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IMPROVED REGULARITY FOR A
HESSIAN-DEPENDENT FUNCTIONAL
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Abstract: We prove that minimizers of the Ld-norm of the Hessian in the unit
ball of Rd are locally of class C1,α. Our findings extend previous results on Hessian-
dependent functionals to the borderline case and resonate with the Hölder regularity
theory available for elliptic equations in double-divergence form.

Keywords: Hessian-dependent functionals; improved regularity in Hölder spaces.
Math. Subject Classification (2020): 35B38; 49N60; 49Q20.

1. Introduction
We consider the Hessian-dependent functional I : W 2,d(B1) → R given by

I(u) :=

∫
B1

∣∣D2u
∣∣d dx, (1)

where B1 ⊂ Rd is the unit ball in the Euclidean space Rd, and examine the
regularity of minimizers for I in Hölder spaces. In particular, we prove that
minimizers are locally of class C1,α, with estimates.

Hessian-dependent functionals appear in various disciplines, in the realms of
differential geometry, the calculus of variations, the mechanics of solids and
mean-field games theory; see, for instance, [9, 10, 20, 21, 16, 18, 6, 15, 5, 19,
14, 3, 4]. A fundamental example concerns the model-problem

I∆(u) :=

∫
B1

[
Tr(D2u)

]2
dx =

∫
B1

|∆u|2 dx,

whose first compactly supported variation yields the biharmonic operator and
drives the so-called biharmonic maps. The functional I∆ resonates in the anal-
ysis of conformally invariant energies since it is conformally invariant in dimen-
sion d = 4. For an analysis of biharmonic maps targeting the m-dimension
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sphere Sm, we refer the reader to [9, 10]. See also [20, 21] for biharmonic maps
into Riemannian manifolds.

In the context of differential geometry, Hessian-dependent functionals arise
in the study of Lagrangian surfaces minimizing the area

A(u) :=

∫
B1

√
Id + (D2u)2 dx, (2)

where Id is the identity matrix of order d. The Euler-Lagrange equation asso-
ciated with the functional A is the double-divergence form pde(√

det(Id + (D2u)2(Id + (D2u)2)i,jδ
k,ℓui,k

)
xjxℓ

= 0 in B1,

where δk,ℓ is Kronecker’s delta. For results on (2), we mention [16, 18]. We
also highlight the set of results put forward in [6]. In that paper, the author
considers

L(u) :=

∫
B1

F (D2u) dx, (3)

where F is convex and smooth, and its main contribution concerns the regular-
ity of minimizers. Indeed, it is proven therein that if u ∈ W 2,∞

loc (B1) minimizes
the energy in (3) and its Hessian satisfies a small-oscillation condition, then u
is of class C2,α. The argument here resembles the proof of the Evans-Krylov
theory put forward in [8, Chapter 6]. Once C2,α-regularity is available, the
author proceeds by proving that solutions are indeed in C∞

loc(B1).
One also finds applications of Hessian-dependent functionals in the context of

the mechanics of solids [14]. The usual examples concern energy-driven pattern
formation and nonlinear elasticity. Typically, these models examine wrinkles
appearing in twisted ribbon or blister patterns in thin films on compliant sub-
strates [15, 5, 19].

In the context of the calculus of variations, Hessian-dependent functionals
also play a role. The work-horse of the theory is the so-called Aviles-Giga
functional [3, 4], given by

Gε(u) :=

∫
B1

ε−1
(
1− |Du|2

)2

+ ε|D2u|2 dx, (4)

for ε > 0. This functional can be regarded as a natural generalization of the
Modica-Mortola functional to the context of higher-order terms (see [17]). In
addition, it relates to the distance function (to the boundary of a domain) and,
naturally, with the solutions of the eikonal equation. Indeed, in [13] the authors
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replace the unit ball with a general, bounded domain Ω ⊂ Rd and show that if
there exist sequences (un)n∈N and (εn)n∈N satisfying∫

Ω

ε−1
n

(
1− |Dun|2

)2

+ εn|D2un|2 dx −→ 0

as ε → 0, then Ω has to be a ball. Moreover, they conclude that

lim
n→∞

un(x) = dist(x, ∂Ω).

