
ON CONTINUITY AND OPENNESS OF LOCALE MAPPINGS

JOÃO AREIAS AND JORGE PICADO

Abstract. This note reviews some adjoint situations, in the algebraic (point-
free) setting of frames and locales, that describe fundamental properties of map-
pings such as residuation, continuity and openness.

Given posets X, Y and maps h : X → Y and f : Y → X such that

h(x) ≤ y ⇐⇒ x ≤ f(y), (1)

the pair (h, f) is said to be a Galois adjunction (and one writes h ⊣ f), with
h the left adjoint, and f the right adjoint. Galois adjunctions are a basic tool
in order theory that provide descriptions of many phenomena in order theory,
algebra and topology ([2, 3, 4]). For instance, the continuity of a map f between
topological spaces ([10]) or, more generally, closure spaces (X, CX) and (Y, CY ), is
characterized by the fact that the pair (f→C , f←C ) is an adjunction ([1, 2, 3]), for

f→C : CX → CY , A 7→ f→(A)− (2)

f←C : CY → CX , B 7→ f←(B)−,

where − denotes closure and the symbols f→ and f← are used for the image and
preimage map, respectively.

Similar adjunctions, characterizing continuity and openness, that interchange
images and preimages with closure and interior operators, occur in the algebraic
setting of frames and locales (and, more generally, in the setting of implicative
semilattices; see the forerunner [5] for a complete study). It is our aim with this
note to review them.

Let L be a locale (=frame), that is, a complete lattice in which binary meets dis-
tribute over arbitrary joins (equivalently, a complete Heyting algebra with Heyting
operator →). For general background, notation and terminology concerning the
category of locales and continuous (=localic) maps and its dual category of frames
and frame homomorphisms, we refer to [11]. The subsets S ⊆ L such that

(S1) for every M ⊆ S,
∧

M ∈ S, and
(S2) for every s ∈ S and x ∈ L, x → s ∈ S,
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form the system S(L) of all sublocales of L. This is a coframe (that is, the dual of
frame) with a fairly transparent structure:

∧
Si =

⋂
Si and

∨
Si = {

∧
M |M ⊆

⋃
Si}. (3)

The least sublocale
∨

∅ = {1} is denoted by O (the void sublocale); the largest
sublocale is, of course, L. For each a ∈ L there are the open and closed sublocales

oa = {x | a → x = x} = {a → x | x ∈ L} and ca = ↑a = {x ∈ L | x ≥ a}. (4)

They are complements of each other in S(L) and satisfy the properties

o0 = O, o1 = L, oa ∩ ob = o(a ∧ b) and
∨

oai = o(
∨

ai), (5)

c1 = O, c0 = L, ca ∨ cb = c(a ∧ b) and
⋂

cai = c(
∨

ai).

Denoting by oL and cL respectively the sets of all open and closed sublocales of L,
the formulas above show that o : L → oL and c : L → cL are frame isomorphisms
between L and (oL,⊆) resp. (cL,⊇).

In the following, a right-adjoint (=meet-preserving) map f : L → M between
locales will be continuous if

(C1) f(a) = 1 ⇒ a = 1, and
(C2) f(h(b) → a) = b → f(a) for all a ∈ L, b ∈ M ,

(where h is the left adjoint of f). Continuous maps L → M are precisely the
right-adjoints whose left adjoints are frame homomorphisms ([11]).

To begin with, for each plain map f : L → M between locales consider the maps
f∗ : M → L and f! : L → M defined by

f∗(b) =
∨
{a ∈ L | f→(oa) ⊆ ob} and f!(a) =

∨
{b ∈ M | ob ⊆ f→(oa)}. (6)

One may transfer these maps from the level of the ordered structures L and
M into the oL (and cL) and oM (and cM) by defining closure and interior of a
subset S of a locale as follows. For any S ⊆ L, let S− denote the closed sublocale

⋂
{ca ∈ cL | S ⊆ ca} = c(

∨
{a ∈ L | S ⊆ ca}) = c(

∧
S). (7)

This defines a map from the power set P(L) to cL with the properties of a closure
operator:

– extensivity: S ⊆ S−.
– isotonicity: S ⊆ T ⇒ S− ⊆ T−.
– idempotency: (S−)− = S−.

