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Abstract. We study four adjoint situations in pointfree topology that inter-
change images and preimages with closure and interior operators and estab-
lish with them a number of characterizations for meet-preserving maps, localic
maps, open maps (in a broad sense) and open localic maps between locales. The
principal and most attractive feature of these adjunctions is that they are all
concerned with elementary ideas and basic concepts of localic topology: the use
of the concrete language of sublocales and its technique simplifies the reasoning.

We then revisit open localic maps in detail and present a new proof of Joyal-
Tierney open mapping theorem. We end with a study of the interchange laws
between preimages/images and closure/interior operators, making clear the sim-
ilarities and differences with the classical realm.

1. Introduction

Given two partially ordered sets X and Y , a Galois connection [5] between them
consists of a pair of order-preserving maps f : X → Y and g : Y → X such that

f(x) ≤ y ⇐⇒ x ≤ g(y)

for all x ∈ X and y ∈ Y . Nowadays, one usually refers to this situation as a
(Galois) adjunction, since it is a special case of the key concept in category theory
of an adjunction (in fact, a poset is simply a category in which there is at most
one arrow between objects). One calls f left adjoint to g and g right adjoint to f

and writes f ⊣ g.
It is standard that (cf. [5, 4])

(1) fg ≤ idY and idX ≤ gf ,
(2) left adjoints preserve all existing suprema and right adjoints preserve all

existing infima,
(3) and if X, Y are complete lattices then each f : X → Y preserving all

suprema is a left adjoint, and each g : Y → X preserving all infima is a
right adjoint.
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Adjunctions determine a particularly close tie between two categories and “occur
almost everywhere in many branches of Mathematics” (MacLane [16, p. 103]). In
particular, Galois adjunctions determine a certain connection between two posets
and may describe many mathematical concepts. For instance, let f : X → Y be a
function between topological spaces and define the pair of assignments

A
✭

--
cl (f [A])

Closed(X)

f→

))
Closed(Y )

f←

ii cl (f−1[B]) B✬nn

Then it is very easy to check that

f is continuous iff (f→, f←) is an adjoint pair. ([14, 15])

Motivated by this basic example and by recent characterizations in the pointfree
setting of continuity (that is, the property of a mapping to be localic; see [6]), we
address in this article similar adjoint situations in pointfree topology (that is, in
the category of locales and localic maps) that interchange images or preimages with
closure or interior operators. We establish with them a number of characterizations
for meet-preserving maps, localic maps, open maps (in a broad sense) and open
localic maps between locales.
The main feature of the adjunctions we are presenting here is that they are all

concerned with elementary ideas and basic concepts of localic topology: the use
of the concrete language of sublocales and its technique simplifies the reasoning.
There is, however, a delicate point: the complements of closed or open sublocales
have to be formed in the lattice of all sublocales and not set-theoretically as in
classical topology.
Our results may be extended to the setting in [22, 6] (Heyting or implicative

semilattices) but we do not pursue that direction in the present paper, we leave it
for some future work. Our goal is to state these adjunctions just in the pointfree
setting in order to better compare the pointfree notions of continuity and openness
(as properties of meet-preserving maps) with their classical counterparts.

Here is an overview of the paper. We begin with a brief account of the back-
ground involved here (Section 2). Our general reference for pointfree topology and
lattice theory is [18] (or the Appendix in [19]) and the more recent [20]. In Section
3, we describe four types of adjunctions with closure and interior operators that
characterize respectively the preservation of meets, continuity, openness and con-
tinuity+openness of a plain map between locales. In Section 4, we revisit the open
mapping theorem of Joyal-Tierney [13]. In particular, we present a short proof
for it that takes advantage of the concrete technique of sublocales. In the last two
sections (5 and 6), we deal with the commutative properties between preimages
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(and images) and closure or interior operators, emphasizing the similarities and
differences with the classical setting.

2. Preliminaries

For the convenience of the reader, we recall here the notions and facts which
will be of particular relevance in our context.

2.1. Frames. A frame is a complete lattice L satisfying the distributivity law

(
∨

A
)

∧ b =
∨

{a ∧ b | a ∈ A}

for all A ⊆ L and b ∈ L. A frame homomorphism preserves all joins (including
the bottom element 0 of the frame) and all finite meets (including the top element
1).
The distributivity law makes (−) ∧ b, for each b, a left adjoint; consequently a

frame has a Heyting structure with the Heyting operation → satisfying

a ∧ b ≤ c iff a ≤ b → c.

A frame has pseudocomplements a∗ = a → 0 =
∨

{b ∈ L | a ∧ b = 0}. Recall the
standard fact that a ≤ a∗∗.

We will also use simple Heyting rules like (see e.g. [18]):

(H1) 1 → a = a, a → b = 1 iff a ≤ b.
(H2) a →

∧

i∈I bi =
∧

i∈I(a → bi).
(H3) a → (b → c) = (a ∧ b) → c = b → (a → c).
(H4) (

∨

i∈I ai) → b =
∧

i∈I(ai → b).

2.2. Locales. A typical frame is the lattice Ω(X) of open sets of a topological
space X, and for each continuous map f : X → Y there is a frame homomorphism
Ω(f) = (U 7→ f−1[U ]) : Ω(Y ) → Ω(X). Thus we have a contravariant functor

Ω: Top → Frm,

where Top is the category of topological spaces and continuous maps, and Frm

that of frames and frame homomorphisms. To make it covariant one considers the
category of locales Loc, the dual category of Frm.

2.3. Localic maps. It is of advantage to view Loc = Frmop as a concrete cate-
gory with the opposites of frame homomorphisms h : M → L represented by their
right adjoints f : L → M , called localic maps. Being right adjoints, localic maps
are meet-preserving maps. They are precisely the meet-preserving f : L → M that
satisfy the following two conditions (see [18] for more information):

(L1) f(a) = 1 ⇒ a = 1.
(L2) f(h(a) → b) = a → f(b) for all a ∈ M , b ∈ L.
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Indeed, (L1) is the condition on f that corresponds to the fact that h preserves
the empty meet 1, while (L2) is the condition on f equivalent to the fact that h
preserves binary meets.

It is usual to denote the left adjoint (when it exists) of a map f by f ∗. We shall
do it from now on.

