(1) zero of y2 instead of node, under the additional condition that for any
two consecutive points z′ < z′′ of S there is at most one zero of y1 and
at most one zero of y2 on (x(z′), x(z′′)] (see next section);

(2) generalized zero of y2 instead of node, and the result would be that y2
has at least one generalized zero on [x(s′), x(s′′)].

We can also obtain results for extreme nodes of a solution of (1.1) and (1.7).

Lemma 3.3. Let v1 and v2 be non-trivial solutions of (3.1) and (3.2), respec-
tively, where x(s) is a continuous and strictly increasing function. Let x(s′)
and x(s′′) be the smallest and greatest generalized zeros of v1, respectively, with
s′ ≥ a+ 2 and s′′ ≤ sN−2.

(1) If F2(s) > F1(s) for each a+ 1 ≤ s ≤ s′ − 1, and

v2(x(a+ 1))v1(x(a))− v1(x(a+ 1))v2(x(a)) = 0, (3.7)

then v2 has at least one node on (x(a), x(s′));
(2) If F2(s) ≥ F1(s) for each s′′ ≤ s ≤ sN−2, and

v2(x(sN−1))v1(x(sN−2))− v1(x(sN−1))v2(x(sN−2)) = 0, (3.8)

then v2 has at least one node on (x(s′′ − 1), x(sN − 1)).

Proof : (1) Summing both sides of (3.3) from a+ 1 to s′ − 1, we obtain

(v2(x(s))v1(x(s− 1))− v1(x(s))v2(x(s− 1)))
∣∣∣
s′

a+1

=
∑

a+1≤s≤s′−1

(F1(s)− F2(s))v1(x(s))v2(x(s)) = R(s′). (3.9)

Without loss of generality, we may assume v1(x(s)) > 0 for all s ∈
[a, s′−1]. Suppose that v2 has no nodes on (x(a), x(s′)). If v2(x(s)) > 0,
∀s ∈ (a, s′), then

v2(x(s
′))v1(x(s

′ − 1))− v1(x(s
′))v2(x(s

′ − 1)) ≥ 0

and R(s′) < 0, which is a contradiction. Otherwise, if v2(x(s)) < 0,
∀s ∈ (a, s′), then

v2(x(s
′))v1(x(s

′ − 1))− v1(x(s
′))v2(x(s

′ − 1)) ≤ 0

and R(s′) > 0, which is a contradiction. Therefore, v2 has at least one
node on (x(a), x(s′)).
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(2) Similar to the proof for i).

Theorem 3.2. Let y1 and y2 be non-trivial solutions of the difference equations

A1(s)y1(x(s− 1)) +B1(s)y1(x(s+ 1)) + C1(s)y1(x(s)) = 0 (3.10)

and

A2(s)y2(x(s− 1)) + B2(s)y2(x(s+ 1)) + C2(s)y2(x(s)) = 0, (3.11)

respectively, with A1(s)B1(s) > 0 and A2(s)B2(s) > 0 for each s ∈ S ′. For
i ∈ {1, 2}, set

Fi(sk) =





d
Ci(sk)

Bi(sk)

k/2∏

j=1

Ai(s2j−1)Bi(s2j)

Ai(s2j)Bi(s2j−1)
, k even,

1

d

Ci(sk)

Ai(sk)

(k−1)/2∏

j=1

Ai(s2j)Bi(s2j−1)

Ai(s2j−1)Bi(s2j)
, k odd,

where d > 0 is an arbitrarily chosen constant. Let x(s′) and x(s′′) be the
smallest and greatest generalized zero of y1, respectively, with s′ ≥ a + 2 and
s′′ ≤ sN−2.

(1) If F2(s) > F1(s) for each a+ 1 ≤ s ≤ s′ − 1, and

y2(x(a+ 1))y1(x(a))− y1(x(a+ 1))y2(x(a)) = 0, (3.12)

then y2 has at least one node on (x(a), x(s′));
(2) If F2(s) ≥ F1(s) for each s′′ ≤ s ≤ sN−2, and

y2(x(sN−1))y1(x(sN−2))− y1(x(sN−1))y2(x(sN−2)) = 0, (3.13)

then y2 has at least one node on (x(s′′ − 1), x(sN − 1)).