Similarly, we may consider the open sublocale S◦ defined as
∨
{oa ∈ oL | oa ⊆ S} = o(

∨
{a ∈ L | oa ⊆ S}). (8)

This defines now a map from P(L) to oL with two of the properties of interior
operators:

– isotonicity: S ⊆ T ⇒ S◦ ⊆ T ◦.
– idempotency: (S◦)◦ = S◦.
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However, intensivity does not hold generally; indeed, S◦ is not necessarily con-
tained in S because the join in (8) is taken in S(L). Nevertheless, for S in the
complete lattice M(L) of all meet-subsets of L (i.e. subsets closed under meets)
it is clear from the formula for joins in (3) that S◦ ⊆ S and, in particular, that
oa ⊆ S iff oa ⊆ S◦.
The following diagram emerges

oL

1○

¬

��

f⇒
o // oM

2○

¬

��

f←
o // oL

3○

¬

��

f→
o // oM

¬

��

¬

��

L

4○

o

OO

c

��

f! // M

5○

o

OO

c

��

f∗ // L

6○

o

OO

c

��

f // M

o

OO

c

��
cL

¬

HH

f⇒
c // cM

¬

HH

f←
c // cL

¬

HH

f→
c // cM

¬

HH

where ¬ denotes complementation in S(L) and S(M), and the upper and lower
horizontal maps are defined by

f⇒
o
(oa) = f→(oa)◦, f←

o
(ob) = f←(ob)◦, f→

o
(oa) = ¬(f→(ca)−), (9)

f⇒
c
(ca) = ¬(f→(oa)◦), f←

c
(cb) = f←(cb)−, f→

c
(ca) = f→(ca)−.

Note that

– squares 1○, 2○, 4○ do commute always,
– 3○ and 6○ commute iff f is order-preserving, and
– 5○ commutes iff

f←(cb)− = ¬(f←(ob)◦). (10)

(Indeed, c(f∗(b)) = ¬o(
∨
{a ∈ L | oa ⊆ f←(ob)}) = ¬(f←(ob)◦).)

Of course, whenever the squares commute, any adjunction in the middle level
of the ground locales yields a corresponding adjunction in the upper and lower
levels (and vice-versa). It is also clear that the exterior rectangles 1○- 4○ and 3○-
6○ commute always but again 2○- 5○ commutes iff condition (10) holds so only
under this condition one may transfer, by complementation, any adjunction in the
top/bottom levels to an adjunction in the opposite level.

Notes. (a) If f is continuous then f∗ is precisely the frame homomorphism h

left adjoint to f . To see that directly, recall from [11] that for sublocales S ⊆ L

and T ⊆ M , the standard set theoretic image f→(S) is a sublocale of M but
the standard preimage f←(T ) is generally not a sublocale. However, f←(T ) is
closed under meets and hence, by (3), there is the largest sublocale contained in
it, namely the join

∨
{S ∈ S(L) |S ⊆ f←(T )}, that we denote here by f←(T )
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and call it the continuous preimage of T (as opposed to the set theoretic preimage

f←(T )). There is the obvious adjunction f→(S) ⊆ T iff S ⊆ f←(T ). In particular,
f→(−) preserves joins and f←(−) preserves meets of sublocales. Furthermore,
f←(−) is a coframe homomorphism that preserves complements and f→(−) is a
cocontinuous map (see [11] for details). Moreover, f←(O) = O (because already
f←(O) = O, by (C1)). Continuous preimages of closed (resp. open) sublocales are
closed (resp. open), more precisely,

f←(cb) = c(h(b)) and f←(ob) = o(h(b)). (11)

Hence, in the definition of f∗, we have f→(oa) ⊆ ob iff oa ⊆ f←(ob) = o(h(b)) iff
a ≤ h(b), thus f∗ = h.

