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Abstract

The dissolution (introduced by Isbell in [3], discussed by John-
stone in [5] and later exploited by Plewe in [12, 13]) is here viewed
as the relation of the geometry of L with that of the more dispersed
T(L) = S(L)op mediated by the natural embedding cL = (a 7→ ↑a)
and its adjoint localic map γL : T(L) → L. The associated image-
preimage adjunction (γL)−1[−] ⊣ γL[−] between the frames T(L)
and TT(L) is shown to coincide with the adjunction cT(L) ⊣ γT(L) of
the second step of the assembly (tower) of L. This helps to explain
the role of T(L) = S(L)op as an “almost discrete lift” (sometimes
used as a sort of model of the classical discrete lift DL → L) as a
dispersion going halfway to Booleanness. Consequent use of the con-
crete sublocales technique simplifies the reasoning. We illustrate it
on the celebrated Plewe’s Theorem on ultranormality (and ultrapara-
compactness) of S(L) which becomes (we hope) substantially more
transparent.

Introduction

Dissolution of a frame, introduced by Isbell in [3] (see also [4]), discussed
by Johnstone in [5] (see also [6, 7]) and later exploited by Plewe ([12, 13]),
is, roughly speaking, a representation of subobjects (sublocales) of a frame
L by closed sublocales of the systems of subobjects. In [5], where the term
“dissolution” was first used, Johnstone remarks that it can be to some extent
viewed as a pointfree variant of the lift of a topological space to the discrete
space with the same underlying set. This sounds like a metaphor, but in
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fact it is a very deep observation. The facts can be viewed as follows. One
of the ways of modelling the discrete modification DX → X in various
applications is the localic map S(L)op → L associated with the natural
embedding of a frame L into the frame S(L)op of its sublocales. This frame
is indeed “much more discrete” (dispersed) then the L itself 1. We propose
to view the dissolution, rather than as just the frame Ld from literature, as
the relation of the geometry of L with that of the more dispersed S(L)op as
seen in the behaviour of the systems of subobjects of these two generalized
spaces.

What we wish to emphasize is particularly lucid when we view the cat-
egory of locales Loc, the dual of the category of frames, as a concrete
one, with morphisms the right Galois adjoints to frame homomorphisms.
The subobjects are then naturally represented as well-defined subsets with
which it is very easy to work. Since we have often encountered the misun-
derstanding that this approach is just a shorthand for working with other
representations of subobjects we present in some detail the computational
aspects, namely that one really works with concrete subsets using concrete
transparent operations and formulas (meets coinciding with the set intersec-
tions, joins having a very simple formula, images of subobjects coinciding
with standard set-theoretic images, preimages being only slightly modified,
localic maps being continuous in the sense of preserving openness and closed-
ness by preimage, etc.). To persuade the reader that the reckoning is really
easy and not based on harder facts quoted from elsewhere we present the
facts (which we would have to recall anyway) with short and easy proofs
(expanding the text by less than a page).

Then we study the dissolution by comparing two adjoint situations. We
show that the image/preimage adjunction associated with the natural em-
bedding of L to S(L)op coincides with the localic map/frame homomorphism
adjunction of the second step of the assembly

L → S(L)op → S(S(L)op)op → · · · .

This allows (a.o.) to show how far the dissolution relaxes the generalized
topology. The continuity of localic maps f : M → L is characterized, simi-
larly as in the classical case, by preserving closedness and openness by the
preimage function, and the relative dispersedness is expressed by the ques-
tion how often a preimage of S is closed resp. open even if S is not. Here

1Not “quite discrete” which in the pointfree context should be Boolean; Boolean lifts
do exist and make sense (see e.g. [10]), but here we are particularly interested in the not
quite Boolean nature of the S(L).
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every S is a preimage of a closed one, but the “discreteness” goes only half
way. Unlike in the classical case, preserving closedness and openness do not
imply each other.

The fact that one does not have a full discreteness is in fact in some
respects beneficial. A particularly interesting application is the proof of the
fact that the frame of sublocales (the inclusion inverted) is ultranormal2

(Plewe [13]). In the last section we present a simplified proof; we follow
the Plewe’s procedure but using the explicit sublocale technique makes it
simpler and, we hope, quite transparent.

