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Abstract. By a closure space we will mean a pair (A, C), in which A is a set
and C a set of subsets of A closed under arbitrary intersections. The purpose of
this paper is to initiate a development of descent theory of closure spaces, with
our main results being: (a) characterization of descent morphisms of closure
spaces; (b) in the category of finite closure spaces every descent morphism
is an effective descent morphism; (c) every surjective closed map and every
surjective open map of closure spaces is an effective descent morphism.

1. Introduction

By a closure space we will mean a pair (A,C), in which A is a set and C a set
of subsets of A closed under arbitrary intersections; we will also write informally
C = CA and A = (A,C) = (A,CA). A closure space structure C on a set A can be
equivalently described as a closure operator on the power set P(A) of A written as

X 7→ X (or, more precisely, as X 7→ X
A
) and satisfying

X ⊆ X ′ ⇒ X ⊆ X ′, X ⊆ X, X = X.

The relationship between these two types of structures is given by

X =
⋂

X⊆A′∈C

A′ and X ∈ C ⇔ X = X.

Our reason of using this notion comes from what we called strict monadic topol-
ogy in [3]:

Indeed, for a monad T on the category of sets and a T -algebra A, we can make
A a closure space by taking CA to be set of all T -subalgebras of A – and then,
conversely, every closure space is of this form for a suitably chosen monad.

The purpose of this paper is to initiate a development of descent theory of closure
spaces, specifically to:

• characterize descent morphisms (=pullback stable regular epimorphisms)
of closure spaces (Proposition 2.10);

• prove that in the category of finite closure spaces every descent morphism
is an effective descent morphism (Theorem 4.3);

• compare the above-mentioned result with what happens with finite topo-
logical spaces;

• prove that surjective closed maps and surjective open maps of closure spaces
are always effective descent morphisms (Theorem 6.5).
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The paper is organized as follows: we begin with (mostly known, maybe in
slightly different contexts) auxiliary results on closure spaces in Section 2 and on
general descent theory in Section 3, except that Section 2 also includes the above-
mentioned Proposition 2.10; Sections 4-6 are devoted to other main results, and
Section 7 to some additional remarks and open questions.

2. Closure spaces

We will consider the category CLS of closure spaces, where a morphism α : A →
B is a map α from A to B with

B′ ∈ CB ⇒ α−1(B′) ∈ CA.

It is easy to see that the underlying set functor U : CLS → Sets is topological
in the sense of categorical topology, which then easily gives the Propositions 2.1
and 2.2 below:

Proposition 2.1. A diagram in CLS of the form

D

π1

��

π2 // A

α

��

E
p

// B

is a pullback diagram in CLS if and only if its U -image is a pullback diagram in
Sets and CD = {π−1

1 (E′) ∩ π−1
2 (A′) | E′ ∈ CE &A′ ∈ CA}. �

We will, however, present the diagram above as

E ×B A

π1

��

π2 // A

α

��

E
p

// B

informally identifying E ×B A with {(e, a) ∈ E ×A | p(e) = α(a)}, and write

CE×BA = {E′ ×B A′ = π−1
1 (E) ∩ π−1

2 (A) | E′ ∈ CE &A′ ∈ CA}.

We will refer to this diagram as the pullback diagram for (p, α).

Proposition 2.2. A diagram in CLS of the form

F
p1 //

p2

// E
p

// B

is a coequalizer diagram in CLS if and only if its U -image is a coequalizer diagram
in Sets and CB = {B′ ⊆ B | p−1(B′) ∈ CE}. �

Corollary 2.3. A morphism p : E → B in CLS is a regular epimorphism if and
only if p is a surjective map with CB = {B′ ⊆ B | p−1(B′) ∈ CE}. �

Most of what we present in the rest of this section either automatically extends
what is known for topological spaces, or known itself, possibly as ‘folklore’, or is
presented in some form in [6]:

Proposition 2.4. For closure spaces E and B, and a map p : E → B, the following
conditions are equivalent:

(a) p : E → B is a morphism in CLS;

(b) p−1(X) ⊆ p−1(X) for every X ⊆ B;

(c) p(p−1(X)) ⊆ X for every X ⊆ B;

(d) p(Y ) ⊆ p(Y ) for every Y ⊆ E;
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(e) Y ⊆ p−1(p(Y )) for every Y ⊆ E.