2.4. Sublocales. A sublocale of a locale L is a subset S ⊆ L that satisfies the
following conditions ([18]):

(S1) For every M ⊆ S the meet
∧

M lies in S.
(S2) For every s ∈ S and every x ∈ L, x → s lies in S.

A sublocale S is itself a locale with meets computed as in L (by (S1)) but with
possibly different joins; by (S2), its Heyting operation is the restriction of the →
from L.

The system S(L) of all sublocales of L is a coframe (that is, the dual of frame)
with a fairly transparent structure:

∧

Si =
⋂

Si and
∨

Si = {
∧

M |M ⊆
⋃

Si}. (2.4.1)

The least sublocale
∨

∅ = {1} is designated by O and referred to as the void

sublocale; the largest sublocale is, of course, L.
Being a coframe, S(L) is naturally endowed with a co-Heyting operation, the

difference R∖ S ([7]) satisfying

R∖ S ≤ T iff R ≤ S ∨ T,

and it has co-pseudocomplements (usually called supplements) S# = L ∖ S (the
smallest T such that S∨T = L). In case S is complemented, S# is the complement
of S and we shall denote it by Sc.

2.5. Open and closed sublocales. With a ∈ L we associate the open and closed

sublocales

o(a) = {x | a → x = x} = {a → x | x ∈ L} and c(a) = ↑a = {x ∈ L | x ≥ a}

(for the equality in the first use (H3)). For each a ∈ L, o(a) and c(a) are comple-
ments of each other in S(L). Moreover,

o(0) = O, o(1) = L, o(a) ∩ o(b) = o(a ∧ b) and
∨

o(ai) = o(
∨

ai),

c(1) = O, c(0) = L, c(a) ∨ c(b) = c(a ∧ b) and
⋂

c(ai) = c(
∨

ai).

Similarly like in spaces we have the closure, the smallest closed sublocale con-
taining S,

clS =
⋂

{c(a) |S ⊆ c(a)} = c(
∧

S). (2.5.1)

Using the fact that S## ⊆ S we immediately see that o(a) ⊆ S iff S# ⊆ c(a)
and obtain the formula for the interior of S,

intS =
∨

{o(a) | o(a) ⊆ S} = o(
∨

{a | S# ⊆ c(a)}) = o(
∧

S#). (2.5.2)
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We have to be careful here: since S(L) is not a Boolean algebra in general,
some of the usual formulas relating the interior and closure are no longer valid in
locales. Indeed, one only has (see e.g. [7])

cl (L∖ A) = L∖ intA and int (L∖ A) ⊇ L∖ clA.

2.6. Meet-preserving maps in locales. Let f : L → M be a (plain) map
between locales such that

∀b ∈ M ∃a ∈ L : f−1[c(b)] = c(a). (2.6.1)

Of course, the a is necessarily unique and f has a left adjoint f ∗ : M → L given
by the assignment b 7→ a:

y ≤ f(x) ⇔ f(x) ∈ c(y) ⇔ x ∈ f−1[c(y)] = c(f ∗(y)) ⇔ f ∗(y) ≤ x.

(In particular, f and f ∗ are order-preserving.)
Conversely, we also have:

Proposition 2.6.1. Let f : L → M be a map between locales. If f is a right

adjoint, with left adjoint f ∗, then f−1[c(b)] = c(f ∗(b)) for every b ∈ M .

Proof. x ∈ f−1[c(b)] iff b ≤ f(x) iff f ∗(b) ≤ x iff x ∈ c(f ∗(b)). □

Hence:

Corollary 2.6.2. For any locales L,M , a map f : L → M is a right adjoint (that
is, preserves arbitrary meets) if and only if condition (2.6.1) holds.

2.7. Images and preimages. Let f : L → M be a localic map and S ⊆ L and
T ⊆ M sublocales. Then the standard set theoretic image f [S] is easily seen to
be a sublocale of M . The standard f−1[T ] is generally not a sublocale, but it is
closed under meets and hence, by (2.4.1), there is the largest sublocale contained
in it, namely the join

∨

{S ∈ S(L) |S ⊆ f−1[T ]}. We denote it by

f−1[T ]

and call it the localic preimage of T (as opposed to the set theoretic preimage

f−1[T ]). There is the obvious adjunction

f [S] ⊆ T iff S ⊆ f−1[T ].

In particular, f [−] preserves joins and f−1[−] preserves meets (=intersections) of
sublocales. Furthermore, f−1[−] is a coframe homomorphism and hence f [−] is
a colocalic map (see [18] for details). Moreover, f−1[O] = O (because already
f−1[O] = O, by (L1)).

Localic preimages of closed (resp. open) sublocales are closed (resp. open),
more precisely,

f−1[c(b)] = c(f ∗(b)) and f−1[o(b)] = o(f ∗(b)) (2.7.1)
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where f ∗ : M → L stands for the left adjoint of f . The proof of the first identity
is obvious; we include here a proof of the second one, much shorter than the ones
in the literature (e.g. [17, 18, 19]):
By (L2), o(f ∗(b)) ⊆ f−1[o(b)] hence o(f ∗(b)) ⊆ f−1[o(b)]. On the other hand

f−1[o(b)] ∩ f−1[c(b)] = f−1[o(b) ∩ c(b)] = f−1[O] = O

hence f−1[o(b)] ⊆ f−1[c(b)]
c = o(f ∗(b)).

More generally, for any meet-preserving f and any T closed under meets, f−1[T ]
is closed under meets and hence we have a largest sublocale f−1[T ] contained
in f−1[T ]. We will use this notation in this more general context and to avoid
confusion state that “the localic preimage f−1[T ] makes sense”.

3. Adjunctions via closure and interior

3.1. Type I: Characterizing the preservation of meets. It will be of ad-
vantage to extend the closure operator on sublocales to general subsets S of L.
Let cL denote the set of all closed sublocales of L. This is a sub-coframe of the

coframe S(L). For any subset S ⊆ L, let clS denote the closed sublocale
⋂

{c(a) ∈ cL | S ⊆ c(a)} = c(
∨

{a ∈ L | S ⊆ c(a)}) = c(
∧

S).

This defines a map from P(L) to cL with the properties of a closure operator:

• inflationary: S ⊆ clS.
• order-preserving: S ⊆ T ⇒ clS ⊆ clT .
• idempotent: cl (clS) = clS.

Clearly, one has the equivalence

S ⊆ clT ⇔ clS ⊆ clT for every T, S ⊆ L.

