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Abstract: Simple closed formulas for endpoint geodesics on Graßmann manifolds
are presented. Besides realizing the shortest distance between two points, geodesics
are also essential tools to generate more sophisticated curves that solve higher order
interpolation problems on manifolds. This will be illustrated with the geometric de
Casteljau construction offering an excellent alternative to the variational approach
giving rise to Riemannian polynomials and splines.
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1. Introduction
The results in this paper were motivated by the difficulty in obtaining

explicit solutions of the Euler-Lagrange equations associated to certain vari-
ational problems on Riemannian manifolds. Geometric cubic polynomials
(also called Riemannian polynomials) appeared in this context as natural
generalizations of Euclidean cubic polynomials to the smooth manifold set-
ting. They are smooth curves required to minimize the intrinsic acceleration
among all curves on the manifold that join two given points with prescribed
velocities at those points. This problem, first formulated and studied in [19],
later caught a considerable amount of interest. Without being exhaustive,
we mention [8], [6], [24], and references therein. The Euler-Lagrange equa-
tions for the variational problem that gives rise to those curves are highly
nonlinear and only in some trivial examples can be solved explicitly. In spite
of great efforts, mainly made by Noakes and collaborators, to overcome such
difficulties, they are still the main drawback of the variational approach.

The classical de Casteljau algorithm [9] is a geometric construction to pro-
duce cubic Euclidean polynomials and splines based on successive linear in-
terpolation. As an alternative way to the variational approach to obtain
splines on manifolds, that construction has been generalized to Riemannian
manifolds in a very natural manner, simply replacing straight line segments
in Euclidean space by their corresponding length-minimizing curve segments,
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namely segments of geodesics; we refer for instance to [22], [7], [29], and [28].
Whereas in the Euclidean case the curves generated by this approach co-
incide with those obtained by the variational approach, the same does not
happen for non-flat spaces. In the more recent work [28], however, the au-
thors were able to make some adjustments in the de Casteljau construction
to obtain curves closer to the Riemannian polynomials. The main relevance
of our alternative approach is that it generates curves that can be expressed
in closed form as long as one has available simple explicit formulas for the
geodesic that joins two given points.

In this paper, we concentrate on interpolation on Graßmann manifolds (or
Graßmannians). These manifolds model the space of subspaces of a fixed
dimension within a larger vector space, and for that reason can be used
to represent and analyze e.g. subspaces defined by certain image features
in image processing. More generally, Graßmannians find applications, for
instance, in computer vision tasks such as image and video analysis, object
recognition, and motion estimation. In medical imaging, Graßmannians are
used as well to capture and analyze deformations in anatomical structures.
See, for instance, [1] and [25] and references therein.

Our first objective is to find simple formulas for the geodesic in a Graßman-
nian that joins two given points. They will then be used to implement the de
Casteljau algorithm on these manifolds. An explicit formula that was derived
in [2] involves computing matrix exponentials and logarithms and is, for that
reason computationally expensive. Here we will present much simpler for-
mulas, where essentially only constant, linear and quadratic functions of the
given points are involved, together with some scalar trigonometric functions.

The organization of the paper is the following. After setting notations and
recalling the necessary background respectively in Sections 2 and 3, Section 4
starts with two different but diffeomorphic faithful matrix representations of
Graßmannians. It also includes results that are at least partially well-known,
however, a detailed description in text books is still missing. We therefore
present them for the reader’s convenience to make this paper sufficiently
self contained, and nevertheless refer to the unpublished lecture notes, [10]
and [30]. In Section 5 simple closed formulas for endpoint geodesics in the
Graßmannian Grn,k are derived, first using rotations and then via reflections.
The formulas for projective space RPn−1 ∼= Grn,1 can be more easily obtained
from endpoint geodesic formulas for the unit sphere. So, such formulas are
derived first for the sphere in Section 6 and then applied to projective space
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in Section 7. Nevertheless, the presented formulas for Grn,k specialize to
those of projective spaces by just setting k = 1, as well. Finally, in Section
8 we recall the de Casteljau algorithm for geodesically complete manifolds,
and write explicit expressions for cubic polynomials in the orthogonal group
On and in the Graßmannian Grn,k in order to compare them. Our last result
gives evidence that the representation of Graßmannians by reflections is a
totally geodesic submanifold of the orthogonal group. In particular, this
means that the de Casteljau algorithm on On induces already the procedure
on Grn,k by restriction, if the input data was appropriately chosen.

2. Notations
Our notations are fairly standard. In this paper, Lie groups are denoted by

capital letters, G,H,K, etc., and are assumed to be subgroups of the general
linear group of real (n× n)-matrices GLn, i.e. linear Lie groups, exclusively
identified here by their defining matrix representations. When referring to
particular cases, we use their classical notation, as in the following list:

GLn := {X ∈ Rn×n | detX 6= 0},
On := {X ∈ GLn | XX> = In, detX ∈ {±1}},

SOn := {X ∈ On | detX = 1},
S(Ok ×On−k) := {X ∈ (Ok ×On−k) ⊂ On | detX = 1} ⊂ SOn.

(1)

Real vector spaces are denoted by capital letters, e.g. V . If they are subspaces
of a given Lie algebra, say g, we also use fractured letters like p. A specific
subspace of Rn×n is in particular

Symn := {X ∈ Rn×n | X = X>}. (2)

Correspondingly, the Lie theoretic operators ad and Ad are defined as usual.
I.e., for any element X in the Lie algebra g, and any g in the linear Lie group
G having g as its Lie algebra,

adX : g→ g, Y 7→ adX(Y ) := [X, Y ] = XY − Y X,
Adg : g→ g, Y 7→ Adg(Y ) := gY g−1.

(3)

For convenience, we may interchangeably use two different notations, eA and
exp(A), for the matrix exponential of A ∈ g.

The Euclidean (Frobenius) inner product is denoted by 〈X, Y 〉 = tr(XY >),
for any X, Y ∈ gln

∼= Rn×n. Here tr denotes the matrix trace and (·)> denotes
the matrix transpose.
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3. Background and Settings
3.1. Lie groups, their actions, associated homogeneous spaces, natu-
rally reductive spaces. We review some important facts about Lie groups
and homogeneous manifolds, with particular emphasis on naturally reductive
spaces to guarantee the existence of geodesics that join two given points. We
refer to [20] and [12] for more details.

Let M be a smooth manifold on which a Lie group G acts transitively
through the (left) action φ : G×M →M . That is, if e denotes the identity
element in G, then

φ
(
g, φ(h,m)

)
= φ(gh,m), and φ(e,m) = m, (4)

for all g, h ∈ G, and all m ∈ M . With these properties, M becomes a
homogeneous space. We denote by φg the diffeomorphism m 7→ φg(m) :=
φ(g,m) on M . If m0 is a point in M , then Km0

:= {g ∈ G | φg(m0) = m0} is
a closed subgroup of G called the isotropy subgroup (or stabilizer) of m0, and
any two isotropy subgroups are conjugate. To simplify notations, if there is
no possibility of confusion, we denote an isotropy subgroup simply by K. M
can be regarded as the quotient G/K since the mapping gK 7→ m = φg(m0)
is a diffeomorphism of G/K onto M . The canonical projection ρ : G→ G/K
is given by g 7→ φg(m0).

We now specialize to some particular homogeneous spaces, starting with
the notion of reductive space.

Definition 1. M = G/K is said to be a reductive space if there exists an
AdK-invariant subspace p of the Lie algebra g of G that is complementary to
the Lie algebra k of K in g.

According to this definition, the following holds for a reductive space:

g = k⊕ p, [k, k] ⊂ k, [k, p] ⊂ p. (5)

Moreover, the canonical projection ρ of G on M and its differential at e ∈ G,
(dρ)e : TeG = g→ Tm0

M , have the following properties:

1. ρ : G → G/K = M is a submersion, such that (dρ)e|p : p → Tm0
M is

a linear isomorphism and (dρ)e(k) = {0} ⊂ Tm0
M ;

2. (dρ)e induces a one-to-one correspondence between AdK-invariant in-
ner products on p and G-invariant metrics on M .
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A reductive space is not necessary geodesically complete. In order to deal
with the endpoint geodesic problem we consider another subclass, namely,
the set of so called naturally reductive homogeneous space.

