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Abstract

In this paper we present a novel mathematical model to describe the permeation of a
fluid through a polymeric matrix, loaded with drug molecules, followed by its subsequent
desorption. Both phenomena are enhanced by temperature. We deduce energy estimates
and stability estimates for the weak solution of the model, showing that this solution of
the problem is stable in bounded time intervals. Numerical simulations illustrate how the
coupling effects, of viscoelastic properties and thermal external assistance, can have a central
role in the design of drug delivery devices.
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1 Introduction

Over the past few years, the therapeutic effects resulting from Controlled Drug Delivery De-
vices (CDD) have clearly outperform the effects from Conventional Drug Delivery Devices (DD).
Advances in material science and bionanotechnology have helped in the development of more
efficient CDD, improving targeted release and decreasing undesirable side effects, largely at-
tributable to the nonspecific bio-distribution and uncontrollable characteristics of DD [1].

Notably, CDD can provide targeted delivery for specific organs/tissues reducing both dosage
frequency and drug toxicity. Even more, they can maintain proper drug rates in situ, lead-
ing to more effective therapeutic treatment. In cancer therapeutics, the targeted delivery can
substantially reduce the side effects of chemotherapy. As a result, there is a steep rise in the
development and study of CDD for targeted delivery in oncologic diseases [2].

Stimuli-responsive biomaterials (polymers, lipids and inorganic materials) have been used
extensively as drug carriers nanoplatforms [3, 4]. They prevent drug extravasation into healthy
tissues, they prolong blood circulation time and they improve drug accumulation while en-
hancing bioavailability at the target site [5]. These stimuli-responsive nanoplatforms are used
for enhanced drug delivery triggered by endogenous and/or exogenous stimulus. The endoge-
nous triggers can be set off by pH variations, hormone level, enzyme concentration, small bio-
molecules, glucose or redox gradient. The exogenous triggers, include temperature, magnetic
fields, ultrasounds, light, electric pulses and high energy radiation [1]. We note that although
drug molecules themselves can be designed for enhanced targeted delivery, in this work we will
focus only on the material properties of the nanocarriers.

In the present paper we are interested on drug delivery enhanced by temperature. Polymeric
nanocarriers can be stimulated to enhance drug release in tumors [6]. Usually, the thermo-
sensitive nanocarriers maintain a low rate of delivery around the physiological temperature of
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37ºC, and increase the release rapidly when the temperature rises above 40º–45ºC. [1]. Ther-
mosensitive Hydrogels possess the ability to swell upon temperature changes, allowing an en-
hanced delivery. Several applications take advantage of this feature. We mention without being
exhaustive, local delivery of anticancer drugs, anti-inflammatory drugs and antibiotics, also
injectable formulations of peptides, such as urease, interleukin-2, and lidocaine [7].

In [8], a model for drug delivery enhanced by temperature was proposed. The model consists
of two coupled quasilinear diffusion equations to study the evolution of temperature and drug
concentration. In [9], the delivery is enhanced by both temperature and an electric field.

To the best of our knowledge, none of the models available in the literature take into con-
sideration the viscoelastic properties of the polymers used for the enhanced delivery. The main
disadvantage of such simplification is that the microstructural relaxation of the medium, induced
by the penetrant, is ignored. Our aim is to propose a novel mathematical model for drug delivery
enhanced by temperature taking into consideration the non-Fickian behavior of the material.

From a mathematical point of view, we establish the stability of a non-Fickian model that
couples the absorption of a fluid, in a polymeric platform loaded with solid drug molecules, and
its subsequent release, in which the two phenomena are stimulated by temperature. From the
point of view of controlled drug release, our focus is to answer the following two questions :(1)
How can the viscoelastic properties of polymeric platforms change the fluid absorption and the
drug molecules release profiles? (2) How does an external temperature can be used to control
the two-coupled phenomena?

In Section 2 we deduce a novel model for non-Fickian sorption by a viscoelastic material
enhanced by temperature. Theoretical results regarding energy estimates and stability are shown
in Section 3. Then, in Section 4 we couple the model with drug delivery. In Section 5 we present
numerical simulations that illustrate the qualitative behavior of the model. Finally in Section 6
some conclusions are drawn.

2 Non-Fickian diffusion

When fluid permeates a viscoelastic material it causes a deformation which induces a stress that
interacts with the Brownian motion of the fluid molecules [10]. As a consequence, the transport
cannot be properly described by Fick’s law of diffusion. Therefore, a modified flux must be
considered, resulting from the sum of a Fickian flux JF and a non-Fickian flux JNF [11, 12, 13].
The equation for non-Fickian diffusion can be defined as

∂cℓ
∂t

= −∇ · (JF (cℓ) + JNF (σ)) , (1)

where cℓ denotes the concentration of the fluid. The Fickian and non-Fickian fluxes are defined,
respectively, by

JF (cℓ) = −D(cℓ)∇cℓ, JNF = −Dv(cℓ)∇σ,

with D(cℓ) and Dv(cℓ) representing the Fickian and non-Fickian diffusion coefficients, respec-
tively. The function σ stands for the stress associated to fluid uptake and exerted by the
polymer.

Equation (1) has to be coupled with an evolution equation for the stress which introduces
the strain ε as a third variable. Assuming that the strain causes a viscoelastic stress response
opposite to the flux [14], we consider

σ = −

∫ t

0
K(t− s)

∂ε

∂s
ds.
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where K is the relaxation modulus of a mechanistic model consisting of springs and dampers
in parallel and/or in series. Due to its versatility, we will use the generalized Maxwell-Wiechert
model (Figure 1).

Figure 1: Generalized Maxwell-Wiechert model.

The model consists ofm+1 arms in parallel, being the firstmMaxwell fluid elements and the
last one a free spring [15, Chapter 5]. The parameters Ei (for i = 0, 1, · · · ,m) denote the Young
modulus of the spring elements, and the µi (for i = 1, · · · ,m) the viscosities of the dampers. It
allows for an accurate representation of the behavior of a polymer, since the parameters can be
fitted from experimental results.

In what follows we present an approach to introduce the influence of the temperature in the
relaxation modulus associated to the generalized Maxwell-Wiechert model.

2.1 Temperature dependent Young modulus

Following the ideas from [14], we begin by assuming that we have a purely elastic material with
initial Young modulus E0, which represents the Young modulus of the sample at the reference
temperature T0. The cross-link density at the reference temperature of the sample can be defined
as

ρ0x =
ξ0

V0
, (2)

where ξ0 represents the number of moles of cross-links of the polymer at the reference temper-
ature and V0 the volume of the polymeric matrix at the reference temperature. In the swollen
state the cross-link density becomes

ρx =
ξ0

V0 + V0β(T − T0)
, (3)

where β is the volumetric temperature expansion coefficient, T is the temperature and T0 is the
reference temperature. Then, we obtain from (2) and (3) that

ρx
ρ0x

=
1

1 + β(T − T0)
. (4)

As ρx
ρ0x

= E
E0 [14], we conclude from (4) that

E(T ) =
E0

1 + β(T − T0)
.

