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Abstract: Any permutation w of the symmetric group can be generated by a
product of adjacent transpositions, and a reduced word for w is a sequence of gen-
erators of minimal length whose product is w. The main result in this paper gives a
formula to compute the diameter of a commutation class of the graph G(w), whose
vertices are reduced words for w and whose edges are braid relations. To do so, we
define a metric on the set of all reduced words of a given permutation which turn
out to be equal to the usual distance in any commutation class. If a permutation
is fully commutative, i.e. it has only one commutation class, then the formula gives
the diameter of G(w). The diameter for a Grassmanian permutation is also given
in terms of its Lehman code.
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1. Introduction
Given a positive integer n ≥ 1, let Sn denote the symmetric group on the

alphabet {1, 2, . . . , n}. A permutation w ∈ Sn will be represented in one-line
notation as w = [w1w2 · · ·wn], where wi = w(i). It is well known that the
symmetric group Sn is generated by the adjacent transpositions si, that swaps
the integers i and i + 1 and fixes all other integers, 1 ≤ i < n, which satisfy
the Coxeter relations

sisj = sjsi, for |i− j| > 1, (1.1)
sisi+1si = si+1sisi+1, for 1 ≤ i < n− 1, (1.2)

and s2i = e, the identity permutation. Relations (1.1) are known as commuta-
tions or short braid relations, and relations (1.2) are called long braid relations.
A reduced word for w ∈ Sn is a sequence i1i2 · · · i` of minimal length ` such

that w = si1si2 · · · si`. The collection of all reduced words for w will be denoted
by Red(w). The graph G(w), whose vertex set is Red(w) and where two re-
duced words are connected by an edge whenever they differ by a single Coxeter
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relation (1.1) or (1.2), has been studied by several authors (see [13, 3, 14, 8]
and the references therein). A classical result from Tits [15] shows that G(w)
is connected, and some effort was made towards the computation of the di-
ameter of this graph. The diameter of G(w) was first studied asymptotically
by Dehornoy and Autord [2] and exact formulas were obtained by Reiner and
Roichman [12] for the longest permutation [n n−1 · · · 1], and by Dahlberg and
Kim [6] for 12-inflations and several 21-inflations. Lower and upper bounds for
the diameter were also considered [6, 9, 12].
By contracting the commutation edges of G(w) we obtain the commutation

graph C(w), whose vertices are the commutation classes and the edges are long
braid relations between the classes. This graph has also received some attention
[7, 5, 10], and in particular a formula for the diameter of C(w) was obtained
in [11]. In this paper, we generalize a statistic used to compute the diameter
of the commutation graph to define a metric on the set Red(w) of all reduced
words of w. This metric is used to compute the diameter of any commutation
class of G(w). As a corollary, we obtain a formula for the diameter of G(w) for
any fully commutative permutation w. For the special class of Grassmannian
permutations, we get formulas for the diameter based on its Lehman code.

2. A metric for G(w)
Let G = (V,E) be a simple graph with vertex set V and edge set E. The

distance d(a, b) between two vertices a, b ∈ V is the number of edges in the
shortest path between a and b. The diameter diam(G) of the graph G is the
maximum value of d(a, b) over all a, b ∈ V . A subgraph G′ = (V ′, E ′) of G is
called an induced subgraph if it contains all edges of G that join two vertices
in V ′.
Given a permutation w ∈ Sn, consider the graph G(w) with vertex set

Red(w), and with an edge between two reduced words if they differ by ex-
actly one Coxeter relation (1.1) or (1.2). If a is a reduced word for w, let
G[a] denote the commutation class of a, that is the set of all reduced words
obtained from a by a sequence of commutations. The commutation class G[a]

is an induced subgraph of G(w), and its reduced words can be ordered by lex-
icographic order ≤lex. We denote by a− and a+ the minimum and maximum
word in G[a] for the lexicographic order.

Definition 2.1. Given a permutation w and an integer 1 ≤ i < `(w), let ci be
the map that acts on a = a1a2 · · · a` ∈ Red(w) by commuting the letters ai and
ai+1 whenever |ai− ai+1| > 1, and acts as the identity otherwise. Analogously,
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define the map bi that acts on a ∈ Red(w) by braiding the factor ai−1aiai+1 to
aiai+1ai whenever ai−1 = ai+1 = ai ± 1, and acts as the identity otherwise.

The maps ci and bi are well-defined involutions on Red(w) [1]. We refer to
ci as a commutation, to bi as a braid move, and to either as a Coxeter move.
Figure 1 displays the graph G(4321) and the respective Coxeter moves, with

edges corresponding to commutations in red and to long braid relations in blue.
The reduced words in the commutation class of a = 213213, in lexicographic
order, are

a− = 213213 ≤lex 213231 ≤lex 231213 ≤lex 231231 = a+ .

An inversion of a permutation w = [w1w2 · · ·wn] ∈ Sn is an ordered pair
(wj, wi) such that i < j and wj < wi. For simplicity, we represent the inversion
(wj, wi) just by the word wjwi. The set of all inversions of w is denoted by
Inv(w).
For a = a1a2 · · · a`(w) a reduced word for w, consider the permutation formed

as the left factor vp = sa1sa2 · · · sap of w = sa1sa2 · · · sa`(w). The inversion sets
Inv(vp) and Inv(vp−1) ⊂ Inv(vp) differ by exactly one inversion for each p ≥ 1,
with v0 the identity, and thus we can define a bijection ιa : {1, 2, . . . , `(w)} →
Inv(w) where ιa(p) = ij if ij ∈ Inv(vp) \ Inv(vp−1). This induces a linear
ordering on the set Inv(w), denoted (Inv(w),≤a), with cover relations defined
by

ij la k` if there is p ≥ 1 such that ij = ιa(p) and k` = ιa(p+ 1) .

The descent set of a permutation w is the set

Des(w) = {i : wi > wi+1},
and its elements are called descents. In Algorithms 1 and 2 we use the descent
set of w to describe the construction of two reduced words for w, wmin and
wmax, which are, in some sense, opposite to each other.