Definition 2. A naturally reductive homogeneous space is a reductive space
M = G/K such that, for all X, Y, Z ∈ p,〈

[X, Y ]p, Z
〉

=
〈
[Y, Z]p, X

〉
, (6)

where 〈 , 〉 is the inner product on p associated to the G-invariant metric on
M , and [ , ]p denotes the p-component of the Lie bracket [ , ] in g.

Definition 3. A smooth curve t 7→ g(t) on G is said to be horizontal if
g−1(t)ġ(t) ∈ p, where ġ(t) denotes the velocity vector and p is the vector
space in (5). A smooth curve t 7→ g(t) on G is called a horizontal lift of a
curve t 7→ m(t) in the naturally reductive homogeneous space M = G/K if
it is horizontal and projects onto m(t), i.e., ρ(g(t)) := φg(t)(m0) = m(t).

The following proposition gives an explicit formula for the geodesic in a nat-
urally reductive homogeneous space that starts at a point with a prescribed
velocity.

Proposition 1. Let M = G/K be a naturally reductive homogeneous space.
The geodesic γ : R→ M , starting at m = φ(g,m0) ∈ M with initial velocity
vm ∈ TmM , is defined for all t ∈ R by

γ(t) = φ
(
g exp(tX),m0

)
with X :=

(
dρ
)−1

e

(
dφg
)−1

m0
vm ∈ p. (7)

Proof : See for instance, [20], page 313, or [12], page 708.

Remark 1. For m0 the isotropy point, φ
(
g exp(tX),m0

)
= ρ

(
g exp(tX)

)
.

Thus the geodesic (7) is indeed the projection on M of the horizontal geodesic
γ in G defined by γ(t) = g exp(tX). As m = φ(g,m0) and φ is an action, γ,
given by (7), can be rewritten in terms of the initial point as

γ(t) = φ
(
g exp(tX)g−1,m

)
= φ

(
exp(tY ),m

)
, with Y = gXg−1. (8)

In the following two sections, in particular in subsection 5.2, we exploit
properties of an even more structured subclass of naturally reductive homo-
geneous spaces, namely so-called symmetric spaces. We refer to [18, 17] for
a thorough introduction. Those properties of symmetric spaces that we ac-
tually use will be explained in more detail below. Examples of symmetric
paces, and therefore of naturally reductive spaces as well, are, for instance,
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On, SOn, Graßmannians, projective spaces and spheres, the only cases that
will be considered in this paper.

4. Graßmannians
The On-based, or alternatively SOn-based, coset descriptions (group mod-

els) of the real Graßmannian Grn,k are well-known, cf. [21], to be

Grn,k ∼=On
On/(Ok ×On−k) ∼=SOn

SOn/S(Ok ×On−k). (9)

The smooth manifold Grn,k is defined as the set of all proper k-dimensional
subspaces of an n-dimensional Euclidean space, the latter as usual identified
with Rn. The orthogonal groups On and SOn act transitively on Grn,k. The
“denominators” Ok × On−k (or S(Ok × On−k)) then denote the stabilizer
subgroups, respectively, of an arbitrary k-dimensional subspace. To derive
simple formulas for endpoint geodesics in Grn,k, we aim to have an explicit
description of Grn,k in terms of matrices, preferably realized as elements of
an isometrically embedded submanifold of some Euclidean vector space or
even as an isometrically embedded submanifold of On. Eventually, the first
submanifold is the set of rank-k orthogonal projection operators, the second
is the set of matrices in On ∩ Symn with trace equal to n− 2k.

Ultimately, we end up with two isometric matrix models of the (abstract)
Graßmannian Grn,k. The first one we call projection model, the second one
we call reflection model, cf. [10].

4.1. Two faithful representations for the Graßmannian Grn,k. We
start with the projection model of the Graßmannian Grn,k, considered as
Riemannian submanifold

Grproj
n,k := {P ∈ Symn | P 2 = P, rankP = k} (10)

i.e., points on Grn,k are identified by rank-k orthogonal projection operators
and Symn is endowed with Euclidean inner product, namely the Frobenius
inner product. Standard results from differential geometry and Lie theory
ensure that Grproj

n,k and Grn,k are diffeomorphic. In particular, the “matrix

manifold” Grproj
n,k is a smooth and compact submanifold of Symn, being an

orbit of the orthogonal groups On and SOn, by a smooth group action, i.e.
conjugation. In this setting everything is formulated somehow in standard
matrix language.

We recall formulas for tangent and normal spaces and some of their geo-
metric interpretations, many of them well-known, sometimes scattered over
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the literature, but we refer to [13] and [2] and references therein for more
details.

TPGrproj
n,k = {S ∈ Symn | S ∈ [son, P ]} = {ad2

P (S) | S ∈ Symn}
= {S ∈ Symn | S = PS + SP}
= {adP (Ω) | Ω ∈ son, Ω = PΩ + ΩP},

(11)

NPGrproj
n,k = {S − ad2

P (S) | S ∈ Symn}. (12)

The content of the following lemma will be particularly useful in the last
section.

Lemma 1. If P ∈ Grproj
n,k and Ω ∈ gln satisfies ΩP + PΩ = Ω, then for all

j ∈ N,

Ω2j−1(In − 2P ) = −(In − 2P )Ω2j−1,

Ω2j(In − 2P ) = (In − 2P )Ω2j,
(13)

and, consequently,

e2Ω(In − 2P ) = eΩ(In − 2P )e−Ω. (14)

Proof : Expanding the series and comparing powers proves the result.

We also define the orthogonal projection of a symmetric matrix S ∈ Symn

into the tangent space of the Graßmannian at P by

πtan
P : Symn → TPGrproj

n,k ,

S 7→ ad2
P (S) = [P, [P, S]] = PS + SP − 2PSP.

(15)

In similar fashion, the normal space NPGrproj
n,k is defined by

πnor
P : Symn → NPGrproj

n,k ,

S 7→ (id−πtan
P )S = (id−ad2

P )S.
(16)

The reflection operator at the normal space we define as

RP : Symn → Symn,

S 7→
(

id−2πtan
P

)
S = S − 2ad2

P (S).
(17)
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Remark 2. Note that, since P ∈ Grproj
n,k ,

RP (S) = S − 2[P, [P, S]]

= S − 2(P 2S + SP 2 − 2PSP )

= (I − 2P )S(I − 2P ),

(18)

i.e.,
RP = AdI−2P . (19)

Also,
RP (Grproj

n,k ) = Grproj
n,k and RP (P ) = P, (20)

RP |TPGrproj
n,k

= − id,

RP |NPGrproj
n,k

= + id,
(21)

so, in particular, RP is a symmetry of Grproj
n,k .

The second model of Grn,k, the reflection model, now comes by identifying

uniquely a projection operator P ∈ Grproj
n,k with a (generalized) reflection

P ←→ I − 2P, (22)

i.e.,

Grrefl
n,k :=

{
R ∈ On | R = I − 2P, P ∈ Grproj

n,k

}
⊂ On ∩ Symn. (23)

The following properties are easily verified,

I − 2P ∈ Grrefl
n,k =⇒ (I − 2P )2 = I, (24)

in particular, I − 2P = (I − 2P )> = (I − 2P )−1 is an involution. It de-
pends only on k, i.e., on det(I − 2P ) = (−1)k, whether I − 2P lies in
the connected component of the identity, i.e., in the subgroup SOn or in-
stead in the second connected component On \ SOn. In this model, Grn,k
is considered as a Riemannian submanifold of one of the two components of
On ⊂ Rn×n, equipped with Killing form (i.e. scaled Frobenius inner product
as Riemannian metric). Now, by construction, the abstract Graßmannian
Grn,k (with n > 2, to ignore trivial cases), considered as the homogeneous
space On/(Ok ×On−k) ∼= SOn/S(Ok ×On−k) endowed with metric induced

by the scaled Killing form is isometric to both of our two models Grproj
n,k and

Grrefl
n,k. Formally, one might feel tempted to write

Grrefl
n,k = I − 2Grproj

n,k . (25)
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The formulas for tangent and normal spaces for Grrefl
n,k, as well as for projec-

tions and reflections, are then straightforward. For the sake of completeness,
we next list those formulas omitting a detailed derivation. Consider arbitrary
Z ∈ Grrefl

n,k.