The functional Gε also appears in connection with problems in thin film blisters
[12] and liquid crystals [3].

The regularity of the minimizers for a functional similar to (1) was studied
in [2]. In that article, the authors examine functionals of the form

J(u) :=

∫
B1

∣∣F (D2u)
∣∣p dx,

where F : S(d) ∼ R
d(d+1)

2 → R satisfies the condition
1

λ
|M | ≤ F (M) ≤ λ |M | ,

for every symmetric matrix M ∈ S(d), and some constant λ > 1. Under
the assumption p > d, they prove the gradient of minimizers is C0,(p−d)/(p−1)-
regular, with estimates. However, the case p = d falls off the scope of the
results in [2], and we treat it here, for simplicity of exposition, for the model
case F = Id (see Remark 1).

We examine the functional in (1) and establish a regularity result for mini-
mizers u ∈ W 2,d(B1)∩W 1,d

g (B1), where g ∈ W 2,d(B1) is a boundary condition
attained in the Sobolev sense. Our main result reads as follows.

Theorem 1 (C1,α-regularity estimates). Let u ∈ W 2,d(B1) ∩ W 1,d
g (B1) be a

minimizer for (1), where g ∈ W 2,d(B1) is given. Then there exists α ∈ (0, 1)
such that u ∈ C1,α

loc (B1). In addition, there exists a constant C > 0, depending
only on the dimension d, such that

[Du]C0,α(B1/2) ≤ C.

The proof is based on testing the Euler-Lagrange equation associated with
the functional (1) against a suitable test function built upon a smooth cut-off
satisfying uniform bounds up to its second derivatives. This allows us to estab-
lish a uniform decay rate for the Ld-norm of the Hessian of minimizers in balls
of comparable radii, by extending Widman’s hole-filling technique (see [22])
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to deal with the difficulties posed by the presence of second-order derivatives.
Once the information on the decay is available, an application of Morrey’s
characterization of Hölder continuity completes the proof.

The remainder of this article is organized as follows. In Section 2 we gather
preliminary material used in the paper, including a discussion on the existence
and uniqueness of minimizers for (1). The proof of Theorem 1 is the subject
of Section 3.

2. Preliminaries
In the sequel, we state our problem rigorously, recall preliminary ingredients

and comment on the existence and uniqueness of minimizers.
Let B1 ⊆ Rd denote the unit ball in Rd, and fix g ∈ W 2,d(B1). Set A =

W 2,d(Ω) ∩W 1,d
g (Ω), where

W 1,d
g (B1) :=

{
u ∈ W 1,d(B1) |u− g ∈ W 1,d

0 (B1)
}
.

Let I : A → R be defined as

I(w) =

∫
B1

|D2w|d dx.

We consider the problem of finding u ∈ A such that

I(u) = min
w∈A

I(w). (5)

We notice the first compactly supported variation of the functional I(w)
yields the fourth-order Euler-Lagrange equation(

|D2u|d−2 ∂2u

∂xi
∂xj

)
xixj

= 0 in B1. (6)

The weak form of (6) is given by∫
B1

|D2u|d−2D2u : D2φ dx = 0 ∀φ ∈ C∞
c (B1), (7)

where, for matrices A := (ai,j)
d
i,j=1 and B := (bi,j)

d
i,j=1, the operation A : B

stands for

A : B :=
d∑

i,j=1

ai,jbi,j.

Compare (6) and (7) with the fourth-order model studied in [6].
We proceed by recalling a preliminary result used further in the paper.
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Lemma 1. Fix R0 > 0 and let ϕ : [0, R0] → [0,∞) be a non-decreasing
function. Suppose there exist constants C1, α, β > 0, and C2, µ ≥ 0, with
β < α, satisfying

ϕ(r) ≤ C1

[( r

R

)α

+ µ
]
ϕ(R) + C2R

β,

for every 0 < r ≤ R ≤ R0. Then, for every σ ≤ β, there exists µ0 =
µ0(C1, α, β, σ) such that, if µ < µ0, for every 0 < r ≤ R ≤ R0, we have

ϕ(r) ≤ C3

( r

R

)σ(
ϕ(R) + C2R

σ
)
,

where C3 = C3(C1, α, β, σ) > 0. Moreover,

ϕ(r) ≤ C4r
σ,

where C4 = C4(C2, C3, R0, ϕ(R0), σ).