For each plain map f : L → M between locales consider the following:

c(a)
✪ --

cl (f [c(a)])
cL

f→
c

((
⊥ cM

f←
c

gg
cl (f−1[c(b)]) c(b)✪

mm

Adjoint pair I: Proposition 3.1.3

Remark 3.1.1. Note that c(f(a)) ⊆ cl (f [c(a)]) holds always. Moreover, f [c(a)] ⊆
c(f(a)) iff

x ≥ a ⇒ f(x) ≥ f(a).
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Therefore f [c(a)] ⊆ c(f(a)) for every a iff f is order-preserving. Hence if f is order-
preserving then, in the first assignment, cl (f [c(a)]) is always equal to c(f(a)). In
this case, it then follows immediately that

c(f(a)) ⊆ c(b) iff f [c(a)] ⊆ c(b). (3.1.1)

On the other hand, f [c(a)] ⊇ c(f(a)) iff

y ≥ f(a) ⇒ y = f(x) for some x ≥ a

(that is, ontoness in c(f(a)) w.r.t. c(a)).

The proof of the following result is straightforward, we skip it.

Lemma 3.1.2. For a plain map f : L → M , the following are equivalent:

(i) The pair (f→
c
, f←

c
) is an adjoint pair.

(ii) cl (f [c(a)]) ⊆ c(b) iff c(a) ⊆ cl (f−1[c(b)]) for every a ∈ L and b ∈ M .

(iii) f [c(a)] ⊆ c(b) iff c(a) ⊆ cl (f−1[c(b)]) for every a ∈ L and b ∈ M .

(iv) c(a) ⊆ f−1[c(b)] iff c(a) ⊆ cl (f−1[c(b)]) for every a ∈ L and b ∈ M .

Moreover, if f is order-preserving then the above conditions are also equivalent to

each one of the following conditions:

(v) f(a) ≥ b iff c(a) ⊆ cl (f−1[c(b)]) for every a ∈ L and b ∈ M .

(vi) f(a) ≥ b iff a ∈ cl (f−1[c(b)]) for every a ∈ L and b ∈ M .

(vii) a ∈ f−1[c(b)] iff a ∈ cl (f−1[c(b)]) for every a ∈ L and b ∈ M .

(viii) a ∈ cl (f−1[c(b)]) ⇒ a ∈ f−1[c(b)] for every a ∈ L and b ∈ M .

Proposition 3.1.3. Let f : L → M be a plain map between locales. The pair

(f→
c
, f←

c
) is an adjoint pair if and only if f preserves arbitrary meets.

Proof. ⇐: By Cor. 2.6.2, condition (iv) of the lemma is trivially satisfied.

⇒: Let c(a) = cl (f−1[c(b)]). It follows from Lemma 3.1.2(iv) that cl (f−1[c(b)]) ⊆
f−1[c(b)] and thus, by Cor. 2.6.2, f preserves arbitrary meets. □

Corollary 3.1.4. For a plain map f : L → M , the following are equivalent:

(i) (f→
c
, f←

c
) is an adjoint pair.

(ii) f preserves arbitrary meets.

(iii) ∀b ∈ M ∃a ∈ L : f−1[c(b)] = c(a).

And when these conditions hold then f has a left adjoint f ∗ satisfying

(iv) ∀b ∈ M, f−1[c(b)] = c(f ∗(b)).

Now, we can rephrase the characterization of localic maps from [6, Cor. 4.8]
(cf. [20, Thm. 6.5.2]) in the following way:

Theorem 3.1.5. A plain map f : L → M between locales is a localic map if and

only if

(1) (f→
c
, f←

c
) is an adjoint pair,
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(2) f←
c
[O] = O, and

(3) f←
c
[c(b)]c ⊆ f−1[o(b)] for every b ∈ M .

Proof. The result in [6] asserts that f is a localic map iff

(a) f−1[O] = O,
(b) f−1[A] is closed for every closed sublocale A of M , and
(c) f−1[U ] ⊇ f−1[U c]c for every open sublocale U of M

so it suffices to check that (1)&(2)&(3) ⇔ (a)&(b)&(c).
Condition (a) is clearly equivalent to (2) and, by Cor. 3.1.4, (b) is equivalent to

(1). Then, under (b) or (1), we have always f←
c
[c(b)] = cl (f−1[c(b)]) = f−1[c(b)]

and the equivalence (c)⇔(3) follows. □

3.2. Type II: characterizing continuity. Let L be a complete lattice. From
now on we shall refer to subsets of L that are closed under meets as meet-subsets

of L. The system of all meet-subsets in L will be denoted by

M(L).

Intersections of meet-subsets are meet-subsets. Consequently, M(L) is a complete
lattice. The joins in M(L) are also given by the formula (2.4.1) and its bottom is
again O = {1}.
For each frame L, let oL denote the set of all open sublocales of L and, for any

subset S ⊆ L, let intS denote the open sublocale
∨

{o(a) ∈ oL | o(a) ⊆ S} = o(
∨

{a ∈ L | o(a) ⊆ S}).

This defines a mapping from P(L) to oL with two of the properties of interior
operators:

• order-preserving: S ⊆ T ⇒ intS ⊆ intT .
• idempotent: int (intS) = intS.

However, intS is not necessarily contained in S because the join above is taken in
S(L) (e.g. take any S that does not contain the top element 1). Hence, we may
not have the implication o(a) ⊆ intS ⇒ o(a) ⊆ S. Nevertheless, for

S∧ =
⋂

{T ∈ M(L) | T ⊇ S} ∈ M(L)

we have the following:

Proposition 3.2.1. For every S ⊆ L, intS ⊆ S∧.

Proof. Let T ⊇ S, T ∈ M(L). We need to check that intS ⊆ T . But

intS = {
∧

A | A ⊆
⋃

{o(a) | o(a) ⊆ S}}

and each of those A is contained in S ⊆ T hence
∧

A ∈ T . □

This proof also shows that

intS ⊆ S whenever S ∈ M(L)
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and thus
o(a) ⊆ S iff o(a) ⊆ intS for any S ∈ M(L).

The following result is obvious.

