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Abstract: Modelling diffusion processes in heterogeneous media requires address-
ing inherent discontinuities across interfaces, where specific conditions are to be met.
These challenges fall under the purview of Mathematical Analysis as transmission
problems. We present a panorama of the theory of transmission problems, encom-
passing the seminal contributions from the 1950s and subsequent developments.
Then we delve into the discussion of regularity issues, including recent advances
matching the minimal regularity requirements of interfaces and the optimal regular-
ity of the solutions. A discussion on free transmission problems closes the survey.
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1. Introduction
The study of the physical properties of heterogeneous media plays a fun-

damental role across disciplines, both in the basic sciences and in their ap-
plications. An underlying phenomenon governing an important set of those
properties is diffusion. Given the heterogeneity of the media, it is reasonable
to consider the diffusion process changes across the different components of the
medium. Since the second half of the last century, methods in the realm of par-
tial differential equations (PDE, for short) and the calculus of variations have
been used to examine these changes. Their various mathematical formulations
are known in the literature as transmission problems.

The general setting is the following. Let Ω ⊆ Rd be a bounded open set; for
k ∈ N fixed, consider Ω1, . . . ,Ωk ⋐ Ω, pairwise disjoint. Suppose u : Ω → R
solves within every Ωi, i = 1, . . . , k, some prescribed PDE. A natural question
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concerns the interactions of the k restrictions

ui := u
∣∣
Ωi
, for i = 1, . . . , k,

with each other.
At this point, an important distinction is in place. In fact, one must distin-

guish the case of an interface that is fixed a priori from the case of a solution-
dependent interface. The latter is referred to as free interface or free boundary.
From a chronological viewpoint, fixed transmission problems precede the free
interface variant.

Transmission problems first appeared in Mathematical Analysis in the work
of Mauro Picone, circa 1950 [62]. The author addresses a fixed transmission
problem arising in elasticity theory in his seminal contribution. The main result
in [62] is the uniqueness of solutions for the transmission problem. The author
also indicates a strategy aiming at establishing existence, which however is not
explored at length in the paper.

The work of Mauro Picone is consequential, as it attracted immediate atten-
tion from the mathematical community to this class of problems. We highlight
the work of Jacques-Louis Lions [55], where the first rigorous theory of the
existence of solutions is put forward. Among the subsequent studies inspired
by Picone’s ideas, we mention [56, 69, 25, 26, 27, 45, 61, 15]. We refer the
reader to the neatly written monograph [17], where a detailed account of the
theory of fixed transmission problems and a comprehensive list of references
are available.

Once the questions on the existence and uniqueness of solutions have been
well-understood and documented, the attention of the community shifted to
the regularity theory. A pioneering contribution in this regard is in the work
of Yanyan Li and Michael Vogelius [54]. In that paper, the authors consider a
domain Ω ⊆ Rd, split into k ∈ N pairwise disjoint subdomains Ω1, . . . ,Ωk ⋐ Ω.
The mathematical model is driven by the PDE

∂

∂xi

(
a(x)

∂u

∂xj

)
= f in Ω,

where f : Ω → R satisfies usual continuity and integrability assumptions, and

a(x) =

{
ai(x) for Ωi, i = 1, . . . , k

ak+1(x) for Ω \ ∪k
i=1Ωi.
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The main contribution of [54] is the local Hölder-continuity for the gradient of
the solutions. The vectorial counterpart of the results in [54] appeared in the
work of Yanyan Li and Louis Nirenberg [53], where the authors also establish
estimates for higher-order derivatives of the solutions. From the perspective of
applications, this model accounts for different inclusions within a homogeneous
medium, the primary example being fibre-reinforced materials.

The regularity analysis in the context of conductivity and insulation is the
subject of [4, 5]. Here, the authors consider a bounded domain Ω ⊆ Rd, and
two disjoint subdomains Ω1,Ω2 ⋐ Ω that are ε-apart, that is dist(Ω1,Ω2) = ε.
Within each subdomain, we are in the presence of an equation in divergence
form. The analysis of the problem leads to estimates which are dependent on
the parameter ε > 0. Indeed, they ensure a deterioration on the bounds for
the gradient, which blows up as ε→ 0+.

In the former literature, the program has focused on the existence and reg-
ularity of the solutions under regular enough fixed interfaces. Recently, the
fundamental question of examining the minimal geometric requirements on
the fixed interface to recover regularity estimates on the solutions of the fixed
transmission problem has been addressed. This is the analysis in the work of
Luis Caffarelli, María Soria-Carro and Pablo Stinga [24], where the authors
consider a bounded domain Ω ⊆ Rd, and fix Ω1 ⋐ Ω, defining Ω2 := Ω \ Ω1.
The key assumption in [24] concerns the geometry of Γ := ∂Ω1, which the
authors assume to be of class C1,α.

The problem is to look for a function u ∈ W 1,2
loc (Ω) whose restrictions ui :=

u
∣∣
Ωi

satisfy 
∆ui = 0 in Ωi, for i = 1, 2,

u2 = 0 in ∂Ω,

(u1)ν − (u2)ν = g on Γ.

(1)

By resorting to well-known properties of harmonic functions, the authors
prove the existence and uniqueness of the solutions, together with a regularity
result in C0,Log−Lip-spaces across the fixed interface Γ.

However, the main contribution is [24] concerns the regularity of solutions
up to the interface. The authors develop a new stability result relating general
C1,α-regular interfaces with flat ones. Their approach relies on a clever com-
bination of the mean value formula and the maximum principle for harmonic
functions. As a result, they show that ui ∈ C1,α

loc

(
Ωi

)
for i = 1, 2.
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In [68] the authors extend the analysis put forward in [24] to the context of
fully nonlinear equations. In that paper, a complete theory of viscosity solutions
to fully nonlinear fixed transmission problems is developed, including existence
and uniqueness, comparison principles, and regularity estimates. As in [24], the
authors establish the regularity of the solutions up to the fixed interface; we
notice the regularity regime for the solutions matches the geometric properties
of the fixed interface. Regarding the C1,α-regularity of solutions up to the
interface, we refer the reader to [36] for a variant of the proof put forward in
[24]. The argument in [36] does not rely either on the mean value property
or on the maximum principle for harmonic functions. The paper also includes
extensions to the context of C1,Dini-fixed interfaces.

This introduction has covered so far some of the developments in the context
of fixed transmission problem. That is, in the presence of interfaces that are
determined a priori. An important variant of the topic regards the so-called
free transmission problems, where the interface depends on the solution of the
problem. The first attempt to examine a free transmission problem appeared
in [2], where the authors propose a variational model. More precisely, they
consider maps A± : Ω → S(d), where S(d) stands for the space of symmetric
matrices of order d, and study the functional

I(v) :=

∫
Ω

1

2
⟨A(v, x)Dv,Dv⟩+ Λ(v, x) + fv dx, (2)

where the matrix A(v, x) and the function Λ(v, x) are defined as

A(v, x) := A+(x)χ{v>0} + A−(x)χ{v<0}

and
Λ(v, x) := λ+(x)χ{v>0} + λ−(x)χ{v<0},

and f ∈ L∞(Ω). The program pursued in [2] includes the existence of min-
imizers for (2), together with regularity results in the spaces of Hölder and
Lipschitz-continuous functions.

In the context of free transmission problems at the intersection of PDE and
the calculus of variations, we mention the recent work of Maria Colombo, Sung-
ham Kim and Henrik Shahgholian [29]. The authors consider the functional

J(v,Ω) :=

∫
Ω

(
|Dv+|p + |Dv−|q

)
dx,

where 1 < p, q < ∞, with p ̸= q. Their findings include properties of mini-
mizers as well as information on the associated free boundary. They prove the
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existence of minimizers, and their local Hölder continuity, with estimates. Con-
cerning the analysis of the free boundary, the authors derive a free boundary
condition and prove the free boundary is of class C1,α, almost everywhere, with
respect to the measure ∆pu

+. The paper also verifies the support of ∆pu
+ is

of σ-finite (n− 1)-dimensional Hausdorff measure.
In the realm of fully nonlinear operators, free transmission problems have

been studied from two different perspectives, namely the existence of gener-
alized solutions (in the viscosity and the strong senses), and their regularity
properties (see [64, 44]). In the uniformly elliptic problem, the model under
consideration has the form

F1(D
2u)χ{u>0} + F2(D

2u)χ{u<0} = f in Ω ∩ ({u > 0} ∪ {u < 0}) , (3)

where Fi : S(d) → R are fully nonlinear uniformly elliptic operators and
f ∈ L∞(Ω) is a given source term.

The existence of solutions for the Dirichlet problem associated with (3), both
in the Lp-viscosity and in the Lp-strong sense, was established in [64]. The
regularity of the solutions is the subject of [63].

A degenerate variant of (3) has also been examined in the literature. Let
0 < p1 < p2 be fixed positive numbers and consider

|Du|p1χ{u>0}+p2χ{u<0}F (D2u) = f in Ω ∩ ({u > 0} ∪ {u < 0}) . (4)

The model in (4) is inspired by the tradition of fully nonlinear equations de-
generating as a power of the gradient; see [8, 9, 10, 11, 12, 13, 46, 3], among
others. In [44], the authors prove the existence of solutions to (4) and examine
their regularity properties. In particular, they prove a C1,α-regularity estimate.
Finally, the modulus of continuity depends explicitly on the Krylov-Safonov
theory available for F = 0 and on the degeneracy rates 0 < p1 < p2.

The variant of (4) with nonhomogeneous degeneracies is the subject of [32].
In that paper, the author considers a model of the form

H(x, u,Du)F (D2u) = f in Ω,

where F is uniformly elliptic, f ∈ C(Ω) ∩ L∞(Ω), and

H(x, u,Du) := |Du|p1χ{u>0}+p2χ{u<0} + a(x)χ{u>0}|Du|q + b(x)χ{u<0}|Du|s,

for nonnegative functions a, b ∈ C(Ω), and nonnegative exponents p1, p2, q,
and s. The findings in [32] cover the existence of solutions and C1,α-regularity
estimates.
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The remainder of this paper is organized as follows. Section 2 discusses a few
examples of fixed transmission problems, covering some of the main aspects
of the theory. Section 2.1 describes the seminal work of Mauro Picone [62]
and presents an argument due to Jacques-Louis Lions for the existence of weak
solutions to Picone’s problem. More recent results on regularity theory are
the subject of Section 2.2. In Section 2.3 we examine the regularity theory of
fixed transmission problems in the presence of minimal geometric requirements
on the transmission interface. We describe quasilinear degenerate problems in
Section 3, whereas their regularity in borderline spaces is the subject of Section
3.1. The paper ends with a discussion on free transmission problems in Section
4.