(b) Since f∗ preserves finite meets, the continuity of f is completely described by
the adjunction f∗ ⊣ f (since f ∗ will be then a frame homomorphism) and thus,
by the commutativity of 2○ and 3○,

an order-preserving f is continuous iff (f←
o
, f→

o
) is an adjoint pair. (12)

The following facts about the mappings in the diagram above are also well
known. Firstly, by general facts for adjoint maps between complete lattices in
[2, 3]), one has:

P1. A plain f is meet-preserving (with left adjoint h) iff it is residual (i.e. f←(cb) =
c(h(b)) for every b ∈ M) iff (f→

c
, f←

c
) is an adjoint pair.

Moreover, as an instance of [5, Thm. 4.6], one has the following characterization
of continuous maps:

P2. A plain f is continuous iff f←(cb) is closed for every b ∈ M , f←
c
(O) = O,

and ¬ f←(cb) ⊆ f←(ob) for every b ∈ M .

Regarding openness, open continuous maps are naturally modelled in pointfree
topology as continuous maps f such that the image f→(oa) of every open sublocale
is open. They are characterized by the celebrated Joyal-Tierney Theorem [9] (it
follows also from the more general Prop. 5.1 and Thm. 5.3 in [5]):

P3. A continuous f is open iff the adjoint frame homomorphism h : M → L is a

complete Heyting homomorphism (i.e. if it preserves also arbitrary meets and

the Heyting operation) iff h admits a left adjoint g that satisfies the identity

f(a → h(b)) = g(a) → b for all a ∈ L and b ∈ M .

There is also the following result contained in Thm. 6.3 and Prop. 6.5 of [5]:

P4. Consider the following conditions about a continuous f : L → M :

(a) f is open.

(b) f←(T )
◦ = f←(T

◦) for every T ∈ S(M).
(c) f←(T )

− = f←(T
−) for every T ∈ S(M).

Then (a) ⇔ (b) ⇒ (c).
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We begin with a result that rephrases P2 in terms of a single condition. For
that we need a basic lemma:

Lemma 1. Let f : L → M be a meet-preserving map between locales. Then:

(a) f←(O) = O iff f←(cb) ⊆ ¬(f←(ob)◦) for every b ∈ M .

(b) f←(T )◦ = f←(T )
◦ for every T ∈ M(M).

Proof. (a) Let f←(O) = O. Since f←(ob) is a meet-subset we have f←(cb) ∩
f←(ob)◦ ⊆ f←(cb) ∩ f←(ob) = f←(cb ∩ ob) = f←(O) = O. We may then conclude
that f←(cb) ⊆ ¬(f←(ob)◦). For the converse, take just the case b = 1: f←(O) =
f←(c1) ⊆ ¬(f←(o1)◦) = O.

(b) It suffices to check the inclusion “⊆”. Since f is meet-preserving, f←(T )
is a meet-subset and f←(T )◦ ⊆ f←(T ). On the other hand, since f←(T )◦ is a
sublocale, the former condition implies that f←(T )◦ ⊆ f←(T ) and thus f←(T )◦ ⊆
f←(T )

◦. □

Proposition 2. A plain f : L → M is continuous iff

¬f←
o
(ob) = f←(cb) for every b ∈ M.

Proof. By Lemma 1(b), the condition holds for any continuous f . The reverse
implication follows using P2: each f←(cb) is closed hence f is meet-preserving;
this guarantees that f←[O] = O (by Lemma 1(a)) and that ¬f←(cb) ⊆ f←(ob)
(note that the intensivity property f←(ob)◦ ⊆ f←(ob) holds here since f is meet-
preserving). □

Remark 3. The condition in Proposition 2 is very close to the condition (10) that
characterizes the commutativity of square 5○ in the diagram. We see now, from
Proposition 2 and P1, that an f is continuous iff it preserves meets and satisfies
(10).

The equivalence (12) in Note (b) follows also immediately from Proposition 2:

Corollary 4. An order-preserving f : L → M is continuous iff (f←
o
, f→

o
) is an

adjoint pair. Hence a plain f is continuous iff it is order-preserving and (f←
o
, f→

o
)

is an adjoint pair.