Lemma 3.2.2. Let f : L → M be a meet-preserving map between locales and let

S ∈ M(L) and T ∈ M(M). Then f [S] ∈ M(M) and f−1[T ] ∈ M(L) and we have

again an adjunction

M(L)

f [−]

**
⊥ M(M).

f−1[−]

jj

Lemma 3.2.3. Let f : L → M be a meet-preserving map between locales. Then

f−1[O] = O if and only if f−1[c(b)] ⊆ (int (f−1[o(b)]))c for every b ∈ M .

Proof. “⇒”: Since f−1[o(b)] is a meet-subset we have

f−1[c(b)] ∩ int (f−1[o(b)]) ⊆ f−1[c(b)] ∩ f−1[o(b)]

= f−1[c(b) ∩ o(b)] = O.

We may then conclude that f−1[c(b)] ⊆ (int (f−1[o(b)]))c.

“⇐”: Take just the case b = 1:

f−1[O] = f−1[c(1)] ⊆ (int (f−1[o(1)]))c = O. □

Now, we can rephrase again the characterization of localic maps from [6, Cor.
4.8] (cf. [20, Thm. 6.5.2]) that asserts that a map f : L → M is a localic map if
and only if the following conditions hold:

(a) f−1[O] = O.
(b) f−1[c(b)] is closed for every b ∈ M .
(c) f−1[o(b)] ⊇ f−1[c(b)]c for every b ∈ M .

Indeed, it follows from (c) (and (b)) that int (f−1[o(b)]) ⊇ f−1[c(b)]c. Moreover,
since (b) implies that f is a meet-preserving map, Lemma 3.2.3 guarantees the
other inclusion and we may conclude that f is a localic map if and only if

(1) f−1[c(b)] is closed for every b ∈ M , and
(2) f−1[c(b)] = (int (f−1[o(b)]))c for every b ∈ M .

Finally, since (int (f−1[o(b)]))c is a closed sublocale, we get immediately the fol-
lowing characterization of localic maps:

Proposition 3.2.4. A plain map f : L → M between locales is a localic map if

and only if

(int (f−1[o(b)]))c = f−1[c(b)] for every b ∈ M.

Moreover, we have:
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Proposition 3.2.5. Let f : L → M be a meet-preserving map between locales.

Then int (f−1[O]) = O if and only if

int (f−1[c(b)]) ⊆ (int (f−1[o(b)]))c for every b ∈ M.

Proof. “⇒”: Since f is a meet-preserving map, f−1[o(b)] and f−1[c(b)] are meet-
subsets, and therefore

int (f−1[o(b)]) ∩ int (f−1[c(b)]) ⊆ f−1[o(b)] ∩ f−1[c(b)].

Then

int (f−1[o(b)]) ∩ int (f−1[c(b)]) ⊆ int (f−1[o(b)] ∩ f−1[c(b)])

= int f−1[O] = O

hence int (f−1[c(b)]) ⊆ (int (f−1[o(b)]))c.

⇐: It suffices to consider the case b = 1:

int (f−1[O]) = int (f−1[c(1)]) ⊆ (int (f−1[o(1)]))c = O. □

We now consider, for each (plain) map f : L → M between locales, the mappings
f→
o

and f←
o

given by

o(a)
✪

..
(cl (f [c(a)]))c

oL

f→
o

((
⊤ oM

f←
o

hh
int (f−1[o(b)]) o(b)✪

nn

Adjoint pair II: Theorem 3.2.7

Remark 3.2.6. If f is localic then the largest sublocale contained in f−1[o(b)] is
f−1[o(b)] = o(f ∗(b)) hence f←

o
(o(b)) = o(f ∗(b)).

Theorem 3.2.7. Let f : L → M be an order-preserving map between locales. The

pair (f←
o
, f→

o
) is an adjoint pair if and only if f is a localic map.

Proof. For each a ∈ L and b ∈ M ,
(

int (f−1[o(b)]) ⊆ o(a) ⇔ o(b) ⊆ (cl (f [c(a)]))c
)

iff
(

c(a) ⊆ (int (f−1[o(b)]))c ⇔ cl (f [c(a)]) ⊆ c(b)
)

iff
(

c(a) ⊆ (int (f−1[o(b)]))c ⇔ f [c(a)] ⊆ c(b)
)

.
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Since f is order-preserving this is further equivalent to
(

c(a) ⊆ (int (f−1[o(b)]))c ⇔ f(a) ∈ c(b)
)

, that is,

iff
(

a ∈ (int (f−1[o(b)]))c ⇔ a ∈ f−1[c(b)]
)

.

The conclusion follows then immediately from Prop. 3.2.4. □

Compare Prop. 3.2.4 with this theorem: in the former we have the equality
(int (f−1[o(b)]))c = f−1[c(b)] while in the latter (int (f−1[o(b)]))c is the greatest
closed sublocale contained in f−1[c(b)]. Next result is an immediate consequence
of the theorem.

Corollary 3.2.8. A plain map f : L → M between locales is a localic map if and

only if f is order-preserving and (f←
o
, f→

o
) is an adjoint pair.

3.3. Type III: characterizing openness. As another variant, replace f→
o

by
the following f⇒

o
:

o(a)
✪

--
int (f [o(a)])

oL

f⇒
o

((
⊥ oM

f←
o

hh
int (f−1[o(b)]) o(b)✪

nn

Adjoint pair III: Theorem 3.3.2

Open continuous maps are naturally modelled in pointfree topology as open

localic maps, that is, localic maps f : L → M such that the image f [o(a)] of every
open sublocale is open. They are characterized by the celebrated Joyal-Tierney
Theorem ([13]):

A localic map f : L → M is open iff the adjoint frame homomor-

phism f ∗ : M → L is a complete Heyting homomorphism (i.e. if it

preserves also arbitrary meets and the Heyting operation).

Here we intend to study the openness property for general maps, not necessarily
localic, so we will speak about open maps in a broad sense as (plain) maps f : L →
M between locales such that the image f [o(a)] of every open sublocale is still open.

Lemma 3.3.1. The following are equivalent for a meet-preserving map f : L → M

between locales:

(i) The pair (f⇒
o
, f←

o
) is an adjoint pair.

(ii) int (f [o(a)]) ⊆ o(b) iff o(a) ⊆ int (f−1[o(b)]), for every a ∈ L and b ∈ M .

(iii) int (f [o(a)]) ⊆ o(b) iff o(a) ⊆ f−1[o(b)], for every a ∈ L and b ∈ M .