2. An overview on fixed transmission problems
2.1. Laying the foundations: first models and a theory of existence.
In this section, we describe the foundations of the theory of transmission prob-
lems in detail. In Rd, with d ≥ 3, let Ω1 and Ω2 be two disjoint open sets.
Suppose that Ω2 is the complement of a compact set. Suppose that ∂Ω1 and
∂Ω2 share an (d − 1)-dimensional manifold Γ, continuously differentiable ex-
cept, at most, at a finite set of points. For convenience, set Si := ∂Ωi \ Γ, for
i = 1, 2, and

Ω := Ω1 ∪ Ω2. (5)
Now, let h1, k1 (resp. h2, k2) be the constants of Lamé of Ω1 (resp. Ω2).
Lamé constants are two material-dependent quantities that arise in strain-stress
relationships. These parameters are named after Gabriel Lamé∗. One looks for
two vector fields, U 1 and U 2, defined in Ω1, and Ω2 respectively, with values in
Rd, such that{

h1∆U
1 + (h1 + k1)D(divU 1) + f 1 = 0 in Ω1

h2∆U
2 + (h2 + k2)D(divU 2) + f 2 = 0 in Ω2,

(6)

under the interface conditions{
U 1 = U 2 on Γ

t1(U
1) + t2(U

2) = 0 on Γ,
(7)

∗Gabriel Lamé was a French mathematician, born in Tours in the year 1795. With various
contributions to a wide range of topics in Mathematics, he is known for a theory of curvilinear
coordinates and the study of ellipse-like curves, currently referred to as Lamé curves. A Foreign
Member of the Royal Swedish Academy of Sciences, elected in 1854, Lamé is one of the 72 names
inscribed in the Eiffel Tower. He died in Paris, in 1870.
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where D(divU i) is the gradient of the divergence of U i for i = 1, 2.
Here, f 1 and f 2 are two given vector fields, representing external forces, and

t1(U
1), t2(U

2) are the pressure fields on ∂Ω1 and ∂Ω2, respectively. Moreover,
ti(U

i) has to be equal to the vector field on Si, for i = 1, 2, and U 2(x) → 0 as
|x| → ∞. In [62], Picone proved the uniqueness of the solution to this problem,
claiming that solutions exist. Our choice in this survey is to present the general
lines of an existence theory for (6)-(7), due to Jacques-Louis Lions [55].

We need some ingredients from the theory of functional spaces to discuss
the argument put forward by Jacques-Louis Lions leading to the existence of a
solution to (6)-(7). Let Ω ⊆ Rd be bounded and open. For u ∈ W 1,2(Ω;Rd),
with k, ℓ ∈ {1, . . . , d}, define

skℓ(u) :=
1

2

(
∂uk
∂xℓ

− ∂uℓ
∂xk

)
and

S(u) :=
d∑

k,ℓ=1

∥skℓ(u)∥2L2(Ω).

For u, v ∈ L2(Ω;Rd), we denote by (u, v)L2(Ω) the inner product between u and
v in L2(Ω;Rd), i.e.,

(u, v)L2(Ω) :=

∫
Ω

u · v dx

For u, v ∈ W 1,2(Ω;Rd), we then set

S(u, v) :=
d∑

k,ℓ=1

(
skℓ(u), skℓ(v)

)
L2(Ω)

.

Note that S(u) = S(u, u), and also

S(u) ≤
d∑

k,ℓ=1

∥∥∥∥∂uk∂xℓ

∥∥∥∥2
L2(Ω)

. (8)

The definition of the following space will play a central role in the sequel.
We recall the Sobolev exponent 2∗ > 2 is given by

2∗ :=
2d

d− 2
,
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whereas its Hölder conjugate is

(2∗)′ :=
2d

d+ 2
.

Definition 2.1. Let Ω be as in (5). For i = 1, 2, let T : W 1,2(Ωi;Rd) →
L2(Γ;Rd) be the trace operator. We define V to be the space of functions
belonging to L2∗(Ω;Rd) ∩W 1,2(Ω;Rd) such that T (u1) = T (u2), where u1 ∈
W 1,2(Ω1;Rd) and u2 ∈ W 1,2(Ω2;Rd).

One fundamental step in the reasoning put forward in [55] is to prove the
inequality in (8) can be reversed, up to constant factors, in V . Thanks to this,
V will be a Hilbert space endowed with a natural norm, and the existence of
an isomorphism between a suitable subspace of V and L

2d
d+2 (Ω;Rd) will lead to

the existence of a unique solution. Before stating a result on the existence of
solutions to (6)-(7), we detail two definitions concerning open and connected
subsets of Rd.

Definition 2.2 (Sobolev set). Let Ω ⊆ Rd be connected and open. If |Ω| <∞,
we say that Ω is a Sobolev set if W 1,2(Ω) ⊂ L2∗(Ω). If |Ω| = ∞, we say that
Ω is a Sobolev set if for every u ∈ W 1,2(Ω) there exists a constant c = c(u)
such that u+ c(u) ∈ L2∗(Ω).

Remark 1 (Sobolev sets and the geometry of domains). We notice that if
the boundary of Ω is locally Lipschitz-regular, the inclusion W 1,2(Ω) ⊂ L2∗(Ω)
follows from standard results in the theory of Sobolev spaces. As a conse-
quence, every Lipschitz-regular domain is a Sobolev set. However, the notion
of Sobolev set also accommodates less regular subsets of Rd for which that
inclusion is not available.

Definition 2.3 (Friedrichs set). Let Ω ⊆ Rd be connected and open. We
say that Ω is a Friedrichs set if there exist K ⊆ Ω, compact, and a constant
C ∈ (0, 1) such that, for every u ∈ W 1,2(Ω;Rd) satisfying

−∆u−D(div u) = 0 in Ω,

we have
S(u) ≤ 1

1− C
SK(u),

where

SK(u) :=
d∑

k,ℓ=1

∥skℓ∥2L2(K).
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We refer the reader to [41, 42] for further context on Friedrichs sets. The
main result in [55] is the following theorem.

Theorem 2.1 (Existence of a unique solution). Let Ω ⊆ Rd be as in (5).
Suppose that Ω1 and Ω2 are Sobolev and Friedrichs sets. Then there exists a
unique solution to the problem of Picone (6)-(7).

Now, we continue by detailing the general lines of the proof of Theorem 2.1.
We proceed with a lemma related to the space of tempered distributions. First,
equip the linear space L2∗(Ω;Rd) ∩W 1,2(Ω;Rd) with the norm

∥ · ∥2∗,2,Ω : L2∗(Ω;Rd) ∩W 1,2(Ω;Rd) → [0,∞),

given by
∥u∥2∗,2,Ω := ∥u∥L2∗(Ω;Rd) + ∥Du∥L2(Ω;Rd) .

We denote with D2∗,2(Ω;Rd) the closure of D(Ω;Rd) in the space L2∗(Ω;Rd)∩
W 1,2(Ω;Rd), with respect to the norm ∥ · ∥2∗,2,Ω.

Lemma 2.1. For every u ∈ D2∗,2(Ω;Rd) we have
d∑

k,ℓ=1

∥∥∥∥∂uk∂xℓ

∥∥∥∥2
L2(Ω)

≤ 2S(u).

The previous result, whose proof follows by a simple integration by parts
and by resorting to a density argument, says that the inequality in (8) can be
reversed in D2∗,2(Ω;Rd). This is a preliminary step in proving one can reverse
(8) in the space V .

Define the bilinear form ⟨·, ·⟩ : W 1,2(Ω;Rd) → R as

⟨u, v⟩ := 2hS(u, v) + k(div u, div v)L2(Ω)

with h > 0 and 3k + 2h > 0. The operator L defined as

L := −h∆− (h+ k)Ddiv (9)

is such that
⟨u, v⟩ = ⟨Lu, v⟩(D2∗,2(Ω;Rd)′,D2∗,2(Ω;Rd)) ,

where the crochet at the right-hand side represents the duality between D2∗,2(Ω;Rd)′

and D2∗,2(Ω;Rd). The operator (9) is elliptic, i.e., there exists a > 0 such that

⟨u, u⟩ ≥ aS(u),

for every u ∈ D(Ω;Rd).
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Because the operator in (9) is elliptic, it defines an isomorphism between
D2∗,2(Ω;Rd)′ and D2∗,2(Ω;Rd). An important ingredient in the proof of Theo-
rem 2.1 concerns extending Lemma 2.1 to functions in the functional space V .
This is the content of the next proposition.

Proposition 2.1. Let Ω ⊆ Rd be as in (5). Suppose that Ω1 and Ω2 are both
Sobolev and Friedrichs sets. Then, there exists C > 0 such that

d∑
k,ℓ=1

∥∥∥∥∂uk∂xℓ

∥∥∥∥2
L2(Ω)

≤ CS(u),

for every u ∈ V .

As an immediate consequence, one has the following corollary.

Corollary 2.1. Let Ω ⊆ Rd be as in (5). Suppose that Ω1 and Ω2 are both
Sobolev and Friedrichs sets. Then V is a Hilbert space endowed with the norm√
S(u).

Now that the aspects of functional analysis have been formulated, we rigor-
ously frame Picone’s problem (6)-(7) in the context of those elements. We start
by defining operators and suitable functional spaces which allow us to produce
an existence result.

2.1.1. An existence result for Picone’s problem (6)-(7). Let Ω ⊆ Rd be as in
(5). Let F i : W 1,2(Ω;Rd)×W 1,2(Ω;Rd) → R, for i = 1, 2, be defined as

F 1(u1, v1) := 2h1S(u
1, v1) + k1(div u

1, div v1)L2(Ω1),

F 2(u2, v2) := 2h2S(u
2, v2) + k2(div u

2, div v2)L2(Ω2),

and
F (u, v) := F 1(u1, v1) + F 2(u2, v2),

where hi and ki are the Lamé constants for Ωi, for i = 1, 2, u = (u1, u2) and
v = (v1, v2).

Let Ri : L
2(Γ) → L2(Γ) be a bounded linear operator for i = 1, 2. Define

Gi(ui, vi) := F i(ui, vi) +
(
RiT (u

i), T (vi)
)
L2(Γ;Rd)

,

and
G(u, v) := G1(u1, v1) +G2(u2, v2). (10)
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It is easy to see that (10) is a bilinear continuous operator in W 1,2(Ω;Rd) ×
W 1,2(Ω;Rd). Moreover, if Ri are positive and small enough, the operator in
(10) is elliptic in V .

Now that the operators are defined, we can set the functional spaces where
to look for the solution U to (6) and verify the transmission conditions (7).

Define the space H is the space of functions u ∈ W 1,2(Ω;Rd) such that
Lu ∈ L

2d
d+2 (Ω;Rd). Also, define N as the space of functions u ∈ V such that

Lu ∈ L
2d
d+2 (Ω;Rd), and

⟨Lu, v⟩(L2d/(d+2)(Ω;Rd),L2∗(Ω;Rd)) = F (u, v),

for every v ∈ V . We endow N with the norm given by

∥u∥N := ∥u∥V + ∥Lu∥L2d/(d+2)(Ω;Rd).