Proof. For each a ∈ L and b ∈ M , a ∈ ¬(f←(ob)◦) ⇔ ca ⊆ ¬(f←(ob)◦) ⇔
f←
o
(ob) ⊆ oa while a ∈ f←(cb) ⇔ f→(ca) ⊆ cb ⇔ f→(ca)− ⊆ cb ⇔ ob ⊆

f→
o
(oa). □

Regarding openness in a broad sense, as (plain) maps between locales such that
the image of every open sublocale is still open, the proof of the following well-
known fact is an easy exercise:

P5. A meet-preserving f : L → M is open iff (f⇒
o
, f←

o
) is an adjoint pair.

It follows, in particular, that an order-preserving f : L → M is an open contin-
uous map iff

f⇒
o

⊣ f←
o

⊣ f→
o
, (13)
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which by the commutativity of the top squares of the diagram is equivalent to

f! ⊣ f∗ ⊣ f (14)

on the level of the involved ground locales.

Proposition 5. (a) If f is open then f←(T )◦ ⊆ f←(T ◦)◦ for every T ∈ M(M).

(b) If f is meet-preserving then it is open iff

f←(T )
◦ ⊆ f←(T

◦) for every T ∈ M(M).

Proof. (a) It suffices to show that oa ⊆ f←(T ) implies oa ⊆ f←(T ◦). So let
oa ⊆ f←(T ). Then f←(oa) ⊆ T hence f→(oa) ⊆ T ◦ (since f→(oa) is open) and
thus oa ⊆ f←(T ◦).

(b) Let T = f→(oa). Since T is a meet-subset, T ◦ ⊆ T . On the other hand,
f←(T

◦) ⊇ f←(T )
◦ = f←f

→(oa)◦ ⊇ oa and thus T = f→(oa) ⊆ T ◦. □

There is a natural alternative to f∗ in the main diagram, namely the mapping
f̃∗ : M → L defined by

f̃∗(b) =
∨
{a ∈ L | f←(cb) ⊆ ca}. (15)

With f̃∗ in the place of f∗ then square 5○ is commutative but, on the other hand,
it makes 2○ to commute iff f satisfies (10). Also, f∗ = f̃∗ iff (10) holds. Using f̃∗,
one gets:

Proposition 6. A meet-preserving f : L → M is open continuous iff (f←
c
, f⇒

c
) is

an adjoint pair.

Proof. By the diagram, f←
c

⊣ f⇒
c

iff f! ⊣ f̃∗, and since f is meet-preserving, f̃∗ = h

(the left adjoint of f). In this case h is a complete frame homomorphism, hence
f is continuous and h = f∗; by P5, f is open. Conversely, if f is open continuous
then, again, f! ⊣ f∗ and f∗ = h. □

Combining this with P1 one gets the parallel result to P5 that a plain f : L → M

is an open continuous map iff

f→
c

⊣ f←
c

⊣ f⇒
c
. (16)

It is also possible to describe open continuity by a single condition on preimages:

Proposition 7. A plain map f : L → M is an open continuous map iff

¬(f←(T )◦) = f←(¬(T ◦)) for all T ∈ S(M).

Proof. Let f : L → M be an open continuous map. By Lemma 1(b) and P4, we
conclude that f←(T

◦) = f←(T )
◦ = f←(T )◦. Since f is continuous and ¬(T ◦) is a

closed sublocale it follows that f←(¬(T ◦)) = f←(¬(T
◦)) = ¬f←(T

◦) = ¬(f←(T )◦).
Conversely, applying the hypothesis to T = ob we get f←(cb) = ¬(f←(ob)◦).

Then f is continuous, by Prop. 2. Moreover, for any sublocale T ofM , we have, by
the previous lemma, f←(T )

◦ = ¬(¬(f←(T )◦)) = ¬f←(¬(T ◦)) = ¬(f←(¬(T
◦))) =

f←(T
◦). Hence f is also an open map (again by P4). □
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Proposition 8. Let f : L → M be an open continuous map and T ∈ S(M). The

least sublocale of L that contains (f∗)
→(T ) is contained in f←(T ) hence in f←(T ).

In particular, (f∗)
→(T ) ⊆ f←(T ).

Proof. Let S be the meet-closure of the set {a → f∗(t)) | a ∈ L, t ∈ T}. This is
a sublocale of L. Indeed, for each b ∈ L and

∧
i∈I(ai → f∗(ti)) ∈ S, using basic

properties of the Heyting operator we get

b → (
∧

i∈I

(ai → f∗(ti))) =
∧

i∈I

(b → (ai → f∗(ti))) =
∧

i∈I

((b ∧ ai) → f∗(ti)) ∈ S.