Proof. (a)⇒(b): Since X ⊆ X, we have p−1(X) ⊆ p−1(X), and then p−1(X) ⊆

p−1(X), but p−1(X) = p−1(X) by (a), since X ∈ CB .

(b)⇒(a): If B′ ∈ CB , then B′ = B′ and (b) gives p−1(B′) ⊆ p−1(B′), making

p−1(B′) = p−1(B′) and so making p−1(B′) ∈ CE .
(b)⇔(c) and (d)⇔(e) are obvious.

(b)⇒(e): Since Y ⊆ p−1(p(Y )), we have Y ⊆ p−1(p(Y )), but p−1(p(Y )) ⊆

p−1(p(Y )) by (b).

(d)⇒(c): Since p(p−1(X)) ⊆ X, we have p(p−1(X)) ⊆ X, but p(p−1(X)) ⊆

p(p−1(X)) by (d). �

Proposition 2.5. The following conditions on a morphism p : E → B in CLS are
equivalent:

(a) p is closed, that is, Y ∈ CE ⇒ p(Y ) ∈ CB;

(b) p(Y ) ⊇ p(Y ) for every Y ⊆ E;

(c) p(Y ) = p(Y ) for every Y ⊆ E.

Proof. (a)⇒(b): Since Y ⊆ Y , we have p(Y ) ⊆ p(Y ) and then p(Y ) ⊆ p(Y ), but

p(Y ) = p(Y ) by (a), since Y ∈ CE .
(b)⇒(c) follows from the implication (a)⇒(d) of Proposition 2.4.

(c) ⇒(a): If Y = Y , then p(Y ) = p(Y ) by (c). �

Proposition 2.6. The following conditions on a morphism p : E → B in CLS are
equivalent:

(a) p is open, that is, −Y ∈ CE ⇒ −p(Y ) ∈ CB;

(b) X ⊆ −p(−p−1(X)) for every X ⊆ B;

(c) p−1(X) ⊇ p−1(X) for every X ⊆ B;

(d) p−1(X) = p−1(X) for every X ⊆ B.

Proof. (a)⇒(b): Since p−1(X) ∈ CE , we have −p(−p−1(X)) ∈ CB by (a). There-

fore to deduce (c) is to show that X ⊆ −p(−p−1(X)), but we have

X ⊆ −p(−p−1(X)) ⇔ p(−p−1(X)) ⊆ −X ⇔ −p−1(X) ⊆ p−1(−X)

⇔ −p−1(X) ⊆ −p−1(X) ⇔ p−1(X) ⊆ p−1(X).

(b)⇒(a): Applying (b) to X = −p(Y ), we obtain the first inclusion in

−p(Y ) ⊆ −p(−p−1(−p(Y ))) = −p(−−p−1(p(Y ))) ⊆ −p(−−Y ),

and for −Y ∈ CE this gives −p(Y ) ⊆ −p(− − Y ) = −p(Y ), which means that
−p(Y ) ∈ CB .

(b)⇔(c): We have

X ⊆ −p(−p−1(X)) ⇔ p(−p−1(X)) ⊆ −X ⇔ −p−1(X) ⊆ p−1(−X)

⇔ −p−1(X) ⊆ −p−1(X) ⇔ p−1(X) ⊇ p−1(X).

(c)⇔(d) follows from the implication (a)⇒(b) of Proposition 2.4. �

For a morphism p : E → B in CLS and X ⊆ B, let us define p∞(X) by
transfinite induction as follows:

p0(X) = X, pλ+1(X) = p(p−1(pλ(X))) = p1(pλ(X)),

pµ(X) =
⋃

λ<µ

pλ(X) (for a limit ordinalµ), p∞(X) =
⋃

λ

pλ(X).
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Note that, p1(X) ⊆ p(E) and, using transfinite induction, we conclude that p∞(X) ⊆
p(E) for every X ⊆ B. Furthermore, when p is surjective, we have X ⊆ p1(X),
and so

λ 6 µ ⇒ pλ(X) ⊆ pµ(X) (⊆ p∞(X)).

