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0. Introduction
In [14] Joyal and Tierney famously proved that every topos can be repres-
ented as a topos of equivariant sheaves on a localic groupoid. This provides
a helpful perspective from which to understand topos theory. However,
possibly due to the level of abstraction involved in the proof, many people
[22, 23, 24] seem to be unsure of exactly how to construct such a localic
groupoid in concrete cases. The aim of this paper is to show that it is
relatively straightforward to write down a localic groupoid that represents
a topos directly from the geometric theory the topos classifies.

Topos theory is a powerful mathematical framework which unifies topology
and logic in the language of category theory. In particular, every geometric
theory has an associated classifying topos that encodes information about
the models of the theory, not only in Set, but in every topos. The repres-
entation theorem of Joyal and Tierney can be understood as showing that
a topos can be viewed as a topological space (in its ‘point-free’ incarnation)
together with additional automorphisms (as given by the structure of a
groupoid). Thus, we might compare toposes to orbifolds from differential
geometry.
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While topos theory has a reputation for being difficult at times, we have
attempted to make this paper approachable to non-experts. For this reason
we do not include all the technical details from [14]. Instead we try to
give intuition for the essential ideas and hope to show that the main ideas
behind the proof of the representation theorem are not as difficult as one
might fear.

In Section 1 we provide a brief introduction to the concepts needed to
understand the paper. In particular, we discuss locales, internal groupoids,
classifying toposes and sheaves.

In Section 2 we give an explicit description for a localic groupoid associated
to the classifying topos of a geometric theory by coding models as subquo-
tients of N. It is perhaps surprising that the we do not need to consider
any larger models, but this is a consequence of the localic nature of the
construction.

An overview of the proof of the representation theorem from [14] is described
in Section 3. In Section 4 we show how this construction yields the localic
groupoid described in Section 2.

The remainder of Section 4 is devoted to applications of our explicit
description of the representing groupoid. We calculate explicit descriptions
of the left adjoints to the source and target maps in Section 4.2, and
use these to demonstrate in Section 4.3 that the opens in the ‘locale
of isomorphism classes’ are precisely the sentences of the theory (up to
provable equivalence).

In Section 4.4, we show that the localic groupoid we construct is spatial
when the theory is countable. Some readers may prefer working with
topological groupoids to locales. We compare the resulting topological
groupoid to the construction found in [6].

1. Background
We begin by recalling some background information.

1.1. Locales. A topological space is given by a set of points and a lattice
of open sets. In the pointfree approach to topology a space is described
by its lattice open sets alone and the points are derived from this. We
will give a brief introduction to this approach. For more details see [21,
Chapters II and III].
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Definition 1.1. A frame is a complete lattice satisfying the distributivity
law

a ∧
∨
α
bα =

∨
α
a ∧ bα.

Frames are (infinitary) algebraic structures with constants 0 and 1, a
binary operation ∧, and a join operation ∨ for each cardinality. Frame
homomorphisms are maps that preserve finite meets and arbitrary joins.

Note that a topological space is simply a set X together with a subframe of
the powerset PX. A continuous map of topological spaces induces a frame
homomorphism between these frames of open sets in the opposite direction
by taking preimages. In general, we call elements of a frame opens.

The category Loc of locales is the opposite of the category Frm of frames
and frame homomorphisms. A locale is simply a frame, but the direction
of locale morphisms emphasises their geometric nature by agreeing with
the direction of continuous maps of topological spaces. We will maintain
a notational distinction between a locale X and its frame of opens OX.
If f : X → Y is a locale morphism, we write f ∗ : OY → OX for the
corresponding frame homomorphism. Since f ∗ preserves arbitrary joins, it
has a right adjoint f∗ : OX → OY .

A point of a locale X is given by a locale morphism from the terminal
locale 1 (represented by the one-point space) to X. In good cases, the
abstract points of a locale obtained from a topological space recover the
concrete points of the space itself. On the other hand, not every locale
arises from a topological space (see Example 1.3). A locale that does come
from a topological space is called spatial.

As with other algebraic structures, frames can be presented by generators
and relations. Such presentations can also be given a logical interpret-
ation as the Lindenbaum–Tarski algebras for a certain kind infinitary
propositional logic called geometric logic, which has finite conjunctions and
infinitary disjunctions. Let us consider an example.

Example 1.2 (The Dedekind reals). Recall that a Dedekind cut on Q is
given by a pair (L,U) of subsets of Q satisfying certain axioms. Such a
pair represents a (unique) real number that is larger than the rationals in
the ‘lower cut’ L and smaller than the rationals of the ‘upper cut’ U . The
theory of Dedekind cuts can be expressed in geometric logic by taking an
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atomic proposition with the (suggestive, but purely formal) name [p ∈ L]
for each p ∈ Q, an atomic proposition [p ∈ U ] for each p ∈ Q and the
following axioms.

[q ∈ L] ⊢ [p ∈ L] for p ≤ q (L downward closed)
[q ∈ L] ⊢ ∨

p>q [p ∈ L] for q ∈ Q (L rounded)
⊢ ∨

q∈Q [q ∈ L] (L inhabited)
[p ∈ U ] ⊢ [q ∈ U ] for p ≤ q (U upward closed)
[q ∈ U ] ⊢ ∨

p<q [p ∈ U ] for q ∈ Q (U rounded)
⊢ ∨

q∈Q [q ∈ U ] (U inhabited)
[p ∈ L] ∧ [q ∈ U ] ⊢ ⊥ for p ≥ q (L and U disjoint)

⊢ [p ∈ L] ∨ [q ∈ U ] for p < q (locatedness)
Note a sequent φ ⊢ ψ is interpreted as saying that ψ holds whenever φ
does. If φ is missing it is understood to be ⊤ (i.e. true). Sequents are
necessary since the logic does not contain an implication connective. A
model of such a theory assigns a truth value to each basic proposition such
that the sequents are satisfied. In this case, such a model gives a Dedekind
cut (L,U) where L is the set of p ∈ Q for which [p ∈ L] is true and U is
the set of p ∈ Q for which [p ∈ U ] is true.

A propositional geometric theory yields a frame presentation by simply
taking the basic propositions to be generators and each axiom φ ⊢ ψ to be
a relation φ ≤ ψ (or the equivalent equation φ ∧ ψ = φ). We say that the
corresponding locale classifies the geometric theory. The universal property
of the presentation ensures that models of the geometric theory correspond
to points of the locale, since the O1 is the frame of truth values {0, 1}. The
classifying locale for the theory of Dedekind cuts on Q is the locale of real
numbers (with their usual topology). The propositions [p ∈ L] and [p ∈ U ]
correspond to the opens (p,∞) and (−∞, p) respectively.

As a second example consider the following more unusual theory.

Example 1.3 (Partial surjections from N to X). Fix a set X and consider
the following geometric theory of partial surjections from N to X. There is
a basic position denoted by [f(n) = x] for each n ∈ N and x ∈ X, which is
of course interpreted to mean that the partial function maps n to x. The
axioms are as follows.

[f(n) = x] ∧ [f(n) = y] ⊢ x = y for n ∈ N, x, y ∈ X
⊢ ∨

n∈N[f(n) = x] for x ∈ X
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The equation x = y in the right-hand side of the functionality axiom is an
equation in the metatheory that should be interpreted as ⊤ if x = y and
⊥ otherwise.∗

If X is countable, the resulting locale is not so strange. However, if X
is PN, say, then there are no surjections from N to X. Nonetheless, the
locale is nontrivial (see [12, Example C1.2.8]). Thus, this locale is wildly
non-spatial.

Many notions from topology have analogues for locales. In particular, we
can define a notion of open locale maps.

Definition 1.4. A locale morphism f : X → Y is open if its associated
frame homomorphism f ∗ : OY → OX has a left adjoint f! : OX → OY
that satisfies the so-called Frobenius reciprocity condition: f!(f ∗(u) ∧ v) =
u ∧ f!(v).

If f ∗f! = idOX (or equivalently f ∗ is surjective), we say f is an open
sublocale inclusion. If f!f

∗ = idOY (or f ∗ is injective), we say f is an open
surjection.

The left adjoint can be understood as giving the images of opens of X under
f . Open sublocales of X are in bijection with the elements of the frame
OX. Open maps of locales are stable under composition and pullback, and
pulling back open sublocales along a map h agrees with the action of the
frame homomorphism h∗.

Definition 1.5. A locale map f : X → Y is a local homeomorphism if it
is open and so is the ‘diagonal’ map δ : X → X ×Y X, whose codomain is
given by the pullback

X ×Y X X

X Y,

π1

π2
⌟

f

f

and which satisfies π1δ = π2δ = idX .

∗Constructively, we would interpret the metatheoretical equality x = y as
∨

{1 | x = y}.
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It is easy to see that open sublocale inclusions are local homeomorphisms.
Local homeomorphisms can also be equivalently defined in terms of restrict-
ing to open embeddings on an open cover of the domain, in a similar way
to how they often are for topological spaces.

1.2. Topos theory. It is difficult to summarise what topos theory is due
to the plethora of perspectives on the subject (the eponymous ‘sketches of
an elephant’ of [12]). A (Grothendieck) topos can either be defined as a
category satisfying the abstract Giraud axioms (see [17, Theorem A1.1]),
or the category of sheaves on a site — that is, a category E which embeds
as a left-exact reflective subcategory of some category of presheaves SetCop

(i.e. a subcategory whose inclusion has a finite-limit-preserving left adjoint
SetCop → E). The specific embedding E ↪→ SetCop is not included as part
of the defining data of E . Indeed, many different sites can present the same
topos.

On the surface, the formal definitions of a topos do not appear that
exciting. However, the many desirable properties possessed by toposes
lend themselves to other perspectives on the subject. For example, toposes
behave as mathematical universes — they have a powerful internal language
that can interpret constructive mathematics.

For this paper, two aspects of topos theory will prove important: topos
theory as a syntax invariant approach to model theory (discussed in Sec-
tion 1.4), and topos theory as a generalisation of locale theory.

Example 1.6 (Sheaves on a space). A fundamental example of a topos is
the topos of sheaves on a locale X, denoted by Sh(X). This is the slice
category LH/X, where LH ⊆ Loc is the category of locales and local
homeomorphisms. A topos of the form Sh(X) is said to be localic.

Given a topos E and an object E ∈ E , the subobjects of E (i.e. equi-
valence classes of monomorphisms U ↪→ E) form a frame SubE(E) (see
[17, Proposition III.8.1]). For each arrow g : E → E ′ of E , the map
g∗ : SubE(E ′) → SubE(E), given by taking pullbacks of subobjects along g,
is a frame homomorphism (see [17, Proposition III.8.2]).

The morphisms of toposes we consider are geometric morphisms. A geo-
metric morphism between two toposes f : F → E is an adjoint pair of
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functors

F E
f∗

f∗

⊣

such that the left adjoint f ∗ preserves finite limits (in addition to colimits).
The left adjoint is commonly called the inverse image functor, while the
right adjoint is called the direct image functor.