(iv) int (f [o(a)]) ⊆ o(b) iff f [o(a)] ⊆ o(b), for every a ∈ L and b ∈ M .
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Proof. The equivalences (i) ⇔ (ii) and (iii) ⇔ (iv) are trivial.
(ii) ⇔ (iii): Since f is a meet-preserving map, f−1[o(b)] is a meet-subset (recall
Lemma 3.2.2). Therefore o(a) ⊆ int (f−1[o(b)]) iff o(a) ⊆ f−1[o(b)]. □

Theorem 3.3.2. Let f : L → M be a meet-preserving map. The pair (f⇒
o
, f←

o
) is

an adjunction if and only if f is open.

Proof. “⇒”: Consider an a ∈ L and let o(b) = int (f [o(a)]). Since f is meet-
preserving, f [o(a)] ∈ M(M) (by Lemma 3.2.2) and therefore int (f [o(a)]) ⊆ f [o(a)].
On the other hand, it follows from condition (iv) in the Lemma that f [o(a)] ⊆
int (f [o(a)]). Hence f is open.

“⇐”: If f [o(a)] = int (f [o(a)]), then condition (iv) of the Lemma is trivially
satisfied. □

Combining adjunctions II and III (in Theorems 3.2.7 and 3.3.2) we get:

Corollary 3.3.3. An order-preserving map f : L → M is an open localic map if

and only if

f⇒
o

⊣ f←
o

⊣ f→
o
.

3.4. Type IV: characterizing openness combined with continuity. Fi-
nally, consider the mappings

c(a)
✪

..
(int (f [o(a)]))c

cL

f⇒
c

((
⊤ cM

f←
c

gg
cl (f−1[c(b)]) c(b)✪

mm

Adjoint pair IV: Theorem 3.4.3

Remark 3.4.1. If f is meet-preserving then f←
c
[c(b)] = f−1[c(b)] = c(f ∗(b)),

where f ∗ stands for the left adjoint of f .

Let f : L → M be a meet-preserving map between locales. For each a ∈ L,
there is a b ∈ M such that int (f [o(a)]) = o(b), and the b is obviously unique.
This assignment defines a map φ : L → M such that int (f [o(a)])c = c(φ(a)). The
proof of the following result is straightforward.

Lemma 3.4.2. The following are equivalent for a meet-preserving f : L → M :

(i) (f←
c
, f⇒

c
) is a an adjunction.

(ii) cl (f−1[c(b)]) ⊆ c(a) iff c(b) ⊆ (int (f [o(a)]))c, for all a ∈ L and b ∈ M .

(iii) c(f ∗(b)) ⊆ c(a) iff c(b) ⊆ c(φ(a)), for all a ∈ L and b ∈ M .

(iv) a ≤ f ∗(b) iff φ(a) ≤ b, for all a ∈ L and b ∈ M .
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Theorem 3.4.3. Let f : L → M be a meet-preserving map between locales. The

pair (f←
c
, f⇒

c
) is an adjunction if and only if f is an open localic map.

Proof. Suppose that (f←
c
, f⇒

c
) is an adjunction. By condition (ii) of the lemma,

for a = 1 and b = 1,

f−1[O] ⊆ c(1) iff c(1) ⊆ (int f [o(1)])c.

The right-hand side is obviously true so f−1[O] ⊆ c(1) = O, that is,

f(a) = 1 ⇒ a = 1

which is precisely condition (L1) in the definition of a localic map (2.3). Moreover,
from condition (iv) of the lemma we know that φ is left adjoint to f ∗. In particular,
f ∗ preserves binary meets, that is, f satisfies condition (L2) of 2.3. In conclusion,
f is a localic map.
Then cl (f−1[c(b)]) = f−1[c(b)] = f−1[o(b)]

c and

cl (f−1[c(b)]) ⊆ c(a) ⇔ f−1[o(b)]
c ⊆ c(a) ⇔ o(a) ⊆ f−1[o(b)] ⇔ f [o(a)] ⊆ o(b).

Hence condition (ii) of Lemma 3.4.2 can be rephrased as

f [o(a)] ⊆ o(b) iff int (f [o(a)]) ⊆ o(b)

which is precisely the openness condition on f .
Conversely, let f be an open localic map. By Thm. 3.3.2 and Lemma 3.3.1(ii),

we have, for each a ∈ L and b ∈ M ,

int (f [o(a)] ⊆ o(b) iff o(a) ⊆ int (f−1[o(b)]),

that is,

c(b) ⊆ (int (f [o(a)])c iff int (f−1[o(b)])c ⊆ c(a). (∗)

But f is localic hence int (f−1[o(b)])c = f−1[c(b)] (recall Prop. 3.2.4) and (∗)
transforms to

c(b) ⊆ (int (f [o(a)])c iff f−1[c(b)] ⊆ c(a),

which asserts that (f←
c
, f⇒

c
) is an adjunction by Lemma 3.4.2. □

Finally, combining adjunctions I and IV (Proposition 3.1.3 and Thm. 3.4.3) we
obtain:

Corollary 3.4.4. A plain map f : L → M is an open localic map if and only if

f→
c

⊣ f←
c

⊣ f⇒
c
.
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4. Open localic maps revisited

Recall the Joyal-Tierney open mapping theorem from 3.3. In this section, we
will present a most direct proof of it, using only basics of the language of sublocales.
Besides the basic properties about images and preimages of localic maps, we only
need the following property of localic maps:

Lemma 4.1. Let f : L → M be a localic map with left adjoint f ∗. For any a ∈ L

and b ∈ M ,

f [o(a) ∩ o(f ∗(b))] = f [o(a)] ∩ o(b).

Proof. The inclusion ‘⊆’ is clear since f [o(f ∗(b))] = ff−1[o(b)] ⊆ o(b).
Conversely, let y ∈ f [o(a)] ∩ o(b). Then y = b → y and y = f(a → x) for some

x ∈ L. Using (H3), we get

y = b → y = b → f(a → x) = f(f ∗(b) → (a → x)) = f((a ∧ f ∗(b)) → x)

where (a ∧ f ∗(b)) → x ∈ o(a ∧ f ∗(b)) = o(a) ∩ o(f ∗(b)). □

Theorem 4.2. The following are equivalent for a localic map f : L → M :

(i) f is open.

(ii) f ∗ : M → L is a complete Heyting homomorphism.