Proposition 2.7. The following conditions on a morphism p : E → B in CLS are
equivalent:

(a) p is a regular epimorphism;
(b) X ⊆ p∞(X) for every X ⊆ B;
(c) X = p∞(X) for every X ⊆ B.

Proof. (a)⇒(c): Suppose p is a regular epimorphism, and so

CB = {B′ ⊆ B | p−1(B′) ∈ CE}

by Corollary 2.3. Let C be the closure space whose underlying set is the same as
for B and whose closure operator is p∞, that is, it is defined by X = p∞(X) (all
required conditions for a closure operator are obviously satisfied). We have

X ∈ CC ⇔ X = p∞(X) ⇔ X = p1(X) ⇔ X = p(p−1(X)) ⇔ p(p−1(X)) ⊆ X

⇔ p−1(X) ⊆ p−1(X) ⇔ p−1(X) = p−1(X) ⇔ p−1(X) ∈ CE ,

which means that C = B as closure spaces. That is, (c) holds.
(c)⇒(b) is trivial.
(b)⇒(a): Suppose X ⊆ p∞(X) for every X ⊆ B. First of all we have

B = B ⊆ p∞(B) ⊆ p(E),

and so p surjective. Next, take any X ⊂ B with p−1(X) ∈ CE ; we have

p1(X) = p(p−1(X)) = p(p−1(X)) = X,

and then p∞(X) = X by transfinite induction. Hence X ⊂ X. That is, X ∈ CB

whenever p−1(X) ∈ CE and p is a regular epimorphism by Corollary 2.3. �

Consider again the pullback diagram for (p, α):

Proposition 2.8. For Z ⊆ E ×B A one has Z = π−1
1 (π1(Z)) ∩ π−1

2 (π2(Z))

Proof. Since π−1
1 (π1(Z)) ∩ π−1

2 (π2(Z)) ∈ CE×BA, we only need to prove that if
Z ⊆ π−1

1 (E′) ∩ π−1
2 (A′) for E′ ∈ CE and A′ ∈ CA, then

π−1
1 (π1(Z)) ∩ π−1

2 (π2(Z)) ⊆ π−1
1 (E′) ∩ π−1

2 (A′).

We have

Z ⊆ π−1
1 (E′) ∩ π−1

2 (A′) ⇒ Z ⊆ π−1
1 (E′) ⇒ π1(Z) ⊆ E′ ⇒ π1(Z) ⊆ E′,

where the last implication follows from E′ ∈ CE . That is, we can write π1(Z) ⊆ E′;

similarly π2(Z) ⊆ A′. Now, for (e, a) ∈ π−1
1 (π1(Z)) ∩ π−1

2 (π2(Z)), we have

e = π1(e, a) ∈ π1(Z) ⊆ E′ and a = π2(e, a) ∈ π2(Z) ⊆ A′,

and so (e, a) ∈ π−1
1 (E′) ∩ π−1

2 (A′), as desired. �

Let S be a subset of (the underlying of) a closure space B, and ι : S → B the
inclusion map. This makes S a closure space, which we will denote by SB , and
which has

CSB
= {S ∩B′ | B′ ∈ CB} and U

SB

= S ∩ U
B

for every U ⊆ S. From Proposition 2.8, or directly, we easily obtain
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Proposition 2.9. For a morphism p : E → B in CLS and a subset S of B, the
diagram

p−1(S)E

κ

��

p′

// SB

ι

��

E
p

// B

,

in which ι and κ are the inclusion maps, is a pullback diagram in CLS. �

Proposition 2.10. The following conditions on a morphism p : E → B in CLS

are equivalent:

(a) p is a pullback stable regular epimorphism;

(b) X ⊆ p(p−1(X)) for every X ⊆ B;

(c) X = p(p−1(X)) for every X ⊆ B;

(d) p(p−1(X)) is closed for every X ⊆ B

Proof. (a)⇒(b): Given X ⊆ B, consider the pullback diagram of Proposition 2.9
with X ⊆ S ⊆ B. Assuming (a), p′ must be a regular epimorphism, and, in
particular,

S ∩X
B
= X

SB

= p′∞(X),

where the second equality follows from the implication (a)⇒(c) of Proposition 2.7.