In what follows, we state a pivotal result from [55].

Proposition 2.2. Let Ω ⊆ Rd be as in (5). Suppose that Ω1 and Ω2 are both
Sobolev and Friedrichs sets. Suppose further that F is elliptic in V . Then L

is an isomorphism between N and L
2d
d+2 (Ω;Rd).

Briefly, the proof of Proposition 2.2 relies on two facts. First, we have that
(V,
√
S( · )) is a Hilbert space. Secondly, one notices that, for every u ∈ V ,

one can define a linear continuous operator F̃ : V → V such that

F 2(u, v) = F 1
(
F̃ (u), v

)
, F̃ (u) ∈ V,

and eventually F̃ is a symmetric operator.
The proof of Theorem 2.1 is now an easy consequence of the previous propo-

sition; one argues as follows. Start by finding U ∈ H such that, for a given
H ∈ L

2d
d+2 (Ω;Rd) and h ∈ H, we have

LU = H

and
U − h ∈ N. (11)

Now, we give a precise formulation of (11) that will lead to the transmission
condition stated at the beginning. Integrating by parts, we get〈

L1u
1, v1

〉
= F (u1, v1)−

∫
∂Ω1

t1(u
1) · v1 dHd−1.
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Similarly, one has the formula for Ω2. Now, u ∈ N if and only if u ∈ V and∫
∂Ω1

t1(u
1) · v1 dHd−1 +

∫
∂Ω2

t2(u
2) · v2 dHd−1 = 0

holds true for every v ∈ V . The last condition is equivalent to∫
S1

t1(u
1) · v1 dHd−1 = 0, (12)

∫
S2

t2(u
2) · v2 dHd−1 = 0, (13)

and ∫
Γ

t1(u
1) · v1 + t2(u

2) · v2 dHd−1 = 0. (14)

Since T (v1) = T (v2), i.e. v1 = v2 on Γ, (12), (13) and (14) are equivalent to{
u1 = u2 on Γ

t1(u
1) + t2(u

2) = 0 on Γ

and {
t1(u

1) = 0 on S1

t2(u
2) = 0 on S2.

This analysis completes the proof. The next section focuses on some examples
of fixed transmission problems for which a regularity theory is available.

2.2. Some developments in regularity theory. Important advances in
the regularity theory of fixed transmission problems are in [54]. In that paper,
the authors derive global W 1,∞-estimates and C1,α-regularity for solutions to
divergence form elliptic equations with piecewise Hölder continuous coefficients.
We proceed by introducing some notation and making the assumptions more
precise.

Let Ω ⊂ Rd be a bounded domain with C1,α-regular boundary, α ∈ (0, 1),
and let Ωm, 1 ≤ m ≤ L, be a finite number of disjoint subdomains of Ω, each
with C1,α boundary. Furthermore, suppose that

Ω =
L⋃

m=1

Ωm.
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Given x ∈ Ω, one supposes that there exists r > 0 and an appropriate rotation
of our fixed coordinate system, such that the set(

L⋃
m=1

∂Ωm

)
∩Br(x)

consists of the graphs of a finite number of C1,α-regular functions. Denote with
ℓ(x, r) the number of these functions, and let K(x, r) denote the maximum of
their C1,α norms. The quantity

K := sup
x∈Ω

inf
r>0

(
K(x, r) + ℓ(x, r) +

1

r

)
is referred to as the C1,α modulus of the total boundary set (∪L

m=1∂Ωm).
For µ ∈ (0, 1), let A(m) ∈ Cµ

(
Ωm

)
be a symmetric, positive definite matrix-

valued function, and define

A(x) := A(m)(x) in x ∈ Ωm, 1 ≤ m ≤ L. (15)

Denote with 0 < λ < Λ < ∞ the ellipticity constants associated with A.
Similarly, let g(m) ∈ C0,µ

(
Ω;Rd

)
, and define

g(x) := g(m)(x) in x ∈ Ωm, 1 ≤ m ≤ L. (16)

Finally, suppose
h ∈ L∞(Ω) (17)

and
φ ∈ C1,µ(∂Ω). (18)

The first of the results in [54] concerns C1,α′ interior estimates. In brief, this
result asserts that the restriction of the solution u to each subdomain Ωm can
be extended to Ωε := {x ∈ Ω : dist(x, ∂Ω) > ε} as a C1,α′ function, with a
norm that is independent of the distances between the subdomain interfaces.

Theorem 2.2. Suppose (15)-(17) hold. Suppose α′ satisfies 0 < α′ ≤ µ and
α′ < α/((α+1)d), and let ε > 0. Then there exists C > 0, depending only on
Ω, d, α, α′, ε, λ,Λ,

∥∥A(m)
∥∥
C0,α′(Ω)

, and K, such that, if u ∈ W 1,2(Ω) is a solution
to

∂i(Aij∂ju) = h+ ∂igi in x ∈ Ω,
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then

max
1≤m≤L

∥u∥C1,α′(Ωm∩Ωε)
≤C
(
∥u∥L∞(Ω) + ∥h∥L∞(Ω)

+ max
1≤m≤L

∥∥∥g(m)
∥∥∥
C0,α′(Ω)

)
.

The variant of Theorem 2.2 covering boundary estimates is the following.

Theorem 2.3. Suppose (15)-(18) hold. Suppose α′ satisfies 0 < α′ ≤ µ and
α′ < α/((α + 1)d), and let ε, r > 0. Then there exists C > 0, depending
only on Ω, d, α, α′, ε, λ,Λ,

∥∥A(m)
∥∥
C0,α′(Ω)

and K, such that, if for some x ∈ ∂Ω,
u ∈ W 1,2(Ω ∩B2r(x)) is a solution to{

∂i(Aij∂ju) = h+ ∂igi in x ∈ Ω ∩B2r(x)

u = φ on x ∈ ∂Ω ∩B2r(x),

then

max
1≤m≤L

∥u∥C1,α′(Ωm∩Br(x))
≤ C

(
∥u∥L∞(Ω∩Br(x)) + ∥φ∥C1,α′(∂Ω∩B2r(x))

+ ∥h∥L∞(Ω∩Br(x))

+ max
1≤m≤L

∥∥∥g(m)
∥∥∥
C0,α′(Ω∩Br(x))

)
.

Combining the above interior and boundary estimates with the maximum
principle (see [43]) we arrive at the following C1,α′ global estimate.

Corollary 2.2. Suppose (15)-(18) hold. Suppose α′ satisfies 0 < α′ ≤ µ and
α′ < α/((α + 1)d). Then there exists C > 0, depending only on Ω, d, α, α′, λ,
Λ,
∥∥A(m)

∥∥
C0,α′(Ω)

, and K, such that, if u ∈ W 1,2(Ω) is a solution to{
∂i(Aij∂ju) = h+ ∂igi in x ∈ Ω

u = φ on x ∈ ∂Ω,

then

max
1≤m≤L

∥u∥C1,α′(Ωm) ≤ C
(
∥φ∥C1,α′(∂Ω + ∥h∥L∞(Ω)

+ max
1≤m≤L

∥∥∥g(m)
∥∥∥
C0,α′(Ω)

)
.

We now describe the methods of the proof in [54]. To keep it brief and as
clear as possible, we restrict our attention to Theorem 2.2 in the case h = 0
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and g = 0. Let A
(
λ,Λ

)
denote the set of measurable, symmetric, positive

definite matrix-functions A(x) satisfying

λId ≤ A(x) ≤ ΛId.

Define a scaling invariant subclass of A
(
λ,Λ

)
, denoted by A

(
λ,Λ

)
, as follows.

Fix ℓ ∈ N and denote with {L1, . . . , Lℓ} a collection of ℓ parallel hyperplanes
in Rd, dividing Rd in ℓ+1 regions. Denote such regions with R1, . . . , Rℓ+1. Let
A

(1)
, . . . , A

(ℓ+1) be any ℓ+ 1 symmetric, positive definite constant matrices in
A
(
λ,Λ

)
and define

Aij(x) := A
m
ij on x ∈ Rm, 1 ≤ m ≤ l + 1.

The subclass A
(
λ,Λ

)
consists of all such matrix functions A.

The classical Schauder estimates, Cordes-Nirenberg estimates, and W 2,p esti-
mates can be viewed as perturbation theories from the corresponding estimates
for solutions to the Laplace equation. Here, the approach is analogous, as the
problem of interest is regarded as a perturbation of

∂i
(
Aij(x)∂jv

)
= 0, (19)

with A ∈ A
(
λ,Λ

)
.

To establish Theorem 2.2 in the case h = 0 and g = 0, one first studies
elliptic regularity estimates for solutions to (19). Although the hyperplanes in
the definition of A

(
λ,Λ

)
are allowed to get arbitrarily close to each other, es-

timates that are uniform in A ∈ A
(
λ,Λ

)
are available. Hence, the Caccioppoli

inequality and the interior De Giorgi-Nash estimates yield bounds for all deriva-
tives of the solution v in each region Rm. More precisely, with Ω = (−1, 1)d,
one concludes that, for any positive integer k, any ε > 0, any A ∈ A

(
λ,Λ

)
and any solution v to (19), it holds

max
1≤m≤l+1

∥v∥Ck(Rm∩(1−ε)Ω) ≤ C∥v∥L∞(Ω). (20)

Starting from (20), perturbation methods allow us to show that, for any q > d
and α ∈ (0, 1), there exists ε0 > 0, depending only on d, q, α, λ and Λ, such
that if A ∈ A

(
λ,Λ

)
and A ∈ A

(
λ,Λ

)
satisfy

sup
r∈(0,1)

r−α

(
1

|rΩ|

∫
rΩ

∣∣A(x)− A(x)
∣∣q dx) 1

q

≤ ε0 (21)
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and u ∈ W 1,2(Ω) is a solution to

∂i(Aij(x)∂j)u = 0 in Ω,

with
∥u∥L∞(Ω) ≤ 1,

then there exists a continuous piecewise linear solution p to

∂i
(
Aij(x)∂jp

)
= 0 in

1

4
Ω,

whose coefficients are bounded in absolute value by a constant C, depending
only on d, q, α, λ, and Λ, such that

|u(x)− p(x)| ≤ C|x|1+α in
1

4
Ω.

Under the hypotheses of Theorem 2.2, the condition (21) can be verified at
every point x ∈ Ω by translation and dilation, and by appropriate selection of
Ax ∈ A

(
λ,Λ

)
. The L∞-interior estimates for the gradient of solutions to the

equation ∂i(Aij∂ju) = 0 follow immediately. The Hölder interior estimates for
the gradient require some further work, since at different points x ∈ Ω, the
orientation of the hyperplanes associated with the matrices Ax(x) differ by a
rotation, determined by the geometry of Ωm, and since px is only piecewise
linear given a fixed set of planes.