The previous equation holds for purely elastic materials when T ≥ T0. In the case of
viscoelastic materials we will assume that the elastic contributions in each Maxwell arm satisfy

Ek(T ) =

{

E0
k

1+β(T−T0)
, T > T0

E0
k , T ≤ T0

(5)
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where E0
k for k = 0, 1, 2, ...,m denotes the Young modulus of each spring element at the reference

temperature.
We consider that the relaxation modulus can be defined as

E(T (t), s, t) = E0(T (t)) +
m
∑

k=1

Ek(T (t))e
− 1

µk

∫ t
s
Ek(T (r))dr.

The total stress is defined as,

σ(T (t), ε, t) = −

∫ t

0
E(T (t), s, t)

∂ε

∂s
ds.

The relation between deformation and local solvent concentration can be nonlinear [14],
however, to simplify our model we assume a linear relation between strain and the concentration
of the penetrant cℓ. Therefore, we obtain after integrating by parts

σ(T (t), cℓ(t), t) =− α

(

m
∑

k=0

Ek(T (t))

)

cℓ(t)

+ α

m
∑

k=1

Ek(T (t))

µk

∫ t

0
Ek(T (s))e

− 1
µk

∫ t
s
Ek(T (r))drcℓ(s)ds, (6)

where α > 0 is the proportionality constant between the strain of the polymer and the concen-
tration.

We note that (5) is a novel relation between the Young modulus and the temperature.
There are several expression in the literature for different materials, however to the best of our
knowledge, there is not a functional expression for viscoelastic materials that does not depend
on fitting parameters.

2.2 Viscoelastic diffusion coefficient

Following ideas from [14, 16], we assume that the non-Fickian flux JNF can be interpreted as a
convective field. Considering that the polymeric sample is a porous media we obtain that

Dv(T (t), cℓ(t)) = Θ(T )cℓ(t),

where Θ(T ) is the temperature dependent permeability. It can be computed using the modified
Kozeny-Carman equation [17, Ch 2.4.1]

Θ(T ) = Θ0

[

1− (1− φ0)e
f(T (t))

φ0

]3− 1
m0

e−
4
3
f(T (t)),

where Θ0 is the permeability at the reference temperature, m0 is a fitting parameter, φ0 the
porosity at the reference temperature and

f(T (t) = p1(T (t)− T0) +
p2
2
(T (t)− T0)

2 +
p3
3
(T (t)− T0)

3 + · · · ,

where p1, p2, p3, · · · , are fitted from experimental data.
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2.3 A non-Fickian model for fluid sorption enhanced by temperature

In what follows we couple the previous model for non-Fickian diffusion, with an evolution equa-
tion for the temperature T . Let us consider a polymeric sample Ω ∈ R

3 with boundary ∂Ω.
In order to model the entrance of fluid in the polymeric matrix and the evolution of the

stress we consider the equation

∂cℓ
∂t

= ∇ · (Dℓ(T, cl)∇cℓ +Dv(T, cℓ)∇σ(T, cℓ)) in Ω× (0, tf ], (7)

where Dℓ denotes the Fickian diffusion coefficient considering the Arrhenius equation and a
Fujita type exponential dependence, defined here as

Dℓ(T, cl) = D0,ℓe
−

EA
RT

−βℓ(1−
cℓ
ceq

)
,

where D0,ℓ is the maximum diffusivity of the fluid, βℓ a dimensionless positive constant, EA the
activation energy for diffusion, R the universal gas constant and ceq is defined by (11).

We couple (7) with the evolution of the temperature described by the equation

∂T

∂t
= ∇ · (DT (T )∇T ) +G(T ) in Ω× (0, tf ], (8)

where DT is the thermal diffusivity and G(T ) stands for an external source.
We close system (7)-(8) with initial and boundary conditions

cℓ(x, 0) = c0 for x ∈ Ω, (9)

T (x, 0) = T0 for x ∈ Ω, (10)

cℓ(x, t) = ceq for (x, t) ∈ ∂Ω× [0, tf ], (11)

T (x, t) = Tin for (x, t) ∈ ∂Ω× [0, tf ]. (12)

In what follows we study the stability of the initial-boundary value problem (7)-(12).

3 Theoretical results

3.1 Variational formulation

Let us consider the variational problem: Find cℓ ∈ L2(0, tf ;H
1(Ω)), such that the boundary

condition (11) and the initial condition (9) hold almost everywhere, described by

(
∂cℓ
∂t

(t), v) + (Dℓ(T (t), cℓ(t))∇cℓ(t),∇v) =

(αDv(T (t), cℓ(t))∇

((

m
∑

k=0

Ek(T (t))

)

cℓ(t)

)

,∇v)

− (αDv(T (t), cℓ(t))∇

(

m
∑

k=1

Ek(T (t))

µk

∫ t

0
Ek(T (s))e

− 1
µk

∫ t
s
Ek(T (r))drcℓ(s)ds

)

,∇v), (13)

a. e. in (0, tf ], for all v ∈ H1
0 (Ω).

For the temperature, we consider the following variational problem: Find T ∈ L2(0, tf ;H
1(Ω)),

such that the boundary condition (12) and the initial condition (10) hold almost everywhere,
described by

(
∂T

∂t
(t), v) + (DT (T (t))∇T (t),∇v) = (G(T (t)), v), (14)

a. e. in (0, tf ], for all v ∈ H1
0 (Ω).

To simplify, in what follows we assume that the medium Ω is isotropic. Therefore, we replace
it by Ω = (0, 1). In this case ∇v(x, t) is denoted by ∂v

∂x(x, t).
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3.2 Energy estimates

In the analysis presented in this section we assume homogeneous Dirichlet boundary conditions
for both T and cℓ.

An energy estimate for (14) was established in [8]. The result is presented in the next lemma.
The following conditions are considered:

• β1: DT ∈ C1
b (R) and DT ≥ b0 > 0 in R.

• β2: |G(y)| ≤ b1|y|, for all y ∈ R,

where Cmb (Rn) denotes the space of bounded functions with bounded m order partial derivatives
in R

n.

