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Abstract

This paper aims to present in a systematic form the stability and convergence
analysis of a numerical method defined in nonuniform grids for nonlinear elliptic and
parabolic convection-diffusion-reaction equations with Neumann boundary conditions.
The method proposed can be seen simultaneously as a finite difference scheme and as a
fully discrete piecewise linear finite element method. We establish second convergence
order with respect to a discrete H1-norm which shows that the method is simultaneously
supraconvergent and superconvergent. Numerical results to illustrate the theoretical
results are included.

1 Introduction

In this work we consider the one-dimensional initial boundary value problem (IBVP)

∂u

∂t
=

∂

∂x

(

A(u)
∂u

∂x
+ f(u)

)

− qu+ g in Ω× (0, T ], (1)

where Ω = (0, 1) and A, f : R −→ R, q, g : Ω × [0, T ] −→ R are smooth enough, comple-
mented with the homogeneous Neumann boundary conditions

A(u)
∂u

∂x
+ f(u) = 0, on ∂Ω× (0, T ], (2)

and with the initial condition

u(x, 0) = u0(x), for all x ∈ Ω. (3)

We also assume that there exist positive constants A0, q0 such that

q(x, t) ≥ q0 > 0, for all x ∈ Ω, t ∈ [0, T ] A(x) ≥ A0 > 0, for all x ∈ R.

The differential equation (1) is a convection-diffusion-reaction equation, where the
diffusion and convection terms are possibly nonlinear. The analysis of a version of coupled
equations of a similar type of (1)-(3) with Dirichlet boundary conditions was recently carried
in [6], although its scope was focused on stability and error estimates for a semidiscretization
scheme of the system.
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The study of numerical methods for Neumann boundary value problems (BVP) or
Neumann IBVP has not received much attention recently. However, some studies have
been conducted in the past to show proper error estimates for problems similar to (1)-(3).
Without being exhaustive we mention [8] where, for a second-order linear differential
equation, involving the Laplace operator, defined in a square, a finite difference method
based on nonuniform grids was proposed, and its convergence analyzed. We also mention
[4] for a an integro-differential equation coupled with a parabolic equation defined in an
interval and [10] for quasilinear parabolic equations defined in a square. In both cases, the
convergence analysis assumes smooth solutions.

The goal of this paper is to propose and analyse the convergence properties of a
numerical scheme for problem (1)-(3). The paper aims to introduce, for nonlinear elliptic
and parabolic convection-diffusion-reaction equations with Neumann boundary conditions,
supraconvergent finite difference schemes that can be seen as superconvergent piecewise
linear finite element method and, simultaneously, present two different approaches for the
convergence analysis depending on the solution’s smoothness. As it can be seen later, for
smooth solutions we use Taylor’s formula and this will require the use of a discrete version
of the so called trace inequality ([1]). However, the approach used for nonsmooth solutions,
relying on the Bramble-Hilbert Lemma ([5]) for the derivation of the error estimates, greatly
simplifies the analysis and avoids the use of this discrete trace inequality. We will show
that the methods are second order convergent (w.r.t. space) for a discrete H1-norm. This
fact is surprising because the problems are nonlinear and, as finite difference methods, they
present first order truncation error with respect to the norm ∥ · ∥∞, defined in nonuniform
meshes, while, as finite element methods, the piecewise linear finite element method is only
of first order with respect to the usual H1 norm.

We recall that the term supraconvergence was introduced in the literature in the 1980s
by the finite difference method’s community to identify finite difference schemes that present
convergence order greater that the order of the truncation error. Without being exhaustive
we mention [11, 12, 7, 14, 15, 17, 9]. The term superconvergence was introduced in the
literature by the finite element method’s community to identify methods that present
unexpected convergence order. This phenomena was initially introduced associated with
the identification of certain points of the spatial domain where the convergence order is
higher than in the rest of the spatial domain. In what concerns this subject we recommend
[16] and the references contained there.

In what concerns stability, as we dealing with nonlinear problems, it is a local property.
We observe that to have stability for a certain discrete solution we need to impose smoothness
assumptions on the local solution. We conclude that we should consider open balls with
stepsize dependent radius and the required condition is consequence of the convergence
results.

The paper is divided in two parts. In the first part we will start by analysing the
convergence properties under the assumption of a smooth solution. We will first consider
the fully stationary problem, leading to a nonlinear elliptic boundary value problem and
subsequently, analyse a semidiscretization and full discretization of problem (1)-(3). The
conducted analysis will be based on the study of the truncation error. The second part of the
paper aims at proving similar error estimates under less restrictive regularity assumptions
on the solution of problem (1)-(3). Here we will follow the ideas in [6] and carefully use the
Bramble-Hilbert Lemma [5] to show convergence of the numerical schemes for stationary
and nonstationary problems. The techniques considered in the first part will provide crucial
guidelines on the analysis performed on the second part.
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2 Some notations and results

Let Λ be a sequence of vectors h = (h1, . . . , hN ) with positive entries such that
∑N

i=1 hi = 1.
For each partition h, we define

hmax = max
i=1,...,N

hi, hmin = min
i=1,...,N

hi.

We introduce the grids

Ωh = {xi : i = 0, . . . , N, x0 = 0, xN = 1, xi = xi−1 + hi, i = 1, . . . , N},

Ω
∗
h = Ωh ∪ {x−1 = −h1, xN+1 = 1 + hN},

Ω
up
h = Ωh\{x0},

∂Ωh = ∂Ω ∩ Ωh

and hi+1/2 = hi+hi+1

2 , i = 1, . . . , N − 1, h1/2 = h1

2 , hN+1/2 = hN
2 and h0 = h1. We say that

a family of grids
{

Ωh, h ∈ Λ
}

is quasiuniform if there exists a positive constant K such
that

maxi hi
mini hi

≤ K,

for all h ∈ Λ.
Let Wh denote the space of grid functions defined in Ωh, W

∗
h the space of grid functions

defined in Ω
∗
h and W

up
h the space of grid functions defined in Ω

up
h . We introduce in Wh the

inner product

(vh, wh)h =
N
∑

i=0

hi+1/2vh(xi)wh(xi)

for all vh, wh ∈ Wh and its corresponding induced norm, ∥·∥h.
In W

up
h we introduce the inner product

(vh, wh)+ =
N
∑

i=1

hivh(xi)wh(xi), vh, wh ∈ W
up
h

and its corresponding norm ∥·∥+ =
√

(·, ·)+. We also introduce in Wh the norm ∥·∥h,∞ as
a discrete version of the L∞-norm

∥vh∥h,∞ = max
x∈Ωh

|vh(x)|.

2.1 Difference operators

To describe the spatial discretization on a more compact fashion, we shall introduce some
difference operators to ease the notation. Let uh ∈ W

∗
h and i ∈ {0, . . . , N}. We define

D∗
xuh(xi) =

uh(xi+1)− uh(xi)

hi+1/2
, (4)

D−xuh(xi) =
uh(xi)− uh(xi−1)

hi
, (5)

Dcuh(xi) =
uh(xi+1)− uh(xi−1)

hi + hi+1
, (6)

Mhuh(xi) =
uh(xi) + uh(xi−1)

2
. (7)
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Remark 1. Although the difference operators are defined for grid functions in W
∗
h, they

can be also applied to functions of Wh (or W
up
h ) as long as the definitions of the difference

operators make sense.

The previous operators allow to introduce a new norm in Wh, denoted by ∥·∥1,h, defined
by

∥vh∥1,h =
√

∥vh∥2h + ∥D−xvh∥2+, vh ∈ Wh,

which can be seen as a discrete version of the usual H1-norm, where D−x : Wh −→ W
up
h is

defined through (5).
A central point in the convergence analysis carried out in the upcoming sections is the

relationship between the inner products (·, ·)h, (·, ·)+ and the difference operators. To this
end, we introduce the operators D∗

x : W∗
h −→ Wh, Dc : W

∗
h −→ Wh and Mh : W∗

h −→ Wh

defined through (4), (6) and (7), respectively. The following result establishes a discrete
version of the known formulas of integration by parts and can be shown using summation
by parts.

Proposition 1. If uh ∈ W
∗
h and vh ∈ Wh then the following formulas hold

−(D∗
xuh, vh)h = (uh, D−xvh)+ + (Mhuh(x1))vh(x0)− (Mhuh(xN+1))vh(xN )

−(Dcuh, vh)h = (Mhuh, D−xvh)+ +
1

4
(uh(x1) + 2uh(x0) + uh(x−1))vh(x0)

− 1

4
(uh(xN+1) + 2uh(xN ) + uh(xN−1))vh(xN ).

The next result is a discrete trace inequality for functions in Wh. This result will be
fundamental in establishing convergence in section 3.

Proposition 2. For vh ∈ Wh we have

max
x∈∂Ωh

|vh(x)| ≤ 2 ∥vh∥1,h .

Proof. Let i ∈ {1, . . . , N}. From the representation

vh(x0) = −
i
∑

j=1

hjD−xvh(xj) + vh(xi),

we obtain
vh(x0)

2 ≤ 2
(

∥D−xvh∥2+ + vh(xi)
2
)

.

Consequently,

N−1
∑

i=1

hi+1/2vh(x0)
2 ≤ 2

(

∥D−xvh∥2+ +

N−1
∑

i=1

hi+1/2vh(xi)
2

)

,

that concludes the proof for x = x0. The proof for x = xN follows the same steps.