For the proof of Lemma 1, we refer the reader to [7, Lemma 2]. The next
lemma is instrumental in studying Hölder regularity.

Lemma 2. Fix R0 > 0 and let ϕ : (0, R0] → [0,∞) be a non-decreasing
function such that for every R ∈ [0, R0] we have

ϕ(τR) ≤ γϕ(R) + σ(R)

where σ : (0, R0] → [0,∞) is also non-decreasing, γ > 0 and τ ∈ (0, 1). Then
for every µ ∈ (0, 1) and every R ≤ R0 we have

ϕ(R) ≤ C

[(
R

R0

)α

ϕ(R0) + σ
(
RµR1−µ

0

)]
where C = C(γ, τ) and α = α(γ, τ, µ) are positive constants.

For a proof of Lemma 2, we refer the reader to [11, Theorem 8.23]. We also
recall the following characterization of Hölder continuity.

Proposition 1 (Morrey’s characterization of Hölder continuity). Let w ∈
W 1,d(B1). Suppose that there exist constants C, β > 0 such that∫

Br(x0)

|Dw|d dx ≤ Crβ

for every B2r(x0) ⊆ B1. Then w ∈ C
0,βd
loc (B1).



6 V. BIANCA, E. A. PIMENTEL AND J.M. URBANO

For a proof of the previous proposition, we refer the reader to [11, Theorem
7.19]. The next proposition is a key tool for estimating lower-order derivatives
[1, Theorem 5.2].

Proposition 2. Let Ω ⊆ Rd be an open set satisfying the cone condition, and
u ∈ W k,p(Ω), k ∈ N. Then, for every ε0 > 0, there exists C > 0, depending
only on d, k, p, ε0 and the dimensions of the cone, such that if ε ∈ (0, ε0) and
j ∈ {0, . . . , k}, then∥∥Dju

∥∥
Lp(Ω)

≤ C
(
ε
∥∥Dku

∥∥
Lp(Ω)

+ ε−j/(k−j)∥u∥Lp(Ω)

)
.

We close this section with a discussion on the existence and uniqueness of
minimizers for the functional in (5).

Proposition 3. There exists a unique minimizer for problem (5).

Proof : Let (um)m∈N ⊆ A be a minimizing sequence for I, i.e.,

lim
m→∞

I(um) = min
w∈A

I(w).

Because (I(um))m∈N converges, it follows that

∥D2um∥Ld(B1) ≤ C, ∀m ∈ N,
for some C > 0. It follows from standard Sobolev embedding results and
Proposition 2 that

∥um∥Ld(B1) ≤ C∥D2um∥Ld(B1) ≤ C ′

and
∥Dum∥Ld(B1) ≤ C

(
ε∥D2um∥Ld(B1) +

1

ε
∥um∥Ld(B1)

)
≤ C ′.

Hence, (um)m∈N is bounded in W 2,d(B1). As a consequence, there exists u∞ ∈
W 2,d(B1) such that

um ⇀ u∞ in W 2,d(B1). (8)
Since A is convex and closed, from Mazur’s Theorem, it follows that A is
weakly closed, and hence from (8) it follows that u∞ ∈ A.

Since I is convex and continuous in W 2,d(B1), it is weakly sequentially lower
semi-continuous. Hence

I(u∞) ≤ lim
m→∞

I(um) = min
w∈A

I(w).

The uniqueness follows from the strict convexity of I.
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3. Hölder continuity of the gradient
This section details the proof of Theorem 1. We start with a technicality

playing an essential role in the sequel. Let x0 ∈ B1 and R > 0 be such that
B2R := B(x0, 2R) ⋐ B1. Define η : B1 → R as

η(x) =

{
Cη exp

(
1

|x−x0|2−4R2

)
in B2R

0 in B1 \B2R,

where the constant Cη > 0 is chosen to ensure that η has unit mass. Let us
show that there exists C > 0 such that

|Dη|2

|η|
≤ C in B2R.