Lemma 1 ([8]). Assume that conditions β1 and β2 are satisfied. If T is a solution of (14) such
that T ∈ C1(0, tf ;L

2(Ω))
⋂

L2(0, tf ;H
1
0 (Ω)), then

‖T (t)‖2 +

∫ t

0
‖∇T (s)‖2ds ≤

e2b1t

min{1, 2b0}
‖T0‖

2. (15)

In order to deduce an energy estimate for the coupled system (13)-(14), we assume the
conditions

• β3: Dℓ ∈ C1
b (R

2) and Dℓ ≥ dℓ > 0 in R
2.

• β4: Dv ∈ C1
b (R

2) with Dv ≥ dv.

We note that the non-Fickian part of (7) cannot dominate the equation because it would
lead to a total negative flux. Hence, we impose that

Dℓ(T (t), cℓ(t))− αDv(T (t), cℓ(t))

(

m
∑

k=0

Ek(T (t))

)

≥ d0 > 0, ∀t ∈ [0, tf ], (16)

where d0 ∈ R is a positive constant.
We assume that Ek(T (t)), for each k = 0, · · · ,m, is replaced by a regularization of the form

m
∑

k=0

Ek(T (t)) ≈ E(T (t)) =

m
∑

k=0

(

C1E
0
k arctan (C2 − β (T (t)− T0)) + C3

)

,

where C1, C2 and C3 are positive constants. For each k = 0, · · · ,m we get that

|
(

C1E
0
k arctan (C2 − β (T (t)− T0)) + C3

)

| ≤ Ck,E ,

for some positive constants Ck,E .
Furthermore, we suppose that the regularization satisfies the condition

• β5: max{|E|, |E′|, |E′′|} ≤ CE in R.

To simplify the presentation we consider the notation

k1(s, t) =
m
∑

k=1

C2
k,E

µk
e
− 1

µk

∫ t
s
Ek(T (r))dr,

k2(s, t) =
m
∑

k=1

C3
k,E

µ2k
e
− 1

µk

∫ t
s
Ek(T (r))dr.
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Theorem 1. Assume that conditions β1-β5 and (16) are satisfied. If cℓ is a solution of (13)
and T is a solution of (14), such that

cℓ, T ∈ C1(0, tf ;L
2(Ω))

⋂

L2(0, tf ;H
1
0 (Ω)),

then, there exists a positive constant θ, such that

‖cℓ(t)‖
2 +

∫ t

0
eθ

∫ t
s
F (r)dr‖∇cℓ(s)‖

2ds ≤ ‖c0‖
2eθ

∫ t
0 F (r)dr, (17)

provided that the non-Fickian diffusion-reaction equation (7) is diffusion dominated in the sense

that

d̂0 = d0 − αdvCE‖∇(T (t)− T0)‖ > 0, (18)

where

F (t) = 1 + ‖∇T0‖
2 + ‖∇T (t)‖2 +

∫ t

0
‖∇T (s)‖2ds.

Proof. Considering v = cℓ(t) in (13), we deduce

1

2

d

dt
‖cℓ(t)‖

2 + d0‖∇cℓ(t)‖
2 ≤ αdvCE‖∇(T (t)− T0)‖‖∇cℓ(t)‖‖cℓ(t)‖∞

+ αdv‖∇cℓ(t)‖

∫ t

0
‖k1(s, t)‖∞‖∇cℓ(s)‖ds+

3
∑

i−1

|Pi|, (19)

where

P1 =αdv

∫

Ω
∇cℓ(t)

m
∑

k=1

E′
k(T (t))

µk
∇(T (t)− T0)

∫ t

0
Ek(T (s))J(s, t)cℓ(s)ds dx,

P2 =αdv

∫

Ω
∇cℓ(t)

m
∑

k=1

Ek(T (t))

µk

∫ t

0
E′
k(T (s))∇(T (s)− T0)J(s, t)cℓ(s)ds dx,

P3 =αdv

∫

Ω
∇cℓ(t)

m
∑

k=1

Ek(T (t))

µ2k

∫ t

0
Ek(T (s))J(s, t)

(
∫ t

s
E′
k(T (r))∇(T (r)− T0)dr

)

cℓ(s)ds dx.

considering the notation

J(s, t) = exp

(

−
1

µk

∫ t

s
Ek(T (r))dr

)

.

As ‖cℓ(t)‖∞ ≤ ‖∇cℓ(t)‖, we replace (19) with

d

dt
‖cℓ(t)‖

2 + 2d̂0‖∇cℓ(t)‖
2 ≤ 2αdv‖k1‖L2(0,tf ;L∞(Ω))‖∇cℓ(t)‖

(
∫ t

0
‖∇cℓ(s)‖

2

)

1
2

ds

+ 2
3
∑

i−1

|Pi|. (20)

For P1, we have that

|P1| ≤ αdvβ‖k1‖L2(0,tf ;L∞(Ω))‖ (‖∇T (t)‖+ ‖∇T0‖) ‖∇cℓ(t)‖

(
∫ t

0
‖cℓ(s)‖

2
∞ds

)

1
2

,

≤ θ1
(

‖∇T0‖
2 + ‖∇T (t)‖2

)

∫ t

0
‖∇cℓ(s)‖

2ds+ ξ1‖∇cℓ(t)‖
2,

7



where ξ1 > 0 is an arbitrary constant and

θ1 =
1

2ξ1
α2d2vβ

2‖k1‖
2
L2(0,tf ;L∞(Ω)).

Considering P2, we deduce

|P2| ≤ αdvβ‖∇cℓ(t)‖

∫ t

0
‖k1(s, t)‖∞‖∇T (s)−∇T0‖‖cℓ(s)‖ds,

≤

(

θ2‖∇T0‖
2 + θ3

∫ t

0
‖∇T (s)‖2ds

)
∫ t

0
‖∇cℓ(s)‖

2ds+ (ξ2 + ξ3)‖∇cℓ(t)‖
2,

where ξ2, ξ3 > 0 are arbitrary constants and

θ2 =
1

4ξ2
α2d2vβ

2‖k1‖
2
L2(0,tf ;L∞(Ω)), θ3 =

1

4ξ3
α2d2vβ

2

(

m
∑

i=1

C2
k,E

µk

)2

.

For P3, we obtain that

|P3| ≤ αdvβ‖∇cℓ(t)‖

∫ t

0
‖k2(s, t)‖∞

(
∫ t

s
‖∇T (r)−∇T0‖dr

)

‖cℓ(s)‖∞ds

≤

(

θ4‖∇T0‖
2 + θ5

∫ t

0
‖∇T (s)‖2ds

)
∫ t

0
‖∇cℓ(s)‖

2ds+ (ξ4 + ξ5)‖∇cℓ(t)‖
2,

with ξ4, ξ5 > 0 arbitrary constants and

θ4 =
1

4ξ4
α2d2vβ

2t2f‖k2‖
2
L2(0,tf ;L∞(Ω)), θ5 =

1

4ξ5
α2d2vβ

2tf‖k2‖
2
L2(0,tf ;L∞(Ω)).