Proof : Similar to the proof of Theorem 3.1, using Lemma 3.3 instead of Lemma
3.1.

4. Applications

Here we present some examples comparing zeros of two COP. It is known
that (1.1) has polynomial solutions in x, whose difference derivatives satisfy
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equations of the same kind if and only if, for q 6= 1 fixed, x is a linear, quadratic,
q-linear, or q-quadratic grid of the form

x(s) =

{
C1s

2 + C2s,

C3q
−s + C4q

s,

where (C1, C2) 6= (0, 0) and (C3, C4) 6= (0, 0). The grids that depend on "q"
are called q-linear if C3 or C4 is zero; otherwise, it is q-quadratic. By using
transformations, we can reduce the expressions for the grids to simpler forms.
In what follows, we assume that the grid x takes on the following canonical
forms:

x(s) =






s (I)

s(s+ 1) (II)

qs (q > 1) (III)

1

2
(qs − q−s) (q > 1) (IV)

1

2
(qs + q−s) (q > 1) (V)

1

2
(qs + q−s) (q = e2iθ, 0 < θ < π/2). (VI)

(4.1)

Definition 4.1. Fix a ∈ R ∪ {−∞} and N ∈ N ∪ {∞} and set b = a + N .
Fix q and let x(s) be a real-valued function given by (4.1), where the variable s
ranges over the finite interval [a, b] or the infinity interval [a,∞). A sequence
of polynomials, (Pn(x(s)))

N−1
n=0 , is said to be a sequence of classical discrete

orthogonal polynomials on the set {x(a), x(a + 1), . . . , x(b − 1)} or, simply,
COP if:

(1) Pn satisfy (1.1), with x being a strictly monotone function on [a, b] or
[a,∞) given, up to a linear transformation, by (4.1);

(2) there exists a positive weight function ω satisfying the boundary condi-
tions

ω(s)a(s)xk

(
s− 1

2

)∣∣∣∣
a,b

= 0 (k = 0, 1, . . . ); (4.2)
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(3) the difference equation

∆

∆x
(
x− 1

2

)(ω(s)a(s)) = ω(s)b(s) (4.3)

holds.

Remark 4.1. The Pearson type equation (4.3) can be rewritten as

ω(s+ 1) =
B(s)∆x(s− 1/2)

A(s+ 1)∆x(s+ 1/2)
ω(s). (4.4)

Applying (4.4) recursively, we obtain
s∏

i=1

B(i)

A(i)
=

ω(s)B(s)∆x(s− 1/2)

ω(a)B(a)∇x(1/2)
(4.5)

and taking u(x(a)) = u(x(a+ 1)) = 1, we may rewrite (1.8) as

F (sk) =
ω(sk)C(sk)∆x(sk − 1/2)

ω(a)B(a)∇x(1/2)
×





(
k/2∏
j=1

A(s2j−1)

B(s2j−1)

)2

, k even,

(
(k−1)/2∏
j=1

A(s2j)

B(s2j)

)2

, k odd.

(4.6)

From now on, the function F defined by (4.6) will be called comparison
function of Pn.

Lemma 4.1. Assume the hypothesis of Lemma 3.2. Assume that there is at
most one zero of y on (x(s − 1)), x(s)) for each s ∈ S \ {s0}. Then, y has
a zero on (x(s′ − 1), x(s′)) (s′ ∈ S \ {s0}) if and only v has a node on that
interval. Moreover, y(x(s′)) = 0 if and only if v(x(s′)) = 0.

Proof : Clearly, if v has a node on (x(s′ − 1), x(s′)) for some s′ ∈ S \ {s0},
then y has a zero on that interval. Now, assume that y has exactly one zero on
(x(s′ − 1), x(s′)) for some s′ ∈ S \ {s0}. Then, y(x(s′ − 1))y(x(s′)) < 0, i.e.,
y has a node on (x(s′ − 1), x(s′)), and the result follows from Lemma 3.2.