We take S = X ∪ −p(Y ) with Y = p−1(X)
E

and calculate:

p′1(X) = p′(p′−1(X)
p−1(S)E

) = p(p−1(X)
p−1(S)E

) = p(p−1(S) ∩ p−1(X)
E
)

= p(p−1(S) ∩ Y ) = p(p−1(X ∪ −p(Y )) ∩ Y )

= p((p−1(X) ∩ Y ) ∪ (−p−1(p(Y )) ∩ Y )) = X,

where the last equality follows from p−1(X) ⊆ p−1(X)
E

= Y , Y ⊆ p−1(p(Y )),
and p(p−1(X)) = X. Since p′1(X) = X, using transfinite induction we also obtain
p′∞(X) = X. This gives

(X ∪ −p(p−1(X)
E
)) ∩X

B
= S ∩X

B
= p′∞(X) = X,

which implies −p(p−1(X)
E
) ∩ X

B
⊆ X. Since X = p(p−1(X)) ⊆ p(p−1(X)

E
), it

follows that X
B
⊆ p(p−1(X)

E
), as desired.

(b)⇔(c) follows from the implication (a)⇒(c) of Proposition 2.4, and (c)⇔(d)
follows from Proposition 2.7.

(c)⇒(a): Suppose (c) holds. We have to prove that, for every pullback diagram
as in Proposition 2.8, π2 is a regular epimorphism. Thanks to the implication
(b)⇒(a) of Proposition 2.7, it suffices to prove that

U ⊆ π2(π
−1
2 (U))

for every U ⊆ A. We have:

U ⊆ α−1(α(U)) ∩ U (since α(U) ⊆ α(U)) gives U ⊆ α−1(α(U))

= α−1(p(p−1(α(U)))) ∩ U (by (c))

= π2(π
−1
1 (π1(π

−1
2 (U)))) ∩ U (Beck–Chevalley Condition used twice)

= π2(π
−1
1 (π1(π

−1
2 (U))) ∩ π−1

2 (U)) (another Beck–Chevalley Condition)

= π2(π
−1
1 (π1(π

−1
2 (U))) ∩ π−1

2 (π2(π
−1
2 (U)))) = π2(π

−1
2 (U)),

as desired. �
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3. General remarks on descent

In this section C denotes a category with pullbacks and coequalizers of equiva-
lence relations. All pullback projections will denoted by π’s with suitable indices.

We will list notions and results of general descent theory in the form convenient
for our purposes, not repeating any motivations and further explanations that can
be found in [5] or in [4]; we will also use a particular result from [7].

Definition 3.1. Let p : E → B be a morphism in C. Then:

(a) A descent data for p is a triple (C, γ, ξ) as in the diagram

E ×B (E ×B C)

E×Bπ2

��

E×Bξ
// E ×B C

ξ

��

C
〈γ,1C〉
oo

E ×B C

π1

��

ξ
// C

γ

vv
E

(in obvious notation), which is required to commute. The category of all
such triples will be denoted by Des(p).

(b) The functor Kp : (C ↓ B) → Des(p), defined by

Kp(A,α) = (E ×B (E ×B A)
E×Bπ2// E ×B A

π1 // E)

is called the comparison functor (for p).
(c) The morphism p is said to be a descent morphism if the functor Kp is fully

faithful.
(d) The morphism p is said to be an effective E-descent morphism if the functor

Kp is a category equivalence.

Remark 3.2. Each of the following statements is either well known or immediately
follows from well-known facts:

(a) If (C, γ, ξ) is a descent data for p : E → B, then

E ×B C

E×Bγ

��

ξ
//

π2

// C

γ

��

E ×B E
π1 //

π2

// E

is a discrete fibration of equivalence relations. Moreover, sending (C, γ, ξ)
to this discrete fibration determines a category equivalence

Des(p) → DFib(Eq(p)),

where DFib(Eq(p)) is the category of discrete fibrations of equivalence re-
lations whose codomain is

Eq(p) = (E ×B E
π1 //

π2

// E).