Hence it is clearly the least sublocale of L that contains (f∗)
→(T ). Moreover, it is

contained in f←(T ). In fact, by P3 we know that the left adjoint f! of f∗ satisfies
the identity f(a → f∗(b)) = f!(a) → b for every a ∈ L and b ∈ M , hence

f(
∧

i∈I

(ai → f∗(ti))) =
∧

i∈I

f(ai → f∗(ti)) =
∧

i∈I

(f!(ai) → ti) ∈ T. □

Continuous maps satisfying the containment f←(T
−) ⊆ f←(T )

− for all T ∈
S(M) (hence, the equality, since the converse containment is always true) are
the hereditary skeletal maps (Johnstone [8]). Johnstone characterized them as
the f : L → M such that f∗(b → c) → f∗(c) = (f∗(b) → f∗(c)) → f∗(c) for every
b, c ∈ M ([8, Lemma 4.1]), and proved that an hereditarily skeletal map f : L → M

is open whenever f→(L) is a complemented sublocale of M .
Prop. 8 extends from open maps to hereditary skeletal maps, as follows:

Proposition 9. The following are equivalent for a continuous f : L → M :

(i) f is hereditarily skeletal.

(ii)
∧

f←(T ) ≤ f∗(
∧

T ) for every T ∈ S(M).
(iii) f∗(

∧
T ) ∈ f←(T ) for every T ∈ S(M).

Proof. (i)⇔(ii): Since f←(T
−) = f←(

⋂
{cb | cb ⊇ T}) =

⋂
{c(f∗(b)) | cb ⊇ T}

and f←(T )
− =

⋂
{ca | ca ⊇ f←(T )}, the hypothesis amounts to the implication

f←(T ) ⊆ ca ⇒
⋂
{c(f∗(b)) | cb ⊇ T} ⊆ ca that is, a ≤

∧
f←(T ) ⇒ a ≤∨

{f∗(b) | b ≤
∧

T}; in other words,
∧

f←(T ) ≤ f∗(
∧

T ).

(ii)⇒(iii): The inequality f∗(
∧
T ) ≤

∧
f←(T ) is always true (indeed, for x =∧

f←(T ) ∈ f←(T ), f(x) ∈ T so f∗(
∧

T ) ≤ f∗f(x) ≤ x). Hence f∗(
∧

T ) = x ∈
f←(T ).

(iii)⇒(ii) is obvious. □

Remark 10. Let Loc denote the category of locales and continuous maps. Con-
sider the functor T : Loc → Loc defined by

T(L) = S(L)op and T(f) = f→(−),

and the dissolving maps ([6]) γL : T(L) → L defined by γL(S) =
∧

S (see [12]
for more information on the dissolution of a locale). The dissolving maps are
continuous (indeed, they are the right adjoints of the natural frame embeddings
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cL = (a 7→ ca) : L → T(L)) and establish a natural transformation γ : T
·
→ Id ([6,

1.4]). Therefore, for each f : L → M in Loc, the following diagram commutes

T(L)
γL //

f→(−)

��

L

f

��
T(M)

γM
// M

as well as the square of their left adjoints (dotted arrows in the diagram below)

T(L)
γL

⊥ 33

f→(−)

��

L
cL

rr

f

��
T(M)

f←(−) ⊣

KK

γM

⊥ 33 M
cMrr

f∗ ⊣

JJ

In the latter diagram, one has always the inequality γL ◦ f←(−) ≥ f∗ ◦ γM (since
γL ◦ cL ≥ 1 and cM ◦ γM ≤ 1). Prop. 9 shows that f is hereditarily skeletal
precisely when one has the other inequality, hence the equality

γL ◦ f←(−) = f∗ ◦ γM . (17)

When f is open, we have moreover the adjunction f! ⊣ f∗ and then (17) implies
f! ◦ γL ◦ f←(−) ≤ γM , that is, f!(

∧
f−1(T )) ≤

∧
T for every T ∈ S(M).
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