Example 1.7. If E is the left-exact reflective subcategory of SetCop, then the
adjoint pair

E SetCop⊣
is a geometric morphism.

Every locale morphism f : X → Y induces a geometric morphism Sh(f)
from Sh(X) to Sh(Y ), whose inverse image part we write as f ∗. It sends
sends a local homeomorphism q : W → Y to its pullback along f

f ∗(W ) W

X Y,

⌟
q

f

and a morphism g of Sh(Y ) to the induced map

f ∗(W ′) W ′

f ∗(W ) W

X Y.

f∗(g) g

⌟
q

f

Note that this agrees with the definition of f ∗ as a frame homomorphism
if we conflate opens and open sublocales.

In fact, locale theory can be reinterpreted inside topos theory via the full
and faithful functor Sh: Loc ↪→ Topos (see [17, §IX]). The functor Sh has
a left adjoint, the localic reflection, which sends a topos E to the frame
SubE(1) of subobjects of the terminal object of E (see [12, Proposition
A4.6.12]).
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1.3. Properties of geometric morphisms. Many properties of locale
morphisms generalise to properties of geometric morphisms. For example,
a morphism f : X → Y of locales is open (and surjective) if and only if the
corresponding geometric morphism Sh(f) : Sh(X) → Sh(Y ) is open (and
surjective) in the following sense.

Definition 1.8. A geometric morphism f : F → E is open if, for each
object E ∈ E , the induced frame homomorphism on subobjects

f ∗
E : SubE(E) → SubF(f ∗(E))

has a left adjoint fE
! and this left adjoint is natural in E in the sense that,

for each arrow g : E → E ′, the square

SubE(E ′) SubF(f ∗(E ′))

SubE(E) SubF(f ∗(E))

SubE(g)

fE′
!

SubF (f∗(g))
fE

!

commutes. (Note that in particular, by choosing g : E ↪→ E ′ to be a
monomorphism, we can show that fE′

! satisfies Frobenius reciprocity and
so f ∗

E′ is open.) Moreover, the open geometric morphism f is said to be
surjective if f ∗ is a faithful functor.

As is the case for the analogous class of locale morphisms, open (surjective)
geometric morphisms are stable under pullback (see [14, Proposition VII.1.3]
or [10, Theorem 4.7]).

The geometric morphism Sh(f) : Sh(X) → Sh(Y ) induced by a locale map
f : X → Y has the property that every object in Sh(X) is a subquotient
of something in the inverse image — that is, for all F ∈ Sh(X) there is a
diagram:

F S f ∗(E).

Such geometric morphisms are called localic, so-named because a topos
E is localic if and only if the (necessarily unique) geometric morphism
γ : E → Set is a localic geometric morphism.

Let us see why γ : Sh(X) → Set is a localic geometric morphism for a
locale X. Each object q : Y → X of Sh(X) is a local homeomorphism, and
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so Y is covered by a collection (si)i∈I of local sections of q,

Y

Ui X.

q
si

Thus, in Sh(X) there is a diagram

Y
∐

i∈I Ui
∐

i∈I X ∼= γ∗(I)

X

s

as required.

We highlight two important facts about localic geometric morphisms.

(1) Localic geometric morphisms are stable under pullback in Topos
(see [11, Proposition 2.1]).

(2) Localic geometric morphisms are closed under composition (see [11,
Lemma 1.1]). So if h : H′ → H is a localic geometric morphism and
H is a localic topos, then H′ is a localic topos too.

Geometric morphisms into toposes can be specified by internal structures in
the codomain topos. A geometric morphism f : F → E is localic if and only
if F is the topos of internal sheaves for an internal locale (see [9, Theorem
5.34]). We won’t seek to make sense of the phrase ‘internal sheaves for an
internal locale’ here, but a precise formulation can be found in [4] or [26].

1.4. Classifying toposes. Propositional geometric logic has a first-order
generalisation which involves not just propositions, but also sorts and
relation symbols. First-order geometric logic is the fragment of infinitary
predicate logic that includes finite conjunction, infinitary disjunction, an
equality predicate and existential quantification, i.e. the symbols ∧, ∨, =
and ∃. Furthermore, sequents are now equipped with contexts which, at
a minimum, contain the free variables of the formulae inside a sequent
(equipped with their types).
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Remark 1.9. First-order geometric theories are often defined to also allow
function symbols. However, these can always be defined as binary rela-
tions together with functionality and totality axioms. We will nonetheless
occasionally find it convenient to use function notation for such relations.

Example 1.10. An example of such a theory is that of inhabited total orders.
This consists of a single sort X together with a binary relation ≤ ⊆ X ×X
satisfying the following axioms.

⊢x,y,z : X x ≤ x (reflexivity)
x ≤ y ∧ y ≤ z ⊢x,y,z : X x ≤ z (transitivity)
x ≤ y ∧ y ≤ x ⊢x,y : X x = y (antisymmetry)

⊢x,y : X x ≤ y ∨ y ≤ x (totality)
⊢∅ ∃x : X. ⊤ (inhabitedness)

Note that, just as with Example 1.2, we must use sequents since geometric
logic does not contain an implication or universal quantification symbol. A
sequent φ ⊢x⃗ ψ is understood as expressing “for all x⃗, φ implies ψ”.

Propositional geometric theories can be understood as the special case of
first-order geometric theories where there are no sorts. Basic propositions
are simply understood as nullary relations.

Just as there is a classifying locale for every propositional geometric theory,
there is a classifying topos for a general geometric theory (see [12, Proposi-
tion D3.1.12] or [3, Theorem 2.1.10]). The classifying topos for a geometry
theory T is written Set[T] and satisfies the universal property

Hom(−,Set[T]) ∼= ModT(−)
where ModT(E) denotes the category of T-models in the topos E . Moreover,
every topos classifies some geometric theory (see [12, Remark D3.1.13]
or [3, Theorem 2.1.11]). A T-model in an arbitrary topos F consists of
an object XM for each sort X and, for each relation symbol, a subobject
RM ↪→ XM

1 × . . . × XM
n such that the axioms of T are satisfied in the

following sense. From our basic relation symbols, we can construct the
interpretation of each geometric formula, and a sequent φ ⊢x⃗ ψ is satisfied
if φM ≤ ψM as subobjects of XM

1 × . . . × XM
n . See [12, §D1] for more

details.

The topos Set classifies the theory with no sorts, no symbols, and no
axioms. If T is a propositional theory (i.e. there are no sorts), then the
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classifying topos Set[T] is simply the topos of sheaves on the classifying
locale of T. Thus, the geometric morphism Set[T] → Set is localic.

More generally, if T is a theory with N sorts, then Set[T] is the topos of
sheaves for an internal locale of Set[N · O] — that is, there exists a localic
geometric morphism L : Set[T] → Set[N · O], where N · O denotes the
first-order theory with N sorts, no relations or functions, and no axioms.
This is demonstrated for N = 1 in [12, Theorem D3.2.5] (this appears in
[14] in entirely categorical terms as Proposition VII.3.1) or, for arbitrary
N , in [3, Definition 7.1.1 & Theorem 7.1.3]. Thus, in a certain expanded
sense, every topos is a ‘localic’ topos†.

1.5. Equivariant sheaves on a groupoid. A localic groupoid is a
groupoid internal to Loc, just as a topological group is an internal group
in the category of topological spaces.

Definition 1.11. A localic groupoid G is a diagram in Loc of the form

G1 ×G0 G1 G1 G0,

π2

m
π1

i

t

s

e

such that the equations

s ◦ e = t ◦ e = idG0,

s ◦m = s ◦ π1, t ◦m = t ◦ π2,

m ◦ (idG1 ×G0 m) = m ◦ (m×G0 idG1),

m ◦ (idG1 ×G0 e) = m ◦ (e×G0 idG1),

s ◦ i = t, t ◦ i = s,

m ◦ (idG1 ×G0 i) = e = m ◦ (i×G0 idG1),

i ◦ i = idG1

all hold.
†Amusingly, the slogan all topoi are localic was used by Freyd as the title of his paper [7], but

for a different sense in which every topos is ‘localic’!
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Intuitively, these conditions express that G0 is the locale of objects and
G1 is the locale of arrows of a category in which every arrow is invertible.
The ‘source’ map s and ‘target’ map t assign arrows to their domain and
codomain respectively. The map e picks out the identity arrow of an object.
The map m gives the composites of composable pairs, while i yields the
inverse of each arrow. The equations imposed on a localic groupoid express
this interpretation, e.g. the equation s ◦ e = t ◦ e = idG0 says that the
source and target of the identity arrow on an object x ∈ G0 is x, as we
would expect. Of course, a similar definition in Set would give the usual
notion of a small groupoid.

Definition 1.12. A localic groupoid is said to be open if s and t are both
open maps. We note that since s ◦ i = t and i is an isomorphism, t is open
if and only if s is.

Example 1.13. Let us consider four important classes of examples of localic
groupoids.

(0) Every small groupoid gives localic groupoid by viewing the sets of
objects and morphisms as spaces with the discrete topology. We
might call these topologically discrete groupoids.

(1) For each locale X,

X X X
idX

idX

idX

idX

idX

idX

idX (1)

is a localic groupoid. This can be viewed as the ‘discrete’ category
on the locale of objects X. We call this a categorically discrete
groupoid.

(2) Let (G,m, e) be a localic group. The diagram

G×G G 1,
π1

m
π2

i

!

!
e (2)

defines a localic groupoid. This is exactly like how a group in Set
can be viewed as a one-object category.
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(3) If G is a localic group acting continuously on a locale X by α : G×
X → X, then the diagram

G×G×X G×X X.

π1,3

m×idX

π2,3

i×idX

α

π2

(e,idX) (3)

is a localic groupoid.

A sheaf Y for a localic groupoid G is a local homeomorphism q : Y → G0
together with a compatible G1-action (though we will often omit the
map q and the action from our notation). A G1-action is a locale map
β : Y ×G0 G1 → Y , where Y ×G0 G1 is the pullback of q and the source
morphism s : G1 → G0, such that the equations

q(β(y, g)) = t(g),
β(β(y, g), h) = β(y,m(g, h)),
β(y, e(q(y))) = y

hold in the internal logic of Loc. Note that although the locales Y , G1
and G0 may not be spatial, we are able to reason in a suggestive ‘point-set’
theoretic manner. This is explained further in Section 1.7 below.

A morphism of sheaves is an ‘equivariant morphisms of bundles’ — that is,
a locale morphism f : Y → Y ′ such that

q′(f(y)) = q(y) and f(β(y, g)) = β′(f(y), g)

hold in the internal logic.

Definition 1.14. We denote the category of sheaves and morphisms of
sheaves on a localic groupoid G by Sh(G).

The category Sh(G) is a topos by [20, Proposition 5.2]. We say that an
arbitrary topos E is represented by the groupoid G if there is an equivalence
E ≃ Sh(G).