TZGrrefl
n,k = {S ∈ Symn | ZS + SZ = 0}

=
{

1
4ad2

Z(S) | S ∈ Symn

}
= {adZ(Ω) | Ω ∈ son, ZΩ + ΩZ = 0},

(26)

NZGrrefl
n,k =

{
S − 1

4ad2
Z(S) | S ∈ Symn

}
, (27)

πtan
Z : Symn → TZGrrefl

n,k,

S 7→ 1
4ad2

Z(S) = 1
2(S − ZSZ),

(28)

πnor
Z : Symn → NZGrrefl

n,k,

S 7→ (id−πtan
Z )S = 1

2(S + ZSZ),
(29)

RZ : Symn → Symn,

S 7→
(

id−2πtan
Z

)
S = ZSZ.

(30)

Clearly, for Z = I − 2P one has RZ = RP , where RP was defined by (17).

Remark 3. In numerics, Grrefl
n,k could be preferable to Grproj

n,k , because the

embedding space is slightly smaller, as dim On =
(
n
2

)
<
(
n+1

2

)
= dim Symn,

but this fact we ignore.

Remark 4. Because Graßmannians are also symmetric spaces, according to
[17] there is a multiplication available.

For any P,Q ∈ Grproj
n,k the multiplication map for the reflection model is:

µGrrefl
n,k : Grrefl

n,k ×Grrefl
n,k → Grrefl

n,k,

(I − 2P, I − 2Q) 7→ µGrrefl
n,k(I − 2P, I − 2Q) = (I − 2P )(I − 2Q)(I − 2P )

=
(

id−1
2
ad2

I−2P

)
(I − 2Q).

(31)

The corresponding multiplication formula for Grproj
n,k in terms of the projec-

tions P,Q, is as

µGrproj
n,k : Grproj

n,k ×Grproj
n,k → Grproj

n,k ,

(P,Q) 7→ µGrproj
n,k (P,Q) = RP (Q) = Q− 2ad2

P (Q)

= Q− 2[P, [P,Q]]

= Q−2(PQ+QP−2PQP ).

(32)
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5. Endpoint geodesics for Graßmannians
We are interested in closed formulas specifying a minimal geodesic, that

connects an arbitrary point P ∈ Grn,k with another point Q ∈ Grn,k, given
purely in terms of these points. For this objective it is important to recall
the concept of cut locus [16]. In case of Grn,k the recent treatment [3] gives
a nice overview and also points to some incomplete results from the past, see
also the references therein. The cut locus of a given P ∈ Grn,k is easily seen
to be the subset CutP ⊂ Grn,k consisting exactly of those points Q ∈ Grn,k
which fulfill dist(P,Q) = π/2. A nice interpretation is in terms of the k
principal angles between the associated subspaces of P and Q.

Remark 5. From now on we will always assume k ≤ n − k. Such an as-
sumption does not cause any restriction, as it is well-known that Grn,k and
Grn,n−k are diffeomorphic, most easily seen by recognizing the one-to-one
correspondence between any k-dimensional subspace of Rn and its associated
(n− k)-dimensional complementary counterpart.

5.1. Closed formulas for endpoint geodesics in Graßmannians, via
rotations. Geodesics on Grproj

n,k starting at P with initial velocity V ∈
TPGrproj

n,k are of the form

γ(t) = etBP e−tB, with B = [V, P ]. (33)

We also know, from [2], that the geodesic satisfying γ(0) = P , γ(1) = Q is
given by

γ(t) = etBP e−tB, where e2B = (In − 2Q)(In − 2P ). (34)

The last formula was generalized in [26] for symmetric spaces and named
endpoint geodesic formula.

To find the geodesic that joins P with Q using the previous formula, re-
quires to compute the matrix logarithm to get B and the matrix exponential
to get γ(t). But these operations are computationally very expensive.

Our objective is to overcome the complexity of computing those matrix
functions. For that, we find simple closed formulas for B, V , eB, etB, and
finally for the corresponding geodesic that reaches a point Q at t = 1, where
only constant, linear and quadratic functions in the data points P and Q,
and scalar trigonometric functions are involved. But first we need some
preparation.



ENDPOINT GEODESICS ON GRASSMANNIANS AND INTERPOLATION PROBLEMS 11

Points in the Stiefel manifold,

Stn,k := {p ∈ Rn×k | p>p = Ik}, (35)

can be projected to Grproj
n,k , via p 7→ P = pp>, and this fact will be used here.

Consider P,Q ∈ Grproj
n,k , k ≤ n − k with Q = qq> and P = pp> with

appropriately chosen p, q ∈ Stn,k. We moreover assume that P /∈ CutQ. By
the transitive action of On on Grn,k there exists a θ ∈ On such that

P = θ
[
Ik 0
0 0

]
θ> = θ

[
Ik
0

]
[ Ik 0 ] θ>. (36)

Up to a basis change U ∈ Ok, a “Stiefel representative” p for the projection
P = pp> can be fixed by setting

p = θ
[
Ik
0

]
U = θ [ U 0

0 V ]
[
Ik
0

]
∈ Stn,k, V ∈ R(n−k)×(n−k) arbitrary. (37)

By the assumptions, there is a unique minimal geodesic

γ : R→ Grproj
n,k , t 7→ etBP e−tB, (38)

with γ(0) = P , γ(1) = eBP e−B = Q, and B ∈ son.
We will fix q as well by setting q = eBp, and compute

q = eBp = θθ>eBθ
[
Ik
0

]
U = θeθ

>Bθ
[
Ik
0

]
U. (39)

The orthogonal θ can be further specified by requiring

θ>Bθ =
[

0 Ψ
−Ψ> 0

]
=
[

0 UΣV >

−V Σ>U 0

]
= [ U 0

0 V ]
[

0 Σ
−Σ> 0

] [
U> 0
0 V >

]
.

(40)

Here we have restricted the above U, V from (37) by considering a singular
value decomposition of Rk×(n−k) 3 Ψ = UΣV >, with U ∈ Ok, V ∈ On−k. By
the assumption k ≤ n− k we have Σ = [ Φ 0 ] with Φ = diag(ϕ1, . . . , ϕk) � 0.
We now compute

eθ
>Bθ = [ U 0

0 V ]
[

cosΦ sinΦ 0
− sinΦ cosΦ 0

0 0 In−2k

] [
U> 0
0 V >

]
. (41)
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Inserting (41) into (39) gives

q = θ [ U 0
0 V ]

[
cosΦ sinΦ 0
− sinΦ cosΦ 0

0 0 In−2k

] [
Ik
0
0

]
= θ [ U 0

0 V ]
[

cosΦ
− sinΦ

0

]
= θ

[
Ik
0
0

]
U cosΦ− θ [ U 0

0 V ]
[

0
Ik
0

]
sinΦ

⇐⇒

θ [ U 0
0 V ]

[
0
Ik
0

]
sinΦ = p cosΦ− q.

(42)

From (42) we also see immediately that

p>q = q>p = cosΦ. (43)

Theorem 1. For the geodesic that joins P = pp> with Q = qq>, we have

eB = In − p Ik
Ik+p>q

p> − q Ik
Ik+p>q

q> + q Ik+2p>q
Ik+p>q

p> − p Ik
Ik+p>q

q>. (44)

Proof : This formula is a consequence of identities (41) and (42). Indeed,

eB = θ [ U 0
0 V ]

[
cosΦ sinΦ 0
− sinΦ cosΦ 0

0 0 In−2k

] [
U> 0
0 V >

]
θ>

= θ [ U 0
0 V ]

([
Ik
0
0

]
cosΦ [ Ik 0 0 ]−

[
0
Ik
0

]
sinΦ [ Ik 0 0 ] +

[
Ik
0
0

]
sinΦ [ 0 Ik 0 ]

+ In −
[
Ik
0
0

]
[ Ik 0 0 ]−

[
0
Ik
0

]
(Ik − cosΦ) [ 0 Ik 0 ]

) [
U> 0
0 V >

]
θ>

= θ [ U 0
0 V ]

([
Ik
0
0

]
cosΦ [ Ik 0 0 ]−

[
0
Ik
0

]
sinΦ [ Ik 0 0 ] +

[
Ik
0
0

]
sinΦ [ 0 Ik 0 ]

+ In −
[
Ik
0
0

]
[ Ik 0 0 ]−

[
0
Ik
0

]
sin2 Φ(Ik + cosΦ)−1 [ 0 Ik 0 ]

) [
U> 0
0 V >

]
θ>

= p cosΦp> − (p cosΦ− q)p> + p(cosΦp> − q>)

+ In − pp> − (p cosΦ− q)(Ik + cosΦ)−1(cosΦp> − q>)

= In − p(Ik + cosΦ)−1p> − q(Ik + cosΦ)−1q>

− p(Ik + cosΦ)−1q> + q(Ik + cosΦ)−1(Ik + 2 cosΦ)p>.

