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Abstract: In his monograph [Classical and quantum orthogonal polynomials in
one variable, Cambridge University Press, 2005], Ismail conjectured that certain
structure relations involving the Askey-Wilson operator characterize proper subsets
of the set of all classical polynomials consisting in Askey-Wilson polynomials and
limiting cases of them. In this paper we give two characterization theorems for
semiclassical (and classical) polynomials in consonance with the pioneering works
by Maroni [Ann. Mat. Pura. Appl. (1987)] and Bonan, Lubinsky, and Nevai
[SIAM J. Math. Anal. 18 (1987)] for the standard derivative. As an application, we
present a sequence of semiclassical polynomials of class two that disproves Ismail’s
conjectures. Further results are presented for Hahn’s operator.
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1. Introduction
In the first line of his monumental work entitled “Une théorie algébrique

des polynômes orthogonaux. Applications aux polynômes orthogonaux semi-
classiques” (see [21]), Maroni referred to Shohat as “l’inventeur des polynômes
semi-classiques”, a term that was coined in 1984 by Hendriksen and van
Rossum during the Laguerre Symposium held at Bar-le-Duc, whose main
speaker was Dieudonné. However, it was at the hands of Maroni that semi-
classical polynomials have become such a highly developed topic, although,
as he himself points out, these sequences of orthogonal polynomials (OP)
have always been present in certain structure relations which are as old as
the history of orthogonality itself. Let us recall one of the best known prob-
lems in this regard. According to Al-Salam and Chihara (see [2, p. 69]),
Askey raised the question of characterizing OP, (Pn)n≥0, satisfying

ϕP ′
n =

N∑
j=−M

an,jPn+j (cn,j ∈ C; M,N ∈ N), (1)

ϕ being a polynomial which does not depend on n. In [2] it was proved that
the only OP that satisfy (1) forM = N = 1 are the old classical polynomials
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or D ≡ ′ classical polynomials, i.e., Jacobi, Bessel, Hermite, and Laguerre
polynomials. However, for arbitrary values of M and N , there are nonclas-
sical OP for which (1) holds. For instance, in 1984, Koornwinder considered
(see [16]) OP satisfying (1) whose orthogonality measure is a linear combi-
nation of the Jacobi measure and two mass points at −1 and 1. In 1985 (see
[20, Theorem 3.1] and [18, Theorem 3.1]), Maroni, in his prolegomena to the
study of semiclassical polynomials, answers Askey’s question by character-
izing semiclassial OP∗ (see also [19]). In the same year, Bonan, Lubinsky,
and Nevai solved the problem using analytic methods in the framework of
orthogonality in the positive definite sense (see [5, Theorem 1.1]). Although
much has been written about this, there are still outstanding problems that
remain open. For instance, we may rewrite Askey’s question by changing the
standard derivative by the Askey-Wilson operator. Recall that usually the
Askey-Wilson divided difference operator Dq : P → P is defined by

Dq f(x) =
f̆
(
q1/2eiθ

)
− f̆

(
q−1/2eiθ

)
ĕ
(
q1/2eiθ

)
− ĕ
(
q−1/2eiθ

) , (2)

where f̆(eiθ) = f(cos θ) for each polynomial f , e(x) = x, and θ is not neces-
sarily a real number (see [13, Section 12.1]). Here and subsequently, 0 < q < 1
is assumed fixed. (P denotes the vector space of all polynomials with complex
coefficients.) Taking eiθ = qs in (2), Dq reads

Dq f(x(s)) =
f(x(s+ 1/2))− f(x(s− 1/2))

x(s+ 1/2)− x(s− 1/2)
,

with x(s) = (qs+q−s)/2. What is expected by most of the people working on
the subject, in contradiction with the case of the standard derivative operator
D, is that the answer to this and other related questions be proper subsets of
all classical polynomials consisting in Askey-Wilson polynomials and limiting
cases of them. Recall that the Askey-Wilson polynomials (see [15, Section
14.1])

pn(x; a, b, c, d | q) =a−n (ab, ac, ad; q)n

× 4ϕ3

(
q−n, abcbdqn−1, aeiθ, ae−iθ

ab, ac, ad

∣∣∣∣ q, q) ,
∗According to Maroni (see [21, Definition 7.1]), the classical polynomials are semiclassical of class

0. However, subsequently, when we refer to semiclassical polynomials, we exclude the classical ones.
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where x = cos θ, are the q-analogues of the Wilson polynomials. ( If we take
a = q1/2α+1/4, b = q1/2α+3/4, c = −a, and d = −b, we get the continuous
q-Jacobi polynomials. If we take c = d = 0, we get the Al-Salam-Chihara
polynomials.) In this sense, there are in the literature two well-known con-
jectures posed by Ismail (see [13, Conjecture 24.7.8] and [13, Conjecture
24.7.9]).

Conjecture 1.1. Let (Pn)n≥0 be a sequence of orthogonal polynomials and
let ϕ be a polynomial which does not depend on n. If

ϕDq Pn =
1∑

j=−1

an,jPn+j (an,j ∈ C), (3)

then Pn is a multiple of the continuous q-Jacobi polynomials or Al-Salam-
Chihara polynomials, or special or limiting cases of them. The same conclu-
sion holds if

ϕDq Pn =
N∑

j=−M

an,jPn+j (an,j ∈ C; M,N ∈ N). (4)

Conjecture 1.2. Let (Pn)n≥0 be a sequence of orthogonal polynomials and
ϕ be a polynomial of degree at most 4. Then (Pn)n≥0 satisfies

ϕD2
qPn =

N∑
j=−M

an,jPn+j (an,j ∈ C; M,N ∈ N), (5)

if and only if Pn is a multiple of pn(x; a, b, c, d | q) for some for some param-
eters a, b, c, d.

In [1], Al-Salam proved Conjecture 1.1 for Q = 1 by characterizing the con-
tinuous q-Hermite polynomials (see [15, Section 14.26]). In [8], we prove that
the Al-Salam Chihara polynomials (see [15, Section 14.26]), with nonzero pa-
rameters a and b such that a/b = q±1/2, are the only OP satisfying (3) for
degQ = 1. We also prove that the Chebyschev polynomials of the first kind
and the continuous q-Jacobi polynomials (see [15, Section 14.10]) are the
only ones satisfying (3) for degQ = 2. Moreover, in [6, Proposition 2.1] we
prove that the continuous dual q-Hahn polynomials (see [15, Section 14.3]),
with parameters a = 1, b = −1, c = q1/4, and q replaced by q1/2, satisfy
(4) with M = 2 and N = 1, which disproves the second part of Conjec-
ture 1.1. On the other hand, Conjecture 1.2 is claimed to be solved in [14],
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but the authors only proved, partially, the case M = 2 and N = 2, and
so this question is still open in its full generality †. Recently we noted that
above conjectures are related with the theory of semiclassical polynomials.
In Section 3, we characterize semiclassical (and classical) polynomials from
the structure relation (4), in consonance with the works by Maroni [18] and
Bonan, Lubinsky, and Nevai [5] for the standard derivative, re-establishing
in this context the perfect “symmetry” between the standard derivative and
the Askey-Wilson operator. As an application of these results, in Section 4,
we present an example of semiclassical polynomial that disproves Conjecture
1.1. In Section 4 we also show that the OP that disproves Conjecture 1.1 also
disproves Conjecture 1.2. Finally, in Section 5, we explore our ideas when
instead of the Askey-Wilson operator we consider the Hahn operator, which
is related with the structure relation of another conjecture posed by Ismail
(see [13, Conjecture 24.7.7]), but first some preliminary definitions and basic
results are needed.