(b) Suppose p is a regular epimorphism, and so we can assume that B (equipped
with p) is the coequalizer of the bottom equivalence relation in (a). Then
sending (C, γ, ξ) to the morphism of the coequalizers of equivalence relations
in (a) determines a left adjoint Lp of Kp.
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(c) As follows from (a) and (b), p is an effective descent morphism if and only
if it is a descent morphism and the functor Lp reflects isomorphisms, or,
equivalently, the coequalizer functor

DFib(Eq(p)) → (C ↓ B)

does so.
(d) A morphism in C is a descent morphism if and only if it is a pullback stable

regular epimorphism.
(e) As easily follows from previous observations, every descent morphism in C

is an effective descent morphism if and only if for every descent morphism
p : E → B and every diagram of the form

E ×B C

E×Bγ

��

ξ
//

π2

// C

γ

��

q
// A

α

��

E ×B E
π1 //

π2

// E
p

// B

where (C, γ, ξ) is a descent data for p, the top row is a coequalizer dia-
gram, the right-hand square commutes, and α is an isomorphism, γ also
is an isomorphism. More generally, if D is a pullback stable class of mor-
phisms containing the class of descent morphisms and satisfying the con-
dition above (with p is in D), then D is contained in the class of effective
descent morphisms.

(f) A regular epimorphism p in CLS is an effective descent morphism if and
only if, for each descent data (C, γ, ξ) for p, the coequalizer of

E ×B C
ξ

//

π2

// C

is a pullback stable regular epimorphism. This follows from the observation
in [7] made immediately after Corollary 2.8 there.

4. Descent for closure spaces

In this section we go back to the category CLS of closure spaces and p : E → B

will denote a fixed morphism there, which is a surjective map. We will also use a
closure space E′, which has the same underlying set as E, and, for X ⊆ B, Y ⊆ E,
and Z ⊆ E ×B E′, write

X = X
B
, Y = Y

E
, Y

′
= Y

E′

, and Z = Z
E×BE′

.

Lemma 4.1. Suppose the identity map 1E : E′ → E is a morphism in CLS, that

is, Y
′
⊆ Y for all Y ⊆ E. Then the following conditions are equivalent:

(a) there exists a descent data for p of the form (E′, 1E , ξ);
(b) there exists a unique descent data for p of the form (E′, 1E , ξ);
(c) the triple (E′, 1E , π1), where π1 : E ×B E′ → E′ is defined as the first

projection, that is, by π1(e, e
′) = e, is a descent data for p;

(d) the first projection π1 : E ×B E′ → E′ is a morphism in CLS;

(e) Y ∩ p−1(p(p−1(p(Y ))
′
)) ⊆ Y

′
for all Y ⊆ E;

(f) Y ∩ p−1(p(p−1(p(Y ))
′
)) = Y

′
for all Y ⊆ E;

(g) Y ∩ p−1(p(p−1(p(Y ))
′
)) ⊆ Y for all Y ∈ CE′ ;

(h) Y ∩ p−1(p(p−1(p(Y ))
′
)) = Y for all Y ∈ CE′ .
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Proof. The implications (a)⇔(b)⇒(c)⇒(d) follow from the commutativity of the
bottom triangle of the diagram in 3.2(a), where γ becomes the map 1E : E′ → E in
the present case. The implication (d)⇒(c) can be checked with a straightforward
calculation and the implication (c)⇒(a) is trivial. Hence conditions (a)-(d) are all
equivalent to each other.

(d)⇔(e): As follows from the equivalence (a)⇔(c) of Proposition 2.4, condition
(d) holds if and only if

π1(π
−1
1 (Y )) ⊆ Y

′

for all Y ⊆ E. Using Proposition 2.8, we obtain:

π1(π
−1
1 (Y )) = π1(Y ×B E) = π1(π

−1
1 (π1(Y ×B E)) ∩ π−1

2 (π2(Y ×B E)
′
))

= π1(Y ×B E) ∩ π1(π
−1
2 (π2(Y ×B E)

′
)) = Y ∩ π1(π

−1
2 (p−1(p(Y ))

′
))

= Y ∩ p−1(p(p−1(p(Y ))
′
)),

and so (d) is indeed equivalent to (e).