Algorithm 1 The reduced word wmin for the permutation w = [w1w2 · · ·wn].
1: Set v = w and wmin = ε (emptyword)
2: for j = n, n− 1, . . . , 2 do
3: while v−1(j) is a descent of v do
4: Set wmin = v−1(j) · wmin

5: Update v = v · (i j) where i = v
(
v−1(j) + 1

)
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Algorithm 2 The reduced word wmax for the permutation w = [w1w2 · · ·wn].
1: Set v = w and wmax = ε (emptyword)
2: for j = 1, 2, . . . , n− 1 do
3: while v−1(j)− 1 is a descent of v do
4: Set wmax =

(
v−1(j)− 1

)
· wmax

5: Update v = v · (j i) where i = v
(
v−1(j)− 1

)
To construct wmax, we start with the permutation w and apply transpositions

in order to send the number 1 to the first position in the one-line notation.
Next, we send the number 2 do the second position. We repeat the procedure
until we obtain the identity. Reading the descents corresponding to each of
the transpositions used, in reverse order of their appearance, we get the word
wmax. For wmin, the procedure is similar, but now we order the numbers in w
starting from n.
In Table 2.1 we apply Algorithms 1 and 2 to obtain the reduced words wmin =

13243254 and wmax = 43451234 for the permutation w = [254613], reading
the left column of each table from bottom to top. The labels on the left column
(typed in italics) are descents of the permutation in that line, and in the right
column are the corresponding inversions. The corresponding induced orderings
of the inversion set of w are:

12 lwmin
34 lwmin

14 lwmin
35 lwmin

15 lwmin
45 lwmin

36 lwmin
16

and

45 lwmax
35 lwmax

34 lwmax
36 lwmax

12 lwmax
15 lwmax

14 lwmax
16.

As defined in [12], the set formed by all disjoint pairs of inversions (ij, k`),
with i < k and ij, k` ∈ Inv(w) is denoted by I2(w). Let

I3(w) = {(ij, k`) : ij, k` ∈ Inv(w) with j = k},

and L2(w) = I2(w)∪I3(w). For simplicity, we often write a pair (ij, j`) ∈ I3(w)
as a triple ij`.
The next definition generalizes the function defined in [11] on the set Red(w)×

I3(w).
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descent permutation Inv(w)
4 2 5 4 6 1 3 16
5 2 5 4 1 6 3 36
2 2 5 4 1 3 6 45
3 2 4 5 1 3 6 15
4 2 4 1 5 3 6 35
2 2 4 1 3 5 6 14
3 2 1 4 3 5 6 34
1 2 1 3 4 5 6 12

1 2 3 4 5 6

descent permutation Inv(w)
4 2 5 4 6 1 3 16
3 2 5 4 1 6 3 14
2 2 5 1 4 6 3 15
1 2 1 5 4 6 3 12
5 1 2 5 4 6 3 36
4 1 2 5 4 3 6 34
3 1 2 5 3 4 6 35
4 2 1 3 5 4 6 45

1 2 3 4 5 6
Table 2.1. The reduced words wmin and wmax for w = [254613].

Definition 2.2. Given a permutation w ∈ Sn, define the family of maps
(Γa)a∈Red(w) on the set L2(w) by setting

Γa(ij, k`) =

{
1, if ij >a k`

0, if ij <a k`
,

where (Inv(w),≤a) is the order induced by a.

If two reduced words a and b are related by a single commutation, then there
is exactly one pair (ij, k`) ∈ I2(w) for which the image of the Γ-function differs
for both words, that is

Γa(ij, k`) 6= Γb(ij, k`),

with ij la k` if and only if k` lb ij. Analogously, if a and b differ by a braid
move, then there is exactly one pair (ij, j`) ∈ I3(w) for which the image of the
Γ-function differs for both words, with

ij la i`la j` if and only if j`lb i`lb i`.

Lemma 2.3. Let w ∈ Sn. Then, the words wmin and wmax, obtained by
Algorithms 1 and 2, are reduced words for w. Moreover, Γwmin

(ijk) = 0 and
Γwmax

(ijk) = 1 for any triple ijk ∈ I3(w).

Proof : It is easy to check that for j = n, . . . , 2, each iteration of thewhile cycle
in Algorithm 1 produces a auxiliar permutation v with one less inversion in each
step. Thus, the permutation obtained after the conclusion of the algorithm is
the identity. Since the length of wmin is equal to the cardinality of Inv(w), it
follows that wmin is a reduced word for w. Next, consider a triple ijk ∈ I3(w).



6 GONÇALO GUTIERRES AND RICARDO MAMEDE

This means that kji is a subword of w with ij and jk inversions of w. Following
Algorithm 1, we must have

ij lwmin
jk.

This proves that Γwmin
(ijk) = 0.

The same argument proves that wmax is a reduced word for w with Γwmax
(ijk) =

1.

The next result, proved in [11, Proposition 4.3], shows that when restricted
to I3(w), the function Γa only depends on the commutation class of a.

Proposition 2.4. Given a commutative class G[a], Γa(ijk) = Γb(ijk) for all
ijk ∈ I3(w) if and only if b ∈ G[a].

The commutation classes of wmin and wmax are the furthest classes in the
graph C(w) and thus diam (C(w)) = d

(
G[wmin], G[wmax]

)
= |I3(w)| (see [11]

for details).
In general, for any two reduced words, one can define the set of all pairs

of inversions for which the image of the Γ-functions differs. This set allows
us to define a metric on Red(w), which will be used to prove our main result
Theorem 3.9.

Definition 2.5. Given a, b ∈ Red(w), let

Ta,b = {(ij, k`) ∈ L2(w) : Γa(ij, k`) 6= Γb(ij, k`)}
and

T[a] =
⋃

b,c∈[a]

Tb,c.