(45)

Exploiting (43) proves the statement.

Remark 6. Note that p>q = q>p � 0 by the assumption that all principal
angles ϕi, i = 1, . . . k lie in the half open intervall [0, π/2). The “formal”
matrix quotient of diagonal matrices

Ik
Ik+p>q

:= (Ik + cosΦ)−1 := diag
(

1
1+cosϕ1

, . . . , 1
1+cosϕk

)
(46)

is well defined and therefore makes sense.
Also note that in our context the diagonal (k×k)-matrix sinΦ might be not

invertible, as for its k diagonal entries, i.e. the sines of the principal angles,
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we have ϕi ∈ [0, π/2). However, the formal matrix quotient Φ
sinΦ still makes

sense as for x ∈ R one has lim
x→0

x
sinx = 1.

Corollary 1.
B = q Φ

sinΦp
> − p Φ

sinΦq
>. (47)

Proof : We compute, using the definitions of p and q, i.e. (37) and (42),

q Φ
sinΦ

p>− p Φ
sinΦ

q>=
(
θ
[
Ik
0
0

]
U cosΦ− θ [ U 0

0 V ]
[

0
Ik
0

]
sinΦ

)
Φ

sinΦ
[ 0 Ik 0 ]

[
U> 0
0 V >

]
θ>

−
((
θ
[
Ik
0
0

]
U cosΦ− θ [ U 0

0 V ]
[

0
Ik
0

]
sinΦ

)
Φ

sinΦ
[ 0 Ik 0 ]

[
U> 0
0 V >

]
θ>
)>

=θ [ U 0
0 V ]

[
0 Φ 0
−Φ 0 0
0 0 0

] [
U> 0
0 V >

]
θ>.

(48)

Note that the map (0, π/2) → S1 defined by ϕi 7→
[

cosϕi sinϕi

− sinϕi cosϕi

]
for all

principal angles ϕi is a diffeomorphism onto its image. This is correct for
all i = 1, . . . , k, being inferred from the assumption Q /∈ CutP . Now taking
the matrix exponential in (48) and comparing with the first equality in (45)
proves the statement.

Corollary 2.
V = p Φ

sinΦq
> + q Φ

sinΦp
> − p2Φ cosΦ

sinΦ p>. (49)

Proof : This follows immediately from V = [B,P ] inserting formula (47).

Corollary 3.

etB = In − p Ik−cos(tΦ)

sin2 Φ
p>− q Ik−cos(tΦ)

sin2 Φ
q>+ p

cosΦ−cos
(

(1−t)Φ
)

sin2 Φ
q>+ q

cosΦ−cos
(

(1+t)Φ
)

sin2 Φ
p>. (50)

Proof : We compute

etB = θ [ U 0
0 V ]

[
cos(tΦ) sin(tΦ) 0
− sin(tΦ) cos(tΦ) 0

0 0 In−k

] [
U> 0
0 V >

]
θ>

= θ [ U 0
0 V ]

( [
Ik
0
0

]
cos(tΦ) [ Ik 0 0 ]−

[
0
Ik
0

]
sin(tΦ) [ Ik 0 0 ] +

[
Ik
0
0

]
sin(tΦ) [ 0 Ik 0 ]

+ In −
[
Ik
0
0

]
[ Ik 0 0 ]−

[
0
Ik
0

] (
Ik − cos(tΦ)

)
[ 0 Ik 0 ]

) [
U> 0
0 V >

]
θ>

= p cos(tΦ)p> − (p cosΦ− q) sin(tΦ)
sinΦ

p> + p sin(tΦ)
sinΦ

(cosΦp> − q>)

+ In − pp> − (p cosΦ− q) sin2(tΦ)

(Ik+cos(tΦ)) sin2 Φ
(cosΦp> − q>)

= In + p
(

cos(tΦ)− Ik − cos2 Φ sin2(tΦ)

(Ik+cos(tΦ)) sin2 Φ

)
p> − q

(
sin2(tΦ)

(Ik+cos(tΦ)) sin2 Φ

)
q>

+ p
(
− sin(tΦ)

sinΦ
+ (Ik−cos(tΦ)) cosΦ

sin2 Φ

)
q> + q

(
sin(tΦ)
sinΦ

+ (Ik−cos(tΦ)) cosΦ

sin2 Φ

)
p>

= In− p Ik−cos(tΦ)

sin2 Φ
p>− q Ik−cos(tΦ)

sin2 Φ
q>+ p

cosΦ−cos
(

(1−t)Φ
)

sin2 Φ
q>+ q

cosΦ−cos
(

(1+t)Φ
)

sin2 Φ
p>,

(51)
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thus verifying the claim. Here we used at several instances trigonometric
identities (e.g. addition theorems) and the fact that for any real t we have the

scalar limit lim
ϕ→0

sin(tϕ)
sinϕ = t. The latter is important to notice, as the diagonal

matrix sinΦ is not necessarily invertible.

Corollary 4.

γ(t) = p
sin2
(

(1−t)Φ
)

sin2(Φ)
p>+ q sin2(tΦ)

sin2(Φ)
q> + p

sin
(

(1−t)Φ
)

sin(tΦ)

sin2 Φ
q>+ q

sin
(

(1−t)Φ
)

sin(tΦ)

sin2 Φ
p>. (52)

Proof : This is a straightforward but clumsy computation. First postmultiply
etB by P exploiting p>P = p>pp> = p> and q>P = cosΦp>, secondly,
postmultiply etBP with its own transpose, because γ(t) = etBP e−tB must
hold; the result will follow.

Remark 7. One possible strategy to get cosΦ out of P and Q is to compute
the nonzero singular values of (I − P )Q or (I − Q)P , as they are equal to
the sines of the nonzero principal angles between the subspaces associated to
P and Q, see e.g. Thm. 4.37 in [27].

Remark 8. Sometimes in applications Stiefel representatives p and q with
pp> = P and qq> = Q are already given. If this is not the case a pos-
sible strategy to compute p out of P ∈ Grproj

n,k by a finite number of steps

is as follows. Partition P =
[
A B>
B C

]
into appropriate subblocks, where ob-

viously A2 + B>B = A must hold. We look only to the case where A−1

exists. Consider the (unique) Cholesky decomposition A−1 = LL>. Then
p = [ AB ]L =

[
L−>
BL

]
does the job.

5.2. Closed formulas for endpoint geodesics in Graßmannians, via
reflections. We now sketch an alternative way to express geodesics on Graß-
mannians explicitly, and consequently also the corresponding eB. For that,
reflection operators, defined in (17) and (18), play an important role. We
already showed in Lemma 1 that these operators are reflections on Graßman-
nians, but they are at the same time even geodesic reflections, that is, if γ is
a geodesic in Grproj

n,k , starting at the point P = γ(0), then

RP

(
γ(t)

)
= γ(−t). (53)
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This is easily seen using the definition of a reflection, the explicit formula for
the geodesic, and identity (14). Indeed,

RP

(
γ(t)

)
= (I − 2P )etBP e−tB(I − 2P )

= e−tB (I − 2P )P (I − 2P )︸ ︷︷ ︸
P

etB

= γ(−t).

(54)

In a similar way, one checks that the geodesic γ, in Grproj
n,k , starting at the

point P , can be expressed in terms of reflections at the normal space at
γ(t/2). More precisely,

γ(t) = Rγ(t/2)(P ). (55)

The previous formula for Graßmannians is a particular case of a more general
result for symmetric spaces. Besides many further properties they enjoy
a more restrictive geodesic symmetry, as they are caracterized by having
geodesics which are induced by one-parameter subgroups of the group which
acts transitively, as stated in Proposition 1.