2.2 Functional spaces

In the following sections we will require certain functionspaces which we now introduce. Let
m be a nonnegative integer and 1 ≤ p ≤ ∞. By Lp(Ω), Hm(Ω) and Wm,∞(Ω), we denote
the usual Lebesgue and Sobolev spaces with their respective norms, ∥·∥Lp(Ω), ∥·∥Hm(Ω)
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and ∥·∥Wm,∞(Ω). We also introduce Cm
B (R), the space of real differentiable functions with

derivative up to order m bounded in R and its corresponding norm

∥u∥Cm
B (R) = max

i=0,...,m
∥u(i)∥L∞(R).

We denote by Cm([0, T ], V ), m ∈ N0, where V is a normed vector space, the space of
functions v : [0, T ] −→ V such that v(j) : [0, T ] −→ V , j = 0, . . . ,m, are continuous
functions, imbued with the norm

∥u∥Cm([0,T ],V ) = max
t∈[0,T ]

∥u(t)∥V

where ∥·∥V is a norm in V .

3 Convergence analysis with smooth solutions

We now turn to the analysis of problem (1)-(3). With the aim of analysing a fully
discrete scheme to approximate the solution of (1)-(3), we will start by analysing a spatial
discretization of the stationary version of (1)-(3). We will then proceed to the analysis of
the corresponding semidiscretization of the problem and finally study the fully proposed
discrete scheme.

3.1 An elliptic nonlinear boundary value problem

This section starts by considering the elliptic boundary value problem

− d

dx

(

A(u)
du

dx
+ f(u)

)

+ qu = g in Ω, (8)

with the boundary conditions

A(u)
du

dx
+ f(u) = 0 on ∂Ω, (9)

where A, f ∈ C1(R), q, g ∈ C0(Ω). For this boundary value problem, we propose a finite
difference method, that can be seen as fully discrete piecewise linear finite element method.
We shall prove that it leads to a second-order approximation with respect to a discrete
H1-norm.

We now introduce the operator that will be used to discretize the boundary conditions (9).
For uh ∈ W

∗
h, let Dη denote the operator defined by

Dηuh(x0) = −1

2
(A(Mhuh(x1))D−xuh(x1) +A(Mhuh(x0))D−xuh(x0))

− 1

4
(f(uh(x1)) + 2f(uh(x0)) + f(uh(x−1)))

Dηuh(xN ) =
1

2
(A(Mhuh(xN+1))D−xuh(xN+1) +A(Mhuh(xN ))D−xvh(xN ))

+
1

4
(f(uh(xN+1)) + 2f(uh(xN )) + f(uh(xN−1))) .

The finite difference scheme to approximate the solution of system (8)-(9) is then
established by the set of equations

− (D∗
x(A(Mhuh)D−xuh) +Dcf(uh)) + (Rhq)uh = Rhg, in Ωh (10)
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and
Dηuh(x0) = Dηuh(xN ) = 0, (11)

holding for uh ∈ W
∗
h, where Rh : C0(Ω) −→ Wh denotes the standard restriction operator.

An important piece in the convergence analysis is the link between the discrete operator
D∗

x(A(Mhuh)D−xuh+Dcf(uh) and the boundary operator Dη, which is a direct consequence
of Proposition 1.

Proposition 3. For uh ∈ W
∗
h and vh ∈ Wh, it holds

−(D∗
x(A(Mhuh)D−xuh) +Dcf(uh), vh)h = (A(Mhuh)D−xuh, D−xvh)+

+ (Mhf(uh), D−xvh)+

−Dηuh(x0)vh(x0)−Dηuh(xN )vh(xN ).

This allows to show that our proposed discretization is adequate to approximate the
solution of the original elliptic problem. Indeed, let u ∈ H1(Ω) denote the weak solution
for problem(8)-(9), i.e., u satisfies

(A(u)u′ + f(u), v′) + (qu, v) = (g, v), ∀v ∈ H1(Ω).

If Ph denotes de piecewise linear interpolation operator and uh ∈ Wh, then

(A(Phuh)Phu
′
h + f(Phuh), Phv

′
h) + (qPhuh, Phvh) = (g, Phvh), ∀vh ∈ Wh.

This leads us to the discrete version of looking for uh ∈ Wh such that

(A(Mhuh)D−xuh +Mhf(uh), D−xvh)+ + ((Rhq)uh, vh)h = (Rhg, vh)h, ∀vh ∈ Wh. (12)

The following result is a direct consequence of Proposition 3 and establishes the
connection between the FEM formulation (12) and the FDM formulation (10)-(11).

Proposition 4. If uh ∈ W
∗
h is solution of problem (10)-(11), then uh satisfies equation (12).

The convergence analysis presented in what follows assumes that the solution of the
BVP (8)-(9) belongs to C4(Ω

∗
) where Ω∗ =

⋃

h∈Λ(−x1, xN+1). Let us denote by R∗
h :

C0(Ω
∗
) −→ W

∗
h the restriction operator and Th ∈ Wh the truncation error induced by

discretization (10) in Ωh, i.e.,

Th = −D∗
x(A(MhR

∗
hu)D−xR

∗
hu)−Dcf(R

∗
hu) + (Rhq)R

∗
hu−Rhg

and Th,∂Ω denote the truncation error associated with the discretization of the boundary
conditions (11), i.e.,

Th,∂Ω(xi) = DηR
∗
hu(xi), i = 0, N.

Proposition 5. Let A ∈ C4
B(R), f ∈ C3

B(R), g, q ∈ C0(Ω). If u ∈ C4(Ω
∗
) denotes the

solution of equation (8) then the truncation error Th(xi), i = 1, . . . , N−1 can be decomposed
as

Th(xi) = T
(1)
h (xi) + T

(2)
h (xi)

where

1. T
(1)
h (xi) = (hi+1 − hi)R(xi), for R ∈ C1(Ω) defined as

R(x) = −1

3

d3

dx3

(

A

(

u(x) +Rhu(xi)

2

)

(u(x)−Rhu(xi))

)

− 1

2

d2f(u)

dx2
(x)
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2. T
(2)
h (xi) is of the order of h2max, and there exists a positive constant C, h-independent,

such that
|T (2)

h (xi)| ≤ Ch2max ∥u∥C4(Ω) , i = 1, . . . , N − 1.

Moreover, the following estimates hold

|Th(x0)| ≤ Ch21 ∥u∥C4(Ω
∗

) ,

|Th(xN )| ≤ Ch2N ∥u∥C4(Ω
∗

)

for some positive constant, h-independent, C.

Proposition 6. Let A ∈ C3
B(R), f ∈ C2

B(R) and u ∈ C3(Ω
∗
) denote the solution of

equation (8). Then there exists a positive constant C, h-independent, such that

|Th,∂Ω(x0)| ≤ Ch21 ∥u∥C3(Ω
∗

) and |Th,∂Ω(xN )| ≤ Ch2N ∥u∥C3(Ω
∗

) .

We are now able to establish a convergence result for the discretization (10)-(11) and
provide a bound for the discretization error Eu = uh −Rhu ∈ Wh.

Theorem 1. Let u ∈ C4(Ω
∗
) denote the solution of problem (8)-(9) and uh ∈ W

∗
h denote

the solution of system (10)-(11). If A ∈ C4
B(R), f ∈ C3

B(R), g, q ∈ C0(Ω) then there exists
a positive constant C, h-independent, such that

∥Eu∥1,h ≤ Ch2max ∥u∥C4(Ω
∗

) , (13)

for h ∈ Λ, provided that
∥

∥u′
∥

∥

L∞(Ω)

∥

∥A′
∥

∥

L∞(R)
+
∥

∥f ′
∥

∥

L∞(R)
< min

{

A0,
q0

2

}

. (14)

Proof. It can be easily shown that the following equation holds for Eu

(A(Mhuh)D−xEu, D−xEu)+ + ((Rhq)Eu, Eu)h

= ((A(MhRhu)−A(Mhuh))D−xRhu,D−xEu)+

− (Mh(f(uh)− f(Rhu)), D−xEu)+ − (Th, Eu)h −
∑

i=0,N

Th,∂Ω(xi)Eu(xi). (15)

We now need to estimate all terms in the right hand side of equation (15). Let

τ1 = ((A(MhRhu)−A(Mhuh))D−xRhu,D−xEu)+

τ2 = −(Th, Eu)h −
∑

i=0,N

Th,∂Ω(xi)Eu(xi)

τ3 = −(Mh(f(uh)− f(Rhu)), D−xEu)+.

• For τ1, it easily follows that

|τ1| ≤
∥

∥u′
∥

∥

L∞(Ω)

∥

∥A′
∥

∥

L∞(R)
∥Eu∥h ∥D−xEu∥+ .

• Regarding τ2, using Proposition 5, the following representation holds

τ2 =
∑

i=0,N

(

Th,∂Ω(xi)−
hi

2
Th(xi) + si

h2i
2
R(xi)

)

Eu(xi)

+
1

2

N
∑

i=1

h3i (R(xi)D−xEu(xi) +D−xR(xi)Eu(xi−1)

−
N−1
∑

i=1

hi+1/2T
(2)
h (xi)Eu(xi),

7



where s0 = −1, sN = 1 and, to simplify the presentation, we consider that h0 = h1.

Therefore, using the bounds from Propositions 2, 5 and 6, there exists a positive
constant C̃, h-independent, such that, for all ϵ ̸= 0,

|τ2| ≤
C̃

4ϵ2
h4max∥u∥C4(Ω

∗

) + 2ϵ2 ∥Eu∥21,h

+
h2max

2
∥R∥L∞(Ω) ∥D−xEu∥+ +

√
2

2
h2max

∥

∥R′
∥

∥

L∞(Ω)
∥Eu∥h

+ C̃h2max∥u∥C4(Ω
∗

) ∥Eu∥h

• Finally, for τ3 we can establish that

|τ3| ≤
∥

∥f ′
∥

∥

L∞(R)
∥Eu∥h ∥D−xEu∥+ .