1. Preliminaries

1.1. Our posets will be typically complete lattices and we will use the
standard notation for meets (infima) and joins (suprema) in posets (partially
ordered sets): a ∧ b,

∧

A or
∧

a∈A a, a ∨ b,
∨

A or
∨

a∈A a. The least resp.
largest element (if it exists) will be denoted by 0 resp. 1. We write

↑a for {x | x ≥ a} and ↑A = {x | ∃ a ∈ A, x ≥ a}.

1.2. A pseudocomplement of a, denoted by a∗, is the largest b such that
a ∧ b = 0, if it exists. Dually, a supplement of a, denoted by a#, is the
smallest b such that a ∨ b = 1, if it exists. Recall the standard facts that

a ≤ a∗∗ and (a ∧ b)∗∗ = a∗∗ ∧ b∗∗.

A complement of a is a b such that a∧ b = 0 and a∨ b = 1. In a distributive
lattice, each complement is a pseudocomplement; therefore we may write a∗

also for complement, but if there is a danger of misunderstanding we prefer
ac. An element which has a complement is said to be complemented.

1.3. Monotone maps f : X → Y and g : Y → X are (Galois) adjoint, f to

the left and g to the right if

f(x) ≤ y ⇐⇒ x ≤ g(y),

It is standard that

(1) left adjoints preserve all existing suprema and right adjoints preserve
all existing infima,

(2) and if X, Y are complete lattices then each f : X → Y preserving all
suprema is a left adjoint, and each g : Y → X preserving all infima is
a right adjoint.

2That is, that any two disjoint subobjects can be separated by a complemented one.
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1.4. A frame (resp. coframe) is a complete lattice L satisfying the dis-
tributivity law

(
∨

A
)

∧ b =
∨

{a ∧ b | a ∈ A} (frm)

(resp.
(
∧

A
)

∨ b =
∧

{a ∨ b | a ∈ A}) (cofrm)

for all A ⊆ L and b ∈ L. A frame homomorphism preserves all joins and all
finite meets.

The rule (frm) makes the (−)∧ b left adjoints; consequently a frame has
a Heyting structure with the Heyting operation → satisfying

a ∧ b ≤ c iff a ≤ b → c.

A frame has pseudocomplements a∗ = a → 0.

1.4.1. Note. It is easy to check that

if a is complemented then a → b = ac ∨ b

(recall the A ⇒ B ≡ nonA∨B from classical logic). But one cannot express
a → b as a∗ ∨ b with a general pseudocomplement.

1.4.2. Dually, a coframe is naturally endowed with a co-Heyting operation,
the difference a∖ b satisfying

a∖ b ≤ c iff a ≤ b ∨ c.

A coframe has supplements a# = 1∖ a (the smallest b such that a∨ b = 1).

1.5. A typical frame is the lattice Ω(X) of open sets of a topological space
X, and for continuous maps f : X → Y there are frame homomorphisms
Ω(f) = (U 7→ f−1[U ]) : Ω(Y ) → Ω(X). Thus we have a contravariant
functor

Ω: Top → Frm,

where Top is the category of topological spaces, and Frm that of frames.
To make it covariant one considers the category of locales Loc = Frmop.

It is of advantage to view Loc as a concrete category with the opposites
of frame homomorphisms h : L → M represented by their right adjoints
f : M → L, called localic maps. They are characterized by

1.5.1. Proposition. A meet-preserving f : M → L is a localic map, that
is, a right adjoint to a frame homomorphism h : L → M , iff f(a) = 1 (if
and) only if a = 1 and

f(h(a) → b) = a → f(b) for all a, b.3

3This is often referred to as the Frobenius identity.
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1.6. Sublocales. In Frm, extremal epimorphisms are precisely the onto
frame homomorphisms and hence the extremal monomorphisms in Loc are
the one-to-one localic maps. This leads to the following approach to sub-
objects of frames (locales).