(iii) f ∗ admits a left adjoint f! that satisfies the identity

f!(a ∧ f ∗(b)) = f!(a) ∧ b for all a ∈ L and b ∈ M.

(iv) f ∗ admits a left adjoint f! that satisfies the identity

f(a → f ∗(b)) = f!(a) → b for all a ∈ L and b ∈ M.

Proof. (i)⇒(iii): Suppose that for any a ∈ L there is some b ∈ M such that
f [o(a)] = o(b). Of course, b is unique and we have a map f! : L → M . Since
f [o(a)] ⊆ o(c) iff o(a) ⊆ f−1[o(c)], and f−1[o(c)] = o(f ∗(c)), we conclude that
f!(a) ≤ c iff a ≤ f ∗(c) and thus that (f!, f

∗) is an adjoint pair.
Finally, the Frobenius identity f!(a∧ f ∗(b)) = f!(a)∧ b follows from Lemma 4.1.

Indeed,

o(f!(a ∧ f ∗(b))) = f [o(a ∧ f ∗(b))] = f [o(a) ∩ o(f ∗(b))] =

= f [o(a)] ∩ o(b) = o(f!(a)) ∩ o(b) = o(f!(a) ∧ b).

(iv)⇒(i): It suffices to check that f [o(a)] = o(f!(a)) for every a ∈ L. The inclusion
o(f!(a)) ⊆ f [o(a)] holds by the hypothesis. On the other hand, from f ∗f!(a) ≥ a

it follows that o(a) ⊆ o(f ∗(f!(a))) = f−1[o(f!(a))], that is, f [o(a)] ⊆ o(f!(a)).
The equivalences (ii)⇔(iii)⇔(iv) are proved in [17, Prop. 7.3], using a basic

property on adjunctions. For the sake of completeness, we include the proof here:
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(ii)⇔(iii): The condition in (iii) means that, for every b ∈ M , the diagram

L
f! //

f∗(b)∧(−)

��

M

b∧(−)

��
L

f!

// M

commutes. This is equivalent to saying that the corresponding square of right
adjoints

L M
f∗oo

L

f∗(b)→(−)

OO

M
f∗

oo

b→(−)

OO

commutes, which is precisely the Heyting property for f ∗.

(iii)⇔(iv): The condition in (iii) means also that for every a ∈ L the square

L

a∧(−)

��

M
f∗oo

f!(a)∧(−)

��
L

f!

// M

commutes. Again this is so iff the corresponding square of right adjoints

L
f // M

L

a→(−)

OO

M

f!(a)→(−)

OO

f∗
oo

commutes, which is precisely the condition in (iv). □

Remarks 4.3. (1) Let f : L → M be a localic map. Then

φ ⊣ f ∗ ⇔
(

o(φ(a)) ⊆ o(b) iff o(a) ⊆ o(f ∗(b))
)

⇔
(

o(φ(a)) ⊆ o(b) iff o(a) ⊆ f−1[o(b)]
)

⇔
(

o(φ(a)) ⊆ o(b) iff f [o(a)] ⊆ o(b)
)

and we conclude that the existence of a left adjoint φ of f ∗ is equivalent to the
condition

For each a ∈ L there is a unique smallest b ∈ M such that f [o(a)] ⊆
o(b),
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that is,

For each a ∈ L there is a unique smallest b ∈ M such that o(a) →֒

L
f
→ M factorizes through o(b) →֒ M :

L
f // M

o(a)
?�

OO

f // o(b)
?�

OO

(2) It might be worth pointing out an important result from [19] that shows that
for a subfit locale M (a very mild separation property on locales, weaker than T1

in the setting of spaces), any complete frame homomorphism h = f ∗ : M → L

preserves automatically the Heyting operation (see [19, II.3.5.1] for a proof) and
hence one has the following:

Proposition. Let M be subfit. Then a localic map f : L → M is

open if and only if its adjoint frame homomorphism f ∗ : M → L is

a complete lattice homomorphism.

We conclude this section with a useful property of open localic maps.

Proposition 4.4. Let f : L → M be an open localic map and T ∈ S(M). The

least sublocale of L that contains f ∗[T ] is contained in f−1[T ] hence in f−1[T ]. In
particular, f ∗[T ] ⊆ f−1[T ].

Proof. Let S be the meet-closure of the set

{a → f ∗(t)) | a ∈ L, t ∈ T}.

S is a sublocale of L. Indeed, for each b ∈ L and
∧

i∈I(ai → f ∗(ti)) ∈ S,

b → (
∧

i∈I

(ai → f ∗(ti))) =
∧

i∈I

(b → (ai → f ∗(ti))) =
∧

i∈I

((b ∧ ai) → f ∗(ti)) ∈ S.

Hence it is clearly the least sublocale of L that contains f ∗[T ]. Moreover, it is
contained in f−1[T ]. In fact, by Thm. 4.2(iv),

f(
∧

i∈I

(ai → f ∗(ti))) =
∧

i∈I

f(ai → f ∗(ti)) =
∧

i∈I

(f!(ai) → ti) ∈ T. □

5. Commutativity of preimages with closure and interior

Trivially, localic maps f : L → M satisfy the following containments for any
sublocale (indeed, meet-subset) T ⊆ M :

(C1) f−1[intT ] ⊆ int f−1[T ].
(C2) cl (f−1[T ]) ⊆ f−1[clT ].

In this section, we investigate when the converse containments hold.
The converse to (C1) is precisely openness:
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Proposition 5.1. A meet-preserving f : L → M is open if and only if

int f−1[T ] ⊆ f−1[intT ] for every T ∈ M(M).

Proof. “⇒”: Let f be open. It suffices to show that

o(a) ⊆ f−1[T ] ⇒ o(a) ⊆ f−1[intT ].

So let o(a) ⊆ f−1[T ]. Then f [o(a)] ⊆ T hence f [o(a)] ⊆ intT (since f [o(a)] is
open). Finally, o(a) ⊆ f−1f [o(a)] ⊆ f−1[intT ].

“⇐”: Let T = f [o(a)]. By Lemma 3.2.2, T is a meet-subset hence we have always
intT ⊆ T and, moreover,

f−1[intT ] ⊇ int (f−1[T ]) = int (f−1f [o(a)]) ⊇ o(a)

and thus T = f [o(a)] ⊆ intT . □

For localic maps we have:

Corollary 5.2. Consider the following conditions about a localic map f : L → M :

(a) f is open.