Definition 2.6. Given a, b ∈ Red(w), let

t(a, b) = |Ta,b| =
∑

(ij,k`)∈L2(w)

Γa(ij, k`)⊕2 Γb(ij, k`),

where ⊕2 represents the sum modulo 2.

It is not difficult to check that t is a metric on Red(w). The symmetry and
reflexivity properties are straightforward. For the triangular inequality, note
that if Γa(ij, k`) 6= Γb(ij, k`), then for every c ∈ Red(w) either Γa(ij, k`) 6=
Γc(ij, k`) or Γc(ij, k`) 6= Γb(ij, k`) and thus Ta,b ⊆ Ta,c ∪ Tc,b. It follows that
t(a, b) ≤ t(a, c) + t(c, b).

Proposition 2.7. Given a, b ∈ Red(w), we have t(a, b) ≤ d(a, b).
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Proof : If a and b differ by a single commutation or braid relation, then by
definition |Ta,b| = 1. This means that, if d(a, b) = 1 then t(a, b) = 1.
If a = a0, a1, . . . , an = b is a shortest path between a and b, there exists a

sequence f = fin · · · fi2fi1 of Coxeter moves such that fip(ap−1) = ap with fip = cip
or fip = bip for all p = 1, . . . , n, and thus |Tar,ar+1

| = 1, for all 0 ≤ r < s ≤ n−1.
Since

Ta,b ⊆
n−1⋃
r=0

Tar,ar+1
,

it follows that t(a, b) = |Ta,b| ≤ n = d(a, b).

Note that from this last proposition it follows that the diameter of the metric
space (Red(w), t) is a lower bound for the diameter of the graph G(w), which
in many cases is easier to compute.
Next example shows that, in general, the inequality in Proposition 2.7 is

strict.

Example 2.1. The inversion set for the longest permutation w = [4321] of S4
is Inv(w) = {12, 13, 14, 23, 24, 34} and we have

I2(w) = {(12, 34), (13, 24), (14, 23)} and I3(w) = {123, 124, 134, 234}.

The graph G(w) is displayed in Figure 1. Consider the reduced words a =
132132 and b = 231231 of w, and note that d(a, b) = 7. As can be seen in
Table 2.2, the orderings of Inv(w) induced by a and b are:

12 la 34 la 14 la 24 la 13 la 23

and
23 lb 24 lb 13 lb 14 lb 12 lb 34.

We have, Γ−1a (0) = {(12, 34), (14, 23), (12, 23), (12, 24)} and Γ−1b (0) = {(12, 34),
(13, 34), (23, 34)}, and therefore

t(a, b) = |Ta,b|
= |Γ−1a (0) \ Γ−1b (0)|+ |Γ−1b (0) \ Γ−1a (0)|
= |{(14, 23), (12, 23), (12, 24)}|+ |{(13, 34), (23, 34)}|
= 5 < 7 = d(a, b).
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descent permutation Inv(w)
2 4 3 2 1 23
3 4 2 3 1 13
1 4 2 1 3 24
2 2 4 1 3 14
3 2 1 4 3 34
1 2 1 3 4 12

1 2 3 4

descent permutation Inv(w)
1 4 3 2 1 34
3 3 4 2 1 12
2 3 4 1 2 14
1 3 1 4 2 13
3 1 3 4 2 24
2 1 3 2 4 23

1 2 3 4
Table 2.2. The reduced words 132132 and 231231 for w = [4321].

121321 123121

212321 123212

213231 132312

213213 231231 312312132132

321323323123

321232232123

312132231213

c3

b2 b5

b4 b3

c5 c1c2 c4

c3

b2 b5

b4 b3

c2 c4c5 c1

Figure 1. The graph G(4321).

3. The main results
Although the metrics t and d are different, in the next result we show that

they coincide inside each commutation class of G(w). This coincidence of the
metrics will allow us to obtain a formula for the diameter of any commutation
class.
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Proposition 3.1. Let a, b ∈ Red(w). If a and b are in the same commutation
class, then d(a, b) = t(a, b).

Proof : Let a = a0, a1, . . . , an = b be a shortest path between a and b. Then,
there exists a sequence c = cin · · · ci2ci1 of commutations such that cip(ap−1) =
ap for all p = 1, . . . , n, and thus c(a) = b. We claim that Tar,ar+1

6= Tas,as+1
, for

all 0 ≤ r < s ≤ n− 1.
Recall that Tar,ar+1

is formed by a single element of I2(w), for each r. By
way of contradiction, assume Tar,ar+1

= Tas,as+1
, with r < s, where s is the

smallest integer for which this equality occurs. Without loss of generality, we
may assume r = 0 and s = n − 1, and thus Ta0,a1 = Tan−1,an. Then, writting
aj = a1ja

2
j · · · a

`(w)
j for j = 0, 1, . . . , n, we have

{ιa0 (i1) , ιa0 (i1 + 1)} =
{
ιan−1 (in) , ιan−1 (in + 1)

}
.

In particular this means that the letters ai10 and ai1+1
0 are consecutive letters in

the words a0, a1, an−1 and an, and satisfy

|ai10 − a
i1+1
0 | ≥ 2 .

Since we can apply ci2 to the word a1, the letters ai21 and ai2+1
1 also satisfy

|ai21 − a
i2+1
1 | ≥ 2 .

If {ai10 , a
i1+1
0 } ∩ {ai21 , a

i2+1
1 } = ∅, then we have ai21 = aj0 and ai2+1

1 = aj+1
0 for

some j < i1 − 1 or j > i1 + 1 and we can apply ci2 to the word a0. On the
other hand, suppose ai2+1

1 = ai1+1
0 . Then

a0 = a10 · · · a
i1−1
0 ai10 a

i1+1
0 · · · a`0

and
a1 = a10 · · · a

i1−1
0 ai1+1

0 ai10 · · · a`0 ,
where ai21 = ai1−10 and ai2+1

1 = ai1+1
0 . Since the word ci2(a1) is well-defined, we

have |ai1−10 − ai1+1
0 | ≥ 2 and

a2 = a10 · · · a
i1+1
0 ai1−10 ai10 · · · a`0 .