A sublocale of a frame L is a subset S ⊆ L such that the embedding map
j : S ⊆ L is a localic one. Such S are characterized by the requirements that

(S1) for every M ⊆ S the meet
∧

M lies in S, and

(S2) for every s ∈ S and every x ∈ L, x → s lies in S

(see e.g. [9]). The system S(L) of all sublocales of L is a coframe with a
fairly transparent structure:

∧

Si =
⋂

Si and
∨

Si = {
∧

M |M ⊆
⋃

Si}. (1.6.1)

The least sublocale
∨

∅ = {1} is designated by O and referred to as the void
sublocale.

1.6.1. Note. A sublocale S of a frame L is itself a frame (the adjoint to
the embedding is a frame homomorphism). By (S2) we easily see that its
Heyting operation is the restriction of the → from L.

1.6.2. Sublocales are upsets only if they are closed. But generally we have

Proposition. If S is a sublocale then for every x∗ holds the implication

x∗ ≥ s0 =
∧

S ⇒ x∗ ∈ S.

Proof. x∗ = x→0 = x→(x ∧ s0) = (x→x) ∧ (x→s0) = (x→s0) ∈ S.

1.7. Images and preimages. Let f : L → M be a localic map and S ⊆ L

and T ⊆ M sublocales. Then the (standard set theoretic) image f [S] is
easily seen to be a sublocale of M . The standard f−1[T ] is generally not
a sublocale, but it is closed under meets and hence, by (1.6.1) there is the
largest sublocale contained in this set, which we denote by f−1[T ] and call
the (localic) preimage of T . There is the obvious (Galois) adjunction

f [S] ⊆ T iff S ⊆ f−1[T ].

Consequently, in particular, f−1[−] preserves intersections. Moreover, f−1[O] =
O (because already f−1[O] = O, recall 1.5.1).
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2. A short course in sublocale computing

In this section we collect some facts about sublocales that we will need in
the following. The aim in presenting them with proofs (that makes this
section hardly more then half a page longer) is to persuade the reader that
the sublocale reckoning is not a shorthand for (more involved) reckoning
with other representations of subobject (nuclei, congruences, onto homo-
morphisms). One really calculates with the formulas given for the sublocales
in the subsections above – and usually obtains very simple and transparent
proofs.

2.1. We will use simple Heyting rules like

a →
∧

i∈J

bi =
∧

i∈J

(a → bi), (distr)

(
∨

i∈J

ai) → b =
∧

i∈J

(ai → b), (distrop)

a ≤ b → c iff b ≤ a → c, (exch)

1 → a = a, a ≤ b iff a → b = 1, a ≤ b → a, (2.1.1)

a ∧ (a → b) = a ∧ b, (a ∧ b) → c = a → (b → c) = b → (a → c), (2.1.2)

a ≤ (a → b) → b (2.1.3)

all of them trivial, and only a slightly less simple

a = (a ∨ b) ∧ (b → a) (2.1.4)

(a ≤ (a∨ b) ∧ (b → a) and on the other hand (a ∨ b) ∧ (b → a) = (a∧ (b →
a)) ∨ (b ∧ (b → a)) ≤ a ∨ (b ∧ a) = a).

2.2. The nucleus and a handy formula. Recalling (S1) we see that we
have, for a sublocale S

νS(a) =
∧

{s ∈ S | a ≤ s} ∈ S.

The resulting map νS : L → L is called the nucleus of S. Obviously a ∈ S

iff νS(a) = a.

2.2.1. Proposition. If s ∈ S then for all a, νS(a) → s = a → s.

Proof. x ≤ a → s iff a ≤ x → s (∈ S) iff ν(a) ≤ x → s iff x ≤ ν(a) → s.
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2.3. Open and closed sublocales. With a ∈ L we associate the open

and closed sublocales

o(a) = {x | a → x = x} = {a → x | x ∈ L} and c(a) =↑a

(for the equality in the first see (2.1.2)).

2.3.1. Proposition. o(a) and c(a) are complements of each other.

Proof. I. If x ∈ c(a) ∩ o(a) then a ≤ x = a → x and hence 1 = a → x = x.
Thus, c(a) ∩ o(a) = {1} = O.