(b) int (f−1[T ]) = f−1[intT ] for every sublocale T of M .

(c) cl (f−1[T ]) = f−1[clT ] for every sublocale T of M .

Then (a) ⇔ (b) ⇒ (c).

Proof. (a)⇒(b): By the Proposition and (C1).

(b)⇒(a): T = f [o(a)] is now a sublocale and we have

f−1[intT ] = int (f−1[T ]) = int (f−1f [o(a)]) ⊇ o(a)

and thus T = f [o(a)] ⊆ intT .

(a)⇒(c): By (C2) it suffices to check the inclusion “⊇”. By Prop. 4.4, f ∗[T ] ⊆
f−1[T ] and so, for x =

∧

T ∈ T ,

cl (f−1[T ]) ⊇ c(f ∗(x)) = f−1[c(x)] = f−1[clT ]. □

Remarks 5.3. (1) Contrarily to what happens with topological spaces, where
(a)⇔(c) holds ([3, Exercise 1.4.C]), the implication (c)⇒(a) is not true in locales
(Johnstone [12], answering a question posed in [2]). A counterexample is the
embedding B(M) →֒ M of the Booleanization B(M) = {b ∈ M | b∗∗ = b}, which
satisfies (c), since all sublocales of a Boolean algebra are closed, but is rarely open.

Localic maps with property (c) are the hereditary skeletal maps (Johnstone [12]).
Johnstone characterized them as the f : L → M such that

f ∗(b → c) → f ∗(c) = (f ∗(b) → f ∗(c)) → f ∗(c)

for every b, c ∈ M ([12, Lemma 4.1]), and proved that an hereditarily skeletal map
f : L → M is open whenever f [L] is a complemented sublocale of M .

(2) For a general categorical treatment of this question see [2, 8].
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(3) The case T = o(b) in (c) amounts to c(f ∗(b∗)) = c(f ∗(b)∗), that is, to f ∗(b∗) =
f ∗(b)∗. Frame homomorphisms satisfying this condition are called nearly open in
[1] and studied in detail there (see also Johnstone [11, 12]).
There are further important weak variants of open localic maps, namely, the

skeletal maps [12] (weakly open in [1]), defined by the identity f ∗(b∗)∗ = f ∗(b)∗∗,
and the sub-open maps [10, 12] that preserve the Heyting implication:

skeletal = weakly open

[1, 12]❯

��

f ∗(b∗)∗ = f ∗(b)∗∗

nearly open

KS

[12]❯

��

f ∗(b∗) = f ∗(b)∗

hereditarily skeletal

KS

f ∗(b → c) → f ∗(c) = (f ∗(b) → f ∗(c)) → f ∗(c)

sub-open

KS

[12]❯

��

Heyting: f ∗(b → c) = f ∗(b) → f ∗(c)

open

KS

complete & Heyting

An hereditarily skeletal map is precisely a localic map f : L → M such that its
pullback along any sublocale embedding T →֒ M is skeletal. It is still an open
problem whether there exists a dividing example for the classes of hereditarily
skeletal maps and sub-open maps.

The class of open maps coincides with the classes of respectively stably sub-open

maps (the ones whose pullbacks along any localic map are still sub-open), stably
nearly open maps (all pullbacks of f are nearly open), and stably skeletal maps

(all pullbacks of f are skeletal) [12, Thm. 4.7].

(4) Let f : L → M be a localic map. For a sublocale T of M ,

f−1[intT ] = f−1[o(
∨

{b | o(b) ⊆ T})]

= o(f ∗(
∨

{b | o(b) ⊆ T})) = o(
∨

{f ∗(b) | o(b) ⊆ T}).

On the other hand,

int (f−1[T ]) =
∨

{o(a) | o(a) ⊆ f−1[T ]}

=
∨

{o(a) | f [o(a)] ⊆ T} = o(
∨

{a | f [o(a)] ⊆ T}).

Hence, f is open if and only if
∨

{f ∗(b) | o(b) ⊆ T} =
∨

{a | f [o(a)] ⊆ T}.
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Lemma 5.4. Let f : L → M be a meet-preserving map between locales. Then

int (f−1[T ]) = int (f−1[T ]) for every T ∈ M(M).

Proof. It suffices to check the inclusion “⊆”. Since f is a meet-preserving map,
f−1[T ] is a meet-subset and int (f−1[T ]) ⊆ f−1[T ]. On the other hand, since
int (f−1[T ]) is a sublocale, the former condition implies that int (f−1[T ]) ⊆ f−1[T ]
and we may conclude that int (f−1[T ]) ⊆ int (f−1[T ]). □

Proposition 5.5. A plain map f : L → M is an open localic map if and only if

(int (f−1[T ]))
c

= f−1[(intT )
c

] for all T ∈ S(M).

Proof. Let f : L → M be an open localic map. By the preceding lemma and by
Cor. 5.2, we conclude that f−1[intT ] = int f−1[T ] = int f−1[T ]. Since f is localic
and (intT )c is a closed sublocale it follows that

f−1[(intT )c] = f−1[(intT )
c] = f−1[intT ]

c = (int f−1[T ])c.

Conversely, applying the hypothesis to T = o(b) we get

f−1[c(b)] = (int (f−1[o(b)]))c.

Then f is a localic map, by Prop. 3.2.4.
Moreover, for any sublocale T of M , we have, by the previous lemma,

int (f−1[T ]) = (int (f−1[T ])c)c = f−1[(intT )c]c = f−1[(intT )
c]c = f−1[intT ].

Hence f is also an open map (by Cor. 5.2). □

Now we extend Prop. 4.4 from open maps to hereditary skeletal maps:

Proposition 5.6. The following are equivalent for a localic map f : L → M :

(i) f is hereditarily skeletal, that is, cl (f−1[T ]) = f−1[clT ] for every T ∈ S(M).
(ii)

∧

f−1[T ] ≤ f ∗(
∧

T ) for every T ∈ S(M).
(iii) f ∗(

∧

T ) ∈ f−1[T ] for every T ∈ S(M).