But notice that in the word an−1 the letters ai1+1
0 and ai10 are consecutive

letters, which means that |ai1−10 − ai10 | ≥ 2 since some map cik must exchange
the positions of these letters. These proves that ci2(a0) is well defined and

ci2(a0) = a10 · · · a
i1
0 a

i1−1
0 ai1+1

0 · · · a`0 .
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That is ci2(a0) differ from a2 only on the positions of ai10 and ai1+1
0 . The same

argument can be repeated, showing that cin−1 · · · ci2(a0) is well-defined and
differ from an−1 only on the positions of the letters ai10 and ai1+1

0 proving that
cin−1 · · · ci2(a0) = b . We thus get a contradiction, since this path is shorter than
the original one. So, we must have Tar,ar+1

6= Tas,as+1
, for all 0 ≤ r < s ≤ n−1,

proving that d(a, b) = t(a, b).

Using the coincidence of the metrics t and d inside each commutation class,
given a reduced word a ∈ Red(w), we can derive a formula for the diameter of
a commutation class of G(w).

Theorem 3.2. Let a ∈ Red(w). Then d(a−, a+) = |T[a]|, where a− (resp. a+)
is the minimum (resp. maximal) word in the commutation class G[a] for the
lexicographic order.

Proof : By Proposition 3.1, we have d(a−, a+) = t(a−, a+) = |Ta−,a+|. So, it is
enough to prove that Ta−,a+ = T[a]. By definition of T[a], Ta−,a+ ⊆ T[a].
To prove the other inclusion, it is enough to show that if a pair ij, k` ∈ Inv(w)

satisfies
ij <a− k`, and ij <a+ k`,

then ij <c k` for any c ∈ G[a].
Recall that for any inversion xy, the corresponding letter in a reduced does

not change inside a commutation class.
Let a− = a1−a

2
− · · · a

`(w)
− , a+ = a1+a

2
+ · · · a

`(w)
+ , and let p = ι−1a−

(ij), q =

ι−1a−
(k`), p′ = ι−1a+

(ij), q′ = ι−1a+
(k`). By our assumptions p < q, p′ < q′, i.e. ap−

is on the left of aq− in the word a− and ap
′

+ is on the left of aq
′

+ in the word a+.
Note also that ap− = ap

′

+ and aq− = aq
′

+.
If |ap− − a

q
−| ≤ 1, then the letters ap− and aq− maintain their relative positions

in all words in the commutation class of a. Suppose now that |ap− − a
q
−| ≥ 2 and

assume that ap− < aq− (otherwise one could argue with a+ instead of a−). Since
ap− = ap

′

+ is on the left of aq− = aq
′

+ in the word a+, the definition of lexicographic
order implies the existence of the subword ap

′

+ (ap
′

+ + 1) · · · (aq
′

+ − 1) aq
′

+ in a+.
This subword of consecutive letters must be a subword in any reduced word of
the same class. This proves that ij <c k` for any c ∈ G[a].

Corollary 3.3. Let a ∈ Red(w). The diameter of the commutation class G[a]

is given by
d(a−, a+) = |T[a]|.
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Proof : Given any b, c ∈ [a], by Proposition 3.1 and Theorem 3.2, d(b, c) =
|Tb,c| ≤ |Ta−,a+| = d(a−, a+).

The diameter of a commutative class G[a] is the cardinal of the set T[a] which
is contained in I2(w). In order to give a closed formula for the diameter we
need to divide the set I2(w) into the sets of separated, crossed and nested pairs
of inversions.

Definition 3.4. Given w ∈ Sn, define the following disjoint subsets of I2(w):

IS2 (w) := {(ij, k`) ∈ I2(w) : i < j < k < `},

IC2 (w) := {(ik, j`) ∈ I2(w) : i < j < k < `},
IN2 (w) := {(i`, jk) ∈ I2(w) : i < j < k < `}.

See Example 3.1 for the construction of these sets for the permutation w =
514632.

Definition 3.5. Given a ∈ Red(w), define the following disjoint subsets of
T[a]:

T S
[a] := IS2 (w) ∩ T[a],

TC
[a] := IC2 (w) ∩ T[a],

TN
[a] := IN2 (w) ∩ T[a].

Next lemmas show that knowing the function Γa suffices to compute the
diameter of the commutation class G[a].

Lemma 3.6. Let a be a reduced word of a permutation w and (ij, k`) ∈ IS2 (w),
with i < j < k < `. The pair (ij, k`) ∈ T S

[a] if and only if either of the following
conditions hold:

• ij` 6∈ I3(w) and ik` 6∈ I3(w);
• ij` 6∈ I3(w) and Γa(ik`) = 1;
• Γa(ij`) = 0 and ik` 6∈ I3(w);
• Γa(ij`) = 0 and Γa(ik`) = 1;
• Γa(ij`) = 1 and Γa(ik`) = 0.

Proof : Recall that by Proposition 2.4, the image of the Γa function when re-
stricted to I3(w) is invariant in each commutation class of G(w), and thus the
result of this lemma does not depend on a particular word of G[a].
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ik` /∈ I3 Γa(ik`) = 0 Γa(ik`) = 1
ij` /∈ I3 X 7 X

Γa(ij`) = 0 X 7 X
Γa(ij`) = 1 7 X 7

Table 3.1. Separated pairs of inversions (ij, k`) ∈ IS2 (w)

Suppose (ij, k`) ∈ IS2 (w) and non of these five conditions is fulfilled. Then
there are four cases to study, shown in Table 3.1 with 7, and for each case we
have to prove that (ij, k`) /∈ T S

[a].

1st ij` 6∈ I3(w) and Γa(ik`) = 0.
Since ij` 6∈ I3(w) and ij ∈ Inv(w), we find that j` is not an inversion

of the permutation w. Also ik` ∈ I3(w), and thus j`ki must be a
subword of the permutation w, which implies that jk is not an inversion.
Since Γa(ik`) = 0, we have ik <a i` <a k`. The inversion ik can only
occur after either ij or jk. But jk /∈ Inv(w), and so we must have
ij <a ik. We conclude that ij <a k`, which implies that (ij, k`) /∈ T S

[a].
2nd ik` 6∈ I3(w) and Γa(ij`) = 1.