2.3. Geometry of the interface and optimal regularity. So far we have
dealt with transmission problems with smooth fixed interfaces. One of the main
novelties presented in [24] is that the interface has only C1,α-regularity. In what
follows, we detail the setting of that paper and describe its main contributions.

Let Ω ⊆ Rd be a bounded domain. Fix Ω1 ⋐ Ω, and suppose that Γ := ∂Ω1

is a C1,α manifold for some α ∈ (0, 1). Set Ω2 := Ω \ Ω1. The authors in that
paper consider the problem of finding a continuous function u : Ω → R such
that 

∆u1 = 0 in Ω1

∆u2 = 0 in Ω2

u2 = 0 in ∂Ω

u1 = u2 on Γ

(u1)ν − (u2)ν = g on Γ

(22)
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where u1 := u
∣∣
Ω1

, u2 := u
∣∣
Ω2

, g ∈ C0,α(Γ), and ν is the unit normal vector on
Γ that is interior to Ω1. The last two equations in (22) are called transmission
conditions. Note that if g ≡ 0 then u is a harmonic function in Ω. Hence, in
order to have a meaningful transmission condition, we suppose that

g(x) ≥ 0 for x ∈ Γ.

The main result in [24] is the following theorem.

Theorem 2.4. There exists a unique solution u to (22). Moreover, u1 ∈
C1,α

(
Ω1

)
, u2 ∈ C1,α

(
Ω2

)
, and there exists C = C(d, α,Γ) > 0 such that

∥u1∥C1,α(Ω1)
+ ∥u2∥C1,α(Ω2)

≤ C∥g∥C0,α(Γ).

In addition, u ∈ C0,Log−Lip
(
Ω
)
.

The existence and the uniqueness easily follow from a representation formula
of the solution via the Green function G associated with the Laplace operator
in Ω

u(x) =

∫
Γ

G(x, y)g(y) dHd−1 for x ∈ Ω. (23)

Thanks to the well-known properties of the Green function we achieve, using
the above formula, that u ∈ C0,Log−Lip

(
Ω
)
. The main issue is the regularity

of ui up to the interface for i = 1, 2. To establish this fact one resorts to a
number of building blocks. We continue by describing them and start with a
discussion about the flat problem.

For a ∈ R, we denote

x =(x′, xd) ∈ Rd−1 × R
Br,a =Br(0

′, a)

B+
r,a =Br(0

′, a) ∩ {xd > a}
B−

r,a =Br(0
′, a) ∩ {xd < a}

Tr,a ={x ∈ Br(0
′, a) : xd = a}

Ta =B1 ∩ {xd = a}
T+
a =B1 ∩ {xd ≥ a}
T−
a =B1 ∩ {xd ≤ a}.

When a = 0, we write T = T0 and B±
r = B±

r,0. In the context of flat interfaces,
the analogous of Theorem 2.4 reads as follows.
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Theorem 2.5. Let r > 0 and a ∈ R. Given α, γ ∈ (0, 1), let g ∈ C0,α(Tr,a)
and f ∈ C0,γ

(
Br,a

)
. Then there exists a unique solution v ∈ C∞(Br,a \Tr,a)∩

C0,γ
(
Br,a

)
to the flat transmission problem{

∆v = g dHd−1
∣∣
Tr,a

in Br,a

v = f in ∂Br,a.

Moreover, if v± = vχ
B±

r,a
, then v ∈ C1,α

(
B±

r/2,a

)
and∥∥v±∥∥

C1,α(B±
r/2,a)

≤ C
(
∥g∥C0,α(Tr,a) + ∥f∥L∞(∂Br,a)

)
,

where C depends only on d, α, and r. If g ∈ Ck−1,α(Tr,a), k ≥ 1, then
v ∈ Ck,α

(
B±

r/2,a

)
and∥∥v±∥∥
Ck,α(B±

r/2,a)
≤ C

(
∥g∥Ck−1,α(Tr,a) + ∥f∥L∞(∂Br,a)

)
.

Briefly, the proof of the above theorem relies on the construction of two
Dirichlet-Neumann problems, one for each hemisphere. Then, the solution to
the original problem is given by the sum of the solutions of the aforementioned
two problems.

Corollary 2.3. Given |a| < 1/4, c0 > 0 and f ∈ C0,γ
(
B1

)
, with γ ∈ (0, 1),

there exists a unique solution v ∈ C∞(B1 \ Ta) ∩ C0,γ
(
B1

)
to{

∆v = c0 dHd−1 in B1

v = f on ∂B1

such that, for any k ≥ 1,∥∥v±∥∥
Ck,α(B1/2∩T±

a )
≤ C

(
c0 + ∥f∥L∞(∂B1)

)
,

where C = C(d, α, k) > 0.

Before continuing, further notation is required. Fix ε > 0, and let Ωε = {x ∈
Ω : dist(x, ∂Ω) < ε} and Γε = {x ∈ Ω : dist(x,Γ) < ε}. Consider the average

uε(x) =
1

|Bε(x)|

∫
Bε(x)

u dy for x ∈ Ωε.

Proposition 2.3 (Properties of averages). Let u be the distributional solution
given by (23). The following properties hold

(i) if Bε(x) ∩ Γ = ∅ then uε(x) = u(x);
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(ii) uε → u locally uniformly in Ω as ε→ 0+;
(iii) if g ∈ L∞(Ω) then gε ∈ Cc(Γε), where

gε(x) =
1

|Bε|

∫
Γ∩Bε(x)

g dHd−1 for x ∈ Γε.

Moreover, ∆uε(x) = gε(x), for every x ∈ Ωε.

The proof of the above proposition is quite simple, and it is essentially based
on well-known properties of harmonic functions, the Lebesgue Dominated Con-
vergence Theorem, and a change of variables. The following result is instru-
mental in the analysis.

Lemma 2.2. Let Γ be as in Theorem 2.6. Define M := 1 + 2θ and let x ∈
B1−Mε be such that dist(x,Γ) < ε. Then{

y′ :
(
y′, ψ(y′)

)
∈ Bε(x)

}
⊆B′

((Mε)2−(xd+θε)2)1/2(x
′)

={y′ : (y′,−θε) ∈ BMε(x)} (24)

and {
y′ :

(
y′, ψ(y′)

)
∈ BMε(x)

}
⊇B′

(ε2−(xd+θε)2)1/2(x
′)

={y′ : (y′,−θε) ∈ Bε(x)}. (25)

Theorem 2.6 (Stability). Let ε > 0, θ < 1/2 and 0 < δ, γ < 1 be given. Let
Γ =

{(
y′, ψ(y′)

)
: y′ ∈ B′

1

}
, where ψ is a Lipschitz function. Suppose Γ is

θε-flat in B1, in the sense that

Γ ⊆ {x ∈ B1 : |xd| < θε},
and that Γ is also ε-horizontal in B1. That is

1− ε ≤ ν(x) · (0′, 1) =
∣∣1 + |D′ψ(x′)|2

∣∣− 1
2 ≤ 1,

for every x ∈ Γ, where ν(x) denotes the upward pointing normal on Γ. Then
there exists C = C(d) > 0 such that, for any u ∈ C0,γ

(
B1

)
and g ∈ L∞(Γ)

satisfying {
∆u = g dHd−1

∣∣
Γ

in B1

|g − 1| ≤ δ on Γ,

the classical solution v ∈ C∞(B1 \ T−θε) ∩ C0,γ
(
B1

)
to the flat problem{

∆v = dHd−1
∣∣
T−θε

in B1

v = u on ∂B1
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satisfies
|u− v| ≤ C (θ + δ + εγ) in B1/2.

Remark 2. The interface for the flat problem in Theorem 2.6 is T−θε = B1 ∩
{xd = −θε}, which lies below Γ in the xd-direction. To approximate u with the
solution to a flat problem where the interface lies above Γ in the xd-direction,
it is enough to consider the classical solution v to{

∆v = dHd−1
∣∣
Tθε

in B1

v = u on ∂B1.

In this case, the same conclusion as in Theorem 2.6 holds.

The proof of the stability result is quite technical, and it is obtained via
a novel geometric approach which is based on the mean value property and
the maximum principle. What the stability tells us is that if the flatness and
oscillation of the interface Γ are controlled, then one can construct a solution for
a flat interface problem, where the flat interface does not intersect Γ. Also, it is
possible to quantify how close solutions are, depending only on the geometric
properties of Γ and the basic regularity of u.

Now, suppose that Γ is an interface in B1 given by the graph of a function
xd = ψ(x′) : T → R. Thus, we can write B1 = Ω1 ∪ Γ ∪ Ω2, where Ω1 = {x =
(x′, xd) ∈ B1 : xd > ψ(x′)}. It is also natural to suppose that 0 ∈ Γ.

Lemma 2.3. Given 0 < α, γ < 1, there exist C0 > 0, λ ∈ (0, 1/2), 0 <
θ, δ, ε < λ, depending only on d, α and γ, such that, for every u ∈ C0,γ

(
B1

)
satisfying 

∆u = g dHd−1
∣∣
Γ

in B1

|u| ≤ 1 in B1

|g − 1| ≤ δ on Γ,

if Γ is θε-flat and ε-horizontal in B1, then there are linear polynomials P1(x) =
A·x+B and Q1(x) = C·x+B, with A,C ∈ Rd, B ∈ R and |A|+|B|+|C| ≤ C0,
for which

|u1(x)− P1(x)| ≤ λ1+α for x ∈ Ω1 ∩Bλ

and
|u2(x)−Q1(x)| ≤ λ1+α for x ∈ Ω2 ∩Bλ.

Moreover, D′P1 = D′Q′
1 and (P1)xd

− (Q1)xd
= 1.
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Lemma 2.4. Given α ∈ (0, 1), there exist C0 > 0, λ ∈ (0, 1/2), δ ∈ (0, 1)
depending only on d and α, such that, for any distributional solution u ∈
C
(
B1

)
to 

∆u = g dHd−1
∣∣
Γ

in B1

|u| ≤ 1 in B1

|g| ≤ δ on Γ,

there is a linear polynomial P (x) = A · x + B, with A ∈ Rd and B ∈ R and
|A|+ |B| ≤ C0, satisfying

|u(x)− P (x)| ≤ λ1+α for x ∈ Bλ.

The previous two lemmas are key tools in the following theorem. In fact, the
proof of the next result is based on a clever induction argument that involves
a sequence of scaled fixed transmission problems. The very general idea is that
flat solutions are asymptotically close to non-flat solutions. The theorem reads
as follows.