Next, we present examples of applications of Theorem 3.1 on the linear and
q-linear grids. On the linear grid, we compare the functions for the Meixner
and Charlier polynomials of same degree. On the q-linear grid, we compare the
functions for the q-Krawtchouk and Al-Salam-Carlitz II, also of same degree,
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but different intervals of orthogonality. It is worth mentioning that Theorem 3.1
can also be used for other two polynomials on the grids (4.1) (both polynomials
must be on the same grid), even for the cases where their degrees are not the
same nor their corresponding orthogonality intervals, as long as they fulfil all
the hypothesis. For example, one could use it for the Hahn and Krawtchouk
polynomials of different degrees and different orthogonality intervals on the
linear grid, under certain conditions.

4.1. The Meixner and Charlier polynomials. The Meixner polynomials
(see [7, Section 9.10]),

y(s) = M (γ,µ)
n (s) = 2F1

(−n, −s

γ

∣∣∣∣ 1−
1

µ

)

(n = 1, 2, . . . , 0 < µ < 1, γ > 0), satisfy the difference equation (1.2) with
A(s, γ, µ) = s, B(s, γ, µ) = µ(s+ γ) and C(s, γ, µ) = n(1−µ)− s− (s+ γ)µ.
Note that A(s, γ, µ)B(s, γ, µ) > 0 for each s ∈ {1, 2, . . .}.

The Charlier polynomials (see [7, Section 9.14]),

y(s) = C(α)
n (s) = 2F0

(−n, −s

−

∣∣∣∣ −
1

α

)

(n = 1, 2, . . . , α > 0), satisfy the difference equation (1.2) with A(s, α) = s,
B(s, α) = α and C(s, α) = n − s − α. Note that A(s, α)B(s, α) > 0 for
s ∈ {1, 2, . . .}.

Remark 4.2. (see [8, Theorem 7]) For n ∈ {2, 3, . . .}, all the zeros of M
(γ,µ)
n

are real and lie on the interval (0,M(n, γ, µ)), where

M(n, γ, µ) = µ2 −





3µ1/6µ
1/3
2 (µ2 + γ)1/3

22/3(1− µ)1/3n1/6(n+ γ)1/6
,

µ2 ≤ µ1 +
√

µ1(µ1 + γ),

3µ1/3(
√
µ1 +

√
µ1 + γ)2/3

(1− µ)2/3
,

µ2 > µ1 +
√

µ1(µ1 + γ),

(4.7)

with

µ1 =
(
√
n−

√
µ(n+ γ))2

1− µ
, µ2 =

(
√
n+

√
µ(n+ γ))2

1− µ
.
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Lemma 4.2. Fix α ∈ (2,+∞), γ ∈ (0,+∞), µ ∈ (0, 1). Denote the zeros

of M
(γ,µ)
n and C

(α)
n by x1 < · · · < xn and x̃1 < · · · < x̃n , respectively. If

n ∈ {2, 3, . . .} is such that (µ(γ + 1) + 1)/(1− µ) ≤ n < α, and there are at

least two generalized zeros of C
(α)
n on (0, (n(1− µ) − γµ)/(1 + µ) + 1], then

there is at least one zero of M
(γ,µ)
n on (s′ − 1, s′′), where s′ − 1 < s′′ are two

consecutive generalized zeros of C
(α)
n on (0, (n(1− µ)− γµ)/(1 + µ) + 1].

Proof : By [2, Lemma 2.1], M
(γ,µ)
n and C

(α)
n satisfy the hypothesis of Lemma

4.1. Denote the comparison functions of M
(γ,µ)
n and C

(α)
n by FM and FC ,

respectively. From (4.6), if n−s−α ≤ 0 and n(1−µ)−s−µ(γ+s) ≥ 0, then
FC(s) ≤ FM(s) for 1 ≤ s ≤ (n(1 − µ) − γµ)/(1 + µ) and the result follows
from Theorem 3.1.