The general idea, that can be found in [14], Chapter XI, is the following.
If γ : R→M is a geodesic on a symmetric space M , starting at P ∈M , and
sP denotes the geodesic symmetry of M at P , then {(sγ(t/2) ◦ sγ(0)), t ∈ R} is
a one-parameter group of isometries of M whose orbit through P = γ(0) is
the geodesic γ itself. The group operations are

(sγ(t1) ◦ sP )� (sγ(t2) ◦ sP ) := (sγ(t1+t2) ◦ sP ), (56)

with identity element e := sP ◦ sP , and inverse (sγ(t) ◦ sP )−1 := (sγ(t) ◦ sP ).
Consequently, for the Graßmannian one has

γ(t) = Rγ(t/2)(P ) = (Rγ(t/2) ◦ RP )(P ). (57)

Geodesics in Grproj
n,k can now expressed explicitly in terms of reflections.

Corollary 5. The geodesic in Grproj
n,k , joining the point P (at t = 0) with the

point Q (at t = 1), is given by γ(t) = Rγ(t/2)(P ), with

Rγ(t/2) = AdIn−2γ(t/2), (58)
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where

In − 2γ(t/2) = In − 2
(
p

sin2
(

(1−t/2)Φ
)

sin2 Φ
p> + q sin2(tΦ/2)

sin2 Φ
q>

+ p
sin
(

(1−t/2)Φ
)

sin(tΦ/2)

sin2 Φ
q> + q

sin
(

(1−t/2)Φ
)

sin(tΦ/2)

sin2 Φ
p>
)
.

(59)

Proof : The last formula is obtained by setting t = 1/2 in (52), followed by
using simple trigonometric identities.

In (34) we have an implicit formula for the matrix B, which is e2B =
(In − 2Q)(In − 2P ). But we now also have a formula for taking the square
root of the previous, purely in terms of p and q.

Corollary 6. Consider the minimal geodesic γ(t) = etBP e−tB connecting
P = γ(0) with Q = γ(1) and define the midpoint Z := γ(1

2) = eB/2P e−B/2.

For e2B = (In − 2Q)(In − 2P ), we have

eB =
(

(In−2Q)(In−2P )
)1

2
= (In−2Z)(In−2P ) = (In−2Q)(In−2Z). (60)

Proof : We compute using p>q = q>p = cosΦ

(In−2Z)(In−2P )=
(
In−p Ik

Ik+cosΦ
p>−q Ik

Ik+cosΦ
q>−p Ik

Ik+cosΦ
q>−q Ik

Ik+cosΦ
p>
)
(In−2pp>)

= In + p
( −Ik
Ik+cosΦ

− 2Ik + 2Ik
Ik+cosΦ

+ 2 cosΦ
Ik+cosΦ

)
p>

−q Ik
Ik+cosΦ

q>− p Ik
Ik+cosΦ

q> + q−Ik+2 cosΦ+2Ik
Ik+cosΦ

p>

= In − p Ik
Ik+p>q

p> − q Ik
Ik+p>q

q> + q Ik+2p>q
Ik+p>q

p> − p Ik
Ik+p>q

q> = eB

as claimed, see (44). The last equality in (60) follows in an analogous way.

Remark 9. The results in this section can be applied to the particular situ-
ation when k = 1, in which case Grn,1 = RPn−1. However, they can be more
easily obtained from similar computations on the unit sphere. So, we derive
next closed formulas for the minimal geodesic connecting points in the sphere
Sn−1, from where corresponding formulas for the projective space will follow.

6. A faithful representation of the unit sphere Sn−1

Some fifty years ago in [15] an explicit construction for an isometric em-
bedding of the Graßmannian was presented, see, however, [26] for additional
details. If we would try to mimic this construction for the sphere Sn−1 ∼=
SOn/SOn−1

∼= On/On−1, we would run into trouble, simply because we
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would necessarily end up with projective space RPn−1 ∼= Grn,1 ∼= Sn−1/± In
rather than with a faithful representation of Sn−1. The reason is that the
corresponding quadratic map

On/On−1 → Symn, [Q] 7→ Q
[

1 0
0 0n−1

]
Q> (61)

is not injective, e.g. for any x ∈ Rn with x>x = ‖x‖2 = 1 we have xx> =
−x(−x>). There is, however, a neat way out by means of Clifford algebras,
the reader might consult Chapter I.6.6 in [4] for details.

We therefore proceed by considering Sn−1 ⊂ Rn as a Riemannian submani-
fold with induced Euclidean metric in the usual way. The following formulas
and definitions for tangent and normal subspaces, associated projection op-
erators, reflections at normal spaces, group action and multiplication map
are well-known.

TpS
n−1 = {A ∈ TpRn ∼= Rn | A>p = 0}, NpS

n−1 = span(p), (62)

πtan
p : Rn → TpS

n−1, x 7→ (I − pp>)x,

πnor
p : Rn → NpS

n−1, x 7→ pp>x,

Rp : Rn → Rn, x 7→ (id−2πtan
p )x = (−I + 2pp>)x,

(63)

φ : On × Rn → Rn, (θ, x) 7→ θx,

φθ : Rn → Rn, x 7→ φ(θ, x),
(64)

µ : Sn−1 × Sn−1 → Sn−1, (p, q) 7→ µ(p, q) := Rp(q) = (2pp> − I)q. (65)

6.1. Closed formula for endpoint geodesics in the unit sphere Sn−1,
via rotations. We are interested in closed formulas related to the unique
minimal geodesic on the sphere, that joins two non antipodal points, given
purely in terms of these points. The next theorem summarizes our results.

Theorem 2. Let p, q ∈ Sn−1 with p 6= ±q. Denote by γ(t) = etBp the unique
minimal geodesic with γ(0) = p, γ(1) = q and B ∈ son. The latter can
be made unique by using B = vp> − pv> with v ∈ TpSn−1 suitably chosen.
Closed formulas for unique B ∈ son, v = Bp, eB, etB and γ(t) = etBp, given
purely in terms of starting point p and endpoint q are as follows.

v = arccos(q>p)√
1−(q>p)2

πtan
p (q) = arccos(q>p)√

1−(q>p)2
(I − pp>)q,

with ‖v‖ = arccos(q>p) ⇔ cos ‖v‖ = q>p,
(66)
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B = arccos(q>p)√
1−(q>p)2

(qp> − pq>) = vp> − pv> = ‖v‖√
1−cos2 ‖v‖

(qp> − pq>), (67)

eB = I −
(
pp> + qq>

)
1

1+q>p
+ qp> 1+2q>p

1+q>p
− pq> 1

1+q>p

= I −
(
pp> + qq>

)
1

1+cos ‖v‖ + qp> 1+2 cos ‖v‖
1+cos ‖v‖ − pq

> 1
1+cos ‖v‖

(68)

etB = I + (pp> + qq>)cos(t‖v‖)−1

sin2 ‖v‖

+ pq>
cos ‖v‖−cos

(
(1−t)‖v‖

)
sin2 ‖v‖ + qp>

cos ‖v‖−cos
(

(1+t)‖v‖
)

sin2 ‖v‖ ,
(69)

γ(t) = etBp = p sin((1−t)‖v‖)
sin ‖v‖ + q sin(t‖v‖)

sin ‖v‖ . (70)

Proof : The idea is to bring p, q simultaneously to some suitable normal form.
By transitivity of the SOn-action on Sn−1 there exists a θ ∈ SOn and a
suitable angle 0 < ϕ < π such that

p = θe1,

q = θ(e1 cosϕ− e2 sinϕ) = p cosϕ− θe2 sinϕ.
(71)

In other words, the Sn−1-problem somehow reduces to an S1-problem, S1

considered as lying in the 2-plane spanned by p, q and the origin of the
embedding space Rn. Elementary geometry then tells us that

cosϕ = q>p =⇒ ϕ = arccos(q>p). (72)

Moreover, p 6= ±q by assumption, implying

−1 < cosϕ = q>p < 1 and 0 < sinϕ =
√

1− (q>p)2 < 1. (73)

We proceed by identifying the orthogonal eB from q = eBp. From (71) we
have

q = θ(e1 cosϕ− e2 sinϕ) = θ

[
cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 In−2

]
e1

= θ

[
cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 In−2

]
θ>θe1 = θ

[
cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 In−2

]
θ>p.