Example 1.15. We revisit the example groupoids of Example 1.13 and
describe the resulting sheaf toposes.



14 G. MANUELL AND J. L. WRIGLEY

(0) The topos of sheaves on a small groupoid G (viewed as a topologically
discrete localic groupoid) is essentially the category of discrete
opfibrations overG and is therefore equivalent to the functor category
SetG.

(1) The topos of sheaves on the groupoid (1) is the familiar topos of
sheaves Sh(X) on X.

(2) The topos of sheaves on the groupoid (2) is the topos BG of discrete
sets with a continuous action by G and equivariant maps between
these. (See [17, §III.9] for description in terms of topological groups.
The localic case is similar.)

(3) The topos of sheaves on the groupoid (3) is the topos of G-equivariant
sheaves over X, as seen in [7] and [17, Proposition A4.6].

The objects and morphisms of Sh(G) can be given a more compact definition
in terms of descent data (the reasons for the nomenclature will become
apparent in Section 3.1). A descent datum for G is a pair consisting of a
local homeomorphism q : Y → G0 and a morphism θ : s∗(Y ) → t∗(Y ) such
that

e∗(θ) = idY and m∗(θ) = π∗
2(θ) ◦ π∗

1(θ).
A morphism of descent data f : (Y, θ) → (Y ′, θ′) is a commuting triangle

Y Y ′

G0

q

f

q′

(i.e. a morphism f : Y → Y ′ in Sh(G0)) such that the square

s∗(Y ) t∗(Y )

s∗(Y ′) t∗(Y ′)

s∗(f)

θ

t∗(f)

θ′

commutes.

That the two definitions of sheaves on G are equivalent is a matter of
unravelling definitions. The notational difference arises because, for descent
data, we keep track of the arrow f ∈ G1 once it has been applied to a
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point y ∈ Y . Indeed, given a G1-action β : Y ×G0 G1 → Y , the corres-
ponding descent datum is the map θβ that sends the pair (y, f) ∈ s∗(Y ) to
(β(y, f), f) ∈ t∗(Y ). For completeness, we explain the equivalence between
G1-actions and descent data in detail in Appendix A.

1.6. Homomorphisms of localic groupoids. As established in [20,
§5.4], taking sheaves on a localic groupoid is a functorial construction with
respect to homomorphisms of localic groupoids. Homomorphisms of localic
groupoids are functors between internal categories.

Definition 1.16. A homomorphism of localic groupoids φ : G → H is a pair
of locale morphisms φ0 : G0 → H0 and φ1 : G1 → H1, between the locales
of objects and arrows respectively, which commute with the respective
structure morphisms of the groupoids.

G1 ×G0 G1 H1 ×H0 H1

G1 H1

G0 H0φ0

φ1

s t t′s′ e′e

m m′

(4)

Each homomorphism of localic groupoids φ : G → H induces a geometric
morphism Sh(φ) : Sh(G) → Sh(H) (see [20, §5]). The inverse image functor
Sh(φ)∗ sends the descent datum (Y, θ) to the pair consisting of φ∗

0(Y ) and
the map

s∗φ∗
0(Y ) = φ∗

1s
′∗(Y ) φ∗

1(θ)−−−→ φ∗
1t

′∗(Y ) = t∗φ∗
0(Y ).

That φ∗
1(θ) satisfies the required equations follows from the commutativity

of (4). Each morphism f : (Y, θ) → (Y ′, θ′) of descent data is sent by Sh(φ)∗

to the map

φ∗
0(f) : (φ∗

0(Y ), φ∗
1(θ)) → (φ∗

0(Y ′), φ∗
1(θ′)).

The required commutativity condition φ∗
1(θ′) ◦ s∗φ∗

0(f) = t∗φ∗
0(f) ◦ φ∗

1(θ)
follows, since
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φ∗
1(θ′) ◦ s∗φ∗

0(f) = φ∗
1(θ′) ◦ φ∗

1s
′∗(f)

= φ∗
1(θ′ ◦ s′∗(f))

= φ∗
1(t′∗(f) ◦ θ)

= φ∗
1t

′∗(f) ◦ φ∗
1(θ)

= t∗φ∗
0(f) ◦ φ∗

1(θ).

Thus, we can define a functor Sh: LocGrpd → Topos from the category
of localic groupoids and their homomorphisms into the category of toposes
and geometric morphisms. The main result of Joyal and Tierney (see
Theorem 3.7) is equivalent to the statement that this functor is essentially
surjective on objects.

1.7. Reasoning using points. As explained in [20, §5.3], we can often
express proofs in locale theory in the more familiar notation of point-set
topology, provided a ‘point’ y ∈ Y is taken to mean a ‘generalised point’
of Y , i.e. a map y : U → Y . In this case, we will call y a U -point. To
translate a ‘point-set’ argument back to a concrete one, each instance of
y ∈ Y should be replaced by a generic locale morphism y : U → Y , and
the notation f(y) for some map f : Y → X is translated as the composite
f ◦ y : U → Y → X.

We can also use generalised points of toposes, i.e. arbitrary geometric
morphisms f : E ′ → E , in order to reason about them as though they were
spaces (see [25]) — though in this case we must also consider morphisms of
points, since toposes exist at a higher categorical level than locales. This is
especially useful when combined with the theory of classifying toposes, since
we can define a geometric morphism g : Set[T] → Set[T′] by describing
how g acts on a (generalised) point F → Set[T] and morphisms of these
points. That is to say, we can define g by describing how it transforms
a T-model (in F) into a T′-model and a T-model homomorphism into a
T′-model homomorphism. For example, the localic geometric morphism
L : Set[T] → Set[N ·O] associated with anN -sorted theory sends a T-model
to the N objects of its underlying sorts and a T-model homomorphism to
the N underlying functions between these objects.
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This perspective lends itself well to the problem of determining the geo-
metric theory classified by certain (bi)limits of other classifying toposes,
using the method described in [25, Proposition 8.43].

Example 1.17. Let us consider some examples of how to compute limits
with this approach.

(1) Let T and T′ be geometric theories. The data of an F -point of the
product topos Set[T]×Set[T′] can be defined by a pair of geometric
morphisms F → Set[T] and F → Set[T′] — that is, a pair of a
T-model and a T′-model in F . Thus, we conclude that the topos
Set[T] × Set[T′] classifies the theory given by a copy of T and a
copy of T′ (over separate sorts).

(2) Let T1,T2 be localic expansions (see [3, Definition 7.1.1]) of a theory
T3, i.e. all three theories share the same sorts, but the theories
T1 and T2 add new relation symbols and new axioms to T3. Let
R1 : Set[T1] → Set[T3] be the geometric morphism that acts on
(generalised) points by sending a T1-model to its T3-reduct, i.e. the
T3-model obtained when we forget the extra structure added by
T1, and which sends a T1-model homomorphism to its underlying
homomorphism on the T3-reducts. (This is precisely the localic
geometric morphism posited by [3, Theorem 7.1.3].) We define
R2 : Set[T2] → Set[T3] in a similar fashion.

An F -point of the (bi)pullback

Set[T1] ×Set[T3] Set[T2] Set[T2]

Set[T1] Set[T3]

⌟
R2

R1

consists of the data of a pair of F-points M : F → Set[T1] and
N : F → Set[T2] and an isomorphism R1 ◦ M ∼= R2 ◦ N . That is,
the topos Set[T1] ×Set[T3] Set[T2] classifies the theory whose models
are a pair of a T1-model and a T2-model whose T3-reducts are
isomorphic.

Remark 1.18. Some readers may wonder how our theory is impacted when
we vary the specific notion of 2-limit we consider. Ultimately, as classifying
toposes are defined up to equivalence, this won’t be of importance. We
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will focus on comparing, for a geometric theory T, the various notions of
‘pullback’ for the diagram

Set[T]

Set[T] Set[T].

idSet[T]

idSet[T]

Evidently, the 1-pullback is given simply by Set[T].

When calculating the bipullback as in Example 1.17 above, we are implicitly
taking the iso-comma object of the cospan. This is the topos E that is
universal with respect to the data of projections r, u : E ⇒ Set[T] and an
isomorphism

E Set[T]

Set[T] Set[T].

r

u

idSet[T]

idSet[T]∼=

As in Example 1.17, we recognise that E classifies the theory of T-model
isomorphisms. We denote this theory by T∼=. An explicit axiomatisation of
this theory is given in Definition 2.3 below.

Subtle changes to the notion of 2-pullback we take can change the specific
presentation for the theory classified by the topos. For example, if we
instead considered the pseudo-pullback, i.e. the topos E ′ that is universal
with respect to the data

E ′ Set[T]

Set[T] Set[T],idSet[T]

idSet[T]∼=
∼=

we see that E ′ classifies the theory T∼=,∼= whose models are triples of T-models
and a pair of isomorphisms between these.

However, such care will not be necessary. Recall from [16, Example 15]
that although the toposes Set[T∼=] and Set[T∼=,∼=] are not isomorphic as
categories, they are equivalent (i.e. T∼= and T∼=,∼= are Morita-equivalent).
In fact, the iso-comma object Set[T∼=], the pseudo-pullback Set[T∼=,∼=] and
the the (1-)pullback Set[T] are all equivalent (see [13]). We sidestep these
issues by only working up to equivalence and referring to bipullbacks.
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2. Syntactic description of the representing groupoid
In this section we will state a presentation for a localic groupoid which
represents (the classifying topos of) a geometric theory and give some
intuition for the motivating ideas behind the Joyal–Tierney result.

Let T be a (first-order) geometric theory. We would like to re-express T
in terms of propositional geometric theories, so we can work within the
simpler framework of locales instead of with the classifying topos Set[T].
The points of this new propositional theory should somehow represent
the models of the original theory T, including the objects being used to
represent each sort. The question then is how to encode the sorts using a
propositional theory.

2.1. Sorts as partial equivalence relations. If we were to focus on a
single set-based model M , then we could include propositional variables in
our language that express that m⃗ ∈ RM for each relation R of the theory
and each appropriate tuple m⃗ of elements from M . More generally, we
could imagine fixing some very large set S and cutting out the carriers for
each model as subsets of S. The issue is that there is generally no bound
on how large the models might be.

Recall from Example 1.3, however, that the locale of partial surjections
from N to any set X is nontrivial. So there is a sense in which ‘every set
is a subquotient of N’. This motivates replacing the sorts in the theory T
by partial equivalence relations on N, which describe these subquotients.
Recall that a partial equivalence relation is a symmetric transitive relation
and can be thought of as describing an equivalence relation on the subset
of elements which are related to themselves. Partial equivalence relations
can be axiomatised by a propositional theory.

Definition 2.1. For a geometric theory T, we define GT
0 to be the classifying

locale of a propositional geometric theory P [T], defined as follows.