II. For each x ∈ L we have, by (2.1.4), x = (a ∨ x) ∧ (a → x) with
a ∨ x ∈ c(a) and a → x ∈ o(a).

2.3.2. A frame is zero-dimensional (or totally disconnected) if it is join-
generated by complemented elements. We have

Proposition. For every sublocale S ∈ L,

S =
⋂

x∈L

c(νS(x)) ∨ o(x).

Thus in particular, S(L)op is a zero-dimensional frame.

Proof. ⊆: Let a ∈ S and x ∈ L arbitrary. Then x → a = ν(x) → a and
hence

a = (ν(x) ∨ a) ∧ (ν(x) → a) = (ν(x) ∨ a) ∧ (x → a) ∈ c(ν(x)) ∨ o(x).

⊇: Let a ∈
⋂

x∈L c(νS(x)) ∨ o(x). In particular a ∈ c(νS(a)) ∨ o(a) and
hence a = x ∧ y for some x ≥ ν(a) and y = a → y. Then a ≤ a → y, hence
a = a ∧ a ≤ y and y = a → y = 1. Thus, a = x ≥ ν(a) and a ∈ S.

2.3.3. Proposition. We have

o(0) = O, o(1) = L, o(a) ∩ o(b) = o(a ∧ b) and
∨

o(ai) = o(
∨

ai),

c(1) = O, c(0) = L, c(a) ∨ c(b) = c(a ∧ b) and
⋂

c(ai) = c(
∨

ai).

Proof. The statements on the closed sublocales are straightforward, those
on the open ones then follow immediately from 2.3.1.

2.3.4. Open and closed sublocales in sublocales. A sublocale S is
itself a frame (recall 1.6.1). Denoting the open and closed sublocales in S

by oS and cS we obtain for a ∈ S

oS(a) = o(a) ∩ S and cS(a) = c(a) ∩ S.

(the latter is trivial and the former follows from 1.6.1).
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2.3.5. A cover of a frame L (more generally, of a sublocale S ⊆ L) is a
subset C ⊆ S(L) such that

∨

{C |C ∈ C} = L (resp.
∨

{C |C ∈ C} ⊇ S).
Note that in literature one often speaks of covers of L as of subsets

A ⊆ L such that
∨

A = 1. This can be viewed as a special case of the above
thinking of A as a simplified encoding of an open cover {o(a) | a ∈ A}.

2.3.6. Preimages of open and closed sublocales. For a localic map

f : L → M and its adjoint homomorphism h we have

f−1[c(a)] = c(h(a)) and f−1[o(a)] = o(h(a)).

Proof. We have x ∈ f−1[c(a)] iff f(x) ≥ a iff x ≥ h(a) iff x ∈ c(h(a)) which
is already a sublocale.

Next, by 1.5.1, x ∈ o(h(a)) makes f(x) = f(h(a) → x) = a → f(x),
hence o(h(a)) ⊆ f−1[o(a)]. On the other hand, since f−1[−] preserves meets
and O we have

f−1[o(a)] ∩ c(h(a)) = f−1[o(a)] ∩ f−1[c(a)] = f−1[o(a) ∩ c(a)] = f−1[O] = O

and hence f−1[o(a)] ⊆ o(h(a)).

2.4. Closure, interior and density. We have the closure, the smallest
closed sublocale containing S,

S =
⋂

{c(a) =↑a |S ⊆↑a} =↑(
∧

S). (2.4.1)

Obviously the meet (the minimum) of o(a) is a → 0 = a∗ so that

o(a) =↑(a∗). (2.4.2)

Using the fact that S## ⊆ S we immediately see that o(a) ⊆ S iff
S# ⊆ c(a) and obtain the formula for the interior of S,

intS = o(
∧

S#). (2.4.3)

2.4.1. Observations. 1. A sublocale S is dense, that is, S = L, iff 0 ∈ S.

2. S is dense iff the intersection with each non-void open sublocale is non-

void.

3.
∧

S# ≤ (
∧

S)∗, and the equality holds iff intS = intS.