2. Preliminary results
Let P∗ be the set of all linear forms on P and let Pn be the subspace of

P of all polynomials with degree less than or equal to n. Set P−1 = {0}. A
free system in P is a sequence (Qn)n≥0 such that Qn ∈ Pn \ Pn−1 for each n.
A free system (Pn)n≥0 is called OP with respect to u ∈ P∗ if

⟨u, PnPm⟩ = hnδn,m (m = 0, 1, . . . ; hn ∈ C \ {0}),

⟨u, f⟩ being the action of u on f . u is called regular if there exists an OP
with respect to it. Recall that a (monic) OP, (Pn)n≥0, satisfies the following
recurrence relation:

xPn(x) = Pn+1(x) +BnPn(x) + CnPn−1(x) (Bn ∈ C, Cn+1 ∈ C \ {0}),
(6)

with initial conditions P−1 = 0 and P0 = 1. Hence it follows that

Bn =
⟨u, xP 2

n(x)⟩
⟨u, P 2

n(x)⟩
, Cn =

⟨u, P 2
n⟩

⟨u, P 2
n−1⟩

.

(Of course, there is no loss of generality in assuming C0 = 0.) Since the ele-
ments of P∗ are completely determined by its action on a system of generators

†It is worth pointing out that the main result of [14] is a particular case of a direct consequence
of Sonine-Hahn’s theorem for the Askey-Wilson operator (see remark after [7, Theorem 1.2]).
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of P , we say that u = v if and only if

un = ⟨u, xn⟩ = ⟨v, xn⟩

for all n ∈ N. In the set P∗, addition and multiplications by scalars can be
defined by

⟨u+ v, xn⟩ = ⟨u, xn⟩+ ⟨v, xn⟩ ,

⟨cu, xn⟩ = c ⟨u, xn⟩ (c ∈ C),

for all n ∈ N. P∗, endowed with these operations, is a vector space over P .
In P∗, the identity for the additivity is denoted by 0 and called the zero.
The zero is therefore defined by the relation ⟨0, xn⟩ = 0 for all n ∈ N. Note
that f u = g u = 0 (f, g ∈ P) if and only if u = 0. The left multiplication of
u by f ∈ P , denoted by fu : P → P , is the form defined by

⟨fu, xn⟩ = ⟨u, fxn⟩,

for all n ∈ N. The division of u by a polynomial, denoted by (x − c)−1u :
P → P , is the form defined by〈

(x− c)−1u, f
〉
=

〈
u,
f(x)− f(c)

x− c

〉
(c ∈ C; f ∈ P).

Define also δc : P → C by δcf(x) = f(c). We check at once that

(x− c)((x− c)−1u) = u, (x− c)−1((x− c)u) = u− u0 δc.

P may be endowed with an appropriate strict inductive limit topology
such that the algebraic and the topological dual spaces of P coincide (see
[24, Chapter 13]), that is,

P∗ = P ′. (7)

Given a free system (Qn)n≥0, the corresponding dual basis is a sequence of
linear forms an : P → C such that

⟨an, Qm⟩ = δn,m,

and so, for an OP (Pn)n≥0, an is explicitly given by

an =
Pn

⟨an, P 2
n⟩
u.
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In the sense of the weak dual topology, it would be easy to explicitly build
bases in dual space. Indeed,

u =
∞∑
j=0

⟨u, Qj⟩ aj (u ∈ P ′);

this will be essential in the sequel. For more details we refer the reader to
[21] (see also [10]).
The Askey-Wilson average operator Sq : P → P is defined by (see [13, p.

301])

Sqf(x(s)) =
f
(
x(s+ 1/2)

)
+ f
(
x(s− 1/2)

)
2

.

for every polynomial f . It is easy to see that Dq x
n = γnx

n−1+(lower degree
terms) and Sq xn = αnx

n+(lower degree terms) for all n ∈ N, where we have
set

αn =
qn/2 + q−n/2

2
, γn =

qn/2 − q−n/2

q1/2 − q−1/2
. (8)

Set γ−1 = −1 and α−1 = α. For every u ∈ P∗ and f ∈ P , Dq : P∗ → P∗ and
Sq : P∗ → P∗ are defined by transposition:

⟨Dqu, f⟩ = −⟨u,Dqf⟩, ⟨Squ, f⟩ = ⟨u,Sqf⟩.

The next definition extends the definition of classical linear forms given by
Geronimus [12] and Maroni (see [22, Proposition 2.1]).

Definition 2.1. [9, Definition 3.1] u ∈ P∗ is called Dq-classical if it is
regular and there exist ϕ ∈ P2 \ P−1 and ψ ∈ P1 \ P−1 such that

Dq(ϕu) = Sq(ψu). (9)

(We will call it simply classical when no confusion can arise.)

Observe that (9) condenses all the information of a sequence of classical
polynomials in the first three non-constant polynomials of said sequence. The
next theorem gives tractable necessary and sufficient conditions for the exis-
tence of solutions of (9), characterizing the linear form u and, in particular,
solving the question of the existence of classical OP.
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Theorem 2.1. [9, Theorem 4.1] Suppose that u ∈ P∗ satisfies (9) with
ϕ(x) = ax2 + bx + c and ψ(x) = dx + e. Then u is regular if and only
if

dn ̸= 0, ϕ[n]
(
− en
d2n

)
̸= 0,

for all n ∈ N, where dn = aγn+dαn, en = bγn+ eαn, αn and γn being defined
by (8), and

ϕ[n](x) =
(
d(α2 − 1)γ2n + aα2n

)(
x2 − 1/2

)
+
(
bαn + e(α2 − 1)γn

)
x+ c+ a/2.

OP with respect to (Dq-)classical linear forms are called (Dq-)classical poly-
nomials. Unlike when dealing with the standard derivative, in the case of
Definition 2.1 it is still an open problem to describe the solutions of (9) (see
[10, Theorem 3.2]).