(74)

Consequently, using

p = θe1, θe2 = p cosϕ−q
sinϕ with ϕ = arccos(q>p), (75)
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we have

eB = θ

[
cosϕ sinϕ 0
− sinϕ cosϕ 0

0 0 In−2

]
θ>

= θ
(
(e1e

>
1 + e2e

>
2 ) cosϕ+ (e1e

>
2 − e2e

>
1 ) sinϕ+ In − e1e

>
1 − e2e

>
2

)
θ>

= In −
(
pp> + qq>

)
1

1+cosϕ
+ qp> 1+2 cosϕ

1+cosϕ
− pq> 1

1+cosϕ
,

(76)

showing (68). Furthermore, from the first equality in (76) we can identify
B ∈ son as well. Indeed,

B = θ
[ 0 ϕ 0
−ϕ 0 0
0 0 0n−2

]
θ> = ϕ θ(e1e

>
2 − e2e

>
1 )θ> = ϕ

(
pp
> cosϕ−q>

sinϕ
− p cosϕ−q

sinϕ
p>
)

= ϕ
sinϕ

(qp> − pq>) = arccos(q>p)√
1−(q>p)2

(qp> − pq>),
(77)

verifying (67). It remains to prove the formula for etB. We have the repre-
sentation

etB = In + sin(tϕ)
ϕ B + 1−cos(tϕ)

ϕ2 B2, (78)

easily verified by expanding the power series and comparing terms. Insert-
ing (77) into (78) gives

etB = In + sin(tϕ)
sinϕ

(qp> − pq>) + 1−cos(tϕ)

sin2 ϕ
(qp> − pq>)2

= In + sin(tϕ)
sinϕ

(qp> − pq>) + 1−cos(tϕ)

sin2 ϕ

(
cosϕ(qp> + pq>)− pp> − qq>

)
= In + (pp> + qq>) cos(tϕ)−1

sin2 ϕ
+ pq> cosϕ−cosϕ cos(tϕ)−sinϕ sin(tϕ)

sin2 ϕ

+ qp> cosϕ−cosϕ cos(tϕ)+sinϕ sin(tϕ)

sin2 ϕ

= In + (pp> + qq>) cos(tϕ)−1

sin2 ϕ
+ pq> cosϕ−cos((1−t)ϕ)

sin2 ϕ
+ qp> cosϕ−cos((1+t)ϕ)

sin2 ϕ
,

(79)

showing (69) as ϕ = ‖v‖.
Finally, to verify formula (70) is straightforward by using appropriate

trigonometric addition formulas, we omit the details.

Remark 10. Formula (70) appeared already in [7], however, without proof.

6.2. Closed formula for endpoint geodesics in the unit sphere Sn−1,
via reflections.

Lemma 2. Let p, q ∈ Sn−1 with p 6= ±q. Denote by γ the unique minimiz-
ing geodesic connecting p with q and γ(0) = p and γ(1) = q. Define the
“midpoint” z := γ(1/2). Then we have

q = γ(1) = Rz(p) = (2zz> − In)p, (80)
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with reflection operator Rz at the normal space NzS
n−1 given explicitly in

terms of p and q only by

Rz = ReB/2p = 2eB/2pp>e−B/2 − In
=
(
pp> + qq> + pq> + qp>

)
1

1+cos ‖v‖ − In.
(81)

Here again q>p = cos ‖v‖ and v and B are the same as in (66) and (67).

Proof : It is sufficient to prove the statement for Sn−1 with p = e1 and q =
cos ‖v‖e1− sin ‖v‖e2 and v = γ′(0). The details are straightforward to verify
by using Theorem 2 and are therefore ommited.

For applications it is sometimes useful to have a parameter dependent
representation of the reflection Rγ(t/2) with Rγ(t/2)p = etBp = γ(t) as well.

Corollary 7. We have the representation

Rγ(t/2) = 2
sin2 ‖v‖

(
pp> sin2((1− t

2)‖v‖) + qq> sin2( t2‖v‖)

+ (pq>+ qp>)sin((1− t
2)‖v‖) sin( t2‖v‖)︸ ︷︷ ︸

=
1
2

(
cos
(
(1−t)‖v‖

)
−cos‖v‖

)
)
− In. (82)

Proof : The result follows from (70).

Remark 11. Certainly, Lemma 2 follows from Corollary 7 for t = 1 as well.

7. Formulas for geodesics in the projective space RPn−1 =
Grn,1

Theorem 3. Let P,Q ∈ Grproj
n,1 with P neither lying in the cut locus of Q with

P = pp>, Q = qq>, p, q ∈ Sn−1 and p 6= ±q, nor P being conjugate to Q. Let
q>p =

√
tr(PQ) = cosϕ. Consider the minimal geodesic γ : t 7→ etBP e−tB

connecting P,Q and Q = eBP e−B = γ(1). Then

eB = In − (P +Q) 1
1+cosϕ +QP 1+2 cosϕ

cosϕ(1+cosϕ) − PQ
1

cosϕ(1+cosϕ) , (83)

B = ϕ
cosϕ sinϕ [Q,P ], (84)

etB = In + (P +Q)cos(tϕ)−1

sin2 ϕ
+ PQcosϕ−cos((1−t)ϕ)

cosϕ sin2 ϕ
+QP cosϕ−cos((1+t)ϕ)

cosϕ sin2 ϕ
, (85)

γ(t) = etBP e−tB = P sin2((1−t)ϕ)

sin2 ϕ
+Q sin2(tϕ)

sin2 ϕ
+ (PQ+QP ) sin((1−t)ϕ) sin(tϕ)

cosϕ sin2 ϕ
. (86)
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Proof : Formula (68) implies (83), (67) implies (84) and (68) implies (85) by

noting that qp> = qq>pp>

cosϕ = QP
cosϕ and pq> = pp>qq>

cosϕ = PQ
cosϕ hold. Formula (86)

is implied by multiplying etBp from (70) with its transpose from the right
and applying a suitable trigonometric addition formula.

Corollary 8. Sometimes it is useful to have a formula for the tangent vector
V := [B,P ] at P specifying together with P the unique minimal geodesic
connecting P and Q,

V = d
dte

tBP e−tB|t=0 = [B,P ]

= ϕ
cosϕ sinϕ [[Q,P ], P ] = ϕ

cosϕ sinϕπ
tan
P (Q) ∈ TPGrproj

n,1 .
(87)

Proof : This is a straightforward computation using (85) and is therefore
omitted.

Lemma 3. Consider two points P,Q ∈ Grproj
n,1 , with Q /∈ CutP . Let

√
tr(PQ)

= cosϕ. Consider the minimal geodesic

γ : t 7→ etBP e−tB, γ(0) = P, γ(1) = Q = eBP e−B. (88)

Consider the midpoint Z := γ(1
2) = eB/2P e−B/2. Then we have

Q = γ(1) = RZ(P ) = P − 2ad2
Z(P ), (89)

and the reflection operator RZ at the normal space NZRPn−1 is given explic-
itly in terms of P and Q only by

RZ = (id−2ad2
Z) = AdIn−2Z , (90)

where

In − 2Z = In −
(
P +Q+ PQ+QP

cosφ

)
1

1+cosϕ . (91)

Proof : By the transitive action we know that there exists a θ ∈ SOn with
p = θe1, P = pp> and q = θ(e1 cosϕ − e2 sinϕ), Q = qq>, moreover, see
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also (75), we have θe2 = p cosφ−q
sinϕ . We compute

In−2Z = In − 2θ

[
cos

ϕ
2

sin
ϕ
2

0

− sin
ϕ
2

cos
ϕ
2

0

0 0 In−2

]
e1e
>
1

[
cos

ϕ
2
− sin

ϕ
2

0

sin
ϕ
2

cos
ϕ
2

0

0 0 In−2

]
θ>

= In − 2θ

[
cos

ϕ
2

− sin
ϕ
2

0

]
[ cos

ϕ
2
− sin

ϕ
2

0 ] θ> = θ

[
− cosϕ sinϕ 0
sinϕ cosϕ 0

0 0 In−2

]
θ>

= θ
(
−(e1e

>
1)cosϕ+(e1e

>
2 + e2e

>
1)sinϕ+ (e2e

>
2)cosϕ+In−(e1e

>
1)−(e2e

>
2)
)
θ>

= In −
(
pp> + qq> + pq> + qp>

)
1

1+cosϕ

= In −
(
P +Q+ PQ+QP

cosϕ

)
1

1+cosϕ
.