(1 is trivial, and 2 follows from 2.3.1. For 3: realize that because S#∨S = L,
∧

S# ∧
∧

S = 0; moreover
∧

S# = (
∧

S)∗ iff o(
∧

S#) = o((
∧

S)∗) iff
intS = int (c(

∧

S)).)
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Obviously, the Booleanization of L

BL = {x ∈ L | x = x∗∗} = {x → 0 = x∗ | x ∈ L}

is a sublocale of L and it is the smallest sublocale containing 0. Thus we
have another

2.4.2. Observation. (Isbell’s Density Theorem) A sublocale S ⊆ L is dense

iff it contains BL.

2.4.3. Lemma. For any complemented S, (
∧

S)∗ ≤ (
∧

Sc)∗∗.

Proof. By 1.6.2, (
∧

S ∨
∧

Sc)∗∗ ∈ S ∩ Sc = O hence 0 = (
∧

S ∨
∧

Sc)∗ =
(
∧

S)∗ ∧ (
∧

Sc)∗.

2.4.4. Lemma. For any complemented S, intS ∨ intSc is dense.

Proof. From 0 =
∧

(S ∨ Sc) =
∧

S ∧
∧

Sc and 2.4.3 we get

0 = (
∧

S)∗∗ ∧ (
∧

Sc)∗∗ ≥ (
∧

Sc)∗ ∧ (
∧

S)∗ =
∧

(intS ∨ intSc).

2.4.5. Proposition. For any complemented S, BL ∩ intS = BL ∩ S.

Proof. S∩BL = S∩(intS∨intSc)∩BL = (intS∨O)∩BL = intS∩BL.

2.4.6. Note. On the other hand, by 1.6.2 we have generally that BL∩S =
BL ∩ S.

3. Dissolution and the frame of sublocales

3.1. The system of sublocales of L is a coframe. We will work also with
its dual and to simplify the notation we will write

T(L) = S(L)op

and speak of the frame of sublocales. We have the natural frame embedding
(recall 2.3.3)

cL = (a 7→ c(a)) : L → T(L)

(the index L in cL will be omitted if obvious)4. The localic map associated
with the cL in the adjunction

L

cL

++

⊥ T(L)
γL

jj (c-γ)

4The T, used to simplify the notation is an allusion to the first step in the Tower
(assembly). Note that the order of T(L) follows the order of the associated frames of
congruences, or of the nuclei, see e.g. [9].
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is obviously given by the formula

γL(S) =
∧

S.

This cL resp. the associated localic γL are often (mostly satisfactory) used
as a surrogate for the lifting of the topological space X to DX in which
one replaces the topology by the discrete one on the same set (for instance,
the “not necessarily continuous” localic maps from L to M are modelled by
the localic maps T(L) → M mimicking the not necessarily continuous map
X → Y represented as f : DX → Y ).

In this section we will point out how far the γL : T(L) → L emulates the
discrete lifting.

3.2. Two coinciding adjunctions. Recall the image-preimage adjunc-
tion

T(L)

(γL)−1[−]
,,

⊥ T(T(L))

γL[−]

kk . (dis)

The (c-γ) provides another one between T(L) and T(T(L)), namely

T(L)

cT(L)

,,

⊥ T(T(L))
γT(L)

kk .

We will show that these two adjunctions coincide.

3.2.1. Proposition. Let S be a subcolocale of S(L) and let S0 =
∨

{S |S ∈
S}. Then for each t ∈ S0 there is a T ∈ S such that t =

∧

T .

Proof. For S ∈ S and x ∈ S set Sx = S∖o(x) = S∩ c(x) = {s ∈ S | s ≥ x}.
Then by (S2) in 1.6 and 1.4.1,

Sx ∈ S and
∧

Sx = x.

For s ∈ S0 =
∨

{S |S ∈ S} we have s =
∧

S∈S xS for some xS ∈ S. Set
T =

∨

{SxS
|S ∈ S}. Then

∧

T = S.