Since Y
′
⊆ Y and Y

′
⊆ p−1(p(p−1(p(Y ))

′
)), we have (e)⇔(f); similarly, we have

(g)⇔(h). (e)⇔(g) is also straightforward. �

Lemma 4.2. Suppose the equivalent conditions of Lemma 4.1 are satisfied and let
us write p′ for p considered as a morphism from E′ to B. If both p and p′ are
regular epimorphisms, then, for every Y ∈ CE′ \ CE, there exists Y ∗ ∈ CE′ \ CE

with Y ⊂ Y ∗. In particular, if CE′ 6= CE, then E is infinite.

Proof. For Y ∈ CE′ \CE , we have Y ⊂ p−1(p(Y )). Indeed, since p and p′ are regular
epimorphisms, the equality Y = p−1(p(Y )) would imply

Y ∈ CE′ ⇔ p(Y ) ∈ CB ⇔ Y ∈ CE

(by Corollary 2.3), which is a contradiction.
Let us take

Y ∗ = p−1(p(Y ))
′
.

We have Y ⊂ Y ∗ and Y ∗ ∈ CE′ . Therefore it remains to show that Y ∗ does not
belong to CE . Suppose it does. Then, since it contains Y as a subset, we have
Y ⊆ Y ∗. This gives

Y = Y ∩ Y ∗ = Y ∩ p−1(p(Y ))
′
⊆ Y ∩ p−1(p(p−1(p(Y ))

′
)) = Y

(the last equality here is condition (h) of Lemma 4.1), which is a contradiction since
Y does not belong to CE . �

Let FCLS be the category of finite closure spaces, that is, the full subcategory
of FCLS with objects all closure spaces whose underlying sets are finite. From
Remark 3.3(e) and Lemma 4.2 we obtain:

Theorem 4.3. Every descent morphism in the category FCLS is an effective de-
scent morphism. �

5. Preorders as closure spaces

There are full inclusions

Preord → Top → CLS,

where Preord is the category of preorders (=preordered sets) and Top is the
category of topological spaces. Considering a preorder B as either a topological
space or a closure space, for any X ⊆ B, we have

X = ↑X = {b ∈ B | ∃x∈X x 6 b}.
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As mentioned in Remark 2.4(b) of [1], not every descent morphism in Preord is a
descent morphism in Top; nevertheless we have:

Proposition 5.1. A morphism in Preord is a descent morphism in Preord if
and only if it is a descent morphism in CLS.

Proof. Let p : E → B be a morphism in Preord. As shown in [2], p is a descent
morphism in Preord if and only if for all b 6 b′ in B there exist e 6 e′ in E with
p(e) = b and p(e′) = b′. This, in turn, is easily equivalent to

p(p−1(X)) = p(↑p−1(X)) ⊇↑X = X,

and it remain to apply Proposition 2.10 and Remark 3.2(d). �

On the other hand, the result similar to Theorem 4.3 does not hold in Preord,
and not even in the category FPreord of finite preorders [2]. In order to clarify
the phenomenon behind this, consider the following example, the simplest one in a
sense:

Let p : E → B be the morphism in FPreord, and α : A → B to be the morphism
in the category FRR of finite reflexive relations (=sets equipped with a reflexive
relation) definied as follows:

• B = {b1, b2, b3} is the ordered set with b1 < b2 < b3.
• E = {e1, e2−, e2+, e3} is the ordered set with e1 < e2−, e2+ < e3, e1 < e3,

and no other strict inequalities.
• p(e1) = b1, p(e2−) = b2 = p(e2+), and p(e3) = b3.
• A = B but with the pair (b1, b3) removed from the relation.
• α is the identity map of B considered as a morphism from A to B.