Using the estimates for |Pi| in (20), we get that

d

dt
‖cℓ(t)‖

2 + 2

(

d̂0 −
6
∑

i=1

ξi

)

‖∇cℓ(t)‖
2 ≤ 2θ0F (t)

∫ t

0
‖∇cℓ(s)‖

2ds, (21)

where ξ6 > 0 is an arbitrary constant and

θ0 = max{
1

4ξ6
α2d2v‖k1‖

2
L2(0,tf ;L∞(Ω)), θ1 + θ2 + θ4, θ1, θ3 + θ5}.

Taking

θ =
2θ0

min{1, 2
(

d̂0 −
∑6

i=1 ξi

)

}
,

provided that the ξi are fixed by

d̂0 −

6
∑

i=1

ξi > 0,

when condition (18) is satisfied. From (21), we deduce

d

dt

(

‖cℓ(t)‖
2e−θ

∫ t
0 F (r)dr +

∫ t

0
e−θ

∫ s
0 F (r)dr‖∇cℓ(t)‖

2

)

≤ 0.

Finally, after integration the result follows.
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3.3 Stability

A stability estimate for (14) was calculated in [8]. The result is presented in the next lemma.

Lemma 2 ([8]). Assume that conditions β1 and β2 are satisfied. If T is a solution of (14) such
that

T ∈ C1(0, tf ;L
2(Ω))

⋂

L2(0, tf ;H
1
0 (Ω)

⋂

W 1,∞(Ω)),

and T̃ is a perturbed solution of (14) with respect to the initial data T̃0, satisfying

T̃ ∈ C1(0, tf ;L
2(Ω))

⋂

L2(0, tf ;H
1
0 (Ω)),

then, for wT = T − T̃ there exists a positive constant ψ, such that

‖wT (t)‖
2 +

∫ t

0
eψ

∫ t
s
(1+‖∇T (r)‖∞)dr‖∇wT (s)‖

2ds ≤ ‖wT0‖
2eψ

∫ t
0 (1+‖∇T (r)‖∞)dr, (22)

In what follows we consider a perturbation of the initial data c0 and T0. Then, we study
the stability of the system with respect to the perturbed solutions c̃ℓ and T̃ of (13) and (14),
respectively.

Theorem 2. Assume that conditions β1-β5, (16) and (18) are satisfied. If cℓ is a solution of

(13) and T is a solution of (14), such that

cℓ, T ∈ C1(0, tf ;L
2(Ω))

⋂

L2(0, tf ;H
1
0 (Ω) ∩W

1,∞(Ω)),

and c̃ℓ, T̃ are two perturbed solutions, satisfying

c̃, T̃ ∈ C1(0, tf ;L
2(Ω))

⋂

L2(0, tf ;H
1
0 (Ω)).

Then, for wc = cℓ − c̃ℓ, there exist positive constants γ1, γ2 and γ3 such that

‖wc(t)‖
2 +

∫ t

0
eγ1

∫ t
s
G(r)dr‖∇wc(s)‖

2ds

≤‖wc0‖
2eγ1

∫ t
0 G(r)dr + γ3‖wT0‖

2

∫ t

0
eγ1

∫ t
s
G(r)drds

+ γ2

∫ t

0
eγ1

∫ t
s
G(r)drG(s)

(

‖wT (s)‖
2
H1(Ω) +

∫ s

0
‖wT (r)‖

2
H1(Ω)dr

)

ds, (23)

with

G(t) =1 + ‖∇T (t)−∇T0‖
2
∞ + ‖∇T̃ (t)−∇T̃0‖

2 + ‖∇cℓ(t)‖
2
∞

+

∫ t

0

(

‖∇T (s)−∇T0‖
2
∞ + ‖∇T̃ (s)−∇T̃0‖

2 + ‖∇C(s)‖2∞

)

ds

provided that

‖T̃0‖ ≤
dℓ − αdvCE
αdvCE

. (24)

Proof. Considering v = wc(t) in (13) we obtain that

(
∂wc
∂t

(t), wc(t)) + (Dℓ(T (t), cℓ(t))∇cℓ(t)−Dℓ(T̂ (t), ĉℓ(t))∇ĉℓ(t),∇wc(t)) = S1 + S2,
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with

S1 =(αDv(T (t), cℓ(t))∇

((

m
∑

k=0

Ek(T (t))

)

cℓ(t)

)

,∇wc(t))

− (αDv(T̂ (t), ĉℓ(t))∇

((

m
∑

k=0

Ek(T̂ (t))

)

ĉℓ(t)

)

,∇wc(t)),

S2 =− (αDv(T (t), cℓ(t))∇

(

m
∑

k=1

Ek(T (t))

µk

∫ t

0
Ek(T (s))J(s, t)cℓ(s)ds

)

,∇wc(t))

+ (αDv(T̂ (t), ĉℓ(t))∇

(

m
∑

k=1

Ek(T̂ (t))

µk

∫ t

0
Ek(T̂ (s))Ĵ(s, t)ĉℓ(s)ds

)

,∇wc(t)).

Summing and subtracting the term

(Dℓ(T̂ (t), ĉℓ(t))∇cℓ(t),∇wc(t)),

we deduce

1

2

d

dt
‖wc(t)‖

2 + dℓ‖∇wc(t)‖
2 ≤

∣

∣

∣
(
(

Dℓ(T (t), cℓ(t))−Dℓ(T̂ (t), ĉℓ(t))
)

∇cℓ(t),∇wc(t))
∣

∣

∣

+ |S1|+ |S2| (25)

For the first term, we have that
∣

∣

∣
(
(

Dℓ(T (t), cℓ(t))−Dℓ(T̂ (t), ĉℓ(t))
)

∇cℓ(t),∇wc(t))
∣

∣

∣

≤ Dx,max‖∇cℓ(t)‖∞‖wT (t)‖‖∇wc(t)‖+Dy,max‖∇cℓ(t)‖∞‖wc(t)‖‖∇wc(t)‖

≤ m0‖∇cℓ(t)‖
2
∞‖wT (t)‖

2 +m1‖∇cℓ(t)‖
2
∞‖wc(t)‖

2 + (ξ1 + ξ2)‖∇wc(t)‖
2, (26)

where ξ1, ξ2 > 0 are arbitrary constants and

m0 =
D2
x,max

4ξ1
, m1 =

D2
y,max

4ξ2
.