3.2.2. Theorem. γL[−] = γT(L) and hence also (γL)−1[−] = cT(L).

Proof. We have

γT(L)(S) =
∨

{S |S ∈ S} =
∨

{
∧

S |S ∈ S} = γL[S]

by 3.2 (the inclusion γT(L)(S) ⊆
∨

{S |S ∈ S} is trivial), and the adjoints
are mutually uniquely determined.
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3.2.3. Notes. 1. The fact that (γL)−1[−] = cT(L) can be also proved di-
rectly, although not quite as easily.

To this end let us recall the fact that f−1[−], for any localic map f , is a
coframe homomorphism (see, e.g., [9] – the proof is slightly more involved
than the sublocale facts presented in Section 2: preserving meets and O is
straightforward, see 1.7, but proving that the join S ∨ T is preserved needs
half a page of computing).

Further, considering the maps cL as above, and

oL = (a 7→ o(a)) : L → S(L) or L → T(L)

we get in the first case lattice homomorphisms and in the second case anti-
homomorphisms, hence in any case maps preserving complements and hence
in particular

c(c(a)) = o(o(a)), c(o(a)) = o(c(a)) and o(c(a)) = c(o(a)).

Now if we represent S ∈ S(L) as
⋂

i(o(ai) ∨ c(bi)) (recall 2.3.2) we can
compute (recall 2.3.6)

γ−1[S] =
⋂

(γ−1[o(ai)] ∨ γ−1[c(bi)]) =
⋂

(o(c(ai)) ∨ c(c(bi))) =

=
⋂

(c(o(ai)) ∨ c(c(bi))) = c(
⋂

(o(ai) ∨ c(bi)) = c(S).

Note how much more complicated this approach is: we needed the non-
trivial fact that f−1[−] was a homomorphism, the representation of S from
2.3.2 and the not quite trivial f−1[o(a)] = o(h(a)) from 2.3.6, while 3.2.2
needed just a straightforward use of the fact that S was a sub(co)locale.

2. For an alternate categorical proof of this fact, consider the assignment
L 7→ T(L) as a functor

T : Loc → Loc

defined on morphisms by T(f) = f [−] and recall that the dissolving maps
γL are monic and are the components of a natural transformation T → Id
([3, 1.4]). Hence

γL · γT(L) = γL · T(γL)

for every L, and thus γT(L) = T(γL) = γL[−].

3.3. Corollary. Thus in particular, for every S ∈ S(L) the preimage

(γL)−1[S] is closed in T(L).

11



The system of closed sublocales of T(L) is sometimes called the dissolu-
tion of L and denoted by

Ld.

Thus, Ld is an isomorphic copy of T(L). The point is in the specific concrete
representation of this frame which can be used to advantage.

3.3.1. Corollary. A sublocale S of L is complemented iff cT(L)(S) = (γL)−1[S]
is clopen in T(L).

3.4. The “weak discreteness” of the T(L) can be now elucidated by the
following comparison. The classical discrete lifting δ = (x 7→ x) : DX → X

is characterized by the facts that

• δ is one-one and onto, and

• δ−1[A] is closed for each subset A ⊆ X,

while for the γ = γL : T(L) → L we have that

• γ is monic and epic, and

• γ−1[S] is closed for each sublocale S ⊆ L.

The former is a very good analogy: of course a localic map cannot be one-
one and onto unless it is an isomorphism. The real difference is in the latter:
while in spaces one obtains automatically that also δ−1[A] is open for each
subset A ⊆ X, for localic maps one has that preserving closed and open
maps for preimages are two independent facts5 (and γ−1[S] are not generally
open).

3.5. To the characterization of complemented sublocales and other facts
about the dissolution from the literature (e.g. [12, 13]) let us add the char-
acterization of the differences (dual Heyting arrows) B∖A and the supple-
ments A# in S(L).

3.5.1. Proposition. (γL)−1[B ∖ A] =
⋂

{clopen C | cT(L)(B) ∩ oT(L)(A) ⊆
C}.