Theorem 2.7 (Pointwise C1,α boundary regularity). Let

Γ =
{(
y′, ψ(y′)

)
: y′ ∈ B′

1

}
,

where ψ is a C1,α-regular function, for some α ∈ (0, 1). Suppose that 0 ∈ Γ.
Let u be a distributional solution to the transmission problem

∆u = g dHd−1
∣∣
Γ
,

where g ∈ L∞(Γ) ∩ C0,α(0) is nonnegative. Then there are linear polynomials
P (x) = A · x+B and Q(x) = C · x+B such that

|u1(x)− P (x)| ≤D|x|1+α for x ∈ Ω1 ∩B1/2,

|u2(x)−Q(x)| ≤D|x|1+α for x ∈ Ω2 ∩B1/2,

with
|A|+ |B|+ |C|+D ≤ C0∥ψ∥C1,α(B′

1)

(
[g]C0,α(0) + ∥g∥L∞(Γ)

)
and C0 = C0(d, α) > 0.

To prove Theorem 2.4 one resorts to Campanato’s characterization of C1,α-
spaces and a technical result that patches the interior and boundary estimates
together.
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Theorem 2.8 (Campanato’s characterization of C1,α-spaces). Let u be a mea-
surable function defined on a bounded C1,α domain Ω. Then u ∈ C1,α

(
Ω
)

if
and only if there exists C0 > 0 such that, for every x ∈ Ω, one finds a linear
polynomial Qx(z) satisfying

|u(z)−Qx(z)| ≤ C0|z − x|1+α,

for every z ∈ B1(x) ∩ Ω. In this case, if C∗ denotes the least constant C0 for
which the property above holds, we have

∥u∥C1,α(Ω) ∼ C∗ + sup
x∈Ω

|Qx|,

where |Qx| denotes the sum of the coefficients of the polynomial Qx(z).

At this point, the proof of Theorem 2.4 proceeds as follows. We first in-
troduce three conditions and relate them with the conclusion of Theorem 2.4
through a proposition. In fact, the proposition ensures that if u1 and u2 satisfy
the aforementioned conditions then the regularity up to the fixed interface is
available. We continue by introducing the conditions of interest.

From now on, let S be a collection of measurable functions defined on a
bounded C1,α-regular domain U ⊂ Rd.

Condition 2.1 (Interior estimates). Let u ∈ S and dx := dist(x, ∂Ω). There
exist A,C,D > 0 such that, for every x ∈ U , one can find a linear polynomial
Px(z) satisfying

∥Px∥L∞(B) + dx∥DPx∥L∞(B) ≤ C∥u∥L∞(B),

and

|u(z)− Px(z)| ≤
(
A
∥u∥L∞(B)

d1+α
x

+D

)
|z − x|1+α,

for every z ∈ B := Bdx/2(x) ⊂ U .

Condition 2.2 (Boundary estimates). Let u ∈ S. There exists E > 0 such
that, for every y ∈ ∂U , there is a linear polynomial Py(z) satisfying

∥Py∥L∞(U) + ∥DPy∥L∞(U) ≤ E

and
|u(z)− Py(z)| ≤ E|z − y|1+α,

for every z ∈ U .
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Condition 2.3 (Invariance property). For every u ∈ S, and for every y ∈ ∂U
with a corresponding linear polynomial Py as in Condition 2.2, the function
v = u− Py also satisfies the estimates in Condition 2.1.

Proposition 2.4. Let S be a collection of measurable functions defined on a
bounded C1,α-regular domain U . For x ∈ U , we let dx = dist(x, ∂U). Fix
u ∈ S, and suppose Conditions 2.1-2.3 are in force. Then S ⊆ C1,α

(
U
)
, and

there exists C > 0, depending only on A,C,D,E, such that

∥u∥C1,α(U) ≤ C∥u∥L∞(U).

Now, we show that u1 and u2 verify Conditions 2.1-2.3. This fact builds upon
Proposition 2.4 to produce the conclusion of Theorem 2.4, completing its proof.

Let u ∈ C0,Log−Lip
(
Ω
)

be given by (23). We consider only u2 : Ω2 → R, as
a similar argument yields the result for u1 : Ω1 → R and start with Condition
2.1.

Fix x ∈ Ω2. Since u2 is harmonic, it is smooth in Ω2, so we can define

Px(z) := u2(x) +Du2(x) · (z − x).

Then, by classical interior estimates for harmonic functions,

∥Px∥L∞(B) + dx∥DPx∥L∞(B) ≤∥u2∥L∞(B) + dx∥Du2∥L∞(B)

+ dx∥Du2∥L∞(B)

≤∥u2∥L∞(B) + 2d∥u2∥L∞(B)

≤(1 + 2d)∥Du2∥L∞(B).

Moreover,

|u2(z)− Px(z)| ≤
∥∥D2u2

∥∥
L∞(B)

|z − x|2

≤d
∥u2∥L∞(B)

d2x
|z − x|2

≤2α−1d
∥u2∥L∞(B)

d1+α
x

|z − x|1+α.

Concerning Condition 2.2, consider ∂Ω2 = Γ ∪ ∂Ω. If y ∈ Γ, Theorem 2.7
yields the existence of a linear polynomial Py(z) such that

∥Py∥L∞(Ω2) + ∥DPy∥L∞(Ω2) ≤ E

and
|u2(z)− Py(z)| ≤ E|z − y|1+α,
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for every z ∈ Ω2, with E ≤ C0∥ψ∥C1,α(B′
1)
∥g∥C0,α(Γ), and C0 = C0(d, α) > 0. If

y ∈ ∂Ω ∈ C∞, then, by classical boundary regularity for harmonic functions,
u2 ∈ C1,α

(
B ∩ Ω

)
, with B := Br(y), for some r > 0 sufficiently small. By

Theorem 2.8, there exists a linear polynomial Py(z) such that

|u2(z)− Py(z)| ≤ C0|z − y|1+α,

for every z ∈ Ω2, for some C0 = C0(d, α) > 0. This fact ensures that Condition
2.2 is in force.

Finally, we address Condition 2.3. Fix y ∈ ∂Ω2, and let Py be the correspond-
ing linear polynomial from Condition 2.2. Clearly, the function v = u2 − Py is
harmonic in Ω2, so it satisfies the interior estimates from Condition 2.1.

Therefore, by Proposition 2.4, we have u2 ∈ C1,α
(
Ω2

)
, and there exists a

constant C > 0, depending only on d, α,Γ, such that

∥u2∥C1,α(Ω2)
≤ C∥g∥C0,α(Γ).

We close this section by discussing an alternative proof to Theorem 2.4; it
appeared in [36] and consists in re-casting the transmission problem in (22) as
a Dirichlet problem driven by a PDE with a piecewise C0,α-regular right-hand
side. Indeed, consider the problem of finding w ∈ W 1,2(Ω) satisfying{

∆w = c in Ω1

wν = g on ∂Ω1,
(26)

with ∫
Ω1

wdx = 0,

where
c :=

1

Hd−1(Γ)

∫
Γ

g dHd−1.

The existence of solutions to (26) follows from Sobolev inequalities and the
Lax-Milgram Theorem. Also, usual results in elliptic regularity theory yield
the existence of α ∈ (0, 1) and C > 0 such that w ∈ C1,α(Ω1) with

∥w∥C1,α(Ω1)
≤ C ∥g∥Cα(Γ) .

Once the existence and regularity for the auxiliary function w are available,
we notice the solution u to (22) satisfies{

∆u = −div (χΩ1
Dw) + χΩ1

c in Ω

u = 0 on ∂Ω.
(27)



TRANSMISSION PROBLEMS: REGULARITY THEORY, INTERFACES AND BEYOND 25

Once again, the Lax-Milgram Theorem ensures the existence of a weak solu-
tion to (27). Concerning the regularity of u, an application of [35, Corollary 2
and Remark 3] yields the result. We notice the approach in [36] accommodates
more general elliptic operators in divergence form, as long as uniform ellipticity
is available. Furthermore, it covers nonhomogeneous equations.

3. A quasilinear fixed transmission problem
In this section, we discuss an example of a quasilinear fixed transmission

problem modelled after the p-Laplace operator. The gist of the section is to
extend to a class of degenerate, variational models, some of the results in [24],
namely the regularity across the fixed transmission interface. The following
material is based on the findings reported in [7].

We consider the following problem. Let Ω ⊂ Rd be a bounded domain and
fix Ω1 ⋐ Ω. Define Ω2 := Ω \ Ω1 and Γ := ∂Ω1. Suppose that the interface Γ
is a (d− 1)-manifold of class C1. For a function u : Ω → R, we set

u1 := u
∣∣
Ω1

and u2 := u
∣∣
Ω2
.

The normal derivatives of u1 and u2 on the interface are defined as
∂ui
∂ν

:= Dui · ν, i = 1, 2,

where ν stands for the unit normal vector to Γ inwards Ω1.
The variational formulation of the problem relies on a functional driven by

a nonlinear function g : R+
0 → R+

0 , whose properties will be stated later.
The PDE counterpart of the model is the quasilinear degenerate transmission
problem consisting of finding a function u : Ω → R such that

div
(
g(|Du1|)
|Du1| Du1

)
= 0 in Ω1

div
(
g(|Du2|)
|Du2| Du2

)
= 0 in Ω2,

(28)

under the following boundary and interface conditionsu = 0 on ∂Ω

g(|Du1|)
|Du1|

∂u1

∂ν − g(|Du2|)
|Du2|

∂u2

∂ν = f on Γ,
(29)

where the nonlinear function f is given. The integrability properties of the
latter will lead to two different regularity results for the solutions.
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Regarding the nonlinear function g ∈ C1
(
R+

0

)
, we suppose that

g0 ≤
tg′(t)

g(t)
≤ g1, ∀t > 0, (30)

for fixed constants 1 ≤ g0 ≤ g1. In addition, we impose the monotonicity
condition (

g(|ξ|)
|ξ|

ξ − g(|ζ|)
|ζ|

ζ

)
· (ξ − ζ) ≥ C|ξ − ζ|p, ∀ξ, ζ ∈ Rd, (31)

for p > 2, fixed though arbitrary, and C > 0.
The work-horse of the theory is the case g(t) = tp−1, with p > 2, which turns

(28) into degenerate p-Laplace equations. A distinct example of nonlinearity
within the scope of (30)-(31) is

g(t) := tp−1 ln (a+ t)α ,

for p > 2, a > 1 and α > 0.
An important ingredient in the analysis is the primitive of g,

G(t) =

∫ t

0

g(s) ds, t ≥ 0.

We notice that G is a Young function. That is, it is left-continuous and convex;
we refer the reader to [47, Definition 3.2.1]. Being a Young function, G allows
us to define a functional space. This is the subject of the next definition.

Definition 3.1 (Orlicz-Sobolev space). Let G be a Young function. The
Orlicz-Sobolev space W 1,G(Ω) is the set of weakly differentiable functions u ∈
W 1,1(Ω) such that∫

Ω

G (|u(x)|) dx+
∫
Ω

G (|Du(x)|) dx <∞.