(92)

Corollary 9. With notations as in Lemma 3 we have the representation

Rγ(t/2) = (id−2ad2
γ(t/2)) = AdIn−2γ(t/2), (93)

with
In−2γ(t/2)=In − 2etB/2P e−tB/2

=In−2
(
P

sin2
(

(1−t/2)ϕ
)

sin2 ϕ
+Q sin2(tϕ/2)

sin2 ϕ
+(PQ+QP )

sin
(

(1−t/2)ϕ
)

sin(tϕ/2)

cosϕ sin2 ϕ

)
.

(94)

Proof : The result follows from the last expression in (86) using t/2 instead
of t.

8. The de Casteljau Algorithm on Riemannian Mani-
folds

A well-known recursive procedure to generate polynomial curves in Eu-
clidean spaces is the classical de Casteljau algorithm which was introduced,
independently, by de Casteljau [9] and Bézier[5]. The algorithm is a simple
and powerful tool widely used in the field of Computer Aided Geometric De-
sign (CAGD), and is based on successive linear interpolations, cf. [11] for a
modern treatise.

A generalization of that algorithm to Riemannian manifolds appeared first
in [22], and the basic idea was replacing linear interpolation by geodesic in-
terpolation. The resulting curves are also called polynomial curves as they
are natural extensions to Riemannian manifolds of Euclidean polynomials.
In Euclidean spaces, the most important are the cubic polynomials, due to
their optimal properties, as they minimize acceleration. Generating polyno-
mial curves and polynomial splines on manifolds was motivated by problems
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related to path planning of certain mechanical systems, such as spacecraft
and underwater vehicles, whose configuration spaces are non-Euclidean man-
ifolds. The rotation group, which plays an important role in this context,
inspired further developments such as the work in [7] that will be used here.
But first we briefly describe the de Casteljau Algorithm to generate cubic
polynomials on Riemannian manifolds, assuming that they are geodesically
complete.

8.1. Generating cubic polynomials. A cubic polynomial is a smooth
curve that satisfies a two-point boundary value problem (initial and final
points and velocities are prescribed), but may be generated from four distinct
points {x0, x1, x2, x3} in M , the first and last being respectively the initial
and final point of the curve and the other two are auxiliary points for the
geometric algorithm, but are related to the prescribed velocities. Without
loss of generality, we are going to parameterize the curves over the interval
[0, 1].

The next algorithm describes all steps of this construction, illustrated in
Figure 1.

Algorithm 1 (Generalized de Casteljau Algorithm).
Given four distinct points x0, x1, x2 and x3 in M :

Step 1. Construct three geodesic arcs, β1(t, xi, xi+1), i = 0, 1, 2,
joining xi to xi+1. In the illustration below, these geodesic arcs are
represented by the black dotted lines.

Step 2. For every t ∈ [0, 1], construct two geodesic arcs

β2(s, xi, xi+1, xi+2) = β1(s, β1(t, xi, xi+1), β1(t, xi+1, xi+2))

for i = 0, 1, joining β1(t, xi, xi+1) to β1(t, xi+1, xi+2). In the illustration
below, these geodesic arcs are represented by the red dotted lines.

Step 3. For every t ∈ [0, 1], construct the geodesic arc

β3(s, x0, x1, x2, x3) = β1(s, β2(t, x0, x1, x2), β2(t, x1, x2, x3)),

joining β2(t, x0, x1, x2) to β2(t, x1, x2, x3). In the illustration below,
this geodesic arc is represented by the green dotted line. The dark blue
dot represents the point in β3(s, x0, x1, x2, x3) corresponding to s = t.

The curve [0, 1] 3 t 7→ β3(t) := β3(t, x0, x1, x2, x3) obtained in Algorithm
1 is called cubic polynomial in M , and in Figure 1 it is represented by the
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blue curve. It is important to observe that this curve joins the points x0 (at
t = 0) and x3 (at t = 1), but does not pass through the other two points x1

and x2. The latter are called control points, since they influence the shape of
the curve. Since the basic ingredients used in the de Casteljau algorithm are

Figure 1. Illustration of the de Casteljau algorithm. Cubic
polynomial in blue.

geodesic arcs, Riemannian geometry provides enough tools to formulate this
construction theoretically. However, often those simple curves are implicitly
defined by a set of nonlinear differential equations, so Algorithm 1 can be
practically implemented only when the calculation of the geodesic arcs can
be reduced to a manageable form.

This algorithm can be generalized to generate polynomials of any degree
and also to generate C2-smooth cubic polynomial splines by piecing together,
in a sufficiently smooth manner, several cubic polynomials. These curves are
particularly useful in many engineering applications.

8.1.1. Cubic polynomials in Graßmannians. Cubic polynomial curves on
Grproj

n,k were derived in [23], using the generalized de Casteljau algorithm
above. The next result contains the explicit formula for such curves. We
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call attention for the meaning of the superscripts in the operators Ωj
i that

appear in the next proposition. Those superscripts have been chosen to agree
with the step number of the algorithm where they are defined, and that will
become clear in Remark 12.

Proposition 2. Given four distinct points Pi, for i = 0, 1, 2, 3, in Grproj
n,k ,

the curve

t ∈ [0, 1] 7→ β3(t) = etΩ
3
0(t)etΩ

2
0(t)etΩ

1
0P0e

−tΩ1
0e−tΩ

2
0(t)e−tΩ

3
0(t)

= e
t adΩ3

0(t)e
t adΩ2

0(t)e
t adΩ1

0P0,
(95)

where, for i = 0, 1, 2 and j = 2, 3,

e2Ω1
i = (I − 2Pi+1)(I − 2Pi), e2Ωj

i (t) = e2tΩj−1
i+1 (t)e2(1−t)Ωj−1

i (t), (96)

is the cubic polynomial in Grproj
n,k , obtained by the generalized de Casteljau

algorithm associated to the points Pi, with i = 0, 1, 2, 3. Moreover, for every
t ∈ [0, 1],

Ω1
iPi + PiΩ

1
i = Ω1

i , i = 0, 1, 2, (97)

Ω2
i (t)

(
etΩ1

iP0e
−tΩ1

i

)
+
(

etΩ1
iP0e

−tΩ1
i

)
Ω2
i (t) = Ω2

i (t), i = 0, 1, (98)

Ω3
0(t)

(
etΩ2

0(t)etΩ1
0P0e−tΩ1

0e−tΩ2
0(t)
)

+
(

etΩ2
0(t)etΩ1

0P0e−tΩ1
0e−tΩ2

0(t)
)

Ω3
0(t) = Ω3

0(t). (99)

Proof : See [23].

Remark 12. We briefly explain how Algorithm 1 generates the curve (95),
subject to (96) and (97). For that, we use formula (34) for the geodesic arc
that joins two given points, and identity (14).

In Step 1., the geodesic arc joining Pi to Pi+1 is given by β1(t, Pi, Pi+1) =
etΩ

1
iPie

−tΩ1
i , where e2Ω1

i = (I − 2Pi+1)(I − 2Pi). Taking into account identity
(14), it is clear that the first condition in (97) holds.

In Step 2., we obtain β2(s, P0, P1, P2) = esΩ
2
0(t)β1(t, P0, P1)e

−sΩ2
0(t), with

e2Ω2
0(t) = (I − 2β1(t, P1, P2))(I − 2β1(t, P0, P1)). (100)
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Replace in (100), P1 by eΩ1
0P0e

−Ω1
0, β1(t, Pi, Pi+1) by its expression above,

using (14), we get

e2Ω2
0(t) = (I − 2etΩ

1
1eΩ1

0P0e
−Ω1

0e−tΩ
1
1)(I − 2etΩ

1
0P0e

−tΩ1
0)

= etΩ
1
1eΩ1

0(I − 2P0)e
−Ω1

0e−tΩ
1
1 etΩ

1
0(I − 2P0)e

−tΩ1
0

= e2tΩ1
1e2Ω1

0(I − 2P0)(I − 2P0)e
−2tΩ1

0

= e2tΩ1
1e2(1−t)Ω1

0,

(101)

which is the second expression in (96) for (i, j) = (0, 2).
Moreover, the equality in the first line of (101) and (14) enables to conclude

that the second condition in (97) holds for i = 0.
Similar arguments can be used to obtain the other geodesic arc in Step 2.

and the one in Step 3., together with the corresponding constraints in (97).