Proof. Since

B ∖ A =
⋂

{S ∈ S(L) | S is complemented , B ⊆ S ∨ A} (cf. [2])

5Somewhat surprisingly, being a localic map is characterized in among plain maps by
preserving both open and closed sublocales, see [1, 11].
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and (γL)−1[−] is a homomorphism, (γL)−1[B ∖ A] is given by
⋂

{(γL)−1[S] | S is complemented, B ⊆ S ∨ A}

=
⋂

{cT(L)(S) | S is complemented, B ⊆ S ∨ A}

=
⋂

{cT(L)(S) | S is complemented, cT(L)(B) ⊆ cT(L)(S) ∨ cT(L)(A)}

=
⋂

{clopen C | cT(L)(B) ⊆ C ∨ cT(L)(A)}

=
⋂

{clopen C | cT(L)(B) ∩ oT(L)(A) ⊆ C}.

3.5.2. In particular, for B = L, the formula yields

(γL)−1[L∖ A] =
⋂

{clopen C | oT(L)(A) ⊆ C}

which by the zero-dimensionality of T(L) is equal to oT(L)(A). This follows
also from 3.2.2 and (2.4.2):

(γL)−1[L∖ A] = cT(L)(A
∗) = oT(L)(A).

4. An application: Plewe’s Theorem revisited

4.1. The formula (frm) does not generally hold in coframes and the formula
(cofrm) does not generally hold in frames for general b. In the exceptional
cases when it does one speaks of a distributive system A ([13]).

4.1.1. Proposition. Let L be a frame. Then {ai | i ∈ J} ⊆ L is distributive

iff
∨

c(ai) = c(
∧

ai) in the coframe S(L).

Proof. ⇒: Let x ≥
∧

ai. Then x = x ∨
∧

ai =
∧

(x ∨ ai) and, of course,
{x ∨ ai}i ⊆

⋃

↑ai, hence x ∈
∨

c(ai). The other inclusion is obvious.

⇐: Let b∨
∧

ai ∈ c(
∧

ai) =
∨

c(ai). Then there is some B = {bj}j ⊆
⋃

i ↑ai
such that b ∨

∧

ai =
∧

B =
∧

j bj (in particular, b ≤ bj for every j and for
each j there is some ij such that bj ≥ aij). Finally, we have

b ∨
∧

ai =
∧

j

bj =
∧

j

(bj ∨ aij) ≥
∧

j

(b ∨ aij) ≥
∧

i

(b ∨ ai).

4.2. Open sublocales dense in closed ones. We say that o(b) is dense
in c(a) if o(b) ∩ c(a) is dense in c(a). We have

o(b) ∩ c(a) = o(a ∨ b) ∩ c(a)

(if x ≥ a then (a ∨ b) → x = x makes x = (a → x) ∧ (b → x) = b → x)
and hence we may restrict ourselves to the o(b) with b ≥ a when speaking
of dense open sublocales of c(a). Then we have

b > a unless a = 1. (4.2.1)
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4.3. Lemma. Let S ⊆ S(L) be such that
∨

{S ∩BL |S ∈ S} = BL. Then

there are pairwise disjoint o(bS) such that
∨

{S∩o(bS)∩BL |S ∈ S} = BL.

Proof. Consider the standard pairwise disjoint cover {BS |S ∈ S} of (the
Boolean) BL such that BS ⊆ S for all S 6. For each S then choose an o(bS)
such that o(bS) ∩BL = BS. Then we have

o(bS) ∩ S ∩BL = o(bS) ∩BL ∩ S ∩BL = BS ∩ S ∩BL = BS

so that
∨

{S ∩ o(bS) ∩BL |S ∈ S} =
∨

S BS = BL.

4.4. Proposition. For every distributive cover C of L by complemented

sublocales there exists an open dense o(a) ⊆ L and a pairwise disjoint cover

{o(aC) |C ∈ C} of o(a) such that o(aC) ⊆ C for all C ∈ C.

Proof. By 2.4.5, C ∩BL = intC ∩BL for each C ∈ C, and by the distribu-
tivity

∨

C∈C

(intC ∩BL) =
∨

C∈C

(C ∩BL) = BL ∩
∨

C∈C

C = BL.

Then use Lemma 4.3 for the system S = {intC |C ∈ C} and set o(aC) =
intC ∩ o(bC) and a =

∨

C∈C
aC .