Theorem 2.2. [13, Theorem 20.1.3] The equation

f(x)D2
q y + g(x)SqDq y + h(x) y = λn y (10)

has a polynomial solution Pn ∈ Pn \ Pn−1 if and only if Pn is a multiple of
pn(x; a, b, c, d | q) for some parameters a, b, c, d including limiting cases as one
or more of the parameters tends to ∞. In all these cases f , g, h, and λn
reduce to

f(x) = −q−1/2(2(1 + σ4)x
2 − (σ1 + σ3)x− 1 + σ2 − σ4),

g(x) =
2

1− q
(2(σ4 − 1)x+ σ1 − σ3), h(x) = 0,

λn =
4q(1− q−n)(1− σ4q

n−1)

(1− q)2
,

or a special or limiting case of it, σj being the jth elementary symmetric
function of the Askey-Wilson parameters.

Let us recall some useful operations.
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Lemma 2.1. [9, Lemma 2.1] Let f, g ∈ P and u ∈ P∗. Then the following
hold:

Dq

(
fg
)
=
(
Dqf

)(
Sqg
)
+
(
Sqf
)(
Dqg

)
, (11)

Sq(fg) = (Dqf)(Dqg)U2 + (Sqf
)(
Sqg), (12)

fDqg = Dq

(
(Sqf − α−1U1Dqf)g

)
− α−1Sq(gDqf), (13)

αDq(fu) = (αSqf − U1Dqf)Dqu+DqfSqu, (14)

αSq(fu) = (α2U2 − U21)Dqf Dqu+ (αSqf + U1Dqf)Squ, (15)

fDqu = Dq (Sqf u)− Sq (Dqf u) , (16)

fSqu = Sq (Sqf u)−Dq (U2Dqf u) , (17)

αDn
qSqu = αn+1SqD

n
qu+ γnU1D

n+1
q u (n ∈ N), (18)

where U1(x) = (α2 − 1)x and U2(x) = (α2 − 1)(x2 − 1).

The following result clarifies which are the Dq-classical polynomials.

Proposition 2.1. The Dq-classical sequences of orthogonal polynomials are
the sequences of Askey-Wilson polynomials (pn(x; a, b, c, d | q))∞n=0 for some
parameters a, b, c, d including limiting cases as one or more of the parameters
tends to ∞.

Proof : This follows from Theorem 2.2, after showing the equivalence between
(9) and (10) with h = 0 (see [11, Theorem 5]). (The interested reader can
also prove this easily following the proof of [22, Proposition 2.8].)

From Definition 2.1 we introduce Dq-semiclassical linear forms in a natural
way (see, for instance, [22, Section 3]).

Definition 2.2. We call a linear form, in P∗, Dq-semiclassical if it is reg-
ular, not Dq-classical, and there exist two polynomials ϕ and ψ with at least
one of them nonzero, such that (9) holds. (We will call it simply semiclassical
when no confusion can arise.)

Under the conditions of Definition 2.2, necessarily both ϕ and ψ are not
zero and degψ ≥ 1. The class of u is the positive integer

s = min
(ϕ,ψ)∈Pu

max{degϕ− 2, degψ − 1},
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where Pu is the set of all pairs (ϕ, ψ) of nonzero polynomials such that (9)
holds. (Note that when s = 0 we have the classical linear forms.) The
pair (ϕ, ψ) ∈ Pu where the class of u is attained is unique up to a constant
factor. OP with respect to a (Dq-)semiclassical form of class s are called a
(Dq-)semiclassical polynomials of class s.
We end this section with the following definition.

Definition 2.3. We call a pair of polynomials (ϕ, ψ), ϕ(x) = ap x
p + (lower

degree terms) and ψ(x) = bq x
q + (lower degree terms) (p ∈ N, q ∈ N \ {0}),

admissible if p− 1 ̸= q or ap γn + bq αn−1 ̸= 0 whenever p− 1 = q.

Remark 2.1. We emphasize that from the point of view of [9], in this paper
we are working with the particular lattice x(s) = (q−s+ qs)/2. If we consider
the lattice x(s) = c6, in the notation of [9], we have αn−1 = 1 and γn = n,
and so Definition 2.3 reduces the admissibility condition for the standard
derivative (see [21, p. 119] and [23, p. 46]).

3. Characterization theorems
The next theorem characterize Dq-classical and Dq-semiclassical polynomi-

als from the structure relation (4).

Theorem 3.1. Let u ∈ P ′ be regular and let (Pn)n≥0 denote the corresponding
sequence of orthogonal polynomials. The following conditions are equivalent:

i) There exist three nonzero polynomials, ϕ, ψ and ρ, (ψ, ρ) being an
admissible pair, such that

Dq(ϕu) = ψu, Sq(ϕu) = ρu.

ii) There exist s ∈ N, complex numbers (an,j)
n
j=0, and a polynomial ϕ

such that

ϕDqPn =

n+deg ϕ−1∑
j=n−s

an,jPj, (19)

with an,n−s ̸= 0 for all n ≥ s.

Proof : i) =⇒ ii): Write ρ(x) = ar x
r + (lower degree terms) and ψ(x) =

bs x
s + (lower degree terms) (r ∈ N \ {0}, p ∈ N). Set dn = arαn−1 + bsγn.
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Clearly,

ϕDqPn =

n+deg ϕ−1∑
j=0

an,jPj,

where

an,j =
⟨u, ϕPjDqPn⟩〈

u, P 2
j

〉 .

From (13) we get〈
u, P 2

j

〉
an,j = ⟨u, ϕPjDqPn⟩ = ⟨ϕu, PjDqPn⟩

=
〈
ϕu,Dq

((
SqPj − α−1U1DqPj

)
Pn
)
− α−1Sq(PnDqPj)

〉
= −

〈
Dq(ϕu),

(
SqPj − α−1U1DqPj

)
Pn
〉
− α−1 ⟨Sq(ϕu), PnDqPj⟩

= −
〈
u,
(
ψ
(
SqPj − α−1U1DqPj

)
+ α−1ρDqPj

)
Pn
〉
.

There is no loss of generality in assuming r − 1 ≤ s. For r − 1 < s, we have

−α
〈
u, P 2

j

〉
an,j =

{
arαn−s−1

〈
u, P 2

n

〉
, j = n− s,

0, j < n− s.

and for r − 1 = s, we get

−α
〈
u, P 2

j

〉
an,j =

{
dn−s

〈
u, P 2

n

〉
, j = n− s,

0, j < n− s.

Hence an,n−s ̸= 0, for n ≥ s and ii) follows.
ii) =⇒ i): Let (an)n≥0 be the dual basis associated to (Pn)n≥0. Note that

ii) yields

⟨Dq(ϕan), Pj⟩ = −⟨an, ϕDqPj⟩ = −
j+deg ϕ−1∑
l=j−s

aj,l ⟨an, Pl⟩

=

{
−aj,n, n− deg ϕ+ 1 ≤ j ≤ n+ s,

0, otherwise.
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Writing

Dq(ϕan) =
∞∑
j=0

⟨Dq(ϕan), Pj⟩ aj,

in the sense of the weak dual topology in P ′, and taking into account that〈
u, P 2

n

〉
an = Pnu, we get

Dq(ϕPnu) = Rn+su, Rn+s = −
〈
u, P 2

n

〉 n+s∑
j=n−deg ϕ+1

aj,n〈
u, P 2

j

〉Pj.
(Note that Rn+s is a polynomial of degree n + s.) Taking n = 0 and n = 1
in the above expression, we have

Dq(ϕu) = Rsu, (20)

Dq(ϕP1u) = Rs+1u. (21)

From (21), and using (14) and (20), we obtain

αRs+1u = αDq(ϕP1u) =
(
αSqP1 − U1DqP1

)
Dq(ϕu) +DqP1Sq(ϕu)

= (x− αB0)Rsu+ Sq(ϕu).