Reasoning as in the usual setting, it is also possible to define W 1,G
0 (Ω). Now

we introduce a notion of solution to (28)-(29).

Definition 3.2. We say that u ∈ W 1,G
0 (Ω) is a weak solution of (28)-(29) if∫

Ω

g (|Du|)
|Du|

Du ·Dv dx =

∫
Γ

fv dHd−1, ∀ v ∈ W 1,G
0 (Ω). (32)
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Remark 3. An important consideration on Definition 3.2 concerns the fact
that the integrals in (32) are well-defined. This is actually the case; let u, v ∈
W 1,G(Ω) and notice that∫

Ω

g(|Du|)
|Du|

Du ·Dv dx <∞.

Also tg(t) ≤ CG(t), for t ≥ 0, because g is increasing. Finally, G(t + s) ≤
C
(
G(t) +G(s)

)
, for t, s ≥ 0. As a result,∣∣∣∣ ∫

Ω

g(|Du|)
|Du|

Du ·Dv dx
∣∣∣∣ ≤∫

Ω

g(|Du|)|Dv| dx

≤
∫
Ω

g(|Du|+ |Dv|)(|Du|+ |Dv|) dx

≤C
∫
Ω

G(|Du|+ |Dv|) dx

≤C
∫
Ω

G(|Du|) dx+ C

∫
Ω

G(|Dv|) dx

<∞.

Remark 4 (On the connection between W 1,G
0 and W 1,p

0 ). Let u ∈ W 1,G
0 (Ω),

and suppose that (31) holds true. Then we see that u ∈ W 1,p
0 (Ω). Indeed, that

inequality yields ∫
Ω

|Du|p dx ≤C
∫
Ω

g(|Du|)|Du| dx

≤C
∫
Ω

G(|Du|) dx.

Remark 5 (Existence and uniqueness of solutions). The existence of a unique
weak solution to (28)-(29) follows from approximation and monotonicity meth-
ods (see [6]; see also [57]). An important characterization of the weak solutions
to (28) concerns the functional I : W 1,G

0 (Ω) → R given by

I(u) =

∫
Ω

G (|Du|) dx−
∫
Γ

fu dHd−1. (33)

Indeed, a weak solution to (28)-(29) is a global minimizer for I, whose first
compactly supported variation yields (32).



28 V. BIANCA, E.A. PIMENTEL AND J.M. URBANO

Since our interest lies in the Hölder-types of moduli of continuity, we proceed
by introducing functional spaces suitable to our analysis. These are the Cam-
panato and Morrey spaces, which provide us with useful characterizations for
the regularity estimates on (28)-(29)

Definition 3.3 (Campanato spaces). We denote by Lp,λ
C (Ω;Rd), with 1 ≤ p <

∞ and λ ≥ 0, the space of functions u ∈ Lp(Ω;Rd) such that

[u]p
Lp,λ
C (Ω;Rd)

= sup
x0∈Ω,ρ>0

1

ρλ

∫
Ω∩B(x0,ρ)

|u− (u)Ω∩B(x0,ρ)|p dx <∞.

Definition 3.4 (Morrey spaces). We denote by Lp,λ
M (Ω;Rd), with 1 ≤ p < ∞

and λ ≥ 0, the space of functions u ∈ Lp(Ω;Rd) such that

∥u∥p
Lp,λ
M (Ω)

= sup
x0∈Ω,ρ>0

1

ρλ

∫
Ω∩B(x0,ρ)

|u|p dx <∞.

We close this section with two technical results. The first one relates a decay
regime with a Hölder-type of inequality.

Lemma 3.1. Fix R0 > 0 and let ϕ : [0, R0] → [0,∞) be a non-decreasing
function. Suppose there exist constants C1, α, β > 0, and C2, µ ≥ 0, with
β < α, satisfying

ϕ(r) ≤ C1

[( r
R

)α
+ µ
]
ϕ(R) + C2R

β,

for every 0 < r ≤ R ≤ R0. Then, for every σ ≤ β, there exists µ0 =
µ0(C1, α, β, σ) such that, if µ < µ0, for every 0 < r ≤ R ≤ R0, we have

ϕ(r) ≤ C3

( r
R

)σ(
ϕ(R) + C2R

σ
)
,

where C3 = C3(C1, α, β, σ) > 0. Moreover,

ϕ(r) ≤ C4r
σ,

where C4 = C4(C2, C3, R0, ϕ(R0), σ).

Our second technical lemma relates solutions to the transmission problem
with solutions to the homogeneous equation. Indeed, it provides a lower bound
for the difference of their G-integrals in terms of p-norms.
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Lemma 3.2. Let w ∈ W 1,G(BR). Suppose (30)–(31) is in force. Suppose
further h ∈ W 1,G

w (BR) is a weak solution to

div
(
g(|Dh|)
|Dh|

Dh

)
= 0 in BR.

Then there exists C > 0 such that∫
BR

G(|Dw|)−G(|Dh|) dx ≥ C

∫
BR

|D(w − h)|p dx. (34)

For a proof of Lemma 3.2 we refer the reader to [7]

3.1. Regularity estimates in BMO−spaces. In the sequel, we consider
f ∈ L∞(Ω). Our goal is to prove BMO−regularity estimates for the gradient
of solutions across the fixed transmission interface. The following proposition
is instrumental in our analysis.

Proposition 3.1. Let h ∈ W 1,G(BR) be a weak solution of

div
(
g(|Dh|)
|Dh|

Dh

)
= 0 in BR.

Suppose (30)-(31) hold true. Then there exist C > 0 and α ∈ (0, 1) such that,
for every r ∈ (0, R], we obtain∫

Br

|Dh− (Dh)r| dx ≤ C
( r
R

)d+α
∫
BR

|Dh− (Dh)R| dx.

For a proof of Proposition 3.1, we refer the reader to [6].

Proposition 3.2. Let w ∈ W 1,G(BR), and suppose h ∈ W 1,G(BR) is a weak
solution of

div
(
g(|Dh|)
|Dh|

Dh

)
= 0 in BR.

Suppose (30)-(31) hold true. Then there exists C > 0 such that, for every
0 < r ≤ R, one has∫

Br

|Dw − (Dw)r| dx ≤C
( r
R

)d+α
∫
BR

|Dw − (Dw)R| dx

+ C

∫
BR

|Dw −Dh| dx

for α ∈ (0, 1) as in Proposition 3.1.
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The proof of Proposition 3.2 is technical in nature, and we choose to omit it
here (see [7, Proposition 2] for details). The main result in [7] reads as follows.

Theorem 3.1 (Gradient regularity in BMO−spaces). Let u ∈ W 1,G
0 (Ω) be a

weak solution for the transmission problem (28)–(29). Suppose (30)–(31) are
in force. Then Du ∈ BMOloc(Ω). In addition, for every Ω′ ⋐ Ω,

∥Du∥BMO(Ω′) ≤ C,

where C = C(d, ∥f∥L∞(Γ), diam(Ω), dist(Ω′, ∂Ω)) > 0.

The proof relies on an L1-distance for the gradient of the solution u and the
g-harmonic function h agreeing with u in the Sobolev sense on the boundary
of BR. In fact, we aim at producing∫

BR

|D (u− h)| dx ≤ CRd. (35)

The former inequality follows from an involved combination of the minimality
of u, properties of g-harmonic functions, Lemma 3.2 and standard results, such
as the Trace Theorem and the Poincaré Inequality.

Then (35) builds upon Proposition 3.2 to produce∫
Br

|Du− (Du)r| dx ≤ C
( r
R

)d+α
∫
BR

|Du− (Du)R| dx+ CRd,

for every 0 < r ≤ R. Finally, an application of Lemma 3.1, implies∫
Br

|Du− (Du)r| dx ≤ Crd, ∀r ∈ (0, R],

which completes the proof.
At this point one resorts to embedding results for borderline spaces to obtain a

modulus of continuity for the solution u in C0,Log−Lip−spaces. See [28, Theorem
3]. In fact, we have the following corollary.

Corollary 3.1 (Log-Lipschitz continuity estimates). Let u ∈ W 1,G
0 (Ω) be a

weak solution for (28)-(29). Suppose (30)–(31) hold true. Then u ∈ C0,Log−Lip
loc (Ω).

Also, for every Ω′ ⋐ Ω,

∥u∥C0,Log−Lip(Ω′) ≤ C
(
∥u∥L∞(Ω) + ∥f∥L∞(Γ)

)
,

where C = C(p, d, diam(Ω), dist(Ω′, ∂Ω)) > 0.
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To complete this section we mention the case of unbounded interface data.
Suppose f ∈ W 1,p′+ε(Ω), where ε > 0 depends on p and the dimension d.
Hence, it is possible to prove the following regularity result in, Hölder spaces,
for the solutions to (28)-(29).

Theorem 3.2. Let u be a weak solution to the interface problem (28)-(29),
and suppose (30)-(31) are in force. Let 2 < p < d, and ε > 0 be such that

d− p

p− 1
< ε < d− p

p− 1
.

Suppose further that f ∈ W 1,p′+ε(Ω). Then u ∈ C0,α
loc (Ω), with

α = 1− d

p+ ε(p− 1)
,

and estimates are available.

Remark 6 (Local boundedness). We note that arguing along the same ideas
as those presented in [67], one can prove that solutions to (28)-(29) are locally
bounded (at the level of the functions and their gradients). Although we omit
this result and its proof in the present manuscript, the reader may find the
details in [7, Section 3].

Remark 7 (Potential estimates and the p-Laplace operator). For the case
g(t) := tp−1, one can use [50, Corollary 1, item (C9)] to derive the conclusion
of Theorem 3.1. Because the interface Γ is locally of class C1, it follows from
the inequality ∫

Br∩Γ
fdHd−1 ≤ Crd−1;

see, for instance, [58, Proposition 3.5].

4. Free transmission problems
A variant of fixed transmission problems concerns models whose interfaces

are solution-dependent. In this scenario, the models appear in the context of
free boundary problems. As a consequence, an additional structure arises as
part of the unknown; namely, the free interface.

We present this class of problems in the context of fully nonlinear elliptic
equations, which are intrinsically non-variational and rely on the notion of
viscosity solutions. We start by introducing the problem.
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4.1. A fully nonlinear free transmission problem: the setting. Let
Ω ⊂ Rd be a bounded domain and consider u ∈ C(Ω). We define Ω±(u) as

Ω+(u) := {x ∈ Ω |u(x) > 0}

and
Ω−(u) := {x ∈ Ω |u(x) < 0} .