The next results are from [13]. We follow the reasoning from [13] in
a way simplified by the sublocale calculus as above. In particular we do
not need special definitions and the constructions can be made explicit and
hence more transparent.

4.5. Theorem. Each open cover U = {Ui | i ∈ J} of T(L), for an arbitrary

L, has a disjoint refinement {Vi | i ∈ J} such that Vi ⊆ Ui.

Proof. Let U = {Ui | i ∈ J} be an open cover of T(L). Because of zero-
dimensionality of T(L) (recall 2.3.2) we may assume the Ui clopen, and
hence U = {cT(L)(Ci) | i ∈ J} with complemented Ci ∈ S(L). Since

cT(L)(
∨

i

Ci) ≥
∨

{cT(L)(Ci) | i ∈ J}

we have cT(L)(
∨

i Ci) = cT(L)(L), that is,
∨

i Ci = L (the bottom of T(L))
and {Ci | i ∈ J} is by 4.1.1 a distributive cover of L.

Set a0 = 0 (in L) and S0 = O. If aα is already defined then consider

c(aα) and its cover {Ci ∩ c(aα) | i ∈ J}

6If B is Boolean, one can order its elements by an ordinal κ as (aα)α<κ and put b0 = a0
and bα = aα ∧

∨

β<α bβ . It is easy to check that (bα)α<κ has the required property.
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and choose by 4.4 and 4.3 an aα+1 ≥ aα with Sα+1 = o(aα+1) ∪ c(aα) dense
in c(aα) pairwise disjointly covered by Sα+1,i, i ∈ J , with Sα+1,i ⊆ Ci. For
a limit ordinal set Sλ = O.

We have for all α
∨

β≤α

Sβ = o(aα).

Indeed, S0 = O = o(a0),

∨

β≤α+1

Sβ =
∨

β≤α

Sβ ∨ Sα+1 = o(aα) ∩ (o(aα+1) ∩ c(aα)) =

= o(aα+1) ∩ (o(aα) ∨ c(aα)) = o(aα+1),

and for a limit λ,

∨

β≤λ

Sβ =
∨

α<λ

∨

β≤α

Sβ ∨ Sλ =
∨

α<λ

o(aα) ∨ O = o(
∨

α<λ

aα) = o(aλ).

Since by (4.2.1), aα strictly grows until it reaches the value 1, we have for a
sufficiently large α

∨

β≤α

Sβ = L

and since obviously the Sβ’s are pairwise disjoint and Sβ,i complemented
(intersections of open and closed), we obtain the desired clopen refinement
of U as {cT(L)(Sβ,i) | β ≤ α, i ∈ J}.

4.5.1. The property above is called ultraparacompactness ([8]). Hence, we
can rewrite 4.5 to

Theorem. T(L) of an arbitrary L is ultraparacompact.

4.6. Lemma. Let there exist a pairwise disjoint cover C ⊆ L refining {a, b}.
Then there exists a complemented u such that a ∨ u = 1 = b ∨ uc. In other

words, there exists a clopen o(u) such that

c(a) ⊆ o(u) and c(b) ⊆ o(u)c.

Proof. Set u =
∨

{c ∈ C | c ≰ a} and v =
∨

{c ∈ C | c ≤ a}. Then
u ∨ v =

∨

C = 1 and u ∧ v = 0 and hence v = uc. By refinement we
have c ≰ a ⇒ c ≤ b and hence u ≤ b. Thus, a ∨ u ≥ v ∨ u = 1 and
b ∨ v ≥ u ∨ v = 1.
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4.7. A frame L is ultranormal (strongly zero-dimensional in [13]) if for any
a, b in L such that a ∨ b = 1 there exists a complemented c ∈ L such that
c ≤ a and c∗ ≤ b.

Applying Lemma 4.6 to the ultraparacompact Ld
∼= T(L) we obtain

(dissolving back closed sublocales to general ones and clopen sublocales to
complemented ones):

Theorem. Each T(L) is ultranormal. That is, for disjoint sublocales A,B

of an arbitrary frame L there is a complemented sublocale S such that A ⊆ S

and B ⊆ Sc.
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