From the lower bounds for A and q and combining equation (15) with the estimates for
τi, i = 1, 2, 3, we finally obtain

(

A0 − 4ϵ2
)

∥D−xEu∥2+ +

(

q0 − 4ϵ2 − 1

4ϵ2

(

∥

∥u′
∥

∥

L∞(Ω)

∥

∥A′
∥

∥

L∞(R)
+
∥

∥f ′
∥

∥

L∞(R)

)2
)

∥Eu∥2h

≤ Ch4max ∥u∥2C4(Ω
∗

)
.

for some positive constant C, h-independent. Choosing

ϵ2 =
∥u′∥L∞(Ω) ∥A′∥L∞(R) + ∥f ′∥L∞(R)

4

and using condition (14), we finally conclude estimate (13).

3.2 Parabolic IBVP

3.2.1 A semidiscrete approximation

This section aims to extend the results of the previous section to the IBVP (1)-(3). Let
uh(t) ∈ W

∗
h, t ∈ [0, T ], denote the semidiscrete approximation for the previous IBVP,

defined by the spatial discretization studied in the last section. This means that uh(t) ∈ W
∗
h

is defined by







duh
dt

(t) = D∗
x(A(Mhuh(t))D−xuh(t)) +Dcf(uh(t))−Rhq(t)uh(t) +Rhg(t),

Dηuh(t) = 0,
(16)

for all t ∈ (0, T ], with initial condition uh(0)

Proposition 7. Let uh, ũh ∈ C0([0, T ],W∗
h) ∩ C1([0, T ],Wh) be solutions of problem (16)

with initial conditions uh(0), ũh(0) ∈ Wh, respectively. If A ∈ C1
B(R), f ∈ C1

B(R) and
ωh(t) = uh(t)− ũh(t) then for all t ∈ [0, T ],

∥ωh(t)∥2h +A0

∫ t

0
eθh(s)−θh(t) ∥D−xωh(s)∥2+ ds ≤ eθh(t) ∥ωh(0)∥h , (17)

where

θh(t) = 2q0t−
1

A0

∫ t

0

(

∥

∥A′
∥

∥

L∞(R)
∥D−xuh(s)∥h,∞ +

∥

∥f ′
∥

∥

L∞(R)

)2
ds.
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Proof. We start by remarking that ωh(t) is solution of the following differential problem



























dωh

dt
(t) = D∗

x (A(Mhuh(t))D−xuh(t)−A(Mhũh(t))D−xũh(t))

+Dc (f(uh(t))− f(ũh(t)))−Rhq(t)ωh(t), in Ωh × (0, T ],

Dηuh(t) = Dηũh(t) = 0, on ∂Ωh × (0, T ],

ωh(0) = Rhu0 − ũh(0), in Ωh.

(18)
From system (18), taking into account Proposition 3, the following equality is valid for
t ∈ (0, T ],

(

dωh

dt
(t), ωh(t)

)

h

= −(A(Mhuh(t))D−xuh(t)−A(Mhũh(t))D−xũh(t), D−xωh(t))+

− (Mh(f(uh(t))− f(ũh(t))), D−xωh(t))− (Rhq(t)ωh(t), ωh(t))h.
(19)

Moreover, the following upper bounds hold

− (A(Mhuh(t))D−xuh(t)−A(Mhũh(t))D−xũh(t), D−xωh(t))+

≤ −A0 ∥D−xωh(t)∥2+ +
∥

∥A′
∥

∥

L∞(R)
∥D−xuh(t)∥h,∞ ∥ωh(t)∥+ ∥D−xωh(t)∥+ , (20)

and

−(Mh(f(uh(t))− f(ũh(t))), D−xωh(t)) ≤
∥

∥f ′
∥

∥

L∞(R)
∥ωh(t)∥+ ∥D−xuh(t)∥+ , (21)

Combining equation (19) and inequalities (20)-(21), we obtain

1

2

d

dt
∥ωh(t)∥2+ + (A0 − ϵ2) ∥D−xωh(t)∥2+

≤
(

−q0 +
1

4ϵ2

(

∥

∥A′
∥

∥

L∞(R)
∥D−xuh(t)∥h,∞ +

∥

∥f ′
∥

∥

L∞(R)

)2
)

∥ωh(t)∥2+ in (0, T ].

for all ϵ ̸= 0. Choosing ϵ such that ϵ2 = A0

2 and integrating the previous inequality, we
conclude the upper bound (17).

Remark 2. Inequality (17) guarantees that the IVP (16) has at most one solution in
C0([0, T ],W∗

h)∩C1([0, T ],Wh). In fact, if uh, ũh are solutions in C0([0, T ],W∗
h)∩C1([0, T ],Wh),

then, from (17), we conclude that uh(t) = ũh(t) in Ωh.

Since the upper bound (17) depends on h, to conclude stability of the semidiscrete
solution, it is sufficient to prove a uniform upper bound for

∫ t
0 ∥D−xuh(µ)∥h,∞ dµ, t ∈

[0, T ], h ∈ Λ while imposing that the perturbations are around Rhu0.

Remark 3. We highlight that, if uh(t), solution of system (16) satisfies
∫ t
0 ∥D−xuh(s)∥2+ ds ≤

CB, t ∈ [0, T ], h ∈ Λ for some positive constant CB, h and t independent, then it follows
that

∫ t

0
∥D−xuh(s)∥2h,∞ ds ≤ CB

h2min

, t ∈ [0, T ], h ∈ Λ.

Therefore, in order to prove the stability of the scheme, it is sufficient to show that
∫ t
0 ∥D−xuh(s)∥2+ ds, t ∈ [0, T ], h ∈ Λ, can be suitably bounded (uniformly).
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Let t ∈ [0, T ] and Eu(t) = uh(t)−Rhu(t) ∈ Wh denote the spatial discretization error
where u is solution of the IBVP (1)-(3) and uh(t) ∈ Wh is the semidiscrete approximation
defined by system (16). Through a straightforward calculation, Eu(t) is solution of the IVP



























dEu

dt
(t) = D∗

x(A(Mhuh(t))D−xuh(t)−A(MhR
∗
hu(t))D−xR

∗
hu(t))

+Dc(f(uh(t))− f(R∗
hu(t)))− (Rhq(t))Eu(t)− Th(t), in Ωh × (0, T ],

Th,∂Ω(t) = 0, on ∂Ω× (0, T ],

Eu(0) given, in Ωh,

(22)
where Th(t) ∈ Wh with

Th(t) =
d

dt
R∗

hu(t)−D∗
x(A(MhR

∗
hu(t))D−xR

∗
hu(t))−Dcf(R

∗
hu(t))+ (Rhq)R

∗
hu(t)−Rhg(t)

and Th,∂Ω(t)(xi) = −DηR
∗
hu(xi, t), i = 0, N .

Remark 4. Under the assumptions A ∈ C4
B(R), f ∈ C3

B(R) and u ∈ C0([0, T ], C4(Ω
∗
)) ∩

C1([0, T ], C0(Ω)), it can be shown that Th(t) and Th,∂Ω(t), satisfy similar bounds to those
on Propositions 5 and 6.

Theorem 2. Let u ∈ C0([0, T ], C4(Ω
∗
)) ∩ C1([0, T ], C0(Ω)) denote the solution of the

IBVP (1)-(3) and uh(t) ∈ W
∗
h the semidiscrete approximation defined by (16). If A ∈ C4

B(R),
f ∈ C3

B(R), g, q ∈ C0([0, T ], C0(Ω)) then there exists a positive constant C, h and t

independent, such that

∥Eu(t)∥2h +A0

∫ t

0
eθ(u(s))−θ(u(t)) ∥D−xEu(s)∥2+ ds ≤ e−θ(t)∥Eh(0)∥2h

+ Ch4max

∫ t

0
eθ(u(s))−θ(u(t)) ∥u(s)∥2

C4(Ω
∗

)
ds, (23)

where

θ(u(t)) = 2(q0 −A0)t−
4

A0

∫ t

0

(

∥u(s)∥C1(Ω)

∥

∥A′
∥

∥

L∞(R)
+
∥

∥f ′
∥

∥

L∞(R)

)2
ds. (24)

for all t ∈ [0, T ].

Proof. From system (22), the following inequality is easily obtained

1

2

d

dt
∥Eu(t)∥2h ≤ −(A(Mhuh(t))D−xuh(t) +Mhf(uh(t)), D−xEu(t))+

+ (A(MhRhu(t))D−xRhu(t) +Mhf(Rhu(t)), D−xEu(t))+

− q0 ∥Eu(t)∥2h − (Th(t), Eu)h −
∑

i=0,N

Th,∂Ω(xi, t)Eu(xi, t)

for t ∈ (0, T ]. Following the proof of Theorem 1, it can be shown that there exists a positive
constant C, h and t independent, such that

2

(

q0 − 2A0 −
2

A0

(

∥u(t)∥C1(Ω)

∥

∥A′
∥

∥

L∞(R)
+
∥

∥f ′
∥

∥

L∞(R)

)2
)

∥Eu(t)∥2h

+
d

dt
∥Eu(t)∥2h +A0 ∥D−xEu(t)∥2++ ≤ Ch4max ∥u(t)∥2C4(Ω

∗

)
, in (0, T ], (25)

where θ is defined by equation (24). Inequality (25) leads to estimate (23).
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As mentioned before, the stability of the IVP (16) in (uh(t))h∈Λ follows from estimate (17)
if there exists positive constant Cs, h and t independent, such that

∫ t

0
∥D−xuh(s)∥2h,∞ ds ≤ Cs t ∈ [0, T ],

for h ∈ Λ with hmax small enough, which is established in the next corollary.