Now, let 0 < λ ≤ Λ be fixed constants. We let F1, F2 : S(d) → R be
(λ,Λ)-elliptic operators. That is,

λ∥N∥ ≤ Fi(M +N)− Fi(M) ≤ Λ∥N∥,

for i ∈ {1, 2}, and every symmetric matrix M,N ∈ S(d), with N ≥ 0. We are
interested in the problem{

F1(D
2u) = f in Ω+(u)

F2(D
2u) = f in Ω−(u).

(36)

The (free) interface Γu in this case is the topological boundary of the set where
u ̸= 0. That is,

Γu := ∂ {u > 0} ∪ ∂ {u < 0} .
We consider two classes of solutions to (36): viscosity solutions (both in the
continuous and the Lp-senses) and Lp-strong solutions. For the specifics on
those notions, we refer the reader to [30, 22]; see also [43, Chapter 17]. It is
worth noticing that when considering Lp-strong solutions one derives informa-
tion on the transmission condition from the Sobolev properties of the solutions.

Because an Lp-strong solution is a function in W 2,d(B1), we have Du = 0
almost everywhere in {u = 0}. Hence, it is natural to equip (36) with the
condition

|Du| = 0 on ∂ {u > 0} ∪ ∂ {u < 0} .
A number of difficulties arise in the analysis of (36). First, the existence

of solutions is a non-trivial matter. Indeed, because the diffusion process is
discontinuous with respect to the solutions, the dependence of the equation
on u is unknown. In particular, there is no a priori reason to expect it to be
monotone. Hence, the equation governing the free transmission problem may
lack properness and, therefore, a comparison principle.

In addition, the regularity of the solutions can no longer rely on the geometry
of the transmission interface since such an object is unknown. As a consequence,
the approach developed in [68] does not yield information on (36). In the sequel,
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we present recent developments bypassing those difficulties and extending the
existence and regularity program to (36).

4.2. The existence of solutions. We consider the Dirichlet problem{
F1(D

2u)χ{u>0} + F2(D
2u)χ{u<0} = f in (Ω+(u) ∪ Ω−(u)) ∩ Ω

u = g on ∂Ω,
(37)

where Ω ⊂ Rd is a bounded domain satisfying a uniform exterior one condition,
f ∈ Lp(Ω), for p > p0, and g ∈ C(∂Ω) is a given boundary condition. We recall
that d/2 ≤ p0 = p0(Λ/λ, d) is the exponent such that (λ,Λ)-elliptic equations
with right-hand side in Lp, with p > p0, are entitled to the Aleksandrov-
Bakelman-Pucci maximum principle.

Remark 8 (Escauriaza exponent d/2 ≤ p0 = p0(Λ/λ, d)). The connection of
the exponent p0 with fully nonlinear elliptic equations of the form F (D2u, x) =
f appears in the work of Luis Escauriaza [39]. In that paper, the author proves
a Harnack inequality of the form

sup
x∈Br/2

u(x) ≤ C

(
inf

x∈Br/2

u(x) + r2−d/q ∥f∥Lp(Br)

)
, (38)

provided u ≥ 0 solves F (D2u, x) = f and f ∈ Lp(B1), for p > p0. This
inequality follows from the improved integrability of the Green’s function asso-
ciated with the linearization of F . Such improved integrability of the Green’s
function was established in the work of Eugene Fabes and Daniel Stroock [40].
In the derivation of (38), one notices that Escauriaza’s exponent p0 is the
conjugate of the improved integrability available for the Green’s function of a
(λ,Λ)-elliptic operator.

We present the following theorem.

Theorem 4.1 (Existence of viscosity solutions). Let Ω ⊂ Rd be a bounded
domain satisfying a uniform exterior cone condition. Let Fi : S(d) → R be
(λ,Λ)-elliptic operators, for i ∈ {1, 2}, and some fixed constants 0 < λ ≤ Λ.
Suppose g ∈ C(∂Ω) and f ∈ Lp(Ω), for some p > p0. Then there exists an
Lp-viscosity solution u ∈ C(Ω) to (37).

Before detailing the proof of Theorem 4.1, we mention that further conditions
on the operators F1 and F2 allow us to obtain qualitative information on the
solution to (37) whose existence follows from the theorem. The first condition
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concerns the local proximity of the operators F1 and F2; we suppose there exist
constants K, τ > 0 such that

|F1(M)− F2(M)| ≤ K + τ ∥M∥ , (39)

for everyM ∈ S(d). Condition (39) unlocks a C1,α-estimate for the Lp-viscosity
solution in Theorem 4.1.

The second condition we impose on Fi yields the existence of Lp-strong solu-
tions to (37). This is a convexity-type of assumption and reads as follows. Sup-
pose there exists L, σ > 0, and a convex (λ,Λ)-elliptic operator F : S(d) → R
such that

|Fi(M)− F (M)| ≤ L+ σ ∥M∥ , (40)
for every M ∈ S(d).

Theorem 4.2 (Existence of C1,α-regular solutions). Let Ω ⊂ Rd be a bounded
domain satisfying a uniform exterior cone condition. Let Fi : S(d) → R be
(λ,Λ)-elliptic operators, for i ∈ {1, 2}, and some fixed constants 0 < λ ≤ Λ.
Suppose g ∈ C(∂Ω) and f ∈ Lp(Ω), for some p > p0. Suppose further that
(39) also holds and p > d; let α ∈ (0, 1) satisfy

α < α0 and α ≤ 1− d

p
,

where α0 ∈ (0, 1) corresponds to the C1,α0-regularity available for the solu-
tions to G = 0 for any (λ,Λ)-elliptic operator G. Then there exists β0 =
β0(d, p, λ,Λ, α) > 0 such that, if the parameter τ > 0 in (39) satisfies τ ≤ β0,
then u ∈ C1,α

loc (Ω) and, for every Ω′ ⋐ Ω, we have

∥u∥C1,α(Ω′) ≤ C
(
1 + |F1(0)|+ |F2(0)|+ ∥f∥Lp(Ω) + ∥g∥L∞(∂Ω)

)
,

where C = C(α, d, p, λ,Λ, K, τ, diam(Ω), dist(Ω′, ∂Ω)).

We notice Theorem 4.2 not only ensures the existence of an Lp-viscosity
solution to the free transmission problem but also provides a regularity estimate
for this object. Of course, this is not a regularity result in the sense it applies
only to the solution whose existence stems from the theorem.

If we require F1 and F2 to be close, in the sense of (39), but also to satisfy
a proximity regime with respect to a convex (λ,Λ)-operator F as in (40),
the conclusion of Theorem 4.2 improves substantially. In fact, instead of a
C1,α-regular Lp-viscosity solution, it is possible to establish the existence of a
solution in W 2,p(Ω). As a consequence, under (40), it is possible to establish
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the existence of Lp-strong solutions for the free transmission problem. This is
the content of the next theorem.

Theorem 4.3 (Existence of Lp-strong solutions). Let Ω ⊂ Rd be a bounded
domain satisfying a uniform exterior cone condition. Let Fi : S(d) → R be
(λ,Λ)-elliptic operators, for i ∈ {1, 2}, and some fixed constants 0 < λ ≤ Λ.
Suppose g ∈ C(∂Ω) and f ∈ Lp(Ω), for some p > p0. There exists β0 =
β0(d, p, λ,Λ, α) > 0 such that, if the parameter σ > 0 in (40) satisfies σ ≤ β0,
then (37) has an Lp-strong solution u ∈ W 2,p(Ω) ∩ C(Ω). In addition, for
every Ω′ ⋐ Ω,

∥u∥W 2,p(Ω′) ≤ C
(
1 + |F1(0)|+ |F2(0)|+ ∥f∥Lp(Ω) + ∥g∥L∞(∂Ω)

)
,

where C = C(α, d, p, λ,Λ, L, σ, diam(Ω), dist(Ω′, ∂Ω)).

The main difficulty in establishing the existence of viscosity solutions for
(37) stems from the dependence of the operator on the zeroth order term u. In
fact, the lack of properness rules out standard formulations of the comparison
principle. As a result, Perron’s method is no longer available.

However, a two-parameters regularization of the PDE in (37) turns the free
transmission problem into an equation holding in the entire domain Ω, with no
explicit dependence on the solution u. At this level, the comparison principle is
available, and one can prove the existence of global barriers. Perron’s method
yields the existence of viscosity solutions. Then one proceeds by applying a
fixed-point argument at the level of the functional parameter. Secondly, one
sends the remaining parameter to zero; stability of viscosity solutions recovers
a solution to (37) and the proof is complete.

In what follows, we introduce some of the ingredients in those arguments. The
main idea concerns the regularization of the equation in (37). Let v ∈ C(Ω)
agree with the Dirichlet data g on the boundary. Fix ε > 0, arbitrary. Define
a function gvε : Ω → R as

gvε(x) := max

(
min

(
v(x) + ε

2ε
, 1

)
, 0

)
in Ω,

with gvε ≡ 0 in Rd \Ω. Notice that gvε(x) = 1 in {v > ε}, whereas gvε(x) = 0 in
{v < −ε}. We consider the convolution of gvε with a standard mollifying kernel
ηε to obtain

hvε := gvε ∗ ηε.
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Once hvε is available, we introduce the auxiliary operator Gv
ε : Ω × S(d) → R

given by
Gv

ε(x,M) := hvε(x)F1(M) + (1− hvε(x))F2(M).

A straightforward computation implies three properties of the operator Gv
ε.

First, because F1 and F2 are (λ,Λ)-elliptic, we conclude Gv
ε is also a (λ,Λ)-

elliptic operator. One can also prove the existence of a constant Kv
ε > 0 such

that
|Gv

ε(x,M)−Gv
ε(y,M)| ≤ Kv

ε |x− y| (1 + ∥M∥) ,
for every x, y ∈ Ω and every M ∈ S(d). That is, we conclude that Gv

ε is
Lipschitz-continuous in the space-variable, locally uniformly in M .

A fundamental information on Gv
ε concerns its connection with the conditions

in (39) and (40). Indeed, the definition of Gv
ε preserves those conditions, up to

an adjustment in the constants. If (39) holds, we have

|Gv
ε(x,M)−Gv

ε(y,M)| ≤ 2 (K + τ ∥M∥) ,
for every x, y ∈ Ω and every M ∈ S(d). Also, if (40) is in force, we get

|Gv
ε(x,M)− F (M)| ≤ L+ σ ∥M∥ ,

for every x ∈ Ω and M ∈ S(d). For a proof of those properties, we refer the
reader to [64, Lemma 1].

Once Gv
ε is well defined, we consider the Dirichlet problem{

Gv
ε(x,D

2uvε) = f in Ω
uvε = g on ∂Ω.

(41)

In [64], the authors observe the comparison principle is available for the equa-
tion in (41). In addition, they establish the existence of global sub and su-
persolutions u and u and notice that such functions are independent of v and
ε > 0. Perron’s method then implies the existence of an Lp-viscosity solution
uvε to (41). Moreover, u ≤ uvε ≤ u.