Hence

Sq(ϕu) =
(
αRs+1 − (x− αB0)Rs

)
u. (22)

Note that αRs+1 − (x − αB0)Rs ̸= 0. To obtain a contradiction, suppose
that the last assertion is false. Consequently, ϕu = 0 with ϕ ̸= 0 and u
regular, which is impossible. We claim that

(
Rs, αRs+1 − (x − αB0)Rs

)
is

an admissible pair. According to Definition 2.3, this is equivalent to showing
that dn = arαn−1 + bsγn ̸= 0, where

ar = −
〈
u, P 2

0

〉
⟨u, P 2

s ⟩
as,0, bs = −α

〈
u, P 2

1

〉〈
u, P 2

s+1

〉as+1,1 − ar.

For deg (αRs+1−(x−αB0)Rs) < s+1, we have bs = 0, and so dn = arαn−1 ̸=
0. Assume deg (αRs+1−(x−αB0)Rs) = s+1. (Note that in this case bs ̸= 0.)
We now claim

ϕSqPn =
n+deg ϕ∑
j=n−s−1

ãn,jPj, ãn,n−s−1 = −αan,n−sCn−s + an−1,n−s−1Cn, (23)
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where we have assumed that (Pn)n≥0 satisfies (6). Indeed, apply ϕDq to (6)
to obtain

ϕ(x)SqPn(x) = ϕ(x) (−αxDqPn(x) +DqPn+1(x)

+BnDqPn(x) + CnDqPn−1(x))

= −αx
n+deg ϕ−1∑
j=n−s

an,jPj(x) +

n+deg ϕ∑
j=n−s+1

an+1,jPj(x)

+Bn

n+deg ϕ−1∑
j=n−s

an,jPj(x) + Cn

n+deg ϕ−2∑
j=n−s−1

an−1,jPj(x),

and (23) follows by using (6). We also claim that

an,n−s =
(
k1q

n/2 + k2q
−n/2

) n∏
j=n−s+1

Cj, n ≥ s. (24)

2ãn,n−s−1 = −(q1/2 − q−1/2)
(
k1q

n/2 − k2q
−n/2

) n∏
j=n−s

Cj, n ≥ s+ 1,

(25)

where k1 and k2 are complex numbers. Indeed, apply ϕSq to (6) and use (12)
to obtain

U2(x)ϕ(x)DqPn(x) + αxϕ(x)SqPn(x)

= ϕ(x)SqPn+1(x) +Bnϕ(x)SqPn(x) + Cnϕ(x)SqPn−1(x).

Combining (19), (23) and (6), we obtain

n+deg ϕ+1∑
j=n−s−2

rn,jPj = 0.

Since (Pn)n≥0 is a free system, we have rn,j = 0 for all j. By identifying the
coefficient of Pn−s−2, we find

0 = rn,n−s−2 = (α2 − 1)an,n−sCn−sCn−s−1 + αãn,n−s−1Cn−s−1 − ãn−1,n−s−2Cn.
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Using the expression of ãn,n−s−1 given in (23), we get the following second
order linear homogeneous equation:

y(n)− 2αy(n− 1) + y(n− 2) = 0, (26)

where
y(n) =

an,n−s∏n
j=n−s+1Cj

, n ≥ s.

Note that q1/2 and q−1/2 are the solutions of the characteristic equation of
(26) and, therefore, we find

y(n) = k1q
n/2 + k2q

−n/2,

and (24) follows. Moreover, from the expression of ãn,n−s−1 given in (23),
(25) follows. Finally, using (24) and (25), we obtain

dn = −
〈
u, P 2

0

〉
⟨u, P 2

s ⟩
as,0αn−1 +

〈
u, P 2

0

〉〈
u, P 2

s+1

〉 ãs+1,0γn

=

〈
u, P 2

0

〉〈
u, P 2

s+1

〉 (−as,0Cs+1αn−1 + ãs+1,0γn)

= −1

2

(
2αn−1(k1q

s/2 + k2q
−s/2) + (qn/2 − q−n/2)(k1q

(s+1)/2 − k2q
−(s+1)/2)

)
= −α

(
k1q

(n+s)/2 + k2q
−(n+s)/2

)
= −α an+s,n

n+s∏
j=1

C−1
j ̸= 0,

and so (Rs, αRs+1−(x−αB0)Rs) is an admissible pair. Thus, i) follows from
(20) and (22), and the theorem is proved.

Remark 3.1. A regular linear form u satisfying Theorem 3.1 i) is classical
or semiclassical. Indeed, using (18) and (16) we get

Dq(ρu) = DqSq(ϕu) = (α− α−1)SqDq(ϕu) + α−1U1D
2
q(ϕu)

= (α− α−1)Sq(ψu) + α−1U1Dq(ψu)

= (α− α−1)Sq(ψu) + α−1(αDq(U1ψu)− (α2 − 1)Sq(ψu))

= αSq(ψu) +Dq(U1ψu).
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Thus Dq

(
(ρ − U1ψ)u

)
= αSq(ψu) as claimed. Theorem 3.1 is the analogue

of [18, Theorem 3.1] (see also [21]), from which a distributional version of [5,
Theorem 1.1] follows.

Although Theorem 3.1 could be very useful in many situations it is little
precise regarding the classical or semiclassical character of the linear form. In
the following theorem we will be more precise in this sense, but in counterpart
we lose the direct connection with the equation (9).

Theorem 3.2. Let u ∈ P ′ be regular and let (Pn)n≥0 denote the corresponding
sequence of orthogonal polynomials satisfying (6). Suppose that there exist a
nonnegative integer s, complex numbers (an,j)

n
j=0, and a polynomial ϕ such

that

ϕDqPn =

n+deg ϕ−1∑
j=n−s

an,jPj, (27)

with an.n−s ̸= 0 for all n ≥ s. Then there exist Φ ∈ Ps+1 \ P−1 and Ψ ∈
Ps \ P−1 such that

ΦDqu = ΨSqu, (28)

where Φ and Ψ never have more than s− 1 common zeros. If Φ and Ψ have
s−1 common zeros, then u is Dq-classical. Otherwise, u is Dq-semiclassical
of class s− 1− r, r being the number of common zeros of Φ and Ψ.