Corollary 1. If the sequence of grids
{

Ωh, h ∈ Λ
}

is quasiuniform, under the assumptions
of Theorem 2, the solution uh(t) ∈ W ∗

h of (16) is a stable solution in [0, T ] provided that
uh(0) ∈ Bhmax(Rhu(0)).

Proof. Applying Theorem 2, the following estimate holds for Eu(t)

∥Eu(t)∥2h +
∫ t

0
∥D−xEu(s)∥2+ ds ≤ Cu

(

h2max + h4max

)

,

for h ∈ Λ and hmax small enough. Therefore, from

∫ t

0
∥D−xuh(s)∥2h,∞ ds ≤ 2

∫ t

0
∥D−xEu(s)∥2h,∞ ds+ 2

∫ t

0

∥

∥

∥

∥

∂u

∂x
(s)

∥

∥

∥

∥

2

L∞(Ω)

ds

≤ 2

h2min

∫ t

0
∥D−xEu(s)∥2+ ds+ 2

∫ t

0

∥

∥

∥

∥

∂u

∂x
(s)

∥

∥

∥

∥

2

L∞(Ω)

ds

we conclude that
∫ t

0
∥D−xuh(s)∥2h,∞ ds ≤ 2C

h2max + h4max

h2min

+ 2

∫ t

0

∥

∥

∥

∥

∂u

∂x
(s)

∥

∥

∥

∥

2

L∞(Ω)

ds

and stability follows from the quasiuniformity of the grid.

3.2.2 A fully-discrete scheme

Let M ∈ N and ∆t = T
M . We introduce a uniform grid in [0, T ] of timestep ∆t defined by

tn = n∆t, n = 0, . . . ,M . We now propose a fully discrete scheme, derived from system (16)
by applying an implicit-explicit approach to the nonlinear terms and a standard backward
Euler discretization of the time derivative. For n = 0, . . . ,M − 1, let unh ∈ W

∗
h be defined

by






















D−tu
n+1
h = D∗

x(A(Mhu
n
h)D−xu

n+1
h ) +Dc(f(u

n+1
h ))

−Rhq(tn+1)u
n+1
h +Rhg(tn+1),

Dn
ηu

n+1
h (xi) = 0, i = 0, N

u0h = Rhu0,

(26)

where D−t denotes the backward finite difference operator to approximate the first partial
derivative with respect to t and

Dk
ηu

j
h(x0) = −1

2

(

A(Mhu
k
h(x1))D−xu

j
h(x1) +A(Mhu

k
h(x0))D−xu

j
h(x0)

)

− 1

4

(

f(ukh(x1)) + 2f(ukh(x0)) + f(ukh(x−1))
)

,

Dk
ηu

j
h(xN ) =

1

2

(

A(Mhu
k
h(xN+1))D−xu

j
h(xN+1) +A(Mhu

k
h(xN ))D−xu

j
h(xN )

)

+
1

4

(

f(ukh(xN+1)) + 2f(ukh(xN )) + f(ukh(xN−1))
)

.
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for k, j = 1, . . . ,M .
In what follows, Cn,m(Ω

∗ × [0, T ]) represents the space of functions defined in Ω
∗×[0, T ],

with continuous partial derivatives with respect to x and t until order n and m, respectively.
For t ∈ [∆t, T ], let T̃h(t) ∈ W

∗
h denote the truncation error associated with the

discretization of the differential equation, that is,

T̃h(t) =
R∗

hu(t)−R∗
hu(t−∆t)

∆t
−D∗

x(A(MhR
∗
hu(t−∆t))D−xR

∗
hu(t))

−Dc(f(R
∗
hu(t−∆t))) + (Rhq(t))R

∗
hu(t)−Rhg(t)

and T̃h,∂Ω(t) denote the truncation error associated with the discretization of the boundary
conditions.

In order to establish convergence, we will require the next result.

Lemma 1. Let α, β ∈ R and γ,∆t ∈ R
+ such that 1 + ∆tα > 0 and α ≤ β. If

(xn)n∈N0
, (yn)n∈N and (zn)n∈N are sequences of nonnegative numbers satisfying

(1 + ∆tα)xn +∆tγyn ≤ (1 + ∆tβ)xn−1 +∆tzn, n ≥ 1

then

xn +∆t

n
∑

i=1

yi ≤
(

(1 + ∆tβ)x0 +∆t

n
∑

i=1

zi

)

exp

(

n∆t(β − α)

m

)

, n ≥ 1

where m = min{1 + ∆tα, γ}.

Proof. From the hypothesis, we can show using induction that for n ≥ 1

(1 + ∆tα)xn +∆tγ

n
∑

i=1

yi ≤ (1 + ∆tβ)x0 +∆t(β − α)
n−1
∑

i=1

xi +∆t

n
∑

i=1

zi,

which leads to

xn +∆t

n
∑

i=1

yi ≤
1 + ∆tβ

m
x0 +∆t

(β − α)

m

n−1
∑

i=1

xi +
∆t

m

n
∑

i=1

zi,

A direct application of a discrete Gronwall lemma concludes the proof.

We are now able to prove a convergence result for the proposed method. Let En
u =

unh −Rhu(tn) ∈ Wh denote the global error for each n = 0, . . . ,M .

Theorem 3. Let u ∈ C4,0(Ω
∗ × [0, T ])∩C2(Ω× [0, T ])∩C1(Ω

∗ × [0, T ]) be solution of the
IBVP (1)-(3) and let unh ∈ W ∗

h , n = 0, . . . ,M, be defined by (26). If A ∈ C4
B(R), f ∈ C3

B(R),
g, q ∈ C0([0, T ], C0(Ω)) ,

γ = 3A0+
2

A0

(

∥u∥2C1(Ω×[0,T ])

∥

∥A′
∥

∥

2

L∞(R)
+
∥

∥f ′
∥

∥

2

L∞(R)

)

−2q0 ≥ 0 and 2q0−3A0 ̸= 0, (27)

then there exists ∆t0 > 0 and a positive constant C (h independent) such that for all
∆t ≤ ∆t0 it holds

∥En
u∥2h +∆t

n
∑

j=1

∥

∥D−xE
j
u

∥

∥

2

+
≤ C(h4max +∆t2), n = 1, . . . ,M, (28)
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Proof. Let ∆t0 ≤ 1
|2q0−3A0|

and take ∆t ≤ ∆t0. From (26) it can be shown, for n =
0, . . . ,M − 1, that the following inequality holds

∥

∥En+1
u

∥

∥

2

h
≤ (En

u , E
n+1
u )h −∆tA0

∥

∥D−xE
n+1
u

∥

∥

2

+
+

+∆t((A(MhRhu(tn))−A(Mhu
n
h))D−xRhu(tn+1), D−xE

n+1
u )+

−∆t(Mh(f(u
n
h)− f(Rhu(tn))), D−xE

n
u )+

−∆tq0
∥

∥En+1
u

∥

∥

2

h
−∆t(T̃h(tn+1), E

n+1
u )h

+∆t
∑

i=0,N

T̃h,∂Ωh
(xi, tn+1)E

n+1
u (xi),

(29)

with E0
u = 0 in Ωh. Observe that for all ϵ ̸= 0,

((A(MhRhu(tn))−A(Mhu
n
h))D−xRhu(tn+1), D−xE

n+1
u )+

− (Mh(f(u
n
h)− f(Rhu(tn))), D−xE

n+1
u )+

≤ 1

4ϵ2

(

∥u∥2C1(Ω×[0,T ])

∥

∥A′
∥

∥

2

L∞(R)
+
∥

∥f ′
∥

∥

2

L∞(R)

)

∥En
u∥2h + ϵ2

∥

∥D−xE
n+1
u

∥

∥

2

+
.

On the other hand, proceeding with a similar proof of Theorem 1, it follows that there
exists a positive constant C̃, independent of h,∆t, such that

−(T̃h(tn+1), E
n+1
u )h ≤ C̃

ϵ2
(h4max +∆t2) + ϵ2

∥

∥D−xE
n+1
u

∥

∥

2

+
+ 2ϵ2

∥

∥En+1
u

∥

∥

2

h
.

and
∑

i=0,N

T̃h,∂Ωh
(xi, tn+1)E

n+1
u (xi) ≤ 2C̃(∆t2 + h4max) + 4∆tϵ2

∥

∥En+1
u

∥

∥

2

h
,

where C is a positive constant, only dependent on A, f and u.
Taking in (29) the last estimates, we conclude

[

1 + ∆t
(

2q0 − 3ϵ2
)] ∥

∥En+1
u

∥

∥

2

h
+ 2∆t(A0 − 2ϵ2)

∥

∥D−xE
n+1
u

∥

∥

2

+

≤
(

1 +
∆t

2ϵ2

(

∥u∥2C1(Ω×[0,T ])

∥

∥A′
∥

∥

2

L∞(R)
+
∥

∥f ′
∥

∥

2

L∞(R)

)

)

∥En
u∥2h +∆tC(h4max +∆t2). (30)

Taking ϵ2 = A0

4 and under the assumption (27), we can now apply Lemma 1 and from (30),
we get

∥En
u∥2h +∆t

n
∑

j=1

∥

∥D−xE
j
u

∥

∥

2

+
≤ C(h4max +∆t2) exp

(

γT

m

)

, j = 1, . . . ,M,

where m = min {1 + ∆t (2q0 − 3A0) , A0}. Finally, from the hypothesis on ∆t and ∆t0, it
follows that

exp

(

γT

m

)

≤ exp

(

γT max

{

1

A0
,

1

1− |2q0 − 3A0|∆t0

})

which leads to inequality (28).