This case is similar to previous one by symmetry, and therefore we
must have ij >a k` for all reduced words a satisfying these conditions.
It follows that (ij, k`) /∈ T S

[a].
3rd Γa(ij`) = 0 and Γa(ik`) = 0.

Since Γa(ij`) = Γa(ik`) = 0, we have ij <a i` and i` <a k` and
therefore ij <a k`. We conclude that (ij, k`) /∈ T S

[a].
4th Γa(ij`) = 1 and Γa(ik`) = 1.

Since Γa(ij`) = Γa(ik`) = 1, we have ij >a i` and i` >a k` and
therefore ij >a k`. We conclude that (ij, k`) /∈ T S

[a].

Reciprocally, suppose that (ij, k`) ∈ IS2 (w) satisfies one of the five conditions,
identified by X in Table 3.1. We need to prove that (ij, k`) ∈ T S

[a].

1st ij` 6∈ I3(w) and ik` 6∈ I3(w).
Since ij` 6∈ I3(w) and ik` 6∈ I3(w), we have j`, ik /∈ Inv(w). There-

fore, there are only two possibilities for the subword w′ of the permu-
tation w formed by the letters i < j < k < `. Either w′ = ji`k or
w′ = j`ik. In the first case, there are only two inversions on the letters
ijk`, and they can be performed in any order. In the second case, there
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is an adicional inversion i`, which must be done after the previous two
inversions. In any case, the reduced words associated with these two
choices of ordering the inversions ij and k` have distinct Γ values on
the pair (ij, k`). It follows that (ij, k`) ∈ T S

[a].
2nd ij` 6∈ I3(w) and Γa(ik`) = 1.

Since ij` 6∈ I3(w), we have j` /∈ Inv(w). On the other hand ik` ∈
I3(w), and therefore the subword of the permutation w formed by the
letters i < j < k < ` is j`ki. There are four inversions in this letters,
namely ij, k`, ik and i`, and since Γa(ik`) = 1, we must have k` <a

i` <a ik. Since j` /∈ Inv(w), we must have ij <a i`, and thus ij and
k` must be the first two inversions on these letters to occur, and can be
made in any order, followed by i`. As in the previous case we conclude
that (ij, k`) ∈ T S

[a].
3rd ik` 6∈ I3(w) and Γa(ij`) = 0.

This case is similar to previous one by symmetry, and therefore we
also have (ij, k`) ∈ T S

[a].
4th Γa(ij`) = 0 and Γa(ik`) = 1.

Under these conditions, ij`, ik` ∈ I3(w) and then the subword of the
permutation w formed by the letters i < j < k < ` is either `kji or
`jki. Since Γa(ij`) = 0 and Γa(ik`) = 1, we must have ij <a i` <a j`
and k` <a i` <a ik. If jk ∈ Inv(w), then we must have j` <a jk. In
any case, the first two inversions in these letters must be ij and k`, and
they can be made in any order, followed by i`. Therefore (ij, k`) ∈ T S

[a].
5th Γa(ij`) = 1 and Γa(ik`) = 0.

This case is similar to previous one by symmetry, and therefore we
also have (ij, k`) ∈ T S

[a].

The proofs of the next two lemmas follows the same reasoning of Lemma 3.6,
and some details will be omitted.

Lemma 3.7. Let a be a reduced word of a permutation w and (ik, j`) ∈ IS2 (w),
with i < j < k < `. The pair (ik, j`) ∈ TC

[a] if and only if either of the following
conditions hold:

• ij` 6∈ I3(w) and ik` 6∈ I3(w);
• ij` 6∈ I3(w) and Γa(ik`) = 0;
• Γa(ij`) = 0 and Γa(ik`) = 1;
• Γa(ij`) = 1 and ik` 6∈ I3(w);
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• Γa(ij`) = 1 and Γa(ik`) = 0.

ik` /∈ I3 Γa(ik`) = 0 Γa(ik`) = 1
ij` /∈ I3 X X 7

Γa(ij`) = 0 7 7 X
Γa(ij`) = 1 X X 7

Table 3.2. Crossing pairs of inversions (ik, j`) ∈ IC2 (w)

Proof : Suppose ik, j` ∈ Inv(w) and none of these five conditions is fulfilled.
Then there are four cases to study, and for each case we have to prove that
(ik, j`) /∈ TC

[a].

1st ij` 6∈ I3(w) and Γa(ik`) = 1.
Since ij` 6∈ I3(w) and j` ∈ Inv(w), we find that ij is not an inversion.
Since Γa(ik`) = 1, we have i` <a ik. The inversion i` can only occur

after either ij or j`. But ij /∈ Inv(w), and then we must have j` <a i`.
We conclude that j` <a ik which implies that (ik, j`) /∈ TC

[a].
2nd ik` 6∈ I3(w) and Γa(ij`) = 0.

This case is similar to previous one by symmetry, and therefore we
must have j` >a ik for all reduced words a satisfying these conditions.
It follows that (ik, j`) /∈ TC

[a].
3rd Γa(ij`) = 0 and Γa(ik`) = 0.

Since Γa(ik`) = Γa(ij`) = 0, we have ik <a i` and i` <a j` and
therefore ik <a j`. We conclude that (ik, j`) /∈ TC

[a].
4th Γa(ij`) = 1 and Γa(ik`) = 1.

Since Γa(ik`) = Γa(ij`) = 0, we have ik >a i` and i` >a j` and
therefore ik >a j`. We conclude that (ik, j`) /∈ TC

[a].

Reciprocally, suppose that (ik, j`) ∈ IC2 (w) satisfies one of the five conditions,
identified by X in Table 3.2. We need to prove that (ik, j`) ∈ TC

[a].