Proof : We can now proceed analogously to the proof of Theorem 3.1 to obtain

Dq(ϕPnu) = −Qn+su, Qn+s =
〈
u, P 2

n

〉 n+s∑
j=n−deg ϕ+1

aj,n〈
u, P 2

j

〉Pj.
(Note that Qn+s is a polynomial of degree n + s.) Taking n = 0 and n = 1,
in the above expression, we have

Dq(ϕu) = −Qsu, (29)

Dq(ϕP1u) = −Qs+1u. (30)

Using (29) and (14), we have

−αQs+1(x)u = αDq

(
P1(x)ϕu) = (x− αB0)Dq(ϕu) + Sq(ϕu)

= −(x− αB0)Qs(x)u+ Sq(ϕu),
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and so

((x− αB0)Qs(x)− αQs+1(x))u = Sq(ϕu).

Applying Dq to the above equation, and using (18), (29), and (16), we can
assert that

− αDq(((x− αB0)Qs(x)− αQs+1(x))u)

= −αDqSq
(
ϕu
)
= −(2α2 − 1)SqDq

(
ϕu
)
− U1D

2
q

(
ϕu
)

= (2α2 − 1)Sq
(
Qs(x)u

)
+ U1Dq

(
Qs(x)u

)
= α2Sq

(
Qs(x)u

)
+ αDq

(
U1Qs(x)u

)
.

Therefore,

Dq

(
(Qs+1(x)− (αx−B0)Qs(x))u

)
= Sq(Qs(x)u), (31)

and u is classical or semiclassical of class at most s− 1. Let us now rewrite
(31) in the form (28) to distinguish between cases. Using (14) and (15), (31)
becomes

(αSqRs+1 − U1DqRs+1 +
(
U21 − α2U2

)
DqQs)Dqu

=
(
U1DqQs + αSqQs −DqRs+1

)
Squ,

where Rs+1(x) = Qs+1(x)− (αx−B0)Qs(x). Consequently, (28) follows with

Φ = αSqRs+1 − U1DqRs+1 + (U21 − α2U2)DqQs, (32)

Ψ = U1DqQs + αSqQs −DqRs+1. (33)

Of course, Φ(x) ̸= 0 and Ψ(x) ̸= 0, otherwise u = 0, which contradicts
the regularity of u. Without restriction of generality, let us assume Φ(x) =
(x− 1)Ψ(x). From (28), and using (16) and (17), we get

Dq

(
1/2(αx− 1)u

)
= Squ.

By Theorem 2.1, this leads to a contradiction with the regularity of u —
a = d = 0 in the notation of Theorem 2.1 and so dn = 0 therein—, and the
first part of the theorem follows. Now suppose that Φ = ρrϕ and Ψ = ρrψ,
r < s where ρr ∈ Pr, ϕ ∈ Ps−r+1 and ψ ∈ Ps−r. Hence (28) reduces to
ϕDqu = ψ Squ and, therefore, using (16) and (17), we have

Dq ((Sqϕ+ U2Dqψ)u) = Sq ((Sqψ +Dqϕ)u) .
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Since Sqϕ has degree at most s − r + 1, and Sqψ and Dqϕ have degree at
most s − r, u is classical whenever r = s − 1 or semiclassical of class at
most s − r − 1 whenever r < s − 1. Assume that (28) holds with Φ and
Ψ being coprime, i.e., r = 0. To obtain a contradiction, suppose that u is
semiclassical of class at most s − 2: there exists ϕ ∈ Ps and ψ ∈ Ps−1 such
that (9) holds. Taking into account (14) and (15), (9) holds if and only if

Φ̃Dqu = Ψ̃Squ, (34)

where Φ̃ = αSqϕ− U1Dqϕ+ (U21 − α2U2)Dqψ and Ψ̃ = αSqψ + U1Dqψ −Dqϕ.
Combining (28) with (34) yields

(Ψ̃ Φ− Φ̃Ψ)Dqu = 0.

By the regularity of u, and the fact that Φ and Ψ are coprime, Φ = aΦ̃ and
Ψ = aΨ̃ (a ∈ C \ {0}), and so

Qs = aψ,

which is impossible. Thus u is semiclassical of class s− 1. The same conclu-
sion can be drawn for r ̸= 0 and the theorem is proved.

4. Counterexamples
As an application of a particular case of Theorem 3.2, we disprove Conjec-

ture 1.1 and Conjecture 1.2.

Proposition 4.1. Let (Pn)n≥0 be a sequence of orthogonal polynomials sat-
isfying (6) with

Bn = 0, Cn =
1

4

(
1− (−1)nqn/2

)(
1− (−1)nq(n−1)/2

)
.

Then (Pn)n≥0 is Dq-semiclassical of class two and the corresponding linear
form satisfies (9) with

ϕ(x) = −1

8
(1− q−1)2

(
4x4 − (q + 5)x2 + q + 1),

ψ(x) =
1

4
(q − 1)q−3/2x(4x2 − 3− q).
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Proof : We claim that (Pn)n≥0 satisfies

SqPn = αnPn + bnCn−1Pn−2, (35)

U2DqPn = anPn+1 + cnPn−1 + dnPn−3, (36)

with

an = (α2 − 1)γn,

bn = −1

2

(
1− (−1)nqn/2

)(
(−1)n − q−(n−1)/2

)
,

cn = bn+1Cn − αbnCn−1 − (α2 − 1)γnCn, dn = (bn−1Cn − αbnCn−1)Cn−2.

Indeed, we prove this by induction on n. For n = 1, RHS of (35) gives
α1P1(x)+b1C0P−1(x) = αx, while LHS gives SqP1(x) = Sqx = αx. Similarly,
for n = 1, LHS of (36) gives U2DqP1 = U2, while RHS gives

a1P2(x) + c1P0(x) + d1P−1(x) = a1P2(x) + c1

= (α2 − 1)(x2 − C1) + b2C1

− αb1C0 − (α2 − 1)C1

= (α2 − 1)(x2 − 1).

Assuming (35) and (36) hold, with k instead of n, for k = 1, 2, . . . , n, we will
prove it for k = n+ 1. Apply Sq to (6), and use (12), to obtain

Sq(Pn+1(x) + CnPn−1(x)) = Sq(xPn(x)) = U2(x)DqPn(x) + αxSqPn(x).
From (36) for n and (35) for n− 1 and n, we get

SqPn+1(x) = anPn+1(x) + cnPn−1(x) + dnPn−3(x) (37)

+ αx(αnPn(x) + bnCn−1Pn−2(x))

− Cn(αn−1Pn−1(x) + bn−1Cn−2Pn−3(x)).

Now using (6), (37) becomes

SqPn+1 = (an + ααn)Pn+1

+ (cn + ααnCn + αbnCn−1 − αn−1Cn)Pn−1

+ (dn + αbnCn−1Cn−2 − bn−1CnCn−2)Pn−3.
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The reader should convince himself that the following relations hold:

αn+1 = an + ααn,

bn+1Cn+1 = cn + ααnCn + αbnCn−1 − αn−1Cn,

0 = dn + αbnCn−1Cn−2 − bn−1CnCn−2.