For S1, we sum and subtract the terms

(αDv(T̃ (t), c̃ℓ(t))

(

m
∑

k=0

E′
k(T (t))

)

∇(T (t)− T0)cℓ(t),∇wc(t)),

(αDv(T̃ (t), c̃ℓ(t))

(

m
∑

k=0

E′
k(T̃ (t))

)

∇(T (t)− T0)cℓ(t),∇wc(t)),

(αDv(T̃ (t), c̃ℓ(t))

(

m
∑

k=0

E′
k(T̃ (t))

)

∇(T̃ (t)− T̃0)cℓ(t),∇wc(t)),

to deduce

|S1| ≤ (m2‖∇(T (t)− T0)‖
2
∞ +m3‖∇cℓ(t)‖

2
∞)‖wT (t)‖

2

(m4‖∇(T (t)− T0)‖
2
∞ +m5‖∇cℓ(t)‖

2
∞)‖wc(t)‖

2

+m6‖∇(wT (t)− wT0)‖
2

+ (αdvCE + αdvCE‖∇(T̃ (t)− T̃0)‖+

9
∑

i=3

ξi)‖∇wc(t)‖
2 (27)
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with

m2 =
1

4ξ3
α2C2

E‖cℓ‖
2
L∞(0,tf ;L∞(Ω))

D2
v,x,max +

1

4ξ4
α2d2vC

2
E‖cℓ‖

2
L∞(0,tf ;L∞(Ω))

,

m3 =
1

4ξ5
α2C2

ED
2
v,x,max +

1

4ξ6
α2d2vC

2
E ,

m4 =
1

4ξ7
α2C2

E‖cℓ‖
2
L∞(0,tf ;L∞(Ω))

D2
v,y,max +

1

4ξ8
α2d2vC

2
E ,

m5 =
1

4ξ9
α2C2

ED
2
v,y,max,

m6 =
1

4ξ10
α2d2vC

2
E‖cℓ‖

2
L∞(0,tf ;L∞(Ω))

,

where the ξi > 0 are arbitrary constants for all i = 3, · · · , 9.
Analogously for S2, there exists positive constants m7, · · · ,m13, such that

|S2| ≤

m7

(

‖∇(T (t)− T0)‖
2
∞ +

∫ t

0
‖∇(T (s)− T0)‖

2
∞ds+

∫ t

0
‖∇cℓ(s)‖

2
∞ds

)

‖wT (t)‖
2

+m8

(

‖∇(T (t)− T0)‖
2
∞ +m

∫ t

0
‖∇(T (s)− T0)‖

2
∞ds+

∫ t

0
‖∇cℓ(s)‖

2
∞ds

)

‖wc(t)‖
2

+m9‖∇(wT (t)− wT0)‖
2 +m10

∫ t

0
‖∇(wT (s)− wT0)‖

2ds

+m11

(
∫ 2

0
‖∇(T (s)− T0)‖

2
∞ds+

∫ t

0
‖∇cℓ(s)‖

2
∞ds

)
∫ t

0
‖wT (s)‖

2ds

+m12

(

‖∇(T̃ (t)− T̃0)‖
2 +

∫ t

0
‖∇(T̃ (s)− T̃0)‖

2ds

)
∫ t

0
‖∇wT (s)‖

2ds

+m13

(

1 + ‖∇(T̃ (t)− T̃0)‖
2 +

∫ t

0
‖∇(T̃ (s)− T̃0)‖

2ds

)
∫ t

0
‖∇wc(s)‖

2ds

+ ξ11‖∇wc(t)‖
2, (28)

where ξ11 > 0 is an arbitrary constant.
Considering (26)-(28) in (25), we obtain that there exist positive constants γ1, γ2 and γ3

such that

d

dt
‖wc(t)‖

2 + ‖∇wc(t)‖
2

≤ γ1G(t)

(

‖wc(t)‖
2 +

∫ t

0
‖∇wc(s)‖

2ds

)

+ γ3‖wT0‖
2

+ γ2G(t)

(

‖wT (t)‖
2 + ‖∇wT (t)‖

2 +

∫ t

0

(

‖wT (t)‖
2 + ‖∇wT (s)‖

2
)

ds

)

,

provided that

d0 − αdvCE‖∇(T̃ (t)− T̃0)‖ > 0,

which holds when condition (24) is satisfied.
We also consider that the arbitrary constants ξi are fixed by

d0 − αdvCE‖∇(T̃ (t)− T̃0)‖ −
11
∑

i=1

ξi > 0.

Finally, the result follows after multiplication by e
∫ t
0 G(s)ds and integration.
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We note that condition (24) means that the perturbation of the initial data for the temper-
ature, is bounded by the set of physical parameters that guarantee that the total flux in (7) is
positive.

4 Coupling with drug delivery

In order to consider the effect of geometry on drug nanocrystal water solubility, we assume the
following thermodynamic model [18]:

Cs(T ) =
MdXd(T )

Ms(1−Xd(T ))
ρsol,

whereMd andMs are, respectively, the drug and the solvent molecular weights, ρsol is the solvent
density, Cs is the mass/volume nanocrystal solubility and Xd is the drug molecular solubility,
defined by

Xd(T ) =
1

γd

(

T

Tm

)∆cp/R

exp

(

−

[

∆hm
RT

(

1−
T

Tm

)

+
∆cp
R

(

1−
Tm
T

)])

,

∆hm and ∆cp are, respectively, the drug molar melting enthalpy and the difference between the
solid-liquid drug molar specific heat at constant pressure, γd is the drug activity coefficient and
Tm is the nanocrystal melting temperature.

In order to simplify the model, we assume that γd and ρsol do not change with temperature,
thus, considering the ratio Cs(T )/Cs(T0) we get that

Cs(T )

Cs(T0)
=
Xd(T )(1−Xd(T0))

Xd(T0)(1−Xd(T ))

=

(

T

T0

)∆cp/R

exp

(

1

R

(

1

T0
−

1

T

)

(∆hm −∆cpTm)

)

,

Considering the solubility of the drug and the evolution of non-Fickian diffusion of the
permeant fluid in the polymeric matrix, the concentration of dissolved and solid drug in the
polymer are given by the following transport equations,

∂cd
∂t

=∇ · (Dd(T, cℓ)∇cd + v(cℓ)cd))

+Kdcℓ

(

1−
cd

Cs(T )

)

H(cs)H

(

1−
cd

Cs(T )

)

in Ω× (0, tf ], (29)

∂cs
∂t

= −Kdcℓ

(

1−
cd

Cs(T )

)

H(cs)H

(

1−
cd

Cs(T )