For i = 1, . . . , d, and for x ∈ B2R we have
∂η

∂xi
(x) = − Cη2(xi − x0i)

(|x− x0|2 − 4R2)2
exp

(
1

|x− x0|2 − 4R2

)
.

Hence
|Dη|2

|η|
=

Cη4|x− x0|2

(|x− x0|2 − 4R2)4
exp

(
1

|x− x0|2 − 4R2

)
≤ C,

where the last inequality holds since the exponential decreases faster than the
polynomial.

Proof of Theorem 1: For ease of clarity, we split the proof into four steps.

Step 1 - Let x0 ∈ B1 and R > 0 be such that B2R := B(x0, 2R) ⋐ B1. Define
ζ ∈ C∞

c (B2R) by

ζ(x) :=


1 in BR

ζ(x) in B3R/2 \BR

η(x) in B2R \B3R/2,

where ζ is a smooth gluing connecting the functions in BR and B2R \ B3R/2.
Notice that ζ is such that

0 ≤ ζ ≤ 1, ζ = 1 in BR,
|Dζ|2

|ζ|
≤ C in B2R,

for some constant C > 0. Set

M = max
{
∥Dζ∥L∞(B2R), ∥D

2ζ∥L∞(B2R)

}
.
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Define v := ζd
(
u− (u)B2R\BR

)
, where

(u)B2R\BR
:=

1

|B2R \BR|

∫
B2R\BR

u dx.

We have

vxi
= dζd−1

(
u− (u)B2R\BR

)
ζxi

+ ζduxi
,

and

vxixj
=d(d− 1)ζd−2

(
u− (u)B2R\BR

)
ζxj

ζxi
+ dζd−1uxj

ζxi

+ dζd−1
(
u− (u)B2R\BR

)
ζxixj

+ dζd−1uxi
ζxj

+ ζduxixj
.

Step 2 - Testing the weak form of the Euler-Lagrange equation (6) against
the function v, we get∫

B1

ζd|D2u|d−2D2u : D2u dx

=− d(d− 1)

∫
B1

ζd−2
(
u− (u)B2R\BR

)
|D2u|d−2D2u : (Dζ ⊗Dζ) dx

− 2d

∫
B1

ζd−1|D2u|d−2D2u : (Du⊗Dζ) dx

− d

∫
B1

ζd−1
(
u− (u)B2R\BR

)
|D2u|d−2D2u : D2ζ dx.

Hence∫
B2R

ζd|D2u|d dx ≤C

∫
B2R

ζd−2
∣∣u− (u)B2R\BR

∣∣ |D2u|d−1|Dζ|2 dx

+ C

∫
B2R

ζd−1|D2u|d−1|Du||Dζ| dx

+ C

∫
B2R

ζd−1
∣∣u− (u)B2R\BR

∣∣ |D2u|d−1|D2ζ| dx

= : I1 + I2 + I3.
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In what follows, we estimate each of the summands I1, I2 and I3. To estimate
I1, we resort to the Hölder and Poincaré-Wirtinger inequalities to obtain

I1 =C

∫
B2R

ζd−2
(
u− (u)B2R\BR

)
|D2u|d−1|Dζ|2 dx

=C

∫
B2R

ζd−1
(
u− (u)B2R\BR

)
|D2u|d−1ζ−1|Dζ|2 dx

≤C

(∫
B2R

ζd|D2u|d dx
)1− 1

d
(∫

B2R

∣∣u− (u)B2R\BR

∣∣d ζ−d|Dζ|2d dx
) 1

d

≤C

(∫
B2R

ζd|D2u|d dx
)1− 1

d
(∫

B2R\BR

∣∣u− (u)B2R\BR

∣∣d dx

) 1
d

≤C

(∫
B2R

ζd|D2u|d dx
)1− 1

d
(∫

B2R\BR

|Du|d dx
) 1

d

.

To examine I2, we apply Hölder’s inequality to get

I2 =C

∫
B2R

ζd−1|D2u|d−1|Du||Dζ| dx

≤C

(∫
B2R

ζd|D2u|d dx
)1− 1

d
(∫

B2R

|Du|d|Dζ|d dx
) 1

d

≤CM

(∫
B2R

ζd|D2u|d dx
)1− 1

d
(∫

B2R\BR

|Du|d dx
) 1

d

.