This gives SqPn+1 = αn+1Pn+1 + bn+1CnPn−1, and (35) holds for n+ 1. Simi-
larly, apply U2Dq to (6), and use (11), to obtain

U2(x)Dq(Pn+1(x) + CnPn−1(x)) = U2(x)Dq(xPn(x))

= U2(x)(SqPn(x) + αxDqPn(x))

or, using (35) for n,

U2(x)DqPn+1(x) = U2(x)SqPn(x) + αxU2(x)DqPn(x)− CnU2(x)DqPn−1(x)
(38)

= U2(x)
(
αnPn(x) + bnCn−1Pn−2(x)

)
+ αxU2(x)DqPn(x)

− CnU2(x)DqPn−1(x).

From (6) it follows that

U2Pn = (α2 − 1)(Pn+2 + (Cn+1 + Cn − 1)Pn + CnCn−1Pn−2).

Combining the above equation with (36) for n− 1 and n, (38) becomes

U2DqPn+1 =
(
(α2 − 1)αn + αan

)
Pn+2

+
(
(α2 − 1)αn(Cn + Cn+1 − 1) + (α2 − 1)bnCn−1 + αanCn+1

+ αcn − an−1Cn
)
Pn

+
(
(α2 − 1)αnCnCn−1 + (α2 − 1)bnCn−1(Cn−1 + Cn−2 − 1)

+ αcnCn−1 + αdn − cn−1Cn
)
Pn−2

+
(
αdnCn−3 − dn−1Cn + (α2 − 1)bnCn−1Cn−2Cn−3

)
Pn−4.
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The reader again should convince himself that the following relations hold:

an+1 = (α2 − 1)αn + αan,

cn+1 = (α2 − 1)αn(Cn + Cn+1 − 1) + (α2 − 1)bnCn−1 + αanCn+1

+ αcn − an−1Cn,

dn+1 = (α2 − 1)αnCnCn−1 + (α2 − 1)bnCn−1(Cn−1 + Cn−2 − 1)

+ αcnCn−1 + αdn − cn−1Cn,

0 = αdnCn−3 − dn−1Cn + (α2 − 1)bnCn−1Cn−2Cn−3.

We thus get

U2DqPn+1 = an+1Pn+2 + cn+1Pn + dn+1Pn−2,

as claimed. Observe from (36) that (Pn)n≥0 satisfies the hypotheses of The-
orem 3.2 with Bn = 0 and ϕ = U2. Note also that

C1 =
1

2
(1 + q1/2), C2 =

1

4
(1− q)(1− q1/2),

C3 =
1

4
(1 + q)(1 + q3/2), C4 =

1

4
(1− q2)(1− q3/2).

Under the notation of Theorem 3.2 and its proof, we get

Q3(x) =
c1
C1
P1(x) +

d3
C3C2C1

P3(x) =
1

4
(q − 1)q−3/2x(4x2 − 3− q), (39)

Q4(x) =
c2
C2
P2(x) +

d4
C4C3C2

P4(x) =
1

8
(q − 1)q−2(8x4 − 8x2 + 1− q2),

R4(x) = Q4(x)− αxQ3(x) = −1

8
(1− q−1)2(4x4 − (q + 5)x2 + q + 1). (40)

Taking into account that Sqx = αx, Dqx
2 = 2αx,

Sqx2 = (2α2 − 1)x2 + 1− α2,

Dqx
3 = (4α2 − 1)x2 + 1− α2, Sqx3 = α(4α2 − 3)x3 + 3α(1− α2)x,

Dqx
4 = 4α(2α2 − 1)x3 + 4α(1− α2)x,

Sqx4 = (8α4 − 8α2 + 1)x4 + 2(1− α2)(4α2 − 1)x2 + (1− α2)2,
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from (32) and (33), we have

Φ(x) = − 1

16
(q − 1)2q−3/2(8qx4 − 2(q2 + 4q + 1)x2 + (q + 1)2),

Ψ(x) =
1

4
(q1/2 − q−1/2)(4qx2 − 3q − 1)x.

Finally, since Φ and Ψ are coprime, by Theorem 3.2, (31), (39) and (40), the
result follows.

Remark 4.1. The structure relation (36) is of type (4) with ϕ = U2, M = 3,
and N = 1. Consequently, the semiclassical polynomials given in Proposition
4.1 disprove Conjecture 1.1.

Corollary 4.1. Assume the hypotheses and notation of Proposition 4.1.
Then (Pn)n≥0 satisfies

(α2 − 1)2(x2 − α2)(1− x2)D2
qPn(x) =− (α2 − 1)2γnγn−1Pn+2(x) + dn,1Pn(x)

(41)

+ dn,2Pn−2(x) + dn,3Pn−4(x)

+ dn,4Pn−6(x),

with

dn,1 = ancn+1 + an−1cn − 2α(α2 − 1)(α2
n − 1)(Cn+1 + Cn − 1)

− 4α2(α2 − 1)αn−1bnCn−1,

dn,2 = andn+1 + cncn−1 + an−3dn − 2α(α2 − 1)(α2
n − 1)CnCn−1

− 4α2(α2 − 1)αn−1bnCn−1(Cn−1 + Cn−2 − 1)

− 2α(α2 − 1)bnbn−2Cn−1Cn−3,

dn,3 = cndn−1 + cn−3dn − 4α2(α2 − 1)αn−1bnCn−1Cn−2Cn−3

− 2α(α2 − 1)bnbn−2Cn−1Cn−3(Cn−3 + Cn−4 − 1),

dn,4 = −4α2q−(n−3)/2CnCn−1Cn−2Cn−3Cn−4Cn−5.
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Proof : From the previous result, we apply U2Dq to (36), and use (11), to get

U2SqU2D2
qPn + U2DqU2SqDqPn = U2Dq(anPn+1 + cnPn−1 + dnPn−3),

and since SqU2 = α2U2 + U21 and DqU2 = 2αU1, we use again (36) to obtain

(α2U2 + U21)U2D2
qPn + 2αU1U2SqDqPn = anan+1Pn+2 (42)

+ (ancn+1 + an−1cn)Pn + (andn+1 + cncn−1 + an−3dn)Pn−2

+ (cndn−1 + dncn−3)Pn−4 + dndn−3Pn−6.

On the other hand, it is known from [9, Lemma 2.1] that

αS2
qPn = Sq(U1DqPn) + U2D2

qPn + αPn = α2U2D2
qPn + αU1SqDqPn + αPn,

where the second equality holds thanks to (12). Now we apply Sq to (35)
using again the same equation and the above equation in order to obtain

αU2(x)D2
qPn(x) + U1(x)SqDqPn(x) = (α2

n − 1)Pn(x) + 2ααn−1bnCn−1Pn−2(x)
(43)

+ bnbn−2Cn−1Cn−3Pn−4(x).