)

in Ω× (0, tf ], (30)

where cd and cs denote the concentrations of dissolved and solid drugs, respectively, Kd the
constant dissolution rate of the drug and H represents the Heaviside function. We denote by
Dd the Fickian diffusion coefficient of the drug defined by

Dd(T, cl) = D0,de
−

EA
RT

−βd(1−
cℓ
ceq

)
,

where D0,d is the maximum diffusivity of the drug and βd a dimensionless positive constant.
The stress field introduced in (7) is responsible for a convective solvent transport that, in turn,
implies a convective drug transport of dissolved drug. Therefore we define the convective velocity
as

v(cℓ) = Dv(T, cℓ)
∇σ(T, cℓ)

cℓ

12



We note that we are assuming that drug dissolution can only occur in the presence of the
incoming solvent, if the solid phase is present and if the concentration of dissolved drug is smaller
than the solubility. That is, only when cℓ > 0, cs > 0 and cd < Cs. In Figure 2 we show the
behavior of the ratio Cs(T )/Cs(T0) as a function of the temperature, with T (t) = 290 + t for
t ∈ [0, 320]. The parameters for Cs are fixed by the reference values considered in Section 5. We
can see that the solubility is an increasing function of T .

290 295 300 305 310 315 320
1

1.1

1.2

1.3

1.4

1.5

Figure 2: Solubility ratio Cs(T )/Cs(T0) with T (t) = 290 + t for t ∈ [0, 320].

The system (29)-(30) is closed with initial and boundary conditions:

cd(x, 0) = 0 for x ∈ Ω, (31)

cs(x, 0) = c0 for x ∈ Ω, (32)

cd(x, t) = 0 for x ∈ ∂Ω× [0, tf ]. (33)

Thus, we are considering that the polymeric matrix has an initial loading of solid drug c0 ∈ R

and that all the dissolved drug that reaches the boundary is removed from the domain (perfect
sink condition).

5 Numerical simulations

In this section we present some numerical simulations for the one dimensional case in [0, L]. In
order to reduce the computational cost, we will consider symmetry conditions at the axis x = 0.

Let h = (h1, h2 · · · , hN ) be such that
∑N

j=1 hj = L. Each vector h induces in the spatial
domain [0, L] a nonuniform grid Ih = {xj , j = 0, 1, · · · , N}, where x0 = 0, xN = L , and
xj − xj−1 = hj , for all j = 1, 2, · · · , N .

In the time domain [0, tf ] we set a uniform grid I∆t = {tn, n = 0, 1, · · · ,M}, where t0 = 0,
tM = tf , and tn − tn−1 = ∆t, for all n = 1, 2, · · · ,M .

We denote by Wh the space of grid functions defined in Ih. By Wh,0 we represent the
subspace of Wh of functions null on the boundary points. By D−t and D−x we denote the usual
backward finite difference operators in time and space, respectively.

13



In order to solve numerically (14), we propose the following implicit-explicit (IMEX) finite
difference method

D−tT
n
h (xj) = D

1
2
x (DT (MhT

n−1
h (xj))D−xT

n
h (xj)) +G(Tn−1

h (xj)), (34)

where

D
1
2
x uh(xj) =

uh(xj+1)− uh(xj)

hj+1/2
, hj+1/2 =

hj+1 + hj
2

,

and

Mhuh(xj) =
uh(xj−1) + uh(xj)

2
,

for all uh ∈ Ih.
To simplify the presentation we consider the notation

Fh(xj , n, s) = α
m
∑

k=1

1

µk
Ek(MhT

n
h (xj))Ek(MhT

s
h(xj))e

− 1
µk

∆t
∑n−1

r=s Ek(MhT
r
h (xj)).

For the numerical solution of (13), we propose the following IMEX finite difference method

D−tc
n
ℓ,h(xj) =D

1
2
x (Dℓ(MhT

n
h (xj),Mhc

n−1
ℓ,h (xj))D−xc

n
ℓ,h(xj))

− αD
1
2
x

(

Dv(MhT
n
h (xj),Mhc

n−1
ℓ,h (xj))D−x

(

m
∑

k=0

Ek(MhT
n
h (xj))c

n
ℓ,h(xj)

))

+∆t
n−1
∑

s=0

D
1
2
x (Dv(MhT

n
h (xj),Mhc

n−1
ℓ,h (xj))D−x(Fh(xj , n, s)c

s
ℓ,h(xj))). (35)

In Section 5.1, we include numerical simulations showing that the proposed schemes (34)
and (35), are second order convergent in space and first order convergent in time.

In order to illustrate the qualitative behavior of the model we consider the following reference
values taken from [8] [14], [16], [17] and [19]:

L = 5e−3 m, tf = 1000 s, DT = 1e−8 m2/s, G(T ) = 0, T0 = 290 K, Tin = 325 K, β = 80e−4
1/K, E0 = 9e3 Pa, E1 = 2e3 Pa, µ1 = 2.25e4 Pa·s, φ0 = 50, m0 = 1.5, EA/R = 2.43e2 K,
ceq = 700 kg/m3, Dℓ,0 = 1e − 8 m2/s, βℓ = 1.5, c0 = 4.5 kg/m3, Dd,05e − 8 m2/s, βd = 0.5,
Kd = 1e−7 s−1, Cs(T0) = 0.02 kg/m3, Tm = 494.05 K, ∆cp = 180.26 J/(mol·K), ∆hm = 43884.6
J/mol, ∆t = 0.01 s, h = 1e− 4 m.
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Figure 3: Temperature for t = 0, t = 5 · 102 and t = 103 in [0, L].

In Figure 3 we show the evolution of the temperature at different times. At t = 0 we observe
that the initial constant temperature T0 is evenly distributed in the spatial domain; then for
t = tf/2 and t = tf we observe an increase in the temperature as we are assuming that we have
a constant source of temperature Tin at x = L.

In Figure 4 we plot the concentration cℓ as a function of x, for time points t0, tf/2 and tf .
The concentration inlet is located at x = L. Therefore, the concentration increases from right
to left in the spatial domain as time increases.
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Figure 4: Concentration cℓ for t = 0, t = 5 · 102 and t = 103 in [0, L].

For t = tf , we exhibit in Figure 5 a plot of the concentration of the fluid, as a function of
x considering three different regimes: Fickian enhanced by temperature, non-Fickian and non-
Fickian enhanced by temperature. The fastest absorption occurs for Fickian diffusion enhanced
by temperature. When the relaxation of the polymer is included, in both non-Fickian diffusion
regimes, diffusion of the permeating fluid slows down since there is an opposition to the flow
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that decreases with respect to the temperature. Therefore, the slower absorption is observed in
the non-Fickian regime with no temperature enhancement.
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Figure 5: Concentration cℓ for t = tf in [0, L].