• For each sort X of T, we add a copy of the theory of partial equival-
ence relations on N. Explicitly, add a basic proposition [n ∼X m]
for each n,m ∈ N and, for each n,m, ℓ ∈ N, and the axioms

[n ∼X m] ⊢ [m ∼X n], (symmetry)
[n ∼X m] ∧ [m ∼X ℓ] ⊢ [n ∼X ℓ]. (transitivity)
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• For each relation symbol R ⊆ X1 × · · · × Xk of T, and for each
n1, . . . , nk ∈ N and m1, . . . ,mk ∈ N, we add a basic proposition
[(n1, . . . , nk) ∈ R] and axioms

[(n1, . . . , nk) ∈ R] ∧ [n1 ∼X1
m1] ∧ · · · ∧ [nk ∼Xk

mk] ⊢ [(m1, . . . ,mk) ∈ R],

[(n1, . . . , nk) ∈ R] ⊢ [n1 ∼X1
n1] ∧ · · · ∧ [nk ∼Xk

nk].

• For each axiom φ ⊢x1 : X1,...,xk : Xk ψ of T, we add an axiom
k∧

i=1
[ni ∼Xi

ni] ∧ φn1,...,nk
⊢ ψn1,...,nk

for each n1, . . . , nk ∈ N, where φn1,...,nk
and ψn1,...,nk

are obtained from
φ and ψ by replacing each free variable xi by a (fixed) natural number
ni, each quantifier ∃x : X. χ(x, . . . ) by a join ∨

nx∈N χ(nx, . . . ), each
subformula of the form (y1, . . . , yℓ) ∈ R with [(y1, . . . , yℓ) ∈ R], and
each subformula of the form x =X y with [x ∼X y].

Here we have simply translated the relations on the sorts to relations on N
that respect the partial equivalence relation. We have written the axioms
in terms of these (with existential quantification over sorts being expressed
using joins over the natural numbers). Evidently, if T is a propositional
theory (i.e. there are no sorts), then T and P [T] are the same theory.

Remark 2.2. Note that the generators [n ∼X m] can also be thought of as
a as special case of [(n,m) ∈ R] where R is given by the equality relation
on X.

2.2. Encoding isomorphic copies. The points of the locale GT
0 are given

by representations of models of T as subquotients of N. However, different
subquotients of N might correspond to isomorphic models. To deal with
this we need to construct a locale of isomorphisms.

We can write a geometric theory T∼= that describes isomorphisms between
models of T and then transform it into a propositional theory as we did
for T above. This is precisely the theory classified by the iso-comma object
described in Remark 1.18.

Definition 2.3. We define the locale GT
1 to be the classifying locale of a

propositional geometric theory P [T∼=] (defined as above), where T∼= is a
geometric theory with:
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• for each sort X, relation symbol R or axiom φ ⊢x⃗ ψ of T, two sorts
X1, X2, relation symbols R1, R2 or axioms φ1,2 ⊢x⃗1,2 ψ1,2 (where Ri

is defined on the i-subscripted sorts and so on),

• for each sort X in T, a relation symbol αX ⊆ X1 ×X2 together with
the axiom

(x, y) ∈ αX ∧ (x′, y′) ∈ αX ∧ x =X1 x
′

⊣⊢x,y : X1 (x, y) ∈ αX ∧ (x′, y′) ∈ αX ∧ y =X2 y
′

(where ⊣⊢ denotes a bidirectional sequent) and the axioms

⊢y : X2 ∃x : X1. (x, y) ∈ αX ,
⊢x : X1 ∃y : X2. (x, y) ∈ αX ,

making α into the graph of a bijection‡,

• for each relation symbol R in T, the axioms
k∧

i=1
(xi, yi) ∈ αXi ∧ (x1, . . . , xk) ∈ R1

⊣⊢x1,...,xk,y1,...,yk

k∧
i=1

(xi, yi) ∈ αXi ∧ (y1, . . . , yk) ∈ R2.

We remark that the third bullet point entails that corresponding basic
propositions from each copy are equivalent, since they can be viewed as
nullary relations. In particular, if T is already a propositional geometric
theory then T, P [T] and P [T∼=] are all equivalent.

We can now form a coequaliser diagram in Loc that identifies isomorphic
models in GT

0 . However, this loses information about the original theory T.
(In fact, it recovers the localic reflection of T. See Section 4.3 below.)

The problem is that by taking the quotient we have lost information
about the automorphisms of the models, and therefore about the individual
(generalised) elements of each model. Indeed, the first-order theory describes
objects at a higher categorical dimension than the propositional theory
(propositions can only be related by implication, but there are potentially
multiple different morphisms between sorts). We can retain the information
by equipping GT

0 and GT
1 with the structure of a localic groupoid.

‡For clarity we will often write α suggestively as though it were a function.
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Remark 2.4. One might think that we would need a localic category re-
cording all morphisms instead of a localic groupoid recording only the
isomorphisms, but restricting to isomorphisms turns out to be sufficient.
In a later paper we will discuss in detail how to recover the non-invertible
morphisms from the localic groupoid.

Definition 2.5. The localic groupoid GT has GT
0 as its locale of objects,

GT
1 as is locale of morphisms and the following structure maps.

• The source map s : GT
1 → GT

0 is specified by the obvious frame
homomorphism defined by

[(n1, . . . , nk) ∈ R] 7→ [(n1, . . . , nk) ∈ R1],

where we think of the action on [n ∼X m] as the case R = (=X) as
in Remark 2.2.

• Similarly, the target map t : GT
1 → GT

0 is specified by the frame map
defined by

[(n1, . . . , nk) ∈ R] 7→ [(n1, . . . , nk) ∈ R2].

• The identity map e : GT
0 → GT

1 is given by frame homomorphism
defined by

[(n1, . . . , nk) ∈ R1] 7→ [(n1, . . . , nk) ∈ R],
[(n1, . . . , nk) ∈ R2] 7→ [(n1, . . . , nk) ∈ R],

[αX(n) = m] 7→ [n ∼X m].

• The inversion map i : GT
1 → GT

1 swaps the two copies of the sorts in
the sense that

[(n1, . . . , nk) ∈ R1] 7→ [(n1, . . . , nk) ∈ R2],
[(n1, . . . , nk) ∈ R2] 7→ [(n1, . . . , nk) ∈ R1],

[αX(n) = m] 7→ [αX(m) = n].

• The composition map m : GT
1 ×GT

0
GT

1 → GT
1 is given as follows.

– The domain of the composition map can be presented by P [T∼=,∼=]
where T∼=,∼= is like T∼= above, but there are three copies of the
theory T instead of two and there are two relation symbols
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βX ⊆ X1 × X2 and γX ⊆ X2 × X3 for each sort X, encoding
two T-model isomorphisms, instead of one relation symbol αX .

– The map m itself is given by the frame homomorphism for
which

[(n1, . . . , nk) ∈ R1] 7→ [(n1, . . . , nk) ∈ R1],
[(n1, . . . , nk) ∈ R2] 7→ [(n1, . . . , nk) ∈ R3],

[αX(n) = p] 7→
∨

m∈N
[βX(n) = p] ∧ [γX(m) = p].

(Intuitively, the map m sends the pair of relations (βX , γX) to
their relational composite.)

We omit the proof the routine proof that this is indeed a localic groupoid.

Remark 2.6. The set N is actually only the simplest possible choice of base
set for the above construction. All the properties we prove of the localic
groupoid GT (other than those discussed in Section 4.4) will still hold if N
is replaced with a larger infinite set.

3. An overview of the Joyal–Tierney theorem
We now give an overview of the Joyal–Tierney result from [14]. In Section 4,
we will show that the representing localic groupoid of the classifying topos
Set[T] constructed via the Joyal–Tierney method is essentially the groupoid
described above in Section 2.

This section can be summarised as follows.

• In Section 3.1, we recall the theory of descent exposited in [14].
Given a geometric morphism f : F → E , this is a way to study
objects of E by equipping objects of F with additional data. This
data forms a topos Descf(F•). If f : F ↠ E is an open surjection,
then there is an equivalence Descf(F•) ≃ E .

• In Section 3.2 we note that Descf(F•) is naturally represented by
a localic groupoid whenever F is a localic topos. Therefore, one
can obtain a representation of E by a localic groupoid from an open
surjection F ↠ E whose domain is localic (called an open cover).
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• Finally, in Section 3.3 we construct an open cover of every topos E
and hence conclude the Joyal–Tierney theorem that every topos is
the topos of sheaves on some localic groupoid.

3.1. Descent theory. In order to prove their representation theorem,
Joyal and Tierney developed in [14] a descent theory for toposes. We will
treat descent theory as a ‘black box’, recalling below the necessary facts we
will use in our exposition. For details, the reader is directed to [14, §VIII]
and [12, §B1.5 and §C5.1].

Recall that if f : X → Y is a morphism in a (finitely complete) 1-category
C, then the pullback of f along itself gives the kernel pair of f . This
has the structure of an internal equivalence relation in C. If f is a ‘good’
quotient map (in this case, a regular epimorphism), then it can be recovered
from this equivalence relation. The situation in the 2-category of toposes
is similar, but instead of an internal equivalence relation, we obtain an
internal groupoid.

A geometric morphism f : F → E between toposes induces an internal
groupoid in Topos as in the diagram

F ×E F ×E F F ×E F F E ,
π2,3

π1,3

π1,2

π2

π1

τ

∆ f

where τ : F ×E F → F ×E F is the twist map, ∆: F → F ×E F is the
diagonal, and the remaining maps are the appropriate projections.

Definition 3.1. The category Descf(F•) of descent data for f is defined
as follows.

(1) The objects of Descf(F•) are pairs (X, θ) consisting of an object
X ∈ F and an isomorphism θ : π∗

1X
∼−→ π∗

2X of F ×E F such that

∆∗(θ) = idX and π∗
1,3(θ) = π∗

2,3(θ) ◦ π∗
1,2(θ).

This is known as a descent datum on X.
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(2) A morphism g : (X, θ) → (X ′, θ′) in Descf(F•) is a morphism
g : X → X ′ of F such that the square

π∗
1X π∗

2X

π∗
1X

′ π∗
2X

′

θ

π∗
1(g) π∗

2(g)

θ′

commutes.

The category Descf(F•) is a topos, and there is a canonical functor c∗ : E →
Descf(F•) that sends an object E ∈ E to the pair consisting of f ∗E and
the canonical isomorphism π∗

1f
∗E ∼= π∗

2f
∗E (arising from the 2-cell of the

bipullback).

In fact, in [20, §3] Moerdijk shows that the topos Descf(F•) is obtained
as the colimit in the 2-category Topos of the diagram

F ×E F ×E F F ×E F F Descf(F•),
π2,3

π1,3

π1,2

π2

π1

τ

∆

and the canonical functor c∗ : E → Descf(F•) is the inverse image part
of the universally induced geometric morphism Descf(F•) → E . This is
analogous to how a morphism in a 1-category factors through the coequaliser
of its kernel pair.

The problem of descent involves discerning for which geometric morphisms
f : F → E the canonical functor c∗ : E → Descf(F•) is an equivalence.
Such geometric morphisms play the same role as regular epimorphisms did
in our 1-categorical analogy.