For the sake of completeness, we also include here the relationship between
the control points P1 and P2 and the initial and final velocities of the curve
(95), cf. [23].

The cubic polynomial β3 that satisfies the boundary conditions

β3(0) = P0, β3(1) = P3, β̇3(0) = [W0, P0], β̇3(1) = [W3, P3], (102)

with Wi = −W>
i , for i = 1, 3, satisfying WiPi + PiWi = Wi, is generated by

the de Casteljau algorithm associated to the points Pi, i = 0, 1, 2, 3, where
the controls points are given in terms of the boundary data (102) as:

P1 = 1
2

(
I − e

2
3W0(I − 2P0)

)
,

P2 = 1
2

(
I − e−

2
3W3(I − 2P3)

)
.

(103)

Remark 13. Although the formulas in Proposition 2 appear to be relatively
manageable, they are not appropriate for the implementation of the algorithm
due to their computational cost. It is exactly to overcome this burden that
the formulas derived in Subsection 5.1 can be extremely useful.

8.1.2. Orthogonal cubic polynomials. Here we present the cubic polynomials
generated by the de Casteljau algorithm when M = On. This follow imme-
diately from the work in [7], which was dedicated to connected and compact
Lie groups and to spheres. The only difference here is that we have to assume
that the initial data (the given four points) lives in one of the two connected
components of the orthogonal group, in which case the resulting cubic stays
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in that component. Here we use capital greek letters for points in On, capital
Roman letters for elements in its Lie algebra and, for convenience, denote
the curves in the de Casteljau algorithm by pi instead of βi. As in the Graß-
mannian case, the superscripts in the operators V j

i that appear in the next
proposition have been chosen to agree with the step number of the algorithm
where they are defined. This will become clear in Remark 14.

Proposition 3. Given four distinct points θi, i = 0, 1, 2, 3, in one of the two
connected components of On, the curve defined by

p3(t) = etV
3
0 (t)etV

2
0 (t)etV

1
0 θ0, (104)

where V 1
i , for i = 0, 1, 2, is the infinitesimal generator of the geodesic arc

joining the point θi (at t = 0) to θi+1 (at t = 1), that is, θi+1 = eV
1
i θi, and

for every t ∈ [0, 1] the Lie algebra elements V j
i are defined by:

eV
j
i (t) = etV

j−1
i+1 (t)e(1−t)V j−1

i (t), for j = 2, 3, (105)

is the cubic polynomial in On generated by de Casteljau algorithm, associated
to θ0, θ1, θ2 and θ3.

Proof : See [7].

Remark 14. To check that Algorithm 1 generates the curve (104), subject
to (105), it is enough to look at the expressions for the curves obtained in
each of the 3 steps, taking into consideration the formula for geodesic arcs
that join two given points in the orthogonal group.

In Step 1., the geodesic arc joining θi to θi+1 is given by p1(t, θi, θi+1) =
etV

1
i θi, where eV

1
i = θi+1θ

−1
i .

In Step 2., we obtain p2(s, θ0, θ1, θ2) = esV
2
0 (t)et V

1
0 θ0, with eV

2
0 (t)etV

1
0 θ0 =

etV
1
1 θ1. But the last identity is equivalent to eV

2
0 (t)etV

1
0 θ0 = etV

1
1 eV

1
0 θ0, or to

eV
2
0 (t) = etV

1
1 e(1−t)V 1

0 .
Similarly, the second geodesic arc is p2(s, θ1, θ2, θ3) = esV

2
1 (t)et V

1
1 θ1, with

eV
2
1 (t) = etV

1
2 e(1−t)V 1

1 .
In Step 3., p3(s, θ0, θ1, θ2, θ3) = esV

3
0 (t)etV

2
0 (t)etV

1
0 θ0, with eV

3
0 (t)etV

2
0 (t)etV

1
0 θ0 =

etV
2
1 (t)etV

1
1 θ1.

Taking into consideration that θ1 = eV
1
0 θ0 and eV

2
0 (t) = etV

1
1 e(1−t)V 1

0 , it sim-
plifies to eV

3
0 (t) = etV

2
1 (t)e(1−t)V 2

0 (t).

The relationship between the control points θ1 and θ2 and the initial and
final velocities of the curve (104) follows immediately from Theorem 2.5 in
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[7], which states that

ṗ3(0) = 3V 1
0 θ0, ṗ3(1) = 3V 1

2 θ3. (106)

Indeed, the cubic polynomial p3 that satisfies the boundary conditions

p3(0) = θ0, p3(1) = θ3, ṗ3(0) = W0θ0, ṗ3(1) = W3θ3, (107)

can be generated by the de Casteljau algorithm with controls points

θ1 = eW0/3θ0, θ2 = e−W3/3θ3. (108)

8.1.3. Comparing cubic polynomials in On with cubic polynomials in Graß-
mannanians. We take advantage of the fact that Grrefl

n,k = I − 2Grproj
n,k lives

in On to compare the cubic polynomial in Proposition 2 with the orthogonal
cubic polynomial in Proposition 3.

Theorem 4. Let β3(t) be the cubic polynomial in Grproj
n,k associated to the

points Pi, i = 0, 1, 2, 3, given in Proposition 2, and p3(t) the cubic polynomial
in On associated to the points θi = I − 2Pi, given in Proposition 3. Then,

p3(t) = I − 2β3(t). (109)

Proof : First we show that when θi = I − 2Pi, we have V j
i = 2Ωj

i , where the

V j
i are as defined in Proposition 3 and the Ωj

i as defined in Proposition 2.
Indeed,

θi+1 = eV
1
i θi ⇐⇒ (I − 2Pi+1) (I − 2Pi) = eV

1
i , (110)

and comparing with the first identity in (96) we conclude that V 1
i = 2Ω1

i ,
i = 0, 1, 2. Using these relationships and the second identity in (96), we can
write

eV
2
i (t) = etV

1
i+1 e(1−t)V 1

i = e2tΩ1
i+1 e2(1−t)Ω1

i = e2Ω2
i (t). (111)

So, V 2
i = 2Ω2

i , for i = 0, 1. Similarly, using these relations and the second
identity in (96), with (i, j) = (0, 3), we conclude that V 3

0 = 2Ω3
0. So, since

β3(t) = etΩ
3
0(t)etΩ

2
0(t)etΩ

1
0P0 e−tΩ

1
0e−tΩ

2
0(t)e−tΩ

3
0(t) (112)

satisfies all the constraints in Proposition 2, also

p3(t) = e2tΩ3
0(t)e2tΩ2

0(t)e2tΩ1
0θ0, (113)

satisfies all the constraints in Proposition 3.
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Finally, we prove the relationship between β3(t) and p3(t), using systemat-
ically the result in Lemma 1 and the constraints (97). Indeed,

I − 2β3(t) = etΩ
3
0(t)
(
I − 2etΩ

2
0(t)etΩ

1
0P0e

−tΩ1
0e−tΩ

2
0(t)
)

e−tΩ
3
0(t)

= e2tΩ3
0(t) etΩ

2
0(t)
(
I − 2etΩ

1
0P0e

−tΩ1
0

)
e−tΩ

2
0(t)

= e2tΩ3
0(t) e2tΩ2

0(t)
(
I − 2etΩ

1
0P0e

−tΩ1
0

)
= e2tΩ3

0(t) e2tΩ2
0(t)e2tΩ1

0
(
I − 2P0

)
= e2tΩ3

0(t) e2tΩ2
0(t)e2tΩ1

0 θ0

= p3(t).

(114)

Remark 15. Since Grrefl
n,k is a submanifold of On, the last result tells us

that if θi ∈ On ∩ Grrefl
n,k holds for all data points, the whole de Casteljau

construction in On actually takes place inside Grrefl
n,k. This observation is

due to two important facts. First of all, the de Casteljau algorithm is solely
based on recursive geodesic interpolation. Secondly, Grrefl

n,k is a totally geodesic

submanifold of On, since any geodesic in Grrefl
n,k is a geodesic in On. Indeed,

every geodesic in Grrefl
n,k that starts at a point In − 2P , P ∈ Grproj

n,k , is of the

form γ(t) = etΩ(I−2P )e−tΩ, with Ω ∈ son satisfying ΩP +PΩ = Ω. But due
to the second identity in Lemma 1, γ(t) = e2tΩ(I − 2P ), which is a geodesic
in On.
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