Finally, to estimate I3, we apply once again Hölder and Poincaré-Wirtinger
inequalities to conclude that

I3 =C

∫
B2R

ζd−1(u− (u)B2R\BR
)|D2u|d−1|D2ζ| dx

≤C

(∫
B2R

ζd|D2u|d dx
)1− 1

d
(∫

B2R

∣∣u− (u)B2R\BR

∣∣d |D2ζ|d dx
) 1

d

≤CM

(∫
B2R

ζd|D2u|d dx
)1− 1

d
(∫

B2R\BR

∣∣u− (u)B2R\BR

∣∣d dx

) 1
d

≤CM

(∫
B2R

ζd|D2u|d dx
)1− 1

d
(∫

B2R\BR

|Du|d dx
) 1

d

.
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Combining the above estimates and recalling that ζ = 1 in BR, we get∫
BR

|D2u|d dx ≤ C

∫
B2R\BR

|Du|d dx. (9)

Add the quantity

C

∫
BR

|D2u|d dx

to both sides of (9) to obtain∫
BR

|D2u|d dx ≤ γ

(∫
B2R

|D2u|d dx+

∫
B2R

|Du|d dx
)
, (10)

with

γ =
C

1 + C
∈ (0, 1).

Step 3 - Define

ϕ(R) =

∫
BR

|D2u|d dx and σ(R) =

∫
BR

|Du|d dx,

and notice that both ϕ and σ are non-decreasing functions. We re-write (10)
as

ϕ(R) ≤ γ
(
ϕ(2R) + σ(2R)

)
.

Up to relabeling, the last inequality can be written as

ϕ(2−1R) ≤γϕ(R) + σ(R).

By applying Lemma 2, we conclude that, for every µ ∈ (0, 1), there exist
C = C(γ) > 0 and β = β(γ, µ) ∈ (0, 1) such that

ϕ(r) ≤ C

[( r

R

)β

ϕ(R) + σ(rµR1−µ)

]
. (11)
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Let us consider σ(rµR1−µ). By combining Proposition 2 and the embedding
W 2,d(B1) ↪→ C(B1), one gets∫

BrµR1−µ

|Du|d dx ≤
∫
BR

|Du|d dx

≤C

(∫
BR

|D2u|d dx+

∫
BR

|u|d dx
)

≤C

(∫
BR

|D2u|d dx+Rd∥u∥dL∞(B1)

)
≤C

(
ϕ(R) +Rd

)
. (12)

Let β ∈ (0, β); in particular, β < d. Combining (11) with (12), up to relabeling
the constants, we have

ϕ(r) ≤ C

[( r

R

)β

+ 1

]
ϕ(R) + C ′Rβ.

From Lemma 1, it follows that

ϕ(r) ≤ Crβ.

Step 4 - To complete the proof, we define wi := uxi
, i = 1, . . . , d. Clearly,∫

Br

|Dwi|ddx ≤
∫
Br

|D2u|ddx ≤ Crβ, ∀r ∈ (0, R].

From Morrey’s characterization of Hölder continuity (see Proposition 1), we
conclude

uxi
∈ C0,α

loc (B1), i = 1, . . . , d,

for α := β/d ∈ (0, 1), and the result follows.

Remark 1. We note that the proof of Theorem 1 can be extended to minimizers
of functionals I : A → R of the type

I(w) =

∫
B1

[
F
(
D2w

)]d
dx,

where F : Rd2 → R satisfies

λ|M | ≤ F (M) ≤ Λ|M |,
DF (M) : M ≥ C1|M | and |DF (M)| ≤ C2,
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for every M ∈ S(d), and some fixed constants 0 < λ ≤ Λ and C1, C2 >
0. Under these assumptions, the proof of Theorem 1 can be retraced in a
completely analogous way. An example of such F is given by

F (x,M) = a(x)|M |,
where a ∈ C∞(B1)∩L∞(B1) satisfies a ≥ δ > 0 in B1, for some fixed constant
δ > 0.
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