We define the total mass Mi for i = ℓ, d, s, as

Mi(t) =

∫ L

0
ci(x, t)dx, for t ∈ [0, tf ].

The mass variation of cℓ is depicted in Figure 6. We observe a behavior consistent with
the results in Figure 5. That is, less fluid mass is absorbed when non-Fickian diffusion with
no temperature enhancement is considered and the highest accumulation is attained when the
phenomenon is modeled with Fickian diffusion enhanced by temperature.
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Figure 6: Mass variation of cℓ.

The plots in Figure 6 suggest the importance of including in the model the viscoelastic
properties of the platforms, when analyzing the absorption of a permeant fluid. Moreover they
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show that the opposition to fluid permeation, caused by the stress field, can be compensated by
the effect of temperature.

To solve numerically the drug delivery problem (29)-(33), for cd, we propose the following
IMEX finite difference method

D−tc
n
d,h(xj) = D

1
2
x (Dd(MhT

n
h (xj),Mhc

n
ℓ,h(xj))D−xc

n
d,h(xj))

+D
1
2
x (Dv(MhT

n
h (xj),Mhc

n
ℓ,h(xj))

Mhc
n
d,h(xj)

Mhc
n
ℓ,h(xj)

D−xσh(T
n
h (xj), c

n
ℓ,h(xj)))

+Kdc
n
ℓ,h(xj)

(

1−
cn−1
d,h (xj)

Cs(Tnh (xj))

)

H(cn−1
s,h (xj))H

(

1−
cn−1
d,h (xj)

Cs(Tnh (xj))

)

, (36)

where σh is the non-Fickian part of the flux obtained from (35). As illustrated in Section 5.1,
the numerical scheme (36) is second order convergent in space and first order convergent in time.

For cs we consider

D−tc
n
s,h(xj) =−Kdc

n
ℓ,h

(

1−
cnd,h(xj)

Cs(Tnh (xj))

)

(xj)H(cn−1
s,h (xj))H

(

1−
cnd,h(xj)

Cs(Tnh (xj))

)

. (37)

The behavior of the concentration of dissolved drug cd at t = 0, t = 5 · 102 and t = 103 is
plotted in Figure 7. We observe that as time increases, the amount of dissolved drug inside the
domain also increases. A perfect sink condition is defined at x = L.
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Figure 7: Concentration cd for t = 0, t = 5 · 102 and t = 103 in [0, L].

In Figure 8 we show the concentration of dissolved drug cd, at t = tf for the different
regimes. We observe that the amount of dissolved drug is higher when the desorption is controlled
by Fickian diffusion with a temperature enhancement. For the non-Fickian regime with no
temperature enhancement, the concentration of dissolved drug cd is smaller.
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Figure 8: Concentration cd for t = tf in [0, L].

The mass of dissolved drug Md is illustrated in Figure 9. In agreement with Figure 8, in the
Fickian regime more fluid diffuses in the material, therefore the mass is higher. The amount of
fluid in the non-Fickian regime is lower when compared with the other two regimes.
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Figure 9: Mass Md for t = tf in [0, L].

The behavior of the concentration of solid drug cs at t = tf is plotted in Figure 10. In
this case, we notice a slowest dissolution when the entrance of fluid is not enhanced by the
temperature. This outcome is consistent with the fact that if the amount of fluid in the system
is smaller and the solubility does not increases with temperature, a greater amount of solid drug
remains undissolved.
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Figure 10: Concentration cs for t = tf in [0, L].

In order to illustrate the effect of the temperature as a drug release enhancer, we consider
that a heat source is applied at the boundary of the domain. We assume the boundary condition
T (L, t) = 310 + 1× 10−3t and set tf = 104.

The behavior of the temperature is plotted in Figure 11. We can see that the temperature
increases as t increases. The heat source is located at x = L.
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Figure 11: Temperature for t = 2.5 · 103, t = 5 · 103, t = 7.5 · 103 and t = 104 in [0, L].

In Figure 12 we study the effect of the heat source applied at the boundary for the concen-
tration of fluid cℓ when the non-Fickiam model is used. We observe that as the temperature
increases, the relaxation of the polymer is faster. Thus, the fluid diffuses faster in the material.
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Figure 12: Concentration cℓ, computed with the non-Fickian model, for t = 2.5 · 103, t = 5 · 103,
t = 7.5 · 103 and t = 104 in [0, L].

The increase of the temperature leads to an increase of the diffusion of cℓ. Since the dissolu-
tion of the drug is faster when more fluid is present and temperature is higher, we expect a faster
drug delivery. This behavior is illustrated in Figure 13 for the concentration cd of dissolved drug.
We observe that in fact the heat induces an increase on cd as time increases.
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Figure 13: Concentration cd, computed with the non-Fickian model, for t = 2.5 · 103, t = 5 · 103,
t = 7.5 · 103 and t = 104 in [0, L].

5.1 Convergence rates

In what follows we illustrate the convergence orders in time and space for the numerical schemes
proposed in Section 5.
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In Wh,0 we consider the inner product

(uh, vh)h =
N−1
∑

i=1

hi+1/2uh(xi)vh(xi),

and denote by ‖ · ‖h the norm induced by this inner product.
For the numerical order in space, we consider an uniform partition I∆t of [0, 1], with ∆t =

1 × 10−3. Assuming an initial uniform partition Ih for [0, L], we compare the approximations
Th, cℓ,h and cs,h, where h is halved successively. Hence, we define the errors by

‖E(u)‖h = max
1≤n≤M

‖uh(tn)− uh
2
(tn)‖h,

and the convergence rates

Ru = log2

(

‖E(u)‖h
‖E(u)‖h

2

)

.

In Table 1, we showcase the errors and the convergence orders in space for Th, cℓ,h and cd,h,
considering the numerical schemes (34), (35) and (36), respectively. We observe that all the
approximations are of quadratic order in space.