Theorem 3 establishes the following estimate for the error

∥En
u∥2h +∆t ∥D−xE

n
u∥2+ ≤ C(h4max +∆t2), n = 1, . . . ,M.

where C is a positive constant h and ∆t independent, ensuring that the scheme (26) is of
second order in space and first order in time for ∆t small enough.
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4 Convergence analysis for less smooth solutions

The previous study of convergence properties of the schemes for the stationary and time-
dependent problems, using smooth enough solutions, provides useful insights on how to study
these problems. In the following sections, we want to reduce the regularity assumptions on
the exact solution of the problem, while still proving second order convergence with respect
to space. This will require a careful application of the Bramble-Hilbert Lemma, a technique
suited for this scenario. In this setting, for g ∈ L1(Ω), we introduce the averaging operator
(g)h : Ωh −→ R defined as

(g)h(xi) =
1

hi+1/2

∫ xi+1/2

xi−1/2

g(x) dx, 0 = 1, . . . , N,

where xi+1/2 = xi +
hi+1

2 , i = 0, . . . , N − 1, and we take x−1/2 = x0 and xN+1/2 = xN .

4.1 Revisiting the elliptic problem

We recall the nonlinear elliptic differential problem (8)-(9)














− d

dx

(

A(u)
du

dx
+ f(u)

)

+ qu = g in Ω,

A(u)
du

dx
+ f(u) = 0 on ∂Ω,

and introduce a new discrete scheme, mostly the same as (10)-(11), but with a slight
modification on the discretization of the right hand side

− (D∗
x(A(Mhuh)D−xuh) +Dcf(uh)) + (Rhq)uh = (g)h, in Ωh (31)

and
Dηuh(x0) = Dηuh(xN ) = 0. (32)

Before proving a convergence result, we establish the following proposition, which will
be useful going forward.

Proposition 8. If w ∈ H2(Ω) and vh ∈ Wh then there exists a positive constant C,
h-independent, such that

|((w)h −Rhw, vh)h| ≤ Ch2max

(

∥w∥H2(Ω) ∥vh∥h + ∥w∥H1(Ω) ∥D−xvh∥+
)

. (33)

Moreover, the previous inequality also holds for w(t), t ∈ [0, T ], if w ∈ C0([0, T ], H2(Ω))
with C a positive constant independent of h and t.

Proof. We only prove the result for w ∈ H2(Ω) since the proof is similar in the other case.
To determine an upper bound for |((w)h −Rhw, vh)h|, we follow the proof of Theorem 2
from [3]. We start by noticing that ((w)h −Rhw, vh)h = −T1+T2

2 where

T1 =
N−1
∑

i=0

[

hi+1

2
(w(xi+1) + w(xi))−

∫ xi+1

xi

w(x) dx

]

(Eu(xi+1) + Eu(xi)) (34)

and

T2 =

N−1
∑

i=0

[

hi+1

2
(w(xi+1)− w(xi)) +

∫ xi+1/2

xi

w(x) dx

−
∫ xi+1

xi+1/2

w(x) dx

]

(Eu(xi+1)− Eu(xi)). (35)
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We now apply Lemma 1.4 from [2] to each term hi+1

2 (w(xi+1) + w(xi))−
∫ xi+1

xi
w(x) dx

of (34) to establish that there exists a positive constant C1,1, h-independent, such that

|T1| ≤ C1,1

N
∑

i=1

h
5/2
i ∥w∥H2(xi−1,xi)

|Eu(xi−1) + Eu(xi)|

≤ C1,1

(

N
∑

i=1

h4i ∥w∥2H2(xi−1,xi)

)1/2( N
∑

i=1

hi(Eu(xi−1) + Eu(xi))
2

)1/2

≤ 2C1,1h
2
max ∥w∥H2(Ω) ∥Eu∥h

For (35) it can be shown, through the Bramble-Hilbert Lemma that there exists a
positive constant C1,2, h-independent, such that

|T2| ≤ C1,2

N
∑

i=1

h
3/2
i ∥w∥H1(xi−1,xi)

|Eu(xi−1)− Eu(xi)|

≤ C1,2

N
∑

i=1

h
5/2
i ∥u∥H1(xi−1,xi)

|D−xEu(xi)|

≤ C1,2

(

N
∑

i=1

h4i ∥w∥2H1(xi−1,xi)

)1/2( N
∑

i=1

hi(D−xEu(xi))
2

)1/2

≤ C1,2h
2
max ∥w∥2H1(Ω) ∥D−xEu∥+ .

Taking C = max{2C1,1, C1,2}, this establishes estimate (33).

For the discrete scheme (31)-(32), the following convergence result holds for the error
Eu = uh −Rhu ∈ Wh.

Theorem 4. Let u ∈ H3(Ω∗) denote the solution of problem (8)-(9) and uh ∈ W
∗
h denote

the solution of system (31)-(32). If A, f ∈ C1
B(R) with f(u) ∈ H2(Ω), q ∈ W 2,∞(Ω) and

g ∈ L1(Ω) then there exists a positive constant C, h-independent, such that

∥Eu∥1,h ≤ Ch2max ∥u∥H3(Ω) ,

for all h ∈ Λ, provided that
∥

∥u′
∥

∥

L∞(Ω)

∥

∥A′
∥

∥

L∞(R)
+
∥

∥f ′
∥

∥

L∞(R)
< min {q0, A0} .

Proof. Calculating the discrete inner product (·, ·)h of both sides of (31) with Eu, applying
Proposition 3 and using the boundary conditions (32), we easily establish, as before, that

(A(Mhuh)D−xEu, D−xEu)+ + (RhqEu, Eu)h = ((g)h, Eu)h

− (Mh(f(uh)− f(Rhu)), D−xEu)+

− (A(Mhuh)D−xRhu,D−xEu)+

− (Mh(f(Rhu)), D−xEu)+

− (Rh(qu), Eu)h

A straightforward development of ((g)h, Eu)h and using the lower bounds for A and q,
leads to

A0 ∥D−xEu∥+ + q0 ∥Eu∥h ≤ ((qu)h −Rh(qu), Eu)h

− (Mh(f(uh)− f(Rhu)), D−xEu)+

− (A(Mhuh)D−xRhu− R̂h

(

A(u)u′
)

, D−xEu)+

− (Mh(f(Rhu))− R̂hf(u), D−xEu)+
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where R̂h : C0(Ω) −→ W
up
h is defined as R̂hu(xi) = u(xi−1/2), i = 1, . . . , N , for u ∈ C0(Ω).

Let τi, i = 1, 2, 3, 4 be defined as

τ1 = ((qu)h −Rh(qu), Eu)h

τ2 = −(Mh(f(uh)− f(Rhu)), D−xEu)+

τ3 = −(A(Mhuh)D−xRhu− R̂h

(

A(u)u′
)

, D−xEu)+

τ4 = −(Mh(f(Rhu))− R̂hf(u), D−xEu)+

We now prove upper bounds for |τi|, i = 1, 2, 3, 4.

• Bound for τ1: Given the regularity assumptions on q and u, using Proposition 8, it
follows that there exists a positive constant C1, h-independent, such that

|τ1| ≤ C1h
2
max

(

∥q∥W 2,∞(Ω) ∥u∥H2(Ω) ∥Eu∥h + ∥q∥W 1,∞(Ω) ∥u∥H1(Ω) ∥D−xEu∥+
)

.

• Bound for τ2: As we have seen before in the proof of Theorem 1, this term can be
bounded as

|τ2| ≤
∥

∥f ′
∥

∥

L∞(R)
∥Eu∥h ∥D−xEu∥+

• Bound for τ3: Splitting carefully the term A(Mhuh)D−xRhu− R̂h (A(u)u′) as

(A(Mhuh)−A(MhRhu))D−xRhu

+A(MhRhu)
(

D−xRhu− R̂hu
′
)

+
(

A(MhRhu)− R̂hA(u)
)

R̂hu
′

it follows that there exist a positive constant C3, h-independent, such that

|τ3| ≤
∥

∥A′
∥

∥

L∞(R)

∥

∥u′
∥

∥

L∞(Ω)
∥Eu∥h ∥D−xEu∥+

+ C3





(

N
∑

i=1

h4i ∥u∥2H3(xi−1,xi)

)1/2

+

(

N
∑

i=1

h4i ∥u∥2H2(xi−1,xi)

)1/2


 ∥D−xEu∥+

• Bound for τ4: Again, following [3], if f(u) ∈ H2(Ω) then there exists a positive
constant C4, h-independent, such that

|τ4| ≤ C4

(

N
∑

i=1

h4i ∥f(u)∥2H2(xi−1,xi)

)1/2

∥D−xEu∥+

Combining all the bounds we can now establish

4
∑

i=1

|τi| ≤ C1

(

h2max ∥q∥W 2,∞(Ω) ∥u∥H2(Ω) ∥Eu∥h + h2max ∥q∥W 1,∞(Ω) ∥u∥H1(Ω) ∥D−xEu∥+
)

+
(

∥

∥f ′
∥

∥

L∞(R)
+
∥

∥A′
∥

∥

L∞(R)

∥

∥u′
∥

∥

L∞(Ω)

)

∥Eu∥h ∥D−xEu∥+
+ C3h

2
max

(

∥u∥H3(Ω) + ∥u∥H2(Ω)

)

∥D−xEu∥+ + C4h
2
max ∥f(u)∥H2(Ω) ∥D−xEu∥+

≤ Ch2max ∥u∥H3(Ω)

(

∥Eu∥h + ∥D−xEu∥+
)

+
(

∥

∥f ′
∥

∥

L∞(R)
+
∥

∥A′
∥

∥

L∞(R)

∥

∥u′
∥

∥

L∞(Ω)

)

∥Eu∥h ∥D−xEu∥+
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where

C̃ = max
{

C1 ∥q∥W 2,∞(Ω) , C1 ∥q∥W 1,∞(Ω) , C3

(

∥u∥H3(Ω) + ∥u∥H2(Ω)

)

, C4 ∥f(u)∥H2(Ω)

}

Then, for all ϵ ̸= 0, it follows

(A0 − 2ϵ2) ∥D−xEu∥+ +

(

q0 − ϵ2 − α2

4ϵ2

)

∥Eu∥h ≤ C̃2

4ϵ2
h4max ∥u∥2H3(Ω)

where α = ∥f ′∥L∞(R) + ∥A′∥L∞(R) ∥u′∥L∞(Ω). Choosing ϵ2 = α
2 , we conclude the proof.