At this point, one considers two objects. First, a subset B ⊂ C(Ω) defined
as

B :=
{
v ∈ C(Ω) | u ≤ v ≤ u

}
.

Then we introduce an operator T defined on B as follows: for v ∈ B, one solves
(41) to obtain the unique solution uvε. One sets Tv := uvε. These ingredients
satisfy certain properties. In fact, B is a close and convex subset of C(Ω).
Also, T maps B to itself and T (B) is a precompact set in C(Ω). Finally, one
notices that T : B → B is continuous.



TRANSMISSION PROBLEMS: REGULARITY THEORY, INTERFACES AND BEYOND 37

As a consequence, an application of the Schauder Fixed Point Theorem yields
the existence of an Lp-viscosity solution to{

Gu
ε(x,D

2uε) = f in Ω
uε = g on ∂Ω.

(42)

Finally, to prove the existence of an Lp-viscosity solution to (37), one takes
the limit ε → 0 and resorts to the stability of viscosity solutions. These steps
lead to the conclusion of Theorem 4.1. To establish Theorem 4.2 under (39),
one can argue through well-understood arguments, such as in [21, Theorem 8.3]
or [70, Theorem 2.1]. Concerning Theorem 4.3, one notices that (40) frames
the problem in the context of classical W 2,p-regularity theory for fully nonlinear
elliptic equations; see [21, Chapter 7].

Once we have discussed the existence of the solutions to (37), we proceed by
addressing their regularity estimates. This is the subject of the next section.

4.3. Regularity for fully nonlinear free transmission problems. Once
the existence of Lp-viscosity and Lp-strong solutions has been addressed in the
literature, the natural question concerns their regularity. This is the subject of
[63], whose general lines we discuss in what follows.

In that work, the authors examine Lp-strong solutions to (36) and establish
two classes of regularity estimates. Under a near-convexity condition as in (40),
they show that strong solutions as locally of class C1,Log−Lip. Furthermore,
under an additional (pointwise) condition on the density of the negative phase,
they prove that solutions satisfy a (pointwise) quadratic growth regime.

Once again, the main difficulty in the analysis of (36) is the discontinuity
of the operator with respect to the solution. Indeed, standard results such as
the Harnack inequality or the maximum principle are not available. To bypass
the lack of usual ideas and methods the argument in [63] relates (36) with
two viscosity inequalities, holding in the entire domain, for which the theory is
available.

In fact, let u ∈ W 2,d(Ω) be an Ld-strong solution to (36). Hence, it satisfies

min
{
F1(D

2u(x)), F2(D
2u(x))

}
≤ 1 a.e. in Ω

and

max
{
F1(D

2u(x)), F2(D
2u(x))

}
≥ −1 a.e. in Ω.
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One then explores the connection between Ld-strong and Ld-viscosity solu-
tions, as detailed in [22]. It follows from [22, Lemma 2.5] that u is an Ld-
viscosity solution to{

min
{
F1(D

2u), F2(D
2u)
}
≤ 1 in Ω

max
{
F1(D

2u), F2(D
2u)
}
≥ −1 in Ω.

(43)

We notice, however, the ingredients in (43) are continuous. Hence u is indeed a
C-viscosity solution to this pair of inequalities, and one immediately concludes
that u ∈ Cα

loc(Ω), with estimates. This fact yields compactness for any family
of solutions to (43). Also, the operators governing these inequalities are entitled
to stability results for viscosity solutions, in the spirit of [21, Proposition 4.11].

Theorem 4.4 (Local C1,Log-Lip-regularity). Let u ∈ W 2,d
loc (B1) be a strong solu-

tion to (36). Suppose F1 and F2 are convex, (λ,Λ)-elliptic operators. Suppose
further that (40) is in force. There exists 0 < β0 = β0(d, λ,Λ) ≪ 1 such that,
if σ ≤ β0, we have u ∈ C1,Log-Lip

loc (B1), and there exists C > 0 such that

sup
x∈Br(x0)

|u(x)− u(x0)−Du(x0) · (x− x0)| ≤ Cr2 ln
1

r
,

for every x0 ∈ Ω and r > 0 satisfying Br(x0) ⋐ Ω. In addition, C =
C(d, λ,Λ, ∥u∥L∞(Ω)).

The proof of Theorem 4.4 follows from approximation methods, along with
the ideas introduced in the work of Luis Caffarelli [20]; see also [19]. For a
detailed argument, we refer the reader to [63].

An interesting question concerning the solutions of (36) arises from Theorem
4.4. Indeed, one may enquire into the further conditions on the problem that
would switch the regularity regime from the borderline scenario C1,Log−Lip to
that of C1,1-regularity estimates.

A condition that allows us to improve the information in Theorem 4.4 regards
the density of the negative phase in a vicinity of a given point x0 ∈ Ω on the
free boundary. We proceed by introducing some ingredients.

The free boundary associated with (36) is the set

Γ(u) :=
(
∂Ω+(u) ∪ ∂Ω−(u)

)
∩ Ω.

A point x0 ∈ Γ(u) may fall within three distinct categories. First, it can be
a one-phase point, in the sense that it lies on the free boundary between the



TRANSMISSION PROBLEMS: REGULARITY THEORY, INTERFACES AND BEYOND 39

positive or the negative phase and the set {u = 0}. More rigorously, we say
that x0 ∈ Γ(u) is a one-phase point if

x0 ∈
(
∂Ω±(u) \ ∂Ω∓(u)

)
∩ Ω.

When examining a one-phase free boundary point, the regularity analysis amounts
to the study of an obstacle problem, which has been well-understood and doc-
umented; see, for instance, [51].

Another situation refers to points x0 ∈ Γ(u) sitting on a portion of the free
boundary separating the positive and the negative phases. These are called
two-phase points and satisfy

x0 ∈
(
∂Ω+(u) ∩ ∂Ω−(u)

)
∩ Ω.

The study of the regularity of the solutions or the free boundary properties
around two-phase points is completely open in the context of (36).

However, among such points, we highlight x∗ ∈ Γ(u) for which

|Br(x
∗) ∩ {u = 0}| > 0, (44)

for every 0 < r ≪ 1. A two-phase point satisfying (44) is called a branch
point for (36). We denote with ΓBR(u) ⊂ Γ(u) the set of branch points for the
solution u.

A further ingredient in the analysis of quadratic growth for the solutions to
(36) is the density of the negative phase. Given a point x0 ∈ Γ(u), we define
Vr(x0, u) as

Vr(x0, u) :=
Vol (Br(x0) ∩ Ω−(u))

rd
; (45)

the quantity Vr(x0, u) amounts to the density of the negative phase around a
free boundary point and plays a critical role in the regularity theory for the
solutions. Indeed, in [63] the authors suppose F1 and F2 to be convex (λ,Λ)-
elliptic operators, positively homogeneous of degree one. In addition, if there
exist a constant C0 > 0 and x0 ∈ Γ(u) such that

Vr(x0, u) ≤ C0,

they prove
sup

x∈Br(x0)

|u(x)| ≤ Cr2,

for every 0 < r ≪ 1, provided C0 can be taken arbitrarily small.
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Were the smallness condition available locally along Γ(u), the quadratic
growth would imply C1,1-regularity estimates for the solutions to (36). How-
ever, such a condition would imply the negative phase is empty in such a neigh-
bourhood, trivializing the problem. Instead of aiming at a local C1,1-regularity
result, the authors consider branch points x∗ ∈ ΓBR(u) and prove the following
theorem.

Theorem 4.5 (Quadratic growth at branch points). Let u ∈ W 2,d
loc (B1) be a

strong solution to (36). Suppose the operators F1 and F2 are convex, positively
homogeneous of degree one, and (λ,Λ)-elliptic. Let x∗ ∈ ΓBR(u) be such that
Vr(x0, u) ≤ C0. Then there exists 0 < C0 ≪ 1 such that, if C0 ≤ C0, one can
find a universal constant C > 0 for which

sup
x∈Br(x∗)

|u(x)| ≤ Cr2,

for every 0 < r ≪ 1.

We present the general lines of the proof of Theorem 4.5 in the sequel. It
relies on a dyadic analysis combined with the maximum principle and a scal-
ing argument. The latter uses the L∞-norms of u as a normalization factor,
introducing an additional dependence on this quantity into the estimates.

The strategy used in [63] is inspired by arguments first launched in [23] in
the analysis of a free boundary arising in the Pompeiu problem. In that paper,
the diffusion process is driven by the Laplace operator. The fully nonlinear
counterpart of [23] appeared in [52]. Here, the authors identify that convexity
and homogeneity of degree one are the precise conditions allowing to switch
from the linear to the nonlinear setting.

To detail the proof of Theorem 4.5, we start by defining a subset of the natural
numbers related to upper bounds for u in dyadic balls. Fix x∗ ∈ ΓBR(u) ∩ Ω.
The maximal subset of N whose elements j are such that

sup
x∈B2−j−1(x∗)

|u(x)| ≥ 1

16
sup

x∈B2−j (x∗)

|u(x)| (46)

is denoted with M(x∗, u).

Proposition 4.1. Let u ∈ W 2,d
loc (B1) be a strong solution to (36). Suppose

the operators F1 and F2 are convex, positively homogeneous of degree one, and
(λ,Λ)-elliptic. Let x∗ ∈ ΓBR(u) be such that

V2−j(x∗, u) < C0, (47)
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for every j ∈ M(x∗, u), where C0 ≤ C0. Then

sup
x∈B2−j (x∗)

|u(x)| ≤ 1

C0
2−2j, ∀j ∈ M(x∗, u).

For a proof of Proposition 4.1, we refer the reader to [63, Proposition 3].
Once the quadratic growth holds in the set M(x∗, u), one extends this fact to
the natural numbers N. This is the subject of the next proposition.

Proposition 4.2. Let u ∈ W 2,d
loc (B1) be a strong solution to (36). Suppose

the operators F1 and F2 are convex, positively homogeneous of degree one, and
(λ,Λ)-elliptic. Let x∗ ∈ ΓBR(u) be such that

V2−j(x∗, u) < C0, (48)

for every j ∈ M(x∗, u), where C0 ≤ C0. Then

sup
x∈B2−j (x∗)

|u(x)| ≤ 4

C0
2−2j, ∀j ∈ N.

For the detail in the proof of Proposition 4.2, we refer the reader to [63,
Proposition 4]. Finally, a discrete-to-continuous argument builds upon Propo-
sition 4.2 to complete the proof of Theorem 4.5.

Given 0 < r ≪ 1, let j ∈ N be such that 2−(j+1) ≤ r < 2−j. Hence,

sup
Br

|u(x)| ≤ sup
B2−j

|u(x)| ≤ C

[(
1

2

)j+1−1
]2

≤ Cr2,

and the proof is complete.
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