Therefore, (41) holds by combining (42) with (43) in order to eliminate
SqDqPn and by using (6), with

dn,4 = dndn−3 − 2α(α2 − 1)bnbn−2Cn−1Cn−3Cn−4Cn−5.

In addition, bn = 2Cnq
−(n−1)/2 and dn = (q − 1)q−n/2CnCn−1Cn−2. Therefore

we obtain

dn,4 = −4α2q−(n−3)/2
5∏
j=0

Cn−j ̸= 0.

The result is then proved.

Remark 4.2. The structure relation (41) is of type (4) with ϕ(x) = (α2 −
1)2(x2 − α2)(1 − x2), M = 6, and N = 2. Consequently, the semiclassical
polynomials given in Proposition 4.1 disprove Conjecture 1.2.
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5. Further results: Dq,ω-semiclassical polynomials
Although this paper was originally intended to deal with the Askey-Wilson

operator, the ideas developed above allow working with other operators. The
results of this section are related to the structure relation that appears in
[13, Conjecture 24.7.7], and warn the reader of the existence of semiclassical
OP in such a problem. Recall that given complex numbers q and ω, Hahn’s
operator Dq,ω : P → P is defined by

Dq,ωf(x) :=
f(qx+ ω)− f(x)

(q − 1)x+ ω
,

where we have fixed q and ω such that

|1− q|+ |ω| ≠ 0, q ̸∈ {0} ∪
{
e2ijπ/n | 1 ≤ j ≤ n− 1, n ∈ N \ {0, 1}

}
.

(44)

For every u ∈ P∗ and f ∈ P , Dq,ω induces Dq,ω : P∗ → P∗ defined by

⟨Dq,ωu, f⟩ = −q−1⟨u, D∗
q,ωf⟩,

where D∗
q,ω = D1/q,−ω/q.

Definition 5.1. [4, p. 487] u ∈ P∗ is called Dq,ω-classical if it is regular
and there exist ϕ ∈ P2 \ P−1 and ψ ∈ P1 \ P−1 such that

Dq,ω (ϕu) = ψ u. (45)

(We will call it simply classical when no confusion can arise.)

Definition 5.2. [4, p. 855] We call a linear form, in P∗, Dq,ω-semiclassical
if it is regular, not Dq,ω-classical, and there exist two polynomials ϕ and ψ
with at least one of them nonzero, such that (45) holds. (We will call it
simply semiclassical when no confusion can arise.)

OP with respect to a (Dq,ω-)semiclassical form of class s is called (Dq,ω-)
semiclassical of class s. Under the conditions of Definition 5.2, we define the
class of u as in Section 2. The next theorem is the analogue of Theorem 2.1.
Here we use the standard notation

[n]q =
qn − 1

q − 1
.
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Theorem 5.1. [3, Theorem 1.2] Suppose that u ∈ P∗ satisfies (45) with
ϕ(x) = ax2 + bx+ c and ψ(x) = dx+ e. Then u is regular if and only if

dn ̸= 0, ϕ

(
− en
d2n

)
̸= 0,

for all n ∈ N, where dn = d qn+a[n]q and en = eqn+(ωdn+b)[n]q. Moreover,
(Pn)n≥0 satisfies (6) with

Bn = ω[n]q +
[n]qen−1

d2n−2
− [n+ 1]qen

d2n
,

Cn+1 = −q
n[n+ 1]qdn−1

d2n−1d2n+1
ϕ

(
− en
d2n

)
.

In this context we have also an analogue to Theorem 3.2 for semiclassical
polynomials of class one.

Theorem 5.2. Let u ∈ P ′ be regular and let (Pn)n≥0 denote the corresponding
sequence of orthogonal polynomials satisfying (6). Suppose that there exist
complex numbers c, (an)n≥0, (bn)n≥0 (bn ̸= 0), and (cn)n≥0 such that

(x− c)Dq,ωPn(x) = anPn(x) + (bnx+ cn)Pn−1(x). (46)

Then

D1/q,−ω/q
(
(x− c)u

)
= −qb2

C2
(x− λ+)(x− λ−)u,

where

λ± =
1

2
(B0 +B1) +

c−B0

2b2C1
C2 ±

1

2

(
(B0 −B1 −

c−B0

b2C1
C2)

2 + 4C1

)1/2

.

If q(ω+ qc−λ+)(ω+ qc−λ−) = −C2/b2, then u is D1/q,−ω/q-classical. More
precisely, (Pn)n≥0 are the Al-Salam-Carlitz polynomials. Otherwise, u is a
D1/q,−ω/q-semiclassical of class one. Moreover, if

b2C
2
1 = (B0 − c)(b2(B1 − c)C1 − (B0 − c)C2), (47)

then

u = (x− c)−1v + δc,

v being the linear form corresponding to the Al-Salam-Carlitz polynomials.
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Proof : As in the proof of Theorem 3.2, from (6) and (46) we get

D1/q,−ω/q
(
(x− c)an

)
=− q(an + bn)an

− q(cn+1 + bn+1Bn)an+1 − q bn+2Cn+1an+2,

in the sense of the weak dual topology in P ′, (an)n≥0 being the dual basis
associated to (Pn)n≥0. Taking n = 0 in the above expression we have

D1/q,−ω/q
(
(x− c)u

)
= φ(x)u, (48)

where φ is a polynomial of degree two given by

φ = − q

C1C2
((a0 + b0)C1C2 + (r1 + b1B0)C2P1 + b2C1P2).

Taking n = 0, n = 1, and n = 2 in (46) we get

a0 + b0 = 0, c1 + b1B0 = B0 − c,

b2 = q + 1 +
(B0 − c)(qB0 −B1 + ω)

C1
.

Hence C2φ(x) = −q b2(x − λ+)(x − λ−), and the first part of the theorem
follows. Assume that φ(ω + q c) = 1. Recall that (see [3, (2.10)])

D1/q,−ω/q(fu) = D1/q,−ω/qf u+ f ((x− ω)/q)D1/q,−ω/qu (f ∈ P).

Using this identity, (48) becomes

(x− qc− ω)D1/q,−ω/qu = q(φ(x)− 1)u.

Since φ(ω + qc) = 1, x − qc − ω and q(φ(x) − 1) have a common zero at
x = qc + ω, and therefore there exists a polynomial of degree one, Q1, such
that q(φ(x)− 1) = (x− qc− ω)Q1(x), which gives

(x− qc− ω)
(
(D1/q,−ω/qu)−Q1(x)u

)
= 0,

and so

D1/q,−ω/qu =
1

(q−1 − 1)rs
(x− r − s− ω/(1− q))u,

for some nonzero complex numbers r and s, i.e. Q1(x) = 1/((q−1−1)rs)(x−
r − s − ω/(1 − q)). This last equation is of type (45) with ϕ = 1 and
ψ(x) = 1/((q−1 − 1)rs)(x − r − s − ω/(1 − q)). We claim that u is regular.
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Indeed, by Theorem 5.1, c = 1, b = 0, a = 0, d = 1/((q−1 − 1)rs), and
e = −(r + s+ ω/(1− q))/((q−1 − 1)rs). Hence

dn = q−n/((q−1 − 1)rs) ̸= 0, ϕ = 1 ̸= 0.