The pullback E′ = E ×B A of p and α can be identified with the ordered set
E = {e1, e2−, e2+, e3} with e1 < e2−, e2+ < e3, and no other strict inequalities.
And after that the pullback E ×B E′ can be presented as the diagram

(e1, e1)

uu

(e2−, e2−) (e2−, e2+) (e2+, e2−) (e2+, e2+)

uu

(e3, e3)

whose vertexes are its elements and whose arrows represent strict inequalities. We
observe:

(a) Although A is not a preorder, E′ is. This tells us that (E′, 1E , π1) is a
descent data for p in FPreord. Comparing it with (E, 1E , π1) is a simple
way to show that p is not an effective descent morphism in FPreord.

(b) The set Y = {e1, e2,−} is closed in E′ and its inverse image

Z = π−1
1 (Y ) = {(e1, e1), (e2−, e2−), (e2−, e2+)}

is closed of course in the pullback E ×B E′ displayed above.
(c) However, if we define E ×B E′ as the pullback in FCLS, then

Z = π−1
1 (π1(Z)) ∩ π−1

2 (π2(Z)
′
) = π−1

1 ({e1, e2−}) ∩ π−1
2 ({e1, e2−, e2+}

′
)

= π−1
1 ({e1, e2−, e3}) ∩ π−1

2 ({e1, e2−, e2+, e3}) = π−1
1 ({e1, e2−, e3})

= {(e1, e1), (e2−, e2−), (e2−, e2+), (e3, e3)} 6= Z,

and so Z will not be closed anymore.
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(d) As follows from (c), for the pullback E×B E′ defined as in FCLS, the map
π1 : E×BE′ → E′ is not a morphism in FCLS. Therefore there is no ‘bad’
descent data (E′, 1E , π1) in FCLS, to prevent p from being an effective
descent morphism.

Of course this is only an example of one preorder argument that does not hold for
closure spaces and it cannot replace the proof of Theorem 4.3, but it shows a crucial
difference between the descent stories of preorders and of closure spaces.

Furthermore, in the pullback E ×B E′ defined as in FCLS, putting Z = U ∪ V

with U = {(e1, e1), (e2−, e2−)} and V = {(e2−, e2+)}, we calculate

U = π−1
1 (π1(U)) ∩ π−1

2 (π2(U)
′
) = π−1

1 ({e1, e2−}) ∩ π−1
2 ({e1, e2−}

′
)

= π−1
1 ({e1, e2−, e3}) ∩ π−1

2 ({e1, e2−})

= {(e1, e1), (e2−, e2−), (e2−, e2+), (e3, e3)} ∩ {(e1, e1), (e2−, e2−), (e2+, e2−)}

{(e1, e1), (e2−, e2−)} = U ;

V = π−1
1 (π1(V )) ∩ π−1

2 (π2(V )
′
) = π−1

1 (π1({(e2−, e2+)})) ∩ π−1
2 (π2({(e2−, e2+)})

′
)

= π−1
1 ({e2−}) ∩ π−1

2 ({e2+}
′
) = π−1

1 ({e2−}) ∩ π−1
2 ({e2+, e3})

= {(e2−, e2−), (e2−, e2+)} ∩ {(e2−, e2+), (e2+, e2+), (e3, e3)} = {(e2−, e2+)} = V.

That is,

U = U and V = V , while U ∪ V 6= U ∪ V

in E ×B E′ defined as the pullback in FCLS, which is what could not happen in a
preorder (since it could not happen in a topological space in general).

6. Surjective closed and open maps are effective descent morphisms

Returning to the context of Section 3 and using a result of [7], we easily obtain:

Theorem 6.1. Let U : C → Sets be a faithful functor between categories with pull-
backs and coequalizers of equivalence relations that preserves these constructions,
and let P be a class of regular epimorphisms in C satisfying the following conditions:

(a) P is pullback stable;
(b) if

X
f

//

g
// Y

h // Z

is a coequalizer diagram in C whose U -image is exact, that is, it is a co-
equalizer diagram that is also a kernel pair diagram, then f, g ∈ P ⇒ h ∈ P.

Then P is contained in the class of effective descent morphisms in C.