Remark 5. Following the proof of Theorem 4, the assumption that A ∈ C1
B(R) can be

weakened. In fact, a similar proof holds, with the due adaptations, assuming A globally
Lipschitz in R and bounded.

Remark 6. The proof of Theorem 4 together with Proposition 8 allow to show that under
the regularity assumptions of Theorem 4, as long as g ∈ H2(Ω), then using the restriction
operator Rh on the right hand side of (10) guarantees that method (10)-(11) is still second
order. This follows from noting that the averaging process is a second order approximation
for the pointwise value of function, as observed in [3].

4.2 Revisiting the parabolic problem

We now turn our attention to problem (1)-(3) which we recall to be























∂u

∂t
− ∂

∂x

(

A(u)
∂u

∂x
+ f(u)

)

+ qu = g, in Ω× (0, T ],

A(u)
∂u

∂x
+ f(u) = 0, on ∂Ω× (0, T ],

u(·, 0) = u0, in Ω

where q, g ∈ C0([0, T ], C0(Ω)).

4.2.1 Semidiscrete scheme

As before, we start by considering a semidiscretization of the full parabolic problem (1)-(3).
Let us denote now uh ∈ W

∗
h as the solution of a slight variation of problem (16):







duh
dt

(t) = D∗
x(A(Mhuh(t))D−xuh(t)) +Dcf(uh(t))−Rhq(t)uh(t) + (g(t))h,

Dηuh(t) = 0,
(36)

for all t ∈ (0, T ], with initial condition uh(0) = Rhu0 and where q, g ∈ C0([0, T ], C0(Ω)).
We can now establish the following convergence result for the error Eu(t) = uh(t) −

Rhu(t), for all t ∈ [0, T ].

Theorem 5. Let u ∈ C0([0, T ], H3(Ω∗)) with ∂u
∂t ∈ C0([0, T ], H2(Ω)) denote the solution of

the IBVP (1)-(3) and uh(t) ∈ W
∗
h the semidiscrete approximation defined by (36). If A, f ∈

C1
B(R) with f(u) ∈ C0([0, T ], H2(Ω)), g ∈ C0([0, T ], L1(Ω)), q ∈ C0([0, T ],W 2,∞(Ω)) then

there exists a positive constant C, h and t independent, such that

∥Eu(t)∥2h +A0

∫ t

0
eθ(u(s))−θ(u(t)) ∥D−xEu(s)∥2+ ds

≤ Ch4max

∫ t

0
eθ(u(s))−θ(u(t))

(

∥u(s)∥2H3(Ω) +

∥

∥

∥

∥

∂u

∂t
(s)

∥

∥

∥

∥

2

H2(Ω)

)

ds,
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where

θ(u(t)) =

(

2q0 −
3A0

2

)

t− 2

3A0

∫ t

0

(

∥

∥A′
∥

∥

L∞(R)

∥

∥

∥

∥

∂u

∂x
(s)

∥

∥

∥

∥

L∞(Ω)

+
∥

∥f ′
∥

∥

L∞(R)

)2

ds.

for all t ∈ [0, T ].

Proof. The proof follows closely a combination of arguments used on the proofs of Theorems 2
and 4. Let Eu(t) = uh(t) − Rhu(t) for all t ∈ [0, T ]. Following previous arguments, it is
easily established that for uh(t) ∈ W

∗
h it holds

1

2

d

dt
∥Eu(t)∥2h ≤ −(Mhf(uh(t)− f(Rhu(t))), D−xEu(t))+

− (A(Mhuh(t))D−xRhu(t) +Mhf(Rhu(t)), D−xEu(t))+

− q0 ∥Eu(t)∥2h −A0 ∥D−xEu(t)∥2+

−
(

Rh
∂u

∂t
(t), Eu(t)

)

h

+ ((g(t))h, Eu(t))h

for all t ∈ (0, T ].
Expanding the term ((g(t))h, Eu(t))h, the previous inequality leads to

1

2

d

dt
∥Eu(t)∥2h + q0 ∥Eu(t)∥2h ≤ −A0 ∥D−xEu(t)∥2+ +

5
∑

i=1

τi(t)

where

τ1(t) = ((q(t)u(t))h −Rh(q(t)u(t)), Eu(t))h

τ2(t) = (Mh(f(Rhu(t))− f(uh(t))), D−xEu(t))+

τ3(t) =

(

R̂h

(

A(u(t))
∂u

∂x
(t)

)

−A(Mhuh(t))D−xRhu(t), D−xEu(t)

)

+

τ4(t) =
(

R̂h (f(u(t)))−Mhf(Rhu(t)), D−xEu(t)
)

+

τ5(t) =

((

∂u

∂t
(t)

)

h

−Rh

(

∂u

∂t
(t)

)

, Eu(t)

)

h

Using Proposition 8 it follows that there exist positive constants C1, C2, h−t independent,
such that

|τ1(t)| ≤ C1h
2
max

(

∥q(t)∥W 2,∞(Ω) ∥u(t)∥H2(Ω) ∥Eu(t)∥h
+ ∥q(t)∥W 1,∞(Ω) ∥u(t)∥H1(Ω) ∥D−xEu(t)∥+

)

.

and

|τ5(t)| ≤ C2h
2
max

(

∥

∥

∥

∥

∂u

∂t
(t)

∥

∥

∥

∥

H2(Ω)

∥Eu(t)∥h +
∥

∥

∥

∥

∂u

∂t
(t)

∥

∥

∥

∥

H1(Ω)

∥D−xEu(t)∥+

)

.

Regarding τ2, τ3 and τ4, it is straightforward to show that there exist positive constants
C3, C4, h− t independent, such that

|τ2(t)| ≤
∥

∥f ′
∥

∥

L∞(R)
∥Eu(t)∥h ∥D−xEu(t)∥+ ,
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|τ3(t)| ≤
(

∥

∥A′
∥

∥

L∞(R)

∥

∥

∥

∥

∂u

∂x
(t)

∥

∥

∥

∥

L∞(Ω)

∥Eu(t)∥h + C3h
2
max ∥u(t)∥H3(Ω)

)

∥D−xEu(t)∥+

and
|τ4(t)| ≤ C4h

2
max ∥f(u(t))∥H2(Ω) ∥D−xEu(t)∥+

Combining the previous bounds for τi(t), i = 1 . . . , 5 and through suitable applications
of Young’s inequality, for all ϵ ̸= 0, it holds

d

dt
∥Eu(t)∥2h + 2

(

q0 − ϵ2 − α(t)2

4ϵ2

)

∥Eu(t)∥2h

+ 2(A0 − 2ϵ2) ∥D−xEu(t)∥2+ ≤ Ch4max

2ϵ2

(

∥u(t)∥2H3(Ω) +

∥

∥

∥

∥

∂u

∂t
(t)

∥

∥

∥

∥

H2(Ω)

)

(37)

where C is a constant positive independent of h and t and

α(t) =
∥

∥A′
∥

∥

L∞(R)

∥

∥

∥

∥

∂u

∂x
(t)

∥

∥

∥

∥

L∞(Ω)

+
∥

∥f ′
∥

∥

L∞(R)
.

Choosing ϵ2 = 3A0

4 and integrating (37), we conclude the proof.

4.2.2 Fully discrete scheme

Our final goal is to establish a convergence result for a fully discrete scheme similar to (26),
while reducing the regularity assumptions considered in Theorem 3. Let us introduce the
new fully discrete scheme: for n = 0, . . . ,M − 1, let unh ∈ W

∗
h be defined by











D−tu
n+1
h = D∗

x(A(Mhu
n
h)D−xu

n+1
h ) +Dc(f(u

n
h))

−Rhq(tn+1)u
n+1
h + (g(tn+1))h,

Dn
ηu

n+1
h = 0,

(38)

where u0h = Rhu0.
Let En

u = unh −Rhu(tn) ∈ Wh denote the global error for each n = 0, . . . ,M .