1st ij` 6∈ I3(w) and ik` 6∈ I3(w).
Since ij` 6∈ I3(w) and ik` 6∈ I3(w), we have ij, k` /∈ Inv(w), which

means that jk must be an inversion of w. Therefore, there are only
two possibilities for the subword w′ of the permutation w formed by the
letters i < j < k < `. Either w′ = ki`j or w′ = k`ij. In the first case,
there is only one option for the first inversion on the letters i, j, k, `,
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namely jk, and afterwards there are only two possible inversions, ik
and j`, which can be performed in any order, giving rise to w′. In the
second case, there is an adicional inversion i`, which must be done after
the previous three inversions. It follows that (ik, j`) ∈ TC

[a].
2nd ij` 6∈ I3(w) and Γa(ik`) = 0.

Since ij` 6∈ I3(w), we have ij /∈ Inv(w). As in the previous case,
this means that jk is an inversion of w. Therefore, the subword of
the permutation w formed by the letters i, j, k, ` is `kij. There are five
inversions in this letters, namely ik, i`, jk, j` and k`, and since Γa(ik`) =
0, we must have ik <a i` <a k`. Since ij /∈ Inv(w), we must have j` <a

i`. The first inversion to be performed must be jk. Then, there are only
two possible inversions afterwards, ik and j`, which can be performed
in any order, followed by i` and k`. It follows that (ik, j`) ∈ TC

[a].
3rd ik` 6∈ I3(w) and Γa(ij`) = 1.

This case is similar to previous one by symmetry, and therefore we
also have (ik, j`) ∈ TC

[a].
4th Γa(ij`) = 0 and Γa(ik`) = 1.

Since ij`, ik` ∈ I3(w), the subword of the permutation w formed
by the letters i, j, k, ` is either `kji or `jki. Since Γa(ij`) = 0 and
Γa(ik`) = 1, we must have ij <a i` <a j` and k` <a i` <a ik. If
jk /∈ Inv(w), then the first two inversions on the letters ijk` must be ij
and k`, and they can be made in any order, followed by i`, given the word
j`ik. There are now only two possible inversions, ik and j`, which can
be performed in any order. On the other hand, if jk ∈ Inv(w), we cannot
start by applying jk since this inversion must be followed by either ik or
j`, contradicting the assumptions Γa(ij`) = 0 and Γa(ik`) = 1. Thus
we must apply the inversions as before, followed by jk. It follows that
(ik, j`) ∈ TC

[a].
5th Γa(ij`) = 1 and Γa(ik`) = 0.

This case is similar to previous one by symmetry, and therefore we
also have (ik, j`) ∈ TC

[a].

Lemma 3.8. Let a be a reduced word of a permutation w and (i`, jk) ∈ IS2 (w),
with i < j < k < `. The pair (i`, jk) ∈ TN

[a] if and only if either of the following
conditions hold:

• ij` 6∈ I3(w) and Γa(ik`) = 1;
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• Γa(ijk) = 0 and Γa(jk`) = 0;
• Γa(ijk) = 0 and jk` 6∈ I3(w);
• Γa(ijk) = 1 and Γa(jk`) = 1.

jk` /∈ I3 Γa(jk`) = 0 Γa(jk`) = 1
ijk /∈ I3 7 7 X

Γa(ijk) = 0 X X 7

Γa(ijk) = 1 7 7 X

Table 3.3. Nested pairs of inversions (i`, jk) ∈ IN2 (w)

Proof : Suppose (i`, jk) ∈ IN2 (w) and non of these four conditions is fulfilled.
Then there are five cases to study, shown in Table 3.3 with 7, and for each case
we have to prove that (i`, jk) /∈ TN

[a].

1st ijk 6∈ I3(w) and jk` 6∈ I3(w).
Since ijk 6∈ I3(w) and jk ∈ Inv(w), we find that ij is not an inversion.

In the same way, since (jk`) 6∈ I3(w) and k` ∈ Inv(w), we find that k`
is not an inversion. Under these conditions the only possible choice for
the first inversion between i < j < k < ` is jk and then jk <a i`.
It follows that (i`, jk) /∈ TN

[a].
2nd ijk 6∈ I3(w) and Γa(jk`) = 0.

Since ijk 6∈ I3(w) and jk ∈ Inv(w), we find that ij is not an inversion.
From Γa(jk`) = 0, we get jk <a k`. This means that the only

possible choice for the first inversion between i < j < k < ` is jk and
then jk <a i`.
It follows that (i`, jk) /∈ TN

[a].
3rd jk` 6∈ I3(w) and Γa(ijk) = 1.

Since jk` 6∈ I3(w) and jk ∈ Inv(w), we find that k` is not an inver-
sion.
From Γa(ijk) = 1, we get jk <a ij. This means that the only possible

choice for the first inversion between i < j < k < ` is jk and then
jk <a i`.
It follows that (i`, jk) /∈ TN

[a].
4th Γa(ijk) = 0 and Γa(jk`) = 1.
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Since Γa(ijk) = 0 and Γa(jk`) = 1, we have ij <a jk and j` <a jk.
But exactly one of the inversions ij or j` must occur after i`. Therefore
i` <a jk.
We conclude that (i`, jk) /∈ TN

[a].
5th Γa(ijk) = 1 and Γa(jk`) = 0.

Since Γa(ijk) = 1 and Γa(jk`) = 0, we have jk <a ij and jk <a k`.
This means that the only possible choice for the first inversion between
i < j < k < ` is jk and then jk <a i`.
We conclude that (i`, jk) /∈ TN

[a].

Reciprocally, suppose that (i`, jk) ∈ IN2 (w) satisfies one of the four condi-
tions, identified by X in Table 3.3. We need to prove that (i`, jk) ∈ TN

[a].