Definition 3.2. A geometric morphism f : F → E is called an effect-
ive descent morphism if the canonical functor c∗ : E → Descf(F•) is an
equivalence.

The terminology ‘descent’ was used by Joyal and Tierney in analogy with
descent theory for modules (see [14, §II.5]). If f is an effective descent
morphism, we say an object (X, θ) ∈ Descf(F•) descends along f in the
sense that there exists some E ∈ E such that (X, θ) ∼= (f ∗E, π∗

1f
∗E ∼=

π∗
2f

∗E).
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Many examples of classes of effective descent morphisms are known, includ-
ing proper surjections (see [12, Definition C3.2.5 & Theorem C5.1.6]). We
will focus solely on open surjections, which are the class of effective descent
morphisms needed for Joyal–Tierney result, and which were shown to be
effective descent morphisms in [14, Theorem VIII.2.1].

3.2. Descent data with a localic domain. When the domain topos of
a geometric morphism f : F → E is localic, say F ≃ Sh(G0), the category
of descent data Descf(F•) is equivalent to the topos of sheaves on some
localic groupoid whose locale of objects is G0. This is observed in [14,
§VIII.3]. To see why this is the case, we first recall two facts about localic
geometric morphisms from Section 1.3.

(1) Localic geometric morphisms are stable under pullback.

(2) If f : H′ → H is a localic geometric morphism and H is a localic
topos, then the topos H′ is also localic.

Hence, if f : F → E is a geometric morphism whose domain F is a localic
topos, then the pullback

F ×E F F

F E

π1

π2
⌟

f

f

is also a localic topos, as is the wide pullback F ×E F ×E F . Therefore,
as the fully faithful functor Sh: Loc → Topos reflects limits, the descent
diagram

F ×E F ×E F F ×E F F
π2,3

π1,3

π1,2

τ

π2

π1

∆

is the image under Sh of a localic groupoid G:

G1 ×G0 G1 G1 G0.

π2

m
π1

i

t

s

e (5)

As F ≃ Sh(G0), an object X ∈ F is a local homeomorphism q : Y → G0,
and descent datum θ : π∗

1(X) → π∗
2(X) on X is a morphism θ : s∗(Y ) →
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t∗(Y ) in Sh(G1) such that idG0 = e∗(θ) and m∗(θ) = π∗
2(θ) ◦ π∗

1(θ), i.e.
an object (Y, θ) ∈ Sh(G). Similarly, arrows in Descf(F•) correspond to
arrows in Sh(G). Thus, there is an equivalence Sh(G) ≃ Descf(F•) from
which we obtain Theorem VIII.3.2 of [14].

Theorem 3.3. Let f : Sh(G0) → E be an effective descent morphism. The
topos E is equivalent to the topos of equivariant sheaves on the localic
groupoid G whose locale of objects is G0, and whose source and target maps
s, t : G1 ⇒ G0 make the square

Sh(G1) Sh(G0)

Sh(G0) E

Sh(s)

Sh(t) f

f

a (bi)pullback of toposes.

Since open surjections are effective descent morphisms, this theorem applies
in particular to what we call open covers.

Definition 3.4. An open cover of the topos E is an open surjection F ↠ E
whose domain topos F is localic.

Recall that open geometric morphisms are stable under (bi)pullback. So
if f : Sh(G0) → E is an open cover, then projections π1 and π2 in the
(bi)pullback below are open too.

Sh(G0) ×E Sh(G0) Sh(G0)

Sh(G0) E ,

π1

π2

⌟
f

f

This means that the source and target maps s, t : G1 ⇒ G0 of the induced
localic groupoid G displayed in (5) are open locale morphisms — that is,
E has an open representing groupoid.

Remark 3.5. The same analysis holds for any other property of geometric
morphisms that is stable under pullback. For example, if the effective
descent morphism f : Sh(G0) → E is proper or connected and locally
connected, then the resulting representing groupoid for E is also proper or
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connected and locally connected (in the sense that the source and target
maps have these properties).

3.3. Open covers via partial equivalence relations. We are halfway
to showing that every topos can be represented as the topos of sheaves on
an open localic groupoid. The remaining task is to prove that every topos
has an open cover.

To find an open cover of a topos E , it suffices to find a localic geometric
morphism h : E → H and an open cover f : F ↠ H, since then in the
(bi)pullback

F ×H E F

E H,

g

k
⌟

f

h

the map k : F ×H E ↠ E is an open surjective geometric morphism whose
domain is a localic topos, as the composite F ×H E g−→ F → Set is a localic
morphism. Hence, k : F ×H E ↠ E is an open cover.

Suppose the topos E is classifies a theory T with N sorts. Recall from
Sections 1.4 and 1.7 that there is a localic geometric morphism L : E →
Set[N ·O] which sends a T-model to the N underlying objects interpreting
the sorts. This will play the role of h in the diagram above.

Remark 3.6. In fact, we can always choose N to be 1, since every geometric
theory T is Morita-equivalent to a single-sorted theory. This appears in
[14] as Proposition VII.3.1, but an entirely syntactic proof is given in [12,
Lemma D1.4.13]. In summary, the idea is to combine all the sorts of the
theory into one, and introduce new unary relation symbols, RX for each
sort X, such that x ∈ RX expresses the statement “x belongs to the sort
X”.

We must now describe an open cover of Set[N ·O] to play the role of f . As
prefigured in Section 2, there is a sense in which ‘every set is a subquotient
of N’ and so we are once again motivated to consider partial equivalence
relations on N. Denote the classifying topos of partial equivalence relations
on N copies of N by Set[N · PQN]. Explicitly, this is the propositional
theory whose basic propositions are [n ∼i m] for each n,m ∈ N, and i ∈ N
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(meaning that n,m are identified in the ith partial equivalence relation on
N), and whose axioms are

[n ∼i m] ⊢ [m ∼i n] (symmetry)
[n ∼i ℓ] ∧ [ℓ ∼i m] ⊢ [n ∼i m] (transitivity)

for each n,m, ℓ ∈ N and i ∈ N .

There is a geometric morphism Q : Set[N · PQN] → Set[N · O] that sends
the N generic partial equivalence relations on N to their corresponding
subquotient objects. This geometric morphism possesses many desirable
properties: it is open and surjective, but also connected and locally con-
nected (see [12, Theorem C5.2.7]). Hence, we indeed have an open cover of
Set[N · O].

Now we obtain an open cover PN [E ] ↠ E by taking the (bi)pullback

PN [E ] Set[N · PQN]

E Set[N · O].

⌟

Q∗(L)

L∗(Q) Q

L

Note that PN [E ] is not determined only by E , but by the map L : E →
Set[N ·O]. This map is defined by a choice of geometric theory T classified
by E . (Recall that every topos classifies some geometric theory.) In Section 4
we will see that PN [E ] is classifying topos for the theory P [T] defined in
Definition 2.1 (see Lemma 4.2).

Finally, by applying Theorem 3.3 we arrive at the landmark result of Joyal
and Tierney [14, Theorem VIII.3.2].

Theorem 3.7 (Joyal–Tierney). Every Grothendieck topos can be represen-
ted as the topos of equivariant sheaves for a localic groupoid.

In Section 4 we will see that the localic groupoid given by the above
construction is precisely the one described in Section 2. More abstractly,
the theorem means that the functor Sh: LocGrpd → Topos is essentially
surjective.

Remark 3.8. Since the geometric morphism Q above is open (and even
connected and locally connected), the representing localic groupoid is also
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open (indeed, connected and locally connected — see Remark 3.5). We
will give a more hands-on proof of openness in Section 4.2.

Remark 3.9. A topos can have many non-equivalent open covers — and
therefore many non-isomorphic representing localic groupoids. Nonetheless,
these are all equivalent in a suitable sense. See [20, §7], though the notion
of equivalence given there is weaker than necessary. We will discuss this
equivalence in more detail in a later paper.

The open cover PN [E ] ↠ E we consider is slightly different to the one built
by Joyal and Tierney in [14, Theorem VII.3.1]. They instead use the open
cover Set[T QN] ↠ Set[O>0] from classifying topos of total equivalence
relations on N to the classifying topos of inhabited objects. The reader is
directed to [12, Remark C5.2.8(c)] for more details.

Other examples of open covers include the Diaconescu cover, constructed
in [5] (see also [12, Theorem C5.2.1] and [17, Theorem IX.9.1]).

4. Proof and applications of the syntactic description
In this section, we prove that the localic groupoid GT described in Section 2
is the representing localic groupoid yielded by the Joyal–Tierney method
exposited in Section 3. We then explore some applications of this explicit
description. In Sections 4.2 and 4.3 we will observe that using the explicit
description of GT we can give concrete proofs of the known facts that GT

is an open localic groupoid and that its locale of isomorphism classes is
the frame of sentences of the theory. Finally, Section 4.4 we compare our
localic representing groupoid with topological representing groupoids.

4.1. Main proof. We can now deduce our main result. We repeat here,
for the reader’s convenience, the description of the localic groupoid GT

described in Section 2.

Theorem 4.1. Suppose T is a geometric theory. Recall that the localic
groupoid GT is defined as follows.

• The locale of objects GT
0 is the classifying locale the propositional

geometric theory P [T], which is specified as follows.

– For each sort X of T, there is a basic proposition [n ∼X m]
for each n,m ∈ N together with the following axioms for each
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n,m, ℓ ∈ N:

[n ∼X m] ⊢ [m ∼X n],
[n ∼X m] ∧ [m ∼X ℓ] ⊢ [n ∼X ℓ].

– For each relation symbol R ⊆ X1 × · · · ×Xk of T, and for each
n1, . . . , nk ∈ N and m1, . . . ,mk ∈ N, we have a basic proposition
[(n1, . . . , nk) ∈ R] and axioms

[(n1, . . . , nk) ∈ R] ∧ [n1 ∼X1
m1] ∧ · · · ∧ [nk ∼Xk

mk] ⊢ [(m1, . . . ,mk) ∈ R],

[(n1, . . . , nk) ∈ R] ⊢ [n1 ∼X1
n1] ∧ · · · ∧ [nk ∼Xk

nk].

– For each axiom φ ⊢x1 : X1,...,xk : Xk ψ of T, we add an axiom

k∧
i=1

[ni ∼Xi

ni] ∧ φn1,...,nk
⊢ ψn1,...,nk

for each n1, . . . , nk ∈ N, where φn1,...,nk
and ψn1,...,nk

are obtained
from φ and ψ by replacing each free variable xi by a (fixed)
natural number ni, each quantifier ∃x : X. χ(x, . . . ) by a join∨

nx∈N χ(nx, . . . ), each subformula of the form (y1, . . . , yℓ) ∈ R
with [(y1, . . . , yℓ) ∈ R], and each subformula of the form x =X y
with [x ∼X y].