Theorem 6. Let u ∈ C0([0, T ], H3(Ω∗)) satisfying ∂u
∂t ∈ C0([0, T ], H2(Ω)) and ∂2u

∂t2
∈ u ∈

C0([0, T ], H1(Ω)) denote solution of the IBVP (1)-(3) and let unh ∈ W ∗
h , n = 0, . . . ,M,

be defined by (38). If A, f ∈ C1
B(R), f(u) ∈ C0([0, T ], H2(Ω)) ∩ C1([0, T ], H1(Ω)), q ∈

C0([0, T ],W 2,∞(Ω)), g ∈ C0([0, T ], C0(Ω)),

A0

2
+

4

A0

(

∥

∥A′
∥

∥

2

L∞(R)
∥u∥2C0([0,T ],H2(Ω)) +

∥

∥f ′
∥

∥

2

L∞(R)

)

− 2q0 ≥ 0, 2q0 ̸=
A0

2
(39)

then there exists ∆t0 > 0 and a positive constant C (h independent) such that for all
∆t ≤ ∆t0 it holds

∥En
u∥2h +∆t

n
∑

j=1

∥

∥D−xE
j
u

∥

∥

2

+
≤ CΓ(u)(h4max +∆t2), n = 1, . . . ,M, (40)

where

Γ(u) = ∥u∥2C0([0,T ],H3(Ω)) + ∥f(u)∥2C0([0,T ],H2(Ω)) +

∥

∥

∥

∥

∂f(u)

∂t

∥

∥

∥

∥

2

C0([0,T ],H1(Ω))

+

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

2

C0([0,T ],H2(Ω))

+

∥

∥

∥

∥

∂2u

∂t2

∥

∥

∥

∥

2

C0([0,T ],H1(Ω))

.
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Proof. The proof follows a similar strategy than the one adopted in the proof of Theorem 4.
Let

∆t0 ≤
2

|4q0 −A0|
and take ∆t ≤ ∆t0. It can be shown easily that for n = 0, . . . ,M − 1, the following
representation holds

∥

∥En+1
u

∥

∥

2

h
= (En

u , E
n+1
u )h +∆t(Rhq(tn+1)E

n+1
u , En+1

u )h

−∆t
(

A(Mhu
n
h)D−xE

n+1
u , D−xE

n+1
u

)

+

+∆t
(

(q(tn+1)u(tn+1))h −Rh(q(tn+1)u(tn+1)), E
n+1
u

)

h

+∆t
(

Mh(Rhf(u(tn))− f(unh)), D−xE
n+1
u

)

+

+∆t
(

Mh(Rhf(u(tn+1))−Rhf(u(tn))), D−xE
n+1
u

)

+

+∆t

(

R̂h

(

A(u(tn+1))
∂u

∂x
(tn+1)

)

−A(Mhu
n
h)D−xRhu(tn+1)), D−xE

n+1
u

)

+

+∆t
(

R̂h(f(u(tn+1)))−Mh(Rhf(u(tn+1))), D−xE
n+1
u

)

+

+∆t

((

∂u

∂t
(tn+1)

)

h

−Rh

(

u(tn+1)− u(tn)

∆t

)

, En+1
u

)

h

which leads to

(1 + 2∆tq0)
∥

∥En+1
u

∥

∥

2

h
+ 2∆tA0

∥

∥D−xE
n+1
u

∥

∥

2

+
≤ ∥En

u∥2h + 2∆t

6
∑

k=1

τn+1
k (41)

where

τn+1
1 =

(

(q(tn+1)u(tn+1))h −Rh(q(tn+1)u(tn+1)), E
n+1
u

)

h

τn+1
2 =

(

Mh(Rhf(u(tn))− f(unh)), D−xE
n+1
u

)

+

τn+1
3 =

(

R̂h

(

A(u(tn+1))
∂u

∂x
(tn+1)

)

−A(Mhu
n
h)D−xRhu(tn+1)), D−xE

n+1
u

)

+

τn+1
4 =

(

R̂h(f(u(tn+1)))−MhRhf(u(tn+1))), D−xE
n+1
u

)

+

τn+1
5 =

((

∂u

∂t
(tn+1)

)

h

−Rh

(

u(tn+1)− u(tn)

∆t

)

, En+1
u

)

h

τn+1
6 =

(

Mh(Rhf(u(tn+1))−Rhf(u(tn))), D−xE
n+1
u

)

+

Bounds for τn+1
1 , τn+1

2 and τn+1
4 are derived using the same tools as for the semidiscrete

case. Hence there exist positive constants C1 and C4, independent of h, n and ∆t such that

|τn+1
1 | ≤ C1h

2
max ∥u∥C0([0,T ],H2(Ω))

(

∥Eu(tn+1)∥h + ∥D−xEu(tn+1)∥+
)

,

|τn+1
2 | ≤

∥

∥f ′
∥

∥

L∞(R)
∥En

u∥h
∥

∥D−xE
n+1
u

∥

∥

+
,

and
|τn+1
4 | ≤ C4h

2
max ∥f(u)∥C0([0,T ],H2(Ω))

∥

∥D−xE
n+1
u

∥

∥

+
.

We now establish bounds for τn+1
3 and τn+1

5 .
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• Bound for τn+1
3 : We start by noticing that τn+1

3 can rewritten as

τn+1
3 =

4
∑

k=1

δn+1
k

where

δn+1
1 =

(

(A(MhRhu(tn))−A(Mhu
n
h))D−xRhu(tn+1), D−xE

n+1
u

)

+

δn+1
2 =

(

(A(MhRhu(tn+1))−A(MhRhu(tn)))D−xRhu(tn+1), D−xE
n+1
u

)

+

δn+1
3 =

(

(

R̂h(A(u(tn+1)))−A(MhRhu(tn+1))
)

R̂h

(

∂u

∂t
(tn+1)

)

, D−xE
n+1
u

)

+

δn+1
4 =

(

A(MhRhu(tn+1))

(

R̂h

(

∂u

∂t
(tn+1)

)

−D−xRhu(tn+1)

)

, D−xE
n+1
u

)

+

For δn+1
1 , δn+1

3 and δn+1
4 it is easily established, following previously presented argu-

ments, that there exist positive constants C3,3 and C3,4, independent of h, n and ∆t,
such that

|δn+1
1 | ≤

∥

∥A′
∥

∥

L∞(R)
∥u∥C0([0,T ],H2(Ω)) ∥En

u∥h
∥

∥D−xE
n+1
u

∥

∥

+

|δn+1
3 | ≤ C3,3h

2
max

∥

∥A′
∥

∥

L∞(R)

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

C0([0,T ],H1(Ω))

∥u∥C0([0,T ],H2(Ω))

∥

∥D−xE
n+1
u

∥

∥

+

|δn+1
4 | ≤ C3,4h

2
max

∥

∥A′
∥

∥

L∞(R)
∥u∥C0([0,T ],H3(Ω))

∥

∥D−xE
n+1
u

∥

∥

+

Regarding δn+1
2 , it follows that

|δn+1
2 | ≤

N
∑

i=1

hi|A(MhRhu(tn+1)(xi))−A(MhRhu(tn)(xi))| · |D−xRhu(tn+1)(xi)|

· |D−xE
n+1
u (xi)|

≤
∥

∥A′
∥

∥

L∞(R)
∥u∥C0([0,T ],H2(Ω))

N
∑

i=1

hi|Mh (Rhu(tn+1)(xi)−Rhu(tn)(xi)) |·

· |D−xE
n+1
u (xi)|

Applying the Bramble-Hilbert Lemma to estimate |u(xi, tn+1) − u(xi, tn)|, for i =
0, . . . , N − 1, it follows that there exists a positive constant C3,2, independent of h, n
and ∆t, such that

|Rh(u(tn+1)− u(tn))(xi)| ≤ C3,2

√
∆t

(

∫ tn+1

tn

∥

∥

∥

∥

∂u

∂t
(t)

∥

∥

∥

∥

2

H1(Ω)

dt

)1/2

, i = 1, . . . , N

and therefore

|δn+1
2 | ≤ C3,2

√
∆t
∥

∥A′
∥

∥

L∞(R)
∥u∥C0([0,T ],H2(Ω))

(

∫ tn+1

tn

∥

∥

∥

∥

∂u

∂t
(t)

∥

∥

∥

∥

2

H1(Ω)

dt

)1/2
∥

∥D−xE
n+1
u

∥

∥

+
.
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Finally, the following bound holds for τn+1
3

|τn+1
3 | ≤

∥

∥A′
∥

∥

L∞(R)
∥u∥C0([0,T ],H2(Ω)) ∥En

u∥h
∥

∥D−xE
n+1
u

∥

∥

+

+ C3

∥

∥D−xE
n+1
u

∥

∥

+





√
∆t ∥u∥C0([0,T ],H2(Ω))

(

∫ tn+1

tn

∥

∥

∥

∥

∂u

∂t
(t)

∥

∥

∥

∥

2

H1(Ω)

dt

)1/2

+h2max

(

∥u∥C0([0,T ],H3(Ω)) + ∥u∥C0([0,T ],H2(Ω))

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

C0([0,T ],H1(Ω))

)]

where C3 = ∥A′∥L∞(R) ·maxi=2,3,4C3,i.

• Bound for τn+1
5 : We remark that τn+1

5 can be written as

τn+1
5 =

((

∂u

∂t
(tn+1)

)

h

−Rh

(

u(tn+1)− u(tn)

∆t

)

, En+1
u

)

h

=

((

∂u

∂t
(tn+1)

)

h

−Rh
∂u

∂t
(tn+1), E

n+1
u

)

h

+

(

Rh

(

∂u

∂t
(tn+1)−

(

u(tn+1)− u(tn)

∆t

))

, En+1
u

)

h

.