1st ijk 6∈ I3(w) and Γa(jk`) = 1.
Since ijk 6∈ I3(w), ij is not an inversion and thus the subword w′ of

the permutation w formed by the letters i, j, k, ` is either `ikj or `kij.
From the definition, Γa(jk`) = 1 means that k` <a j` <a jk. Since
ij is not an inversion, we must have j` <a i`. If w′ = `ikj, then the
inversions i` and jk must be performed after all the other inversions on
these letters, and can be done in any order. If w′ = `kij, then there
is an extra inversion ik which must be done after both of these two
inversions, i` and jk, which again can be made in any order. It follows
that (i`, jk) ∈ TN

[a].
2nd jk` 6∈ I3(w) and Γa(ijk) = 0.

This case is similar to previous one by symmetry, and therefore we
also have (i`, jk) ∈ TN

[a].
3rd Γa(ijk) = 0 and Γa(jk`) = 0.

It follows that ij <a ik <a jk and jk <a j` <a k`. The sequence of
these five inversions impose that the inversion i` must occur between in-
versions ik and j`, but the relative order to jk is not imposed. Therefore
(i`, jk) ∈ TN

[a].
4th Γa(ijk) = 1 and Γa(jk`) = 1.

Again, by symmetry to the previous case one conclude (i`, jk) ∈ TN
[a].

We can now state our main theorem, which provides a closed formula for the
diameter of a commutation class.
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Theorem 3.9. Let a ∈ Red(w). The diameter of the commutation class G[a]

is given by

|T[a]| = |TD
[a]|+ |TC

[a]|+ |TN
[a]|.

Proof : From Corollary 3.3, we have diam(G[a]) = |T[a]|. From the definition,
T[a] = TD

[a] ∪̇TC
[a] ∪̇TN

[a] is a disjoint union, and therefore, |T[a]| = |TD
[a]|+ |TC

[a]|+
|TN

[a]|.

In view of this theorem, Lemmas 3.6, 3.7 and 3.8 give an algorithm to compute
the diameter of G[a] for any commutation class. The number of operations used
in this algorithm is smaller than those needed to compute the diameter of a
commutation class using Corollary 3.3, and gives a characterization of the pairs
of inversions in I2(w) which contributes to the diameter. This can be better
seen in the following examples and results.

Example 3.1. Let w = [514632] ∈ S6. The graph G(w) has 216 reduced words,
918 Coxeter relations and 20 commutation classes. We will use the formula
given by Theorem 3.9 to compute the diameter of the commutation class G[a],
for the reduced word a = 324342154 of w. The set of inversions is Inv(w) =
{15, 23, 24, 25, 26, 34, 35, 36, 45}, and I3(w) = {234, 235, 236, 245, 345}. The
reduced word a induces the following order of Inv(w):

34 la 24 la 35 la 25 la 23 la 45 la 15 la 26 la 36,

and thus we have

Γa(234) = 1, Γa(235) = 1, Γa(236) = 0, Γa(245) = 0, Γa(345) = 0.

The sets of separated, crossed and nested pairs of inversions are

IS2 (w) ={(23, 45)},
IC2 (w) ={(15, 26), (15, 36), (24, 35), (24, 36), (25, 36)},
IN2 (w) ={(15, 23), (15, 24), (15, 34), (25, 34), (26, 34), (26, 35), (26, 45), (36, 45)}.

We have T S
[a] = {(23, 45)}, since Γa(235) = 1 and Γa(245) = 0, as we can

check in Table 3.1. For the sets TC
[a] and T

C
[a] we can use Tables 3.2 and 3.3 to

obtain:
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(ik, j`) Γa(ij`) Γa(ik`) ∈ TC
[a]

(15,26) - - yes
(15,36) - - yes
(24,35) 1 0 yes
(24,36) 0 - no
(25,36) 0 - no

(i`, jk) Γa(ijk) Γa(jk`) ∈ TN
[a]

(15,23) - 1 yes
(15,24) - 0 no
(15,34) - 0 no
(25,34) 1 0 no
(26,34) 1 - no
(26,35) 1 - no
(26,45) 0 - yes
(36,45) 0 - yes

Therefore TC
[a] = {(15, 26), (15, 36), (24, 35)}, TN

[a] = {(15, 23), (26, 45), (36, 45)}
and thus |TC

[a]| = |TN
[a]| = 3. It follows that the diameter of the commutation

class G[a] is

diam(G[a]) = 1 + 3 + 3 = 7.

A permutation having only one commutative class is said to be a fully com-
mutative permutation. A result of Billey, Jockusch and Stanley [4] shows that
a permutation is fully commutative if and only if it avoids the pattern 321.
That is, w is fully commutative if and only if the set I3(w) is empty.

Corollary 3.10. If w is a fully commutative permutation, then the diameter
of the graph G(w) is |IS2 (w)|+ |IC2 (w)|.

Proof : If w is fully commutative, then it has only one commutation class, and
the diameter of G(w) is equal to the diameter of its only commutation class.
Moreover, w is fully commutative if and only if the set I3(w) is empty. By
Theorem 3.9, the diameter of G(w) is given by |T S

[a]|+ |TC
[a]|+ |TN

[a]|, where a is
any reduced word of w. By Lemma 3.8, the set TN

[a] is empty, and by Lemmas
3.6 and 3.7, T S

[a] = IS2 (w) and TC
[a] = IC2 (w) (see leftmost top cell of tables 3.1,

3.2 and 3.3).

Example 3.2. The permutation w = 24517386 is fully commutative, since
I3(w) = ∅ or equivalently it is 321-avoiding. The graph G(w) has 344 re-
duced words and 1818 commutations. We now compute the diameter of G(w)
using Corollary 3.10.
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We have Inv(w) = {12, 14, 15, 34, 35, 37, 67, 68} and thus,

IS2 (w) ={(12, 34), (12, 35), (12, 37), (12, 67), (12, 68), (14, 67), (14, 68),

(15, 67), (15, 69), (34, 67), (34, 68), (35, 67), (35, 68)}
IC2 (w) ={(14, 35), (14, 37), (15, 37), (37, 68)}.