• The locale of morphisms GT
1 is the classifying locale of a propositional

geometric theory P [T∼=], where T∼= is a geometric theory with:

– for each sort X, relation symbol R or axiom φ ⊢x⃗ ψ of T, two
sorts X1, X2, relation symbols R1, R2 or axioms φ1,2 ⊢x⃗1,2 ψ1,2,

– for each sort X in T, a relation symbol αX ⊆ X1 ×X2 together
with the axioms

(x, y) ∈ αX ∧ (x′, y′) ∈ αX ∧ x =X1 x
′

⊣⊢x,y : X1 (x, y) ∈ αX ∧ (x′, y′) ∈ αX ∧ y =X2 y
′

and the axioms

⊢y : X2 ∃x : X1. (x, y) ∈ αX ,
⊢x : X1 ∃y : X2. (x, y) ∈ αX ,
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– for each relation symbol R in T, the axioms
k∧

i=1
(xi, yi) ∈ αXi ∧ (x1, . . . , xk) ∈ R1

⊣⊢x1,...,xk,y1,...,yk

k∧
i=1

(xi, yi) ∈ αXi ∧ (y1, . . . , yk) ∈ R2.

• The source, target, identity and inversion maps as defined as follows:

s∗ : [(n1, . . . , nk) ∈ R] 7→ [(n1, . . . , nk) ∈ R1].

t∗ : [(n1, . . . , nk) ∈ R] 7→ [(n1, . . . , nk) ∈ R2].

e∗ : [(n1, . . . , nk) ∈ R1] 7→ [(n1, . . . , nk) ∈ R],
e∗ : [(n1, . . . , nk) ∈ R2] 7→ [(n1, . . . , nk) ∈ R],

e∗ : [αX(n) = m] 7→ [n ∼X m].

i∗ : [(n1, . . . , nk) ∈ R1] 7→ [(n1, . . . , nk) ∈ R2],
i∗ : [(n1, . . . , nk) ∈ R2] 7→ [(n1, . . . , nk) ∈ R1],

i∗ : [αX(n) = m] 7→ [αX(m) = n].

• When GT
1 ×GT

0
GT

1 is presented by three copies of the propositions for
GT

0 together with propositions for the bijections βX ⊆ X1 ×X2 and
γX ⊆ X2 ×X3 for each sort, then the composition map is defined by

m∗ : [(n1, . . . , nk) ∈ R1] 7→ [(n1, . . . , nk) ∈ R1],
m∗ : [(n1, . . . , nk) ∈ R2] 7→ [(n1, . . . , nk) ∈ R3],

m∗ : [αX(n) = p] 7→
∨

m∈N
[βX(n) = p] ∧ [γX(m) = p].

Then the topos of equivariant sheaves on the GT classifies T.

We will prove this by showing that GT is the groupoid obtained from the
Joyal–Tierney construction we described in Section 3. We require one
lemma before embarking on the main proof.
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Lemma 4.2. For each geometric theory T with N sorts, the commutative
square

Set[P [T]] Set[N · PQN]

Set[T] Set[N · O]

Q′ Q

L

(where L and Q are defined as in Section 3.3) is a (bi)pullback.

Proof : For clarity we will assume the theory T has single sort, but this is
easily generalised. Recall that Q can be understood as sending the partial
equivalence relation ∼ on N to the corresponding subquotient N/∼. As
described in Example 1.17, it is easy to compute a theory T′ that the
bipullback topos classifies using the methods of [25, §4.5]. We see that
T′ can be taken to be the theory of pairs of a model M of T, a model
∼ of PQN and an isomorphism L(M) ∼= Q(∼). Explicitly, this means
a model M of T, a partial equivalence relation ∼ on N and a bijection
φ : M [X] → N/∼.

It is now elementary to massage T′ into a more convenient, equivalent form
by transporting all relations and functions defined on terms of M [X] along
the bijection φ to give ones defined in N/∼. Then since the sort M [X] is
completely specified by N/∼ and the bijection, it can be removed from the
theory. The resulting theory is essentially propositional. We can make it
manifestly propositional by replacing relations on N/∼ with their preimages
under N ↠ N/∼ to give subsets UR of Nk, which then can described using
basic generators [(n1, . . . , nk) ∈ UR] for each (n1, . . . , nk) ∈ Nk. Thus, we
have arrived at the theory P [T] described in Theorem 4.1. This theory
now has no sorts and so it is manifestly propositional.

Note that the map Q′ simply undoes the above translations, obtaining a
quotient of N/∼ from the propositional theory and sending this to the
single sort X of T. Relations are treated in the obvious way.

Proof of Theorem 4.1: Again we assume T has one sort for simplicity. Re-
call that the geometric morphism L : Set[T] → Set[O], which a model
of T to its underlying object, is localic. By Lemma 4.2 the open cover
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PN [Set[T]] ↠ Set[T] used to construct the representing groupoid in Sec-
tion 3.3 may be taken to be Q′ : Set[P [T]] → Set[T].

Now by applying Theorem 3.3, we know Set[T] is represented by the localic
groupoid whose locale of objects is the classifying locale of P [T] and whose
source and target maps s, t : GT

1 ⇒ GT
0 are the locale morphisms for which

the square

Sh(GT
1 ) Set[P [T]]

Set[P [T]] Set[T]

Sh(s)

Sh(t) Q′

Q′

is a bipullback of toposes.

We must now show that Set[P [T∼=]] is this bipullback.

The theory 2 · O classifies pairs of objects, and so we deduce from Ex-
ample 1.17 that 2·O is classified by the product Set[2·O] ∼= Set[O]×Set[O].
Similarly, Set[PQN] × Set[PQN] classifies the theory 2 · PQN of pairs of
partial equivalence relations on N. Recall also from Example 1.17 and
Remark 1.18 that the theory T∼= of isomorphisms of T-models is classified
by the bipullback

Set[T∼=] Set[T]

Set[T] Set[T].

r

u

idSet[T]

idSet[T]

⌟

Using the universal property of Set[P [T]], we find that there are induced
geometric morphisms s, t : Set[P [T∼=]] ⇒ Set[P [T]] such that all the squares
in the cubical diagram on the next page commute up to canonical isomorph-
isms.
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Set[P [T]] Set[PQN]

Set[P [T∼=]] Set[2 · PQN]

Set[T] Set[O]

Set[P [T]] Set[PQN]

Set[T∼=] Set[2 · O]

Set[T] Set[O]

L

QQ′

r

s

t

Q′

L

u

Q

⌟

⌟

⌟

Being induced by the maps
r, u : Set[T∼=] ⇒ Set[T],

which send a model a T∼=-model M ∼= N to, respectively, M and N ,
we recognise that the locale morphisms s, t : GT

1 ⇒ GT
0 corresponding to

the geometric morphisms s, t : Set[P [T∼=]] ⇒ Set[P [T]] are exactly the
ones described in the hypotheses of the theorem. (Note that we are
abusing notation and not differentiating between a locale morphism and
its corresponding geometric morphism between localic toposes.)

Our description of the localic groupoid is therefore precisely the represent-
ing groupoid found by the Joyal–Tierney method exposited in Section 3
provided that the square

Set[P [T∼=]] Set[P [T]]

Set[P [T]] Set[T]

s

t Q′

Q′
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is a bipullback of toposes. Firstly, we note that the square commutes up
to isomorphism since it can be rewritten as

Set[P [T∼=]] Set[P [T]]

Set[T∼=] Set[T]

Set[P [T]] Set[T] Set[T].idSet[T]

idSet[T]

r

u ∼=
⌟

t

s

∼=

∼=

Now for any other (bi)cone of the cospan

E Set[P [T]]

Set[P [T]] Set[T],

f

g ∼= Q′

Q′

we will demonstrate that there is a diagram of toposes and geometric
morphisms

Set[P [T]] Set[PQN]

E

Set[P [T∼=]] Set[2 · PQN]

Set[T] Set[O]

Set[P [T]] Set[PQN]

Set[T∼=] Set[2 · O]

Set[T] Set[O]

⌟

⌟

⌟

g

f

where every square and triangle commutes up to canonical isomorphism.



THE REPRESENTING LOCALIC GROUPOID FOR A GEOMETRIC THEORY 37

(1) The geometric morphism E Set[T∼=] is induced by the universal
property of Set[T∼=] as in the diagram

E Set[P [T]]

Set[T∼=] Set[T]

Set[P [T]] Set[T] Set[T].idSet[T]

idSet[T]

r

u ∼=
⌟

g

f

∼=

∼=

(2) The geometric morphism E Set[2 · PQN] is universally induced
by the fact that Set[2 · PQN] ∼= Set[PQN] × Set[PQN].

(3) Finally, the geometric morphism E Set[P [T∼=]] is induced by
the universal property of Set[P [T∼=]] as in the diagram

E

Set[P [T∼=]] Set[2 · PQN]

Set[T∼=] Set[2 · O].

∼=
⌟

∼=

∼=

Thus, the (bi)cone factorises canonically as

E

Set[P [T∼=]] Set[P [T]]

Set[P [T]] Set[T].

t

s

Q′

Q′

∼=

f

g

∼=

∼=

We have elided the details that Set[P [T∼=]] also satisfies the necessary uni-
versal property on 2-cells to be the bipullback, but this can be demonstrated
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in a similar fashion since the canonical morphism E Set[P [T∼=]] was
universally induced by a series of bilimits.

Finally, by demonstrating in an analogous manner that Set[P [T∼=,∼=]] is equi-
valent to the wide bipullback Set[P [T]] ×Set[T] Set[P [T]] ×Set[T] Set[P [T]],
we recognise that the composition map of our groupoid is described as in
the hypotheses, thus completing the proof that the localic groupoid GT

represents Set[T].

Example 4.3. As remarked below Definition 2.1, when T is a propositional
theory, the theories T, P [T] and P [T∼=] are all equivalent, and therefore
have isomorphic classifying locales. Hence, the syntactic groupoid GT as
described in Theorem 4.1 is an example of a categorically discrete localic
groupoid in the sense of Example 1.13(1) and so, as in Example 1.15, the
topos of equivariant sheaves Sh(GT) is equivalent to the topos of sheaves
on the classifying locale of T, as we would expect.

4.2. Explicit left adjoints. We noted in Section 3 that GT is an open
localic groupoid by general properties of the Joyal–Tierney construction.
However, it is instructive to also see this directly in terms of an explicit
left adjoint map.

Lemma 4.4. The frame map s∗ corresponding to the source morphism
s : GT

1 → GT
0 of GT has a left adjoint s! : OGT

1 → OGT
0 defined by

s!

 ∧
i∈I

[⃗ai ∈ Ri
1] ∧

∧
j∈J

[⃗bj ∈ Rj
2] ∧

∧
k∈K

[αXk(ck) = dk]


=
∧
i∈I

[⃗ai ∈ Ri] ∧
∨

y⃗∈NV

∧
j∈J

[π⃗j(y⃗) ∈ Rj] ∧
∧

k∈K

[ck ∼Xk

πk(y⃗)].
(6)

Here V is the set of ‘distinct variables’ represented by the bj
ℓ or dk values.