Proposition 4.1. Fix α ∈ (2,+∞), γ ∈ (0,+∞), µ ∈ (0, 1). Denote the

zeros of M
(γ,µ)
n and C

(α)
n by x1 < · · · < xn and x̃1 < · · · < x̃n , respectively. If

n ∈ {2, 3, . . .} is such that (µ(γ + 1) + 1)/(1− µ) ≤ n < α and M(n, γ, µ) ≤
(n(1 − µ) − γµ)/(1 + µ), with M(n, γ, µ) given by (4.7), then xj < ⌈x̃j⌉ for
each j ∈ {1, . . . , n}.
Proof : Since M(n, γ, µ) ≤ (n(1− µ)− γµ)/(1+ µ), all the zeros of M

(γ,µ)
n are

on (0, (n(1 − µ) − γµ)/(1 + µ)). Note that xj < ⌈x̃j⌉ for the zeros of C
(α)
n

outside this interval, since they will be greater than any zero of M
(γ,µ)
n . For the

zeros of C
(α)
n on (0, (n(1− µ)− γµ)/(1 + µ)), xj < ⌈x̃j⌉ follows from Lemma

4.2 and the fact that, under our hypothesis, M
(γ,µ)
n (0)M

(γ,µ)
n (1) ≤ 0, i.e., there

is one zero of M
(γ,µ)
n on (0, 1] and therefore x1 < ⌈x̃1⌉.

From Proposition 4.1, we can obtain some examples.

Example 4.1. Let n ∈ {2, 3, . . . , 7}. Denoting by x1 < · · · < xn and x̃1 <

· · · < x̃n the zeros of M
(1,1/100)
n and C

(10)
n , respectively, we have xj < ⌈x̃j⌉ for

each j ∈ {1, . . . , n}.
● ● ● ● ● ● ●■ ■ ■ ■ ■ ■ ■
0 5 10 15 20 25

Figure 2. Zeros of C
(10)
7 and M

(1,1/100)
7 (� and •, respectively).

Example 4.2. Let n ∈ {2, 3, . . . , 90}. Denoting by x1 < · · · < xn and x̃1 <

· · · < x̃n the zeros of M
(1,1/10000)
n and C

(100)
n , respectively, we have xj < ⌈x̃j⌉

for each j ∈ {1, . . . , n}.
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Remark 4.3. Proposition 4.1 is just one of the applications of Theorem 3.1.
For instance, one could follow the same steps to obtain some conditions for
xj < ⌈x̃j⌉ for each j ∈ {1, . . . , n}, where x1 < · · · < xn and x̃1 < · · · < x̃n

are the zeros of C
(α)
n and M

(γ,µ)
n , respectively. Note that Lemma 4.2 strongly

relies on the signal of the comparison functions and therefore is excluding other
cases where the same result could possibly be achieved, i.e., the cases where
FC(s)FM(s) > 0. If one prefers, instead of using Lemma 4.2 or Proposition
4.1, they can compute the comparison functions of two polynomials, given their
degrees and parameters, check the inequality between both functions and the
existence of zeros on the intervals where such inequality holds, and then use
Theorem 3.1.

4.2. The q-Krawtchouk and Al-Salam-Carlitz II polynomials. Now we
consider two COP on the q-linear grid x(s) = q−s (0 < q < 1), with different
intervals of orthogonality. Note that x is an increasing function of s ∈ [0,+∞).

The q-Krawtchouk polynomials (see [7, Section 14.15]),

y(s) = K(p)
n (q−s; q) = 3φ2

(
q−n, −pqn, q−s

0, q1−N

∣∣∣∣ q, q

)

(n = 1, . . . , N − 1; p > 0), satisfy the difference equation (1.2) with A(s, p) =
p(1− qs), B(s, p) = qs−N+1− 1 and C(s, p) = q−n− qs−N+1− p(qn− qs). Note
that A(s, p)B(s, p) > 0 for each s ∈ {1, . . . , N − 2}.