It follows that the diameter of G(24517386) = |IS2 (w)|+|IC2 (w)| = 13+4 = 17.
Note that in this case, IN2 (w) = {(15, 34)} is not empty, although it is not

necessary to compute the diameter.
The minimal lexicographic reduced word for the only commutation class is

13243657 and the maximal lexicographic reduced word is 67345123. By Corol-
lary 3.3 we need 17 commutations to obtain one word from the other.

To see another application of our main theorem, recall that a permutation
w ∈ Sn is called Grassmannian if it has at most one descent. In other words,
there is a unique integer 1 ≤ r ≤ n − 1 such that w1 < w2 < · · · < wr >
wr+1 < · · · < wn, or w is the identity. Grassmannian permutations can be
defined using their Lehmer code L(w) = (c1, c2, . . . , cn), where

ci = #{j : j > i e wj < wi},

i.e. ci counts the number of inversions wjwi. It is easy to see that w is a
Grassmannian permutation with descent r if and only if c1 ≤ c2 ≤ · · · cr ≤ n−r
and cr+1 = · · · = cn = 0.
Having at most one descent, Grassmannian permutations are a special type

of the more general class of fully commutative permutations. In this particular
case, we can compute its diameter using the Lehmer code.

Corollary 3.11. Let w ∈ Sn be a Grassmannian permutation with Lehmar
code L(w) = (c1, . . . , cn). Then, the diameter of the graph G(w) is given by∑

1≤i<k≤r

ci(ck − ci) +
r−1∑
i=1

(
ci
2

)
(r − i).

Proof : If w is the identity, then its diameter is clearly zero. Otherwise, let r
be the only descent of the Grassmannian permutation w. By Corollary 3.10,
the diameter of G(w) is given by |IS2 (w)| + |IC2 (w)|. Note that if wjwi is an
inversion of w, then j > r and i ≤ r.
Recall that a pair of inversions (wjwi, w`wk) is in the set IS2 (w) if wi < w`,

and thus by the definition of Lehman code, we have ci < ck. For each i there
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are ci inversions wjwi. We now need the number of inversions w`wk such that
wi < w` and therefore w`wi is not an inversion. From the Lehman code, we
find that there are ck − ci such inversions. Thus

|IS2 (w)| =
∑

1≤i<k≤r

ci(ck − ci) .

Note that a pair of inversions (wjwi, w`wk) is in the set IC2 (w) if wj < w` <
wi < wk. For a Grassmannian permutation this implies that w`wi is also an
inversion, since ` > r and i ≤ r. To compute the number of pairs of inversions
in IC2 (w) we need first to choose, for each i, two different inversion wjwi and
w`wi, with wj < w`. This can be done in

(
ci
2

)
ways. Next, for each k such that

i < k ≤ r, w`wk is an inversion with wj < w` < wi < wk. Therefore

|IC2 (w)| =
r−1∑
i=1

(
ci
2

)
(r − i) .

Example 3.3. The permutation w = [45681237] ∈ S8 is Grassmanian and its
only descent is r = 4. The graph G(w) has 3432 reduced words and 24948
commutations. To compute the diameter using Corollary 3.11 we start with
the Lehman code, L(w) = (3, 3, 3, 4, 0, 0, 0, 0). The diameter is

∑
1≤i<k≤4

ci(ck − ci) +
3∑

i=1

(
ci
2

)
(4− i) =

= 0 + 0 + 3 + 0 + 3 + 3 +

(
3

2

)
(4− 1) +

(
3

2

)
(4− 2) +

(
3

2

)
(4− 3) = 27.

As a final application of Theorem 3.9, we give formulas for the diameter of the
commutation classes of the reduced words wmin and wmax, for any permutation
w ∈ Sn.

Corollary 3.12.

(1) The diameter of the commutation class G[wmin] is given by

|T[wmin]| = |{(ij, k`) ∈ I
S
2 (w) : ik` /∈ I3(w)}|

+ |{(ik, j`) ∈ IC2 (w) : ij` /∈ I3(w)}|
+ |{(i`, jk) ∈ IN2 (w) : ijk ∈ I3(w)}|.
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(2) The diameter of the commutation class G[wmax] is given by

|T[wmax]| = |{(ij, k`) ∈ I
S
2 (w) : ij` /∈ I3(w)}|

+ |{(ik, j`) ∈ IC2 (w) : ik` /∈ I3(w)}|
+ |{(i`, jk) ∈ IN2 (w) : jk` ∈ I3(w)}|.

Proof : Recall that for all xyz ∈ I3(w), Γwmin
(xyz) = 0 and Γwmax

(xyz) = 1.
Then the results follow from Theorem 3.9 and Lemmas 3.6, 3.7, 3.8.

Notice that in the case of a fully commutative permutation the classes of
wmin and wmax coincide, and thus Corollary 3.10 is a special case of this result.

Example 3.4. Consider the permutation w = [426513] ∈ S6. The graph G(w)
has 384 reduced words and 1898 Coxeter relations. The commutation classes
of wmin = 132143543 and wmax = 534523412 have 70 and 44 reduced words,
respectively. We have Inv(w) = {12, 14, 15, 16, 24, 34, 35, 36, 56} and thus,

IS2 (w) ={(12, 34), (12, 35), (12, 36), (12, 56), (14, 56), (24, 56), (34, 56)},
IC2 (w) ={(14, 35), (14, 36), (15, 36), (24, 35), (24, 36)},
IN2 (w) ={(15, 24), (15, 34), (16, 24), (16, 34), (16, 35)}.

Since I3(w) = {124, 156, 356}, it follows that the diameter of G[wmin] is equal
to:

|{(12, 34), (12, 35), (12, 36), (24, 56)}|+ |IC2 (w)|+ |{(15, 24), (16, 24)}| =
= 4 + 5 + 2 = 11,

and the diameter of G[wmax] is equal to:

|IS2 (w) \ {12, 34}|+ |IC2 (w) \ {(15, 36)}|+ |{(16, 35)}| = 6 + 4 + 1 = 11.
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tions and discussions on the subject of this paper.
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