Explicitly, elements of V are pairs (n,X) where n is natural number chosen
from ⋃

j∈J

{bj
1, . . . , b

j
ℓ} ∪ {dk | k ∈ K}

and X is the sort corresponding to the type of the variable in question. The
maps π⃗j and πk simply project out the values indexed by the appropriate
variables.
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Remark 4.5. The left adjoint of an open frame homomorphism is a pointfree
incarnation of the direct image map of an open continuous function. It
is then not too surprising that s! is related to existential quantification,
since an object should intuitively lie in the image of u ∈ OGT

1 under the
continuous map s if there exists a morphism in u which maps to it. From
a logical perspective, s! sends conjunctions of logical formulae involving
variables from both the domain and codomain sorts to formulae involving
only variables from the domain sorts by existentially quantifying over those
variables in the codomain sorts (here implemented as a join over N).

The bookkeeping necessary to define the left adjoint can obfuscate the core
idea. To make this clearer we give a number of examples using the theory
of total inhabited orders (see Example 1.10). Recall that natural numbers
encode (arbitrary) values of variables and do not represent their own values.
Also note that in many-sorted theories the same natural number may
encode different variables as long as the sorts of the variables differ. This is
why the set V defined above involves both the value and the type of each
index.

• Variables from domain sorts are left alone: [1 ≤1 2] 7→ [1 ≤ 2].

• Variables from codomain sorts are ‘projected out’: [1 ≤2 2] 7→∨
y1,y2∈N [y1 ≤ y2].

• This also happens for isomorphisms: [α(1) = 2] 7→ ∨
x′∈N [1 ∼ x′].

• Different variables are quantified over independently:

[1 ≤2 2] ∧ [α(1) = 4] 7→ (∨
y1,y2∈N[y1 ≤ y2]) ∧ (∨

y4∈N[1 ∼ y4])
= ∨

y1,y2,y4∈N[y1 ≤ y2] ∧ [1 ∼ y4].

• Different instances of the same variable vary in lockstep:

[1 ≤2 2] ∧ [α(1) = 1] 7→ ∨
y1,y2∈N [y1 ≤ y2] ∧ [1 ∼ y1].

Proof of Lemma 4.4: As a left adjoint, the map s! preserves arbitrary joins,
so it is completely determined by where it sends basic opens in OGT

1 . These
basic opens are given by finite meets of generators. To avoid confusion
we temporarily refer the suplattice map defined by (6) on basic opens as
h : OGT

1 → OGT
0 .
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Recall that suplattices are complete join-semilattices and their homomorph-
isms are join-preserving maps. Evidently, every frame is an example of a
suplattice.

To see that this definition of h indeed gives a suplattice homomorphism,
we use the coverage theorem (see [1, §5.2]), which asserts that, given a
frame presentation with relations ∨

α
∧

r S
r
α ≤ ∨

α
∧

r T
r
α, there is a suplattice

presentation for the underlying suplattice of the frame where the generators
are formal finite meets of the frame generators and the relations are given
by ∨

α(g ∧ ∧
r S

r
α) ≤ ∨

α(g ∧ ∧
r T

r
α) for each suplattice generator g.

So to prove h is well-defined we must show that, for every relation in
the frame representation of OGT

1 , the image of the corresponding relation
obtained by taking a meet with finite meets of generators becomes an
inequality in OGT

0 .

• For the relations involving only the basic relations Ri
1 from the

domain copy this is immediate.

• Now we consider the relations only involving the codomain relations
Rj

2 (including ∼X2 relations).

– The symmetry axiom [n ∼X2 m] ≤ [m ∼X2 n] is easily seen to
be preserved since a similar symmetry axiom holds for ∼X in
OGT

0 .

– The transitivity axiom for ∼X2 gives the relation

g ∧ [n ∼X2 m] ∧ [m ∼X2 ℓ] ≤ g ∧ [n ∼X2 ℓ].

Applying the putative h map to both sides we see that there is
potentially an extra variable m on the left-hand side. However,
for every m the transitivity axiom for ∼X in OGT

0 gives the
desired inequality, and so by taking joins over all m ∈ N we
conclude that h preserves the symmetry axiom.

– We can then handle the other axioms involving Ri
2 relations in

a very similar way.

• Finally, we consider the axioms involving αXk . These are proved in
a similar way to above, but instead of using analogous axioms in
OGT

0 to prove the inequalities, we use properties of ∼Xk.
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– Functionality and injectivity of αX (the first axiom of αX in
Theorem 4.1) can be reduced to transitivity (and symmetry) of
∼X in OGT

0 .

– The claim for the relation

g ∧ [αXk(c) = d] ≤ g ∧ [c ∼Xk

c] ∧ [d ∼Xk

d]

also follows from transitivity and symmetry, as these give

[c ∼Xk

y] ≤ [c ∼Xk

c] ∧ [y ∼Xk

y].

– Compatibility of α with other relations reduces to compatibility
of these relations with ∼.

– It only remains to consider the surjectivity and totality ax-
ioms, which state g ∧ [y ∼X y] ≤ ∨

x∈N g ∧ [αX(x) = y] and
g ∧ [x ∼X x] ≤ ∨

y∈N g ∧ [αX(x) = y], respectively. After apply-
ing h we have valid inequalities since in the first case we can
take x = y in the join and in the second case we can take y = x
in the join.

Thus, h is a well-defined suplattice homomorphism. We now show that it
really is the left adjoint to s∗. It is clear that hs∗ = idOGT

0
. We must prove

that s∗h ≥ idOGT
1
. It suffices to show this on basic opens.

Let g = ∧
i∈I [⃗ai ∈ Ri

1] ∧ ∧
j∈J [⃗bj ∈ Rj

2] ∧ ∧
k∈K [αXk(ck) = dk] be such a basic

open. We will employ the shorthand [⃗bj ∼ b⃗j] = [bj
1 ∼ bj

1] ∧ · · · ∧ [bj
ℓ ∼Xj

2 bj
ℓ].

Using the relations on the generators of GT
1 , we can show ∧

j∈J [⃗bj ∈ Rj
2] ≤

[⃗bj ∼ b⃗j]. Similarly, we have that [αXk(ck) = dk] ≤ [dk ∼Xk
2 dk].

Then [b ∼X2 b] = ∨
yb∈N[α(yb) = b] and so (by grouping the joins over yb for

the b’s corresponding to the same variables) we find that

g ≤
∧
i∈I

[⃗ai ∈ Ri
1] ∧

∨
y⃗∈NV

∧
j∈J

([⃗bj ∈ Rj
2] ∧ [α⃗(π⃗j(y⃗)) = b⃗j])

∧
∧

k∈K

([αXk(ck) ∼Xk
2 dk] ∧ [αXk(πk(y⃗)) = dk] ∧ [dk ∼Xk

2 dk]).

Now note that [⃗bj ∈ Rj
2] ∧ [α⃗(π⃗j(y⃗)) = b⃗j] ≤ [π⃗j(y⃗) ∈ Rj

1] by the compatib-
ility of α and Rj and that [αXk(ck) ∼Xk

2 dk] ∧ [αXk(πk(y⃗)) = dk] ∧ [dk ∼Xk
2
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dk] ≤ [ck ∼Xk
1 πk(y⃗)] by injectivity of α. So we obtain that

g ≤
∧
i∈I

[⃗ai ∈ Ri
1] ∧

∨
y⃗∈NV

∧
j∈J

[π⃗j(y⃗) ∈ Rj
1] ∧

∧
k∈K

[ck ∼Xk
1 πk(y⃗)].

But the right-hand side of this inequality is precisely s∗h(g) and hence we
are done.

With the explicit description of the left adjoint in hand, showing that the
Frobenius reciprocity condition is satisfied is now trivial. Explicitly, we
have the following equalities for basic opens of OGT

0 and OGT
1 .

s!

s∗
 ∧

ℓ∈L

[e⃗ ℓ ∈ Rℓ]
 ∧

∧
i∈I

[⃗ai ∈ Ri
1] ∧

∧
j∈J

[⃗bj ∈ Rj
2] ∧

∧
k∈K

[αXk(ck) = dk]


= s!

 ∧
ℓ∈L

[e⃗ ℓ ∈ Rℓ
1] ∧

∧
i∈I

[⃗ai ∈ Ri
1] ∧

∧
j∈J

[⃗bj ∈ Rj
2] ∧

∧
k∈K

[αXk(ck) = dk]


=
∧

ℓ∈L

[e⃗ ℓ ∈ Rℓ] ∧
∧
i∈I

[⃗ai ∈ Ri] ∧
∨

y⃗∈NV

∧
j∈J

[π⃗j(y⃗) ∈ Rj] ∧
∧

k∈K

[ck ∼Xk

πk(y⃗)]

=
∧

ℓ∈L

[e⃗ ℓ ∈ Rl] ∧ s!

 ∧
i∈I

[⃗ai ∈ Ri
1] ∧

∧
j∈J

[⃗bj ∈ Rj
2] ∧

∧
k∈K

[αXk(ck) = dk]


Therefore, the source map is open. Hence, we have given another proof for
the following result.

Proposition 4.6. The representing localic groupoid GT is an open groupoid.

4.3. The isomorphism classes. Recall that descent theory for toposes
expresses the topos Set[T] as a colimit of groupoid diagram obtained by
taking sheaves on the representing groupoid GT. Now, as a left adjoint,
the localic reflection preserves colimits, and so the colimit of the diagram
for GT in Loc gives the localic reflection of Set[T]. Since parallel 2-cells in
Loc are equal, this colimit can be replaced by the coequaliser of the source
and target maps.

Let π0(GT) be the coequaliser

GT
1 GT

0 π0(GT)
t

s

in Loc, which we call the locale of isomorphism classes of GT. Indeed, if
GT is a spatial groupoid (see Section 4.4 below) then π0(GT) is the locale
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associated to the space of isomorphism classes of objects in GT
0 , endowed

with the quotient topology.

We have shown that π0(GT) is the localic reflection of Set[T] (see [12,
Lemma C5.3.7]). So Oπ0(GT) is isomorphic to the frame of subterminals in
Set[T]. The frame of subterminals of the classifying topos Set[T] is known
to be the frame of sentences of the theory, i.e. the frame whose opens are
T-provable equivalence classes of formulae without free variables ordered
by T-provability.

We can also obtain the localic reflection of Set[T] with our approach.
By [15, Proposition 1.3] the opens of the locale of isomorphism classes
of an open localic groupoid are in bijection with the fixed points of the
closure operator s!t

∗. Note that in our case s!t
∗ sends ∧

j∈J [⃗bj ∈ Rj] to∨
y⃗∈NV

∧
j∈J [π⃗j(y⃗) ∈ Rj]. A general element of OGT

0 is given by joins of the
generators, which correspond to quantifier-free formulae in T, but with
variables replaced by certain natural numbers. The order in the frame is
given by provable entailment. The closure operator s!t

∗ takes a join over all
possible natural numbers, which has the effect of existentially quantifying
over the free variables. Thus, the fixed points of s!t

∗ then correspond to
equivalence classes of formulae of T with no free variables, as required.