The first term can be bounded as in the semidiscrete case through Proposition 8.
Therefore, there exists positive constants C5, h, n and ∆t independent, such that

∣

∣

∣

∣

((

∂u

∂t
(tn+1)

)

h

−Rh
∂u

∂t
(tn+1), E

n+1
u

)

h

∣

∣

∣

∣

≤ C5h
2
max

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

C0([0,T ],H2(Ω))

(

∥

∥En+1
u

∥

∥

h
+
∥

∥D−xE
n+1
u

∥

∥

+

)

and

∣

∣

∣

∣

(

Rh

(

∂u

∂t
(tn+1)−

(

u(tn+1)− u(tn)

∆t

))

, En+1
u

)

h

∣

∣

∣

∣

≤ C5

√
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(
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tn

∥

∥

∥

∥

∂2u

∂t2
(t)

∥

∥

∥

∥

2

H1(Ω)

dt

)1/2
∥

∥En+1
u

∥

∥

h

leading to

|τn+1
5 | ≤ C5

[

h2max

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

C0([0,T ],H2(Ω))
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∥

∥En+1
u

∥

∥

h
+
∥

∥D−xE
n+1
u

∥

∥

+

)

+
√
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(
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∥

∥

∥

∥

∂2u

∂t2
(t)

∥

∥

∥

∥

2

H1(Ω)

dt

)1/2
∥

∥En+1
u

∥

∥

h





• Bound for τn+1
6 : Proceeding as in the previous estimates, there exists a positive

constant C6, independent of h and ∆t, such that

|τn+1
6 | ≤ C6

√
∆t

(

∫ tn+1

tn

∥

∥

∥

∥

∂f(u)

∂t
(t)

∥

∥

∥

∥

2

H1(Ω)

dt

)1/2
∥

∥D−xE
n+1
u

∥

∥

+

22



Defining

Rn
1 = C1h

2
max ∥u∥C0([0,T ],H2(Ω)) + C5h

2
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∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

C0([0,T ],H2(Ω))
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√
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∥

∥

∥

∂2u

∂t2
(t)

∥

∥

∥

∥

2

H1(Ω)

dt
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2 = C1h

2
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2
max ∥f(u)∥C0([0,T ],H2(Ω))

+ C3h
2
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(

∥u∥C0([0,T ],H3(Ω)) + ∥u∥C0([0,T ],H2(Ω))

∥

∥

∥

∥

∂u

∂t

∥

∥

∥

∥

C0([0,T ],H1(Ω))

)

+ C3

√
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∥

∥

∥

∥
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∥

∥

∥

∥
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∥

∥
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∥

∂u
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∥

∥
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+ C6

√
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(

∫ tn+1

tn

∥

∥

∥

∥

∂f(u)

∂t
(t)

∥

∥

∥

∥

2

H1(Ω)

dt

)1/2

inequality (41) leads to

(1 + 2∆tq0)
∥

∥En+1
u

∥

∥

2

h
+ 2∆tA0

∥

∥D−xE
n+1
u

∥

∥

2

+

≤ ∥En
u∥2h + 2∆t

(

Rn
1

∥

∥En+1
u

∥

∥

h
+Rn

2

∥

∥D−xE
n+1
u

∥

∥

+

)

+ 2∆t
(

∥

∥A′
∥

∥

L∞(R)
∥u∥C0([0,T ],H2(Ω)) +

∥

∥f ′
∥

∥

L∞(R)

)

∥En
u∥h

∥

∥D−xE
n+1
u

∥

∥

+
(42)

Applying Young’s inequality to each term on the right hand side of (42), for all ϵ ̸= 0,
we conclude

(

1 + 2∆t
(

q0 − ϵ2
)) ∥

∥En+1
u

∥

∥

2

h
+ 2∆t

(

A0 − 2ϵ2
) ∥

∥D−xE
n+1
u

∥

∥

2

+

≤
(

1 +
∆t

ϵ2

(

∥

∥A′
∥

∥

2

L∞(R)
∥u∥2C0([0,T ],H2(Ω)) +

∥

∥f ′
∥

∥

2

L∞(R)

)

)

∥En
u∥2h +

∆t

2ϵ2
(

(Rn
1 )

2 + (Rn
2 )

2
)

Taking ϵ2 = A0

4 and applying Lemma 1 we obtain inequality (40).

Remark 7. Remark 5 holds true for the regularity assumptions on A of Theorems 5 and 6.

5 Numerical tests

We now present a number of numerical results to illustrate the convergence behaviour of
the two different approaches followed in this paper. Although the convergence results were
obtained under specific regularity assumptions, we shall provide tests where such regularity
is reduced. The goal with this approach is to assess the sharpness of the theoretical results.

5.1 Elliptic problem

We start by turning our attention to the numerical schemes (10)-(11) and (31)-(32) to
approximate the solution of (8)-(9). Conceptually, both schemes differ only by the way
the right hand side is discretized. However, we recall that on one hand, we showed second
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order convergence for scheme (10)-(11) under the assumption that the exact solution of the
continuous problem was C4(Ω

∗
). On the other hand, we showed that scheme (31)-(32) is

also second order convergent for solutions in H3(Ω). The results we now present aim at
comparing both approaches whilst satisfying the remaining regularity assumptions on A, f ,
q and g. Let α ∈ R

+ denote a parameter. We define

uα(x) = |2x− 1|1+α − 2(1 + α)x(x− 1), q(x) = x+ 6,

A(u) =
1

1 + u2
+ 3, f(u) =

sin(πu)

5
,

for x ∈ [0, 1] and u ∈ R.
Imposing A, f and q as coefficients in (8)-(9) and assuming α ≥ 1, it follows that

uα ∈ C2(Ω
∗
) satisfies the homogeneous Neumann boundary conditions and we can calculate

g imposing uα as the exact solution of (8)-(9). All results were obtained with Matlab [13].

10−3 10−2
10−7

10−6

10−5

10−4

10−3

10−2

hmax

∥E
u
∥ 1

,h

α = 3
α = 1.1

(a) Results for scheme (10)-(11).
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α = 1.1

(b) Results for scheme (31)-(32).

Figure 1: Log-log plots of ∥Eu∥1,h versus hmax for the elliptic equation. The lines represent
least-squares fittings to the data.

We plot in Figure 1 the errors associated with both methods and different exact solutions.
For the sake of comparison, we tested both methods assuming α = 3. This implies that
uα ∈ H3(Ω∗) and the corresponding right hand side of (8) is H2(Ω). Following Remark 6
and since all assumptions on Theorems 1 and 4, both methods are second order. This is
clearly illustrated in both plots in Figure 1: the solid lines correspond to the least square
fittings to the error data and in both cases, the estimated error of roughly of second order.
To provide some clarity on the sharpness of the estimates from both convergence theorems,
we also plot in Figure 1 the error for the exact solution corresponding to α = 1.1. In this
case, uα ∈ H2(Ω∗). The estimated convergence rate drops to 1.26 and 1.19, respectively,
for the numerical schemes (10)-(11) and (31)-(32).

We finally remark that choosing α = 1.6 implies that uα ∈ H3(Ω∗). In this case, method
(31)-(32) continues to exhibit second order convergence, while the estimated convergence
rate drops for method (31)-(32). This appears to indicate that Remark 5 from [3] might
also hold for problems under homogeneous Neumann boundary conditions.
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Figure 2: Log-log plots of ∥Eu∥1,h versus hmax for the elliptic equation using α = 1.6. The
lines represent least-squares fittings to the data.

5.2 Parabolic problem

We now turn our attention to approximating the solution of the differential problem (1)-(3).
In this context we define, for α ∈ R

+,

uα(x, t) = et
(

|2x− 1|1+α − 2(1 + α)x(x− 1)− 1
)

, q(x, t) = e−t(x+ 6), x ∈ [0, 1], t ≥ 0.

As in the setting of the previous section, for α ≥ 1, uα ∈ C2(Ω
∗ × [0, T ]) and the homoge-

neous Neumann boundary conditions (3) hold for uα. Function g is determined as the right
hand side of (1) imposing uα as the exact solution of the problem.
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(a) Results for scheme (26).
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(b) Results for scheme (38).

Figure 3: Log-log plots of the error Eu,∆t versus hmax for the parabolic problem. The lines
represent least-squares fittings to the data.

To measure the error associated with the discretizations, we shall use, as per the results
in Theorems 3 and 6, the quantity

Eu,∆t = max
n



∥En
u∥2h +∆t

n
∑

j=1

∥

∥D−xE
j
u

∥

∥

2

+



 .
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Under the assumptions of Theorems 3 and 6, Eu,∆t is of order h2max +∆t. In the numerical
tests performed, we decided to generate grids following the iterative refinement strategy
detailed in [6]. The parameter ∆t is chosen to be, for each grid considered, ∆t = h2max, in
order for the time associated discretization error to not pollute the spatial error.

Examining the error plots in Figure 3, much like in the elliptic case, we validate
numerically the error estimates for smooth enough solutions (case α = 3). The test with
α = 1.1 shows that when the solution uα ∈ C0([0, T ], H2(Ω∗)) the estimated convergence
rate (with respect to space) goes down to 1.64.

6 Conclusions

The main goal of this paper is to present a robust numerical method discretizing the set of
equations (1)-(3), comprising a convection-diffusion-reaction partial differential equation
with two nonlinear components (the diffusion coefficient and the convective flux) subject
to homogeneous Neumann boundary conditions. We proposed two similar finite difference
spatial discretization approaches whose differences lie only on the discretization of the
right hand side: one uses a standard restriction operator, (10)-(11), and the other uses an
average operator, (31)-(32). Under suitable regularity conditions, we showed second order
convergence for these numerical methods associated with the steady problem. Method
(10)-(11) is shown to be second order if u ∈ C4(Ω

∗
) and method (31)-(32) exhibits second

order convergence if u ∈ H3(Ω∗).
Fully discrete schemes for system (1)-(3) are also proposed and are based on the spatial

discretization approach followed for the steady case as well as an IMEX approach for the
nonlinear terms (to avoid solving nonlinear problems in each timestep). Under similar
spatial regularity assumptions as used in the steady problem, both methods, (26) and (38),
are shown to be convergent and the associated error being of order h2max + ∆t in both
cases. The major difference in both results is essentially the required regularity on the
exact solution of the problem.

Finally, we illustrated the convergence properties of all methods, for both the steady
and unsteady cases. A drop on the estimated convergence order is observed if the exact
solutions have less regularity than the required in Theorems 1, 3, 4 and 6, thus showing the
sharpness of our estimates.
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