The second family of Al-Salam-Carlitz polynomials (see [7, Section 14.25]),

y(s) = V (α)
n (q−s; q) = (−α)nq−(

n

2
)
2φ0

(
q−n, q−s

−

∣∣∣∣ q,
qn

α

)

(n = 1, 2, . . . ; 0 < α < q−1), satisfy the difference equation (1.2)
with A(s, α) = (1 − q−s)(α − q−s), B(s, α) = αq and C(s, α) =
α (q−s − q − 1) + q−2s (qs − qn). Note that A(s, α)B(s, α) > 0 for each
s ∈ {1, 2, . . .}.
Lemma 4.3. Fix q ∈ (0, 1), N ∈ {3, 4, . . .}, p ∈ (0,+∞) and α ∈ (0, q−1).

Denote the zeros of K
(p)
n (·; q) and V

(α)
n (·; q) by q−x1 < · · · < q−xn and q−x̃1 <

· · · < q−x̃n, respectively. If n ∈ {2, . . . , N − 1} is such that α (q−s − q − 1) +
q−2s (qs − qn) ≤ 0 and q−n−qs−N+1−p(qn−qs) ≥ 0 for each s ∈ {1, . . . , N−2}
and there are at least two zeros of V

(α)
n (·; q) on (1, q1−N ], then there is at least

one zero of K
(p)
n (·; q) on (q−s′+1, q−s′′), where q1−s′ < q−s′′ are two consecutive

generalized zeros of V
(α)
n (·; q) on (1, q1−N ].
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Proof : By [2, Lemma 2.1], V
(α)
n (·; q) and K

(p)
n (·; q) satisfy the hypothesis of

Lemma 4.1. Denote the comparison functions of V
(α)
n (·; q) and K

(p)
n (·; q) by

FV (s) and FK(s), respectively. By (4.6), if α (q−s − q − 1)+q−2s (qs − qn) ≤ 0
and q−n − qs−N+1 − p(qn − qs) ≥ 0, then FV (s) ≤ FK(s). The result follows
from Theorem 3.1 and Lemma 4.1.

Proposition 4.2. Fix q ∈ (0, 1), N ∈ {3, 4, . . .}, p ∈ (0,+∞) and α ∈
(0, q−1). Denote the zeros of K

(p)
n (·; q) and V

(α)
n (·; q) by q−x1 < · · · < q−xn

and q−x̃1 < · · · < q−x̃n, respectively. If n ∈ {2, . . . , N − 1} is such that
α (q−s − q − 1) + q−2s (qs − qn) ≤ 0 and q−n − qs−N+1 − p(qn − qs) ≥ 0 for
each s ∈ {1, . . . , N −2}, and qN−n− q+p(qN − qN+n) ≥ 0, then q−xj < q−⌈x̃j⌉

for each j ∈ {1, . . . , n}.

Proof : By [13, Theorem 3.3.1], all the zeros of K
(p)
n (·; q) are on (1, q1−N). Note

that q−xj < q−⌈x̃j⌉ for the zeros of V
(α)
n (·; q) outside this interval, since they will

be greater than any zero of K
(p)
n (·; q). For the zeros of V

(α)
n (·; q) on (1, q1−N ],

q−xj < q−⌈x̃j⌉ follows from Lemma 4.3 and the fact that, since qN−n − q +

p(qN − qN+n) ≥ 0, we have K
(p)
n (1; q)K

(p)
n (q−1; q) ≤ 0, i.e., there is one zero of

K
(p)
n (·; q) on (1, q−1], and therefore q−x1 < q−⌈x̃1⌉.

Some of the examples that can be obtained from Proposition 4.2 are the
following:

Example 4.3. Let q = 99/100, M = 10 and n ∈ {5, 6, . . . , 9}. Denoting by

q−x1 < · · · < q−xn and q−x̃1 < · · · < q−x̃n the zeros of K
(1)
n (·; q) and V

(10)
n (·; q),

respectively, we have q−xj < q−⌈x̃j⌉ for each j ∈ {1, . . . , n}.
Example 4.4. Let q = 99/100, M = 50 and n ∈ {32, 33, . . . , 49}. Denoting

by q−x1 < · · · < q−xn and q−x̃1 < · · · < q−x̃n the zeros of K
(1)
n (·; q) and

V
(10)
n (·; q), respectively, we have q−xj < q−⌈x̃j⌉ for each j ∈ {1, . . . , n}.
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