It is also possible to use the results of [19] to find an explicit presentation
of the quotient locale π0(GT) by generators and relations.

4.4. The case of countable theories and topological groupoids.
Under certain countability restrictions on the theory T, our construction
can be understood to give a topological groupoid. Some readers might find
this preferable to working with locales.

Definition 4.7. We say a geometric theory is countable if it has a countable
number of sorts, relations and axioms.

Proposition 4.8. For a countable geometric theory T, the localic groupoid
constructed in Theorem 4.1 is spatial and thus arises from a topological
groupoid.

Proof : Note that if a theory T is countable, then the locale of objects and
the locale of morphisms of the representing localic groupoid are countably
presented.
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Assuming excluded middle, a countably presented locale is spatial (see [8]).
Moreover, since countably presented locales are closed under finite limits,
the domain of the composition is map is also spatial, as required.

Remark 4.9. Equivariant sheaves on a topological groupoid are defined
analogously to those on a localic groupoid. It is perhaps not obvious that
the concepts coincide when they both apply, since pullbacks of products of
locales and spaces might differ. Nonetheless they do agree, since if X → G0
is a local homeomorphism and G0 is spatial, then so is X (see [12, Lemma
C1.3.2]), and since local homeomorphisms are stable under pullback.

When T is a countable geometric theory, the topological groupoid ob-
tained from Theorem 4.1 is the same representing topological groupoid as
constructed by Forssell in [6], which we now recall.

Let T be a geometric theory with a conservative set of Set-based models,
and let S be an infinite ‘indexing’ set for these models. A model M of T
is said to be S-indexed if the underlying set of each sort is a subquotient
of S. For a tuple a⃗ ∈ S, we will write [⃗a] for its equivalence class in the
subquotient. Forssell shows in [6, Theorem 5.1] that the classifying topos
Set[T] is equivalent to the topos of equivariant sheaves on the topological
groupoid

IS
T ×MS

T
IS
T IS

T MS
T

m
t

s
e (7)

constructed as follows.

(1) The space of S-indexed models MS
T is the set of all S-indexed models

of T endowed with the logical topology for objects — the topology
generated by subsets of form

J⃗a ∈ RKMS
T

= {M ∈ MS
T | [⃗a] ∈ RM },

where R is a relation of T (including equality), RM is its interpreta-
tion in a model M , and a⃗ is a tuple of elements of S.

(2) The space of arrows IS
T is the set of all isomorphisms between models

in MS
T endowed with the logical topology for arrows — the topology
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generated by sets of the form
u

v
a⃗ ∈ R

b⃗ 7→ c⃗

d⃗ ∈ R′

}

~

IS
T

=


[⃗a] ∈ RM ,

M
α−→ M ′ ∈ IS

T [⃗b] ∈ M, [⃗c] ∈ M ′, α([⃗b]) = [⃗c],
[d⃗] ∈ R′M ′


(3) The maps m, t, e, s and i are defined in the obvious way.

By [18, Theorem 6.2.4] a countable theory T has a conservative set of
Set-based models, and then by the downward Löwenheim-Skolem theorem
these models can be taken to be countable. Thus, T has enough N-indexed
models. We immediately recognise the locales GT

0 and GT
1 constructed in

Definition 2.1 and Definition 2.3 as the locales of opens for, respectively, the
logical topology for objects and arrows on the sets MN

T and INT . Explicitly,
for each n⃗, n⃗′, m⃗, m⃗′ ∈ N, we identify the basic open Jn⃗ ∈ RKMN

T
⊆ MN

T with
the generator [n⃗ ∈ R] of GT

0 , and similarly in INT the basic open
u

v
n⃗ ∈ R
m⃗ 7→ m⃗′

n⃗′ ∈ R′

}

~

IN
T

is identified with [n⃗ ∈ R1] ∧ [n⃗′ ∈ R′
2] ∧

∧
mi∈m⃗

[α(mi) = m′
i].

Thus, when the theory T is countable, the localic groupoid constructed in
Theorem 4.1 coincides with the topological groupoid of N-indexed models
in (7).

Remark 4.10. For a countable theory T, the representing topological group-
oid for Set[T] constructed by Butz and Moerdijk in [2] is not directly
comparable with the groupoid we build in Theorem 4.1, instead deriving
from one of the many other open covers of Set[T]. In summary, it is
the groupoid obtained when, instead of considering the theory PQN of
partial equivalence relations on N as we did, one takes the theory of partial
equivalence relations on N where every equivalence class is infinite. That
is, the theory obtained by adding to PQN, for each n, ℓ ∈ N, the axiom

[n ∼ n] ⊢
∨

{[n ∼ m1] ∧ · · · ∧ [n ∼ mℓ] | m1 < m2 < · · · < mℓ in N}.

Appendix A.Descent data and equivariant sheaves
In this appendix we explicitly spell out the equivalence between the datum
of a compatible G1-action on a local homeomorphism q : Y → G0 and
descent datum (Y, θ) for a localic groupoid G. Thereby, we are free to
using either definitions when discussing the topos of sheaves Sh(G). The
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equivalence is merely a case of unravelling definitions, but since this can at
times be fiddly, we include an exposition here.

Given a local homeomorphism q : Y → G0 with a compatible G1-action
β : Y ×G0 G1 → Y , the corresponding descent datum is the pair (Y, θβ)
where θβ is the induced map

s∗(Y )

t∗(Y ) Y

G1 G0,

β

θβ

⌟
q

t

where the outside square commutes by the axiom q(β(y, g)) = t(g) of β.

In ‘point-set’ notation, the locales s∗(Y ) and t∗(Y ) are the spaces
s∗(Y ) = {(y, f) ∈ Y ×G1 | s(f) = q(y)},
t∗(Y ) = {(y, f) ∈ Y ×G1 | t(f) = q(y)},

and θβ is the map which sends (y, f) ∈ s∗(Y ) to (β(y, f), f) ∈ t∗(Y ). We
first show that θβ does indeed define descent datum on Y .

The condition e∗(θβ) = idY asserts that the map e∗(θβ) in the composite
pullback diagram below is canonically the identity on Y .

e∗s∗(Y ) s∗(Y )

e∗t∗(Y ) t∗(Y )

G0 G1

e∗(θβ)
⌟

θβ

⌟

e

The space e∗s∗(Y ) is given by
e∗s∗(Y ) = {(x, y, f) ∈ G0 × Y ×G1 | e(x) = f, s(f) = q(y)}

and similarly
e∗t∗(Y ) = {(x, y, f) ∈ G0 × Y ×G1 | e(x) = f, t(f) = q(y)}.
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The map e∗(θβ) : e∗s∗(Y ) → e∗t∗(Y ) acts by

(x, y, f) 7→ (x, β(y, f), f).

But since x = s(e(x)) = s(f) = q(y), a triple (x, y, f) ∈ e∗s∗(Y ) is entirely
determined by y. Thus, there is a canonical isomorphism e∗s∗(Y ) ∼= Y
given by projecting onto the second component of the tuple. Similarly, the
same projection yields an isomorphism e∗t∗(Y ) ∼= Y . Since f = e(q(y)) for
each (x, y, f) ∈ e∗s∗(Y ), we observe that β(y, f) = β(y, e(q(y))) = y. Thus,
we have a commuting triangle

e∗s∗(Y )

Y

e∗t∗(Y ),

e∗(θβ)

∼

∼

as required.

Now we turn to the condition that m∗(θβ) = π∗
2(θβ) ◦ π∗

1(θβ). The spaces
involved can be expressed as

π∗
1s∗(Y ) ={(y,f,g)∈Y ×G1×G1 | s(π1(f,g))=s(f)=q(y), t(f)=s(g)},

π∗
1t∗(Y ) ={(y,f,g)∈Y ×G1×G1 | t(π1(f,g))=t(f)=q(y), t(f)=s(g)},

π∗
2s∗(Y ) ={(y,f,g)∈Y ×G1×G1 | s(π2(f,g))=s(g)=q(y), t(f)=s(g)},

π∗
2t∗(Y ) ={(y,f,g)∈Y ×G1×G1 | t(π1(f,g))=t(g)=q(y), t(f)=s(g)}.

Using the equations s◦m = s◦π1 and t◦m = t◦π2, and the commutativity
of the pullback square

G1 ×G0 G1 G1

G1 G0,

π2

π1
⌟

s

t

we conclude that m∗s∗(Y ) = π∗
1s

∗(Y ), m∗t∗(Y ) = π∗
2t

∗(Y ) and π∗
1t

∗(Y ) =
π∗

2s
∗(Y ). Thus, the equation m∗(θβ) = π∗

2(θβ) ◦ π∗
1(θβ) type-checks.
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The map π∗
1(θβ) is the map in the double pullback

π∗
1s

∗(Y ) s∗(Y )

π∗
1t

∗(Y ) t∗(Y )

G1 ×G0 G1 G1,

π∗
1(θβ)

⌟
θβ

⌟

π1

and therefore acts by (y, f, g) 7→ (β(y, f), f, g). Similarly, π∗
2(θβ) acts

by (y, f, g) 7→ (β(y, g), f, g) and m∗(θβ) : m∗s∗(Y ) → m∗t∗(Y ) acts by
(y, f, g) 7→ (β(y,m(f, g)), f, g). Thus, we observe that

(π∗
2(θβ) ◦ π∗

1(θβ))(y, f, g) = π∗
2(θβ)(β(y, f), f, g)

= (β(β(y, f), g), f, g)
= (β(y,m(f, g)), f, g)
= m∗(θβ)(y, f, g).

Hence, the pair (Y, θβ) indeed constitutes descent datum.

An equivariant map f : Y → Y ′ between spaces with respective G1-actions
β and β′ also constitutes a morphism of descent data f : (Y, β) → (Y ′, β′).
The required commutativity condition, t∗(f) ◦ θβ = θβ′ ◦ s∗(f), is forced by
universal property of t∗(Y ′) in the following commutative diagram.

s∗(Y ) s∗(Y ′)

Y Y ′

t∗(Y ) t∗(Y ′)

G0 G0

G1 G1

s∗(f)

β β′

f

t t

t∗(f)

θβ θβ′

For the other direction, suppose we are given a descent datum (Y, θ). We
then obtain a compatible G1-action βθ : s∗(Y ) → Y by taking βθ to be the
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composite

Y ×G0 G1 ∼= s∗(Y ) t∗(Y ) Y.θ

Checking that βθ is a legitimate G1-action or that a morphism of descent
data f : (Y, θ) → (Y ′, θ′) yields an equivariant map f : (Y, βθ) → (Y ′, βθ′)
essentially amounts to the reverse of what we have done above and so we
omit the details. Finally, note that the two correspondences are mutual
inverses.
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