Table 1: Numerical order of convergence in space for Th, cℓ,h and cd,h.

h ‖E(T )‖h RT ‖E(cℓ)‖h Rcℓ ‖E(cd)‖h Rcd

L/200 4.80× 10−4 - 6.34× 10−2 - 5.43× 10−12 -

L/400 1.20× 10−4 1.9930 1.64× 10−2 1.9439 1.47× 10−12 1.8773

L/800 3.01× 10−5 1.9983 4.16× 10−3 1.9861 3.77× 10−13 1.9695

L/1600 7.55× 10−6 1.9996 1.04× 10−3 1.9965 9.50× 10−14 1.9908

L/3200 1.88× 10−6 1.9999 2.60× 10−4 1.9991 2.39× 10−14 1.9912

For the approximation of the convergence rates in time, we assume an uniform partition Ih
of [0, L] with h = 1 × 10−4. Considering an initial uniform partition I∆t for [0, 1], we compare
the approximations T∆t, cℓ,∆t and cs,∆t, where ∆t is halved successively. In this case, we define
the errors by

‖E(u)‖∆t = max
1≤n≤M∆t

‖u∆t(tn)− u∆t
2
(tn)‖h,

and the convergence orders

R̂u = log2

(

‖E(u)‖∆t
‖E(u)‖∆t

2

)

.

As we can observe in Table 2, all the approximations have linear order in time.

Table 2: Convergence rates in time for T∆t, cℓ,∆t and cs,∆t.

∆t ‖E(T )‖∆t R̂T ‖E(cℓ)‖∆t R̂cℓ ‖E(cd)‖∆t R̂cd

tf/6400 5.27× 10−3 - 1.04× 10−1 - 6.59× 10−11 -

tf/12800 2.85× 10−3 0.8845 5.32× 10−2 0.9710 3.31× 10−11 0.9941

tf/25600 1.49× 10−3 0.9352 2.69× 10−2 0.9856 1.65× 10−11 0.9971

tf/51200 7.64× 10−4 0.9666 1.35× 10−2 0.9928 8.30× 10−12 0.9986

tf/102400 3.86× 10−4 0.9828 6.77× 10−3 0.9964 4.15× 10−12 0.9993
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6 Conclusions

Controlled drug delivery devices that are enhanced by temperature can play an important role
in the treatment of various diseases by allowing a targeted delivery of therapeutic agents to
specific areas of the body. This minimizes the risk of side effects and maximizes the effectiveness
of the treatment.

In this work we propose a novel mathematical model to describe non-Fickian absorption of a
fluid into a polymeric matrix, followed by non-Fickian drug desorption, where both phenomena
are enhanced by temperature. In the framework of Controlled Drug Delivery the permeating
fluid represents the extracellular fluid. We deduce functional expressions depending on temper-
ature/concentration for the viscoelastic diffusion coefficient and for the Young modulus of the
springs considered in the mechanistic model.

It is shown that the diffusion problem is stable in bounded time intervals, provided that
the functions T and cℓ are regular enough, and if the perturbation of the initial data for the
temperature is bounded by an expression that depends on the physical parameters of the poly-
mer. This restriction guarantees, from the mathematical point of view, that the parabolic part
of equation (7) dominates the hyperbolic part. From the physical point of view the restriction
ensures that the total flux is diffusion dominated and positive.

By coupling fluid absorption with drug delivery, we illustrate numerically two main aspects
of the coupled phenomena: (i) the effectiveness of using heat to enhance drug release; (ii) the
oversized predictions of the amount of delivered drug if viscoelastic properties are not considered.
In fact, we observed that the relaxation of the polymer is increased when heat is considered
leading to a faster absorption of the fluid and a subsequent enhancement of the release of the
drug.

It is known that an increase in temperature in living tissue can cause an increase of drug
permeation through the tissue. Therefore, the proposed model can be coupled with an external
media in order to provide a realistic description of medical devices that can be used in the
treatment of a wide range of diseases, from cancer to chronic pain.

Acknowledgments
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[3] L. Valdivia, L. Garćıa-Hevia, M. Bañobre-López, J. Gallo, R. Valiente, M. L. Fanarraga,
Solid lipid particles for lung metastasis treatment, Pharmaceutics 13 (1) (2021) 93.

22



[4] A. Kumari, S. K. Yadav, S. C. Yadav, Biodegradable polymeric nanoparticles based drug
delivery systems, Colloids Surf. B 75 (2010) 1–18.

[5] E. Blanco, M. Ferrari, Principles of nanoparticle design for overcoming biological barriers
to drug delivery, Nat. Biotechnol. 33 (2015) 941–951.

[6] Y. Zhao, X. Fan, D. Liu, Z. Wang, Pegylated thermo-sensitive poly (amidoamine) dendritic
drug delivery systems, Int. J. Pharm. 409 (2011) 229–36.

[7] G. Grassi, R. Farra, P. Caliceti, G. Guarnieri, S. Salmaso, M. Carenza, M. Grassi,
Temperature-sensitive hydrogels, Am. J. Drug Deliv. 3 (2005) 239–251.

[8] J. A. Ferreira, P. de Oliveira, E. Silveira, Drug release enhanced by temperature: An
accurate discrete model for solutions in h3, Comput. Math. with Appl. 79 (2020) 852–875.

[9] J. A. Ferreira, P. de Oliveira, G.Pena, E. Silveira, Coupling nonlinear electric fields and
temperature to enhance drug transport: An accurate numerical tool, J. Comput. Appl.
Math. 384 (2021) 113127.

[10] L. N. Thomas, A. H. Windle, A deformation model for case ii diffusion, Polymer 21 (1980)
613–619.

[11] G. Camera-Roda, G. C. Sarti, Mass transport with relaxation in polymers, AIChE J. 36 (6)
(1990) 851–860.

[12] D. S. Cohen, A. B. W. Jr., Sharp fronts due to diffusion and viscoelastic relaxation in
polymers, SIAM J. Appl. Math. 51 (2) (1991) 472–483.

[13] M. Grassi, G. Grassi, Mathematical modeling and controlled drug delivery: Matrix systems,
Curr. Drug Deliv. 2 (1) (2005) 97–116.

[14] J. A. Ferreira, M. Grassi, E. Gudiño, P. de Oliveira, A new look to non-Fickian diffusion,
Appl. Math. Model. 39 (1) (2015) 194–204.

[15] H. F. Brinson, L. C. Brinson, Polymer Engineering Science and Viscoelasticity, An Intro-
duction, Springer, New York, 2008.

[16] J. A. Ferreira, M. Grassi, E. Gudiño, P. de Oliveira, A 3D model for mechanistic control of
drug release, SIAM J. Appl. Math. 74 (3) (2014) 620–633.

[17] F. Civan, Porous Media Transport Phenomena, John Wiley & Sons, New Jersey, 2011.

[18] G. Chiarappa, A. Piccolo, I. Colombo, D. Hasa, et. al., Exploring the shape influence on
melting temperature, enthalpy, and solubility of organic drug nanocrystals by a thermody-
namic model, Cryst. Growth Des. 17 (2017) 4072–4083.

[19] G. Chiarappa, Drug nanocrystals in drug delivery and pharmacokinetics, Ph.D. thesis,
University of Trieste (2017).

23