Proof. (i)⇔(ii): Since

f−1[clT ] = f−1[
⋂

{c(b) | c(b) ⊇ T}] =
⋂

{c(f ∗(b)) | c(b) ⊇ T}

and cl (f−1[T ]) =
⋂

{c(a) | c(a) ⊇ f−1[T ]}, the converse containment of (C2)
amounts to

f−1[T ] ⊆ c(a) ⇒
⋂

{c(f ∗(b)) | c(b) ⊇ T} ⊆ c(a)

that is,
a ≤

∧

f−1[T ] ⇒ a ≤
∨

{f ∗(b) | b ≤
∧

T}

or, in other words,
∧

f−1[T ] ≤ f ∗(
∧

T ).

(ii)⇒(iii): The inequality f ∗(
∧

T ) ≤
∧

f−1[T ] is always true (indeed, for x =
∧

f−1[T ] ∈ f−1[T ], f(x) ∈ T so f ∗(
∧

T ) ≤ f ∗f(x) ≤ x). Hence f ∗(
∧

T ) = x ∈
f−1[T ].
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(iii)⇒(ii): Obvious. □

Remark 5.7. Consider the functor T : Loc → Loc defined by

T(L) = S(L)op and T(f) = f [−]

and the dissolving maps [9] γL : T(L) → L defined by γL(S) =
∧

S (see [21]
for more information on the dissolution of a locale). The dissolving maps are
localic maps (in fact, they are the right adjoints of the natural frame embeddings

cL = (a 7→ c(a)) : L → T(L)) and establish a natural transformation γ : T
·
→ Id

([9, 1.4]). Therefore, for each f : L → M in Loc, the following square commutes

T(L)
γL //

f [−]

��

L

f

��
T(M)

γM
// M

as well as the square of their left adjoints (dotted arrows in the diagram below)

T(L)
γL

⊥ 33

f [−]

��

L
cL

rr

f

��
T(M)

f−1[−] ⊣

KK

γM

⊥ 33 M
cMrr

f∗ ⊣

JJ

In the last diagram, one has always the inequality

γL ◦ f−1[−] ≥ f ∗ ◦ γM

(since γL ◦cL ≥ 1 and cM ◦γM ≤ 1). Prop. 5.6 shows that f is hereditarily skeletal
precisely when one has the other inequality, hence the equality

γL ◦ f−1[−] = f ∗ ◦ γM . (∗)

When f is open, we have moreover the adjunction f! ⊣ f ∗ and then (∗) implies

f! ◦ γL ◦ f−1[−] ≤ γM

(that is, f!(
∧

f−1[T ]) ≤
∧

T for every T ∈ S(M)).
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6. Commutativity of images with closure and interior

In this final section, we collect some results about the the corresponding situ-
ation for images (instead of preimages). Not surprisingly (as for spaces [3]), this
case is not so rich.
Similarly as open maps, we define closed maps as (plain) maps f : L → M

between locales such that the image f [c(a)] of every closed sublocale c(a) is closed.
Closed meet-preserving maps are easy to characterize (in fact, the proof in [18,
Prop. III.7.3] for localic maps also holds for arbitrary meet-preserving maps); they
are precisely the meet-preserving maps f : L → M that satisfy each one of the
following equivalent conditions:

(i) For every a ∈ L, f [c(a)] = c(f(a)).
(ii) For every a ∈ L and b ∈ M , f(a ∨ f ∗(b)) = f(a) ∨ b.
(iii) For every a ∈ L and b, c ∈ M , c ≤ f(a) ∨ b iff f ∗(c) ≤ a ∨ f ∗(b).
(iv) For every a ∈ L and b, c ∈ M , f(a) ∨ b = f(a) ∨ c iff a ∨ f ∗(b) = a ∨ f ∗(c).

Lemma 6.1. Let f : L → M be a plain map between locales. Then f [clX] ⊆
cl f [X] for all X ⊆ L iff f is meet-preserving.

Proof. “⇒”: By Cor. 2.6.2, it suffices to check that cl (f−1[c(b)]) ⊆ f−1[c(b)] for
every b ∈ M . This follows immediately from

f [cl f−1[c(b)]] ⊆ cl f [f−1[c(b)]] ⊆ c(b).

“⇐”: Since f preserves meets,
∧

f [clX] = f(
∧

clX) = f(
∧

X) =
∧

f [X]. □

Lemma 6.2. Let f : L → M be a monotone map between locales. Then f [clS] ⊆
cl f [S] for all S ∈ S(L) iff f preserves meets of sublocales.

Proof. Let S ∈ S(L). Since f is monotone we have f(
∧

S) ≤
∧

f [S]. On the other
hand, from f [c(

∧

S)] = f [clS] ⊆ cl f [S] = c(
∧

f [S]) it follows that f(
∧

S) ≥
∧

f [S]. Conversely, for any a ≥
∧

S, f(a) ≥ f(
∧

S) =
∧

f [S]. □

Proposition 6.3. The following are equivalent for a plain map f : L → M between

locales:

(i) cl f [S] ⊆ f [clS] for all S ∈ S(L).
(ii) cl f [X] ⊆ f [clX] for all X ⊆ L.

(iii) f is closed.

Proof. (i)⇒(ii): For every X ⊆ L, clX ∈ S(L) hence cl f [X] ⊆ cl f [clX] ⊆
f [cl (clX)] = f [clX].

(ii)⇒(iii): For every a ∈ L, cl f [c(a)] ⊆ f [c(a)] hence f [c(a)] is closed.

(iii)⇒(i): If f is a closed map then, for any S ∈ S(L), f [clS] is closed hence
cl f [S] ⊆ cl f [clS] = f [clS]. □

Then, immediately, we have:



22 JOÃO AREIAS AND JORGE PICADO

Corollary 6.4. Let f : L → M be a plain map between locales. Then f [clX] =
cl f [X] for all X ⊆ L if and only if f is closed and meet-preserving.

Corollary 6.5. The following are equivalent for a meet-preserving map f : L → M

between locales:

(i) cl f [S] = f [clS] for all S ∈ S(L).
(ii) cl f [X] = f [clX] for all X ⊆ L.

(iii) f is closed.

Finally, for the interior operator we have:

Proposition 6.6. Let f : L → M be a meet-preserving map between locales. Then

f is open if and only if f [intS] ⊆ int f [S] for every S ∈ S(L).

Proof. If f is an open map then f [intS] = int f [intS] ⊆ int f [S]. Conversely, for
any S = o(a), f [o(a)] ⊆ int f [o(a)], and since f [o(a)] is a meet-subset it follows
that f [o(a)] = int f [o(a)]. □
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