Moreover, by Theorem 5.1, we get

Bn = −q−1ω[n]q−1 +
[n]q−1en−1

d2n−2
−

[n+ 1]q−1en
d2n

= ω/(1− q) + (r + s)qn,

Cn+1 = −
q−n[n+ 1]q−1dn−1

d2n−1d2n+1
= −rs(1− qn+1)qn,

and finally Pn(x) = snU
(r/s)
n ((x − ω/(1 − q))/s | q), where (U

(a)
n (· | q))n≥0 are

the Al-Salam-Carlitz polynomial (see [15, Section 14.24]). Assume now that
φ(ω + qc) ̸= 1. Hence x− ω − qc and φ(x)− 1 are coprime. Using the same
argumentum ad absurdum as in Theorem 3.2, we see that u is a D1/q,−ω/q-
semiclassical form of class one. Now, from (48), and using (47), we get

λ+ = c, λ− = c−

((
B0 −B1 −

c−B0

b2C1
C2

)2

+ 4C1

)1/2

.

Then (48) becomes

D1/q,−ω/q
(
(x− c)u

)
= −qb2

C2
(x− c)(x− c+∆1/2)u,

where ∆ =

(
B0 −B1 −

c−B0

b2C1
C2

)2

+ 4C1 or, equivalently,

D1/q,−ω/q((x− c)u) =
1

(q−1 − 1)rs
(x− c)(x− r − s− ω/(1− q))u,

where r and s are nonzero complex numbers such that (q−1)rs = C2/b2 and
r + s = c− ω/(1− q)−∆1/2. Define v = (x− c)u. Hence

D1/q,−ω/qv =
1

(q−1 − 1)rs
(x− r − s− ω/(1− q))v.

As above, by Theorem 5.1,

dn =
q−n

(q−1 − 1)rs
̸= 0, ϕ = 1 ̸= 0.
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Moreover, also by Theorem 5.1, v is the linear form corresponding to the
Al-Salam-Carlitz polynomials, and the theorem follows.

The next proposition gives an explicit example of semiclassical polynomials
of class one satisfying (46), which prevents the reader from making any con-
jectures related to classical polynomials when faced with a relation of type
(1) after changing the standard derivative by Hahn’s operator.

Proposition 5.1. Fix ω, q ∈ C such that (44) hold. Fix a, b ∈ C such that

−a ̸= b, b ̸= 0, a+ (−1)nb− (a+ b)qn ̸= 0,

for all n ∈ N. Let (Pn)n≥0 be a sequence of orthogonal polynomials satisfying
(6) with

Bn =
ω

1− q
, Cn = (a+ b)

(
a+ (−1)nb

a+ b
− qn

)
qn. (49)

Then (Pn)n≥0 is a D1/q,−ω/q-semiclassical of class one and its corresponding
linear form u ∈ P ′ satisfies

D1/q,−ω/q

((
x− ω

1− q

)
u

)

=
1

(a+ b)(q − 1)

(
1

q

(
x− ω

1− q

)2

+ b− a+ (a+ b)q

)
u.

Proof : We claim that (Pn)n≥0 satisfies (46) with

c =
ω

1− q
, an =

1 + (−1)n+1

(1− q)(a+ b)
b, bn = [n]q − an, cn = −cbn.

Indeed, the proof is by induction on n. For n = 1, LHS of (46) gives

(x− c)Dq,ωP1(x) = x− c,

while RHS gives

a1P1(x) + b1(x− c)P0(x) = (a1 + b1)(x− c) = x− c.

Assuming (46) to hold, with k instead of n, for k = 1, 2, . . . , n, we will prove
it for k = n+ 1. Apply (x− c)Dq,ω to (6) to obtain

(x− c)Dq,ω

(
(x− c)Pn(x)

)
= (x− c)Dq,ω

(
Pn+1(x) + CnPn−1(x)

)
.

Using the identity (see [3, (2.9)])

Dq,ω(fg) = g(qx+ ω)Dq,ωf + fDq,ωg (f, g ∈ P),
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we get

(x− c)Dq,ωPn+1(x) =q(x− c)2Dq,ωPn(x) + (x− c)Pn(x)

− (x− c)CnDq,ωPn−1(x).

Now using successively (46), with k instead of n, for k = n and k = n − 1
and (6) it follows that

(x− c)Dq,ωPn+1(x) = q(x− c)(anPn(x) + bn(x− c)Pn−1(x)) + (x− c)Pn(x)

− (an−1Pn−1(x) + bn−1(x− c)Pn−2(x))Cn

= qan(Pn+1(x) + CnPn−1(x))

+ qbn(x− c)(Pn(x) + Cn−1Pn−2(x)) + (x− c)Pn(x)

− (an−1Pn−1(x) + bn−1(x− c)Pn−2(x))Cn

= qanPn+1(x) + (qan − an−1)CnPn−1(x)

+ (1 + qbn)(x− c)Pn(x)

+ (qbnCn−1 − bn−1Cn)(x− c)Pn−2(x)

= an−1Pn+1(x) + (1− an−1 + q(an + bn))(x− c)Pn(x)

+ (qbnCn−1 − bn−1Cn)(x− c)Pn−2(x).

The reader should convince himself that the following relations hold: an−1 =
an+1, 1 − an−1 + q(an + bn) = bn+1, and qbnCn−1 − bn−1Cn = 0. Thus (46)
holds for n+ 1, and our claim follows. Note also that

b2 = q + 1, C1 = (a− b− (a+ b)q)q, C2 = (a+ b)(1− q2)q2.

Under the notation of Theorem 5.2, we get

λ± = c± (a− b− (a+ b)q)1/2q1/2,

and so

q(ω + qc− λ+)(ω + qc− λ−)

= (b− a+ (a+ b)q)q2 ̸= (−b− a+ (a+ b)q)q2 = −C2

b2
,

because ω + q c = c. Thus, from Theorem 5.2, the result follows.
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If we replace, in Theorem 3.1, the Askey-Wilson operator by the Hahn op-
erator, then Sq becomes the identity, as in the case of the standard derivative,
and Theorem 3.1 i) reduces toDq,ω(ρu) = ψu. In this context, an analogue of
Theorem 3.1 appears in Smaili’s PhD thesis under the supervision of Maroni
(see [17, Theorem 1.1]).
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[20] P. Maroni, Une caractérisation des polynômes orthogonaux semi-classiques, C.R. Acad. Sci.
Pads Sér. Math., 301 (1985) 269-272.
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