Proof. As follows from (a) and the fact that P is a class of regular epimorphisms
in C, P is a class of pullback stable regular epimorphisms in C. Note also that, for
every descent data (C, γ, ξ) over a given p : E → B in P, we have

• since U(p) being a regular epimorphism is an effective descent morphism
in Sets, the U -image of the coequalizer diagram

E ×B C
ξ

//

π2

// C
q

// A

is exact;
• as follows from (a), the morphisms ξ and π2 in that diagram belong to P.

After that all we need is to apply the categorical counterpart of Corollary 2.8 in
[7], as the next sentence (after Corollary 2.8) in [7] shows. �
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By a closed map we mean a morphism CLS that is closed, or, equivalently,
satisfies the equivalent conditions of Proposition 2.5. Similarly, by an open map
we mean a morphism CLS that is open, or, equivalently, satisfies the equivalent
conditions of Proposition 2.6. In the rest this section we will show that Theorem
6.1 applies to the classes of surjective closed maps and of surjective open maps in
CLS.

Proposition 6.2. The class of closed maps is pullback stable. In particular, so is
the class of surjective closed maps.

Proof. Consider the pullback for (p, α) with closed p. We have to prove that the
map π2 : E ×B A → A is closed. However, this follows from Proposition 2.1 and
the fact that we have

π2(π
−1
1 (E′) ∩ π−1

2 (A′)) = α−1(p(E′)) ∩A′

for all E′ ⊆ E and A′ ⊆ A. Indeed, if E′ is closed in E and A′ is closed in A, then
α−1(p(E′)) ∩A′ is closed in A since p is a closed map. �

Proposition 6.3. The class of surjective open maps is pullback stable.

Proof. Consider the pullback for (p, α) with open p. We have to prove that the
map π2 : E ×B A → A is open. For U ⊆ A, we have

π−1
2 (U) = π−1

1 (π1(π
−1
2 (U))) ∩ π−1

2 (π2(π
−1
2 (U)))

= π−1
1 (p−1(α(U))) ∩ π−1

2 (U) = π−1
1 (p−1(α(U))) ∩ π−1

2 (U)

= π−1
2 (α−1(α(U))) ∩ π−1

2 (U) = π−1
2 (α−1(α(U)) ∩ U)

and since
U ⊆ α−1(α(U)) ⊆ α−1(α(U)),

this gives π−1
2 (U) = π−1

2 (U). Therefore π2 is open by Proposition 2.6. �

Proposition 6.4. The classes of surjective closed maps and of surjective open
maps both satisfy condition (b) of Theorem 6.1 for U being the forgetful functor
CLS → Sets.

Proof. Consider the diagram of 6.1(b). At the level of underlying sets, the diagram

X

f

��

g
// Y

h

��

Y
h

// Z

is a pullback, and so, for each subset Y ′ of Y , we have h−1(h(Y ′)) = f(g−1(Y ′)).
Since h is a regular epimorphism, for closed f this gives:

Y ′ is closed ⇒ g−1(Y ′) is closed ⇒ f(g−1(Y ′)) is closed
h−1(h(Y ′)) is closed ⇒ h(Y ′) is closed,

and, similarly, for open f :

Y ′ is open ⇒ g−1(Y ′) is open ⇒ f(g−1(Y ′)) is open
h−1(h(Y ′)) is open ⇒ h(Y ′) is open,

as desired. �

From Theorem 6.1 and these three propositions, as promised, we obtain:

Theorem 6.5. Every surjective closed map and every surjective open map in CLS

is an effective descent morphism. �
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7. Final remarks

7.1. For a morphism p : E → B in CLS, which is surjective, let us call a subset
Y of E saturated if it is of the form Y = p−1(X) for some X ⊆ B, or, equivalenly,
if Y = p−1(p(Y )). Consider the following conditions on p:

(a) p(Y ) is closed whenever Y is saturated and closed, or, equivalently (by
Corollary 2.3), p is a regular epimorphism in CLS;

(b) p(Y ) is closed whenever Y is the closure of a saturated subset, or, equiv-
alently (by Proposition 2.10), p is a pullback stable regular epimorphism
(=descent morphism) in CLS;

(c) p is an effective descent morphism in CLS.
(d) p(Y ) is closed whenever so is Y .

We have (d)⇒(c) (Theorem 6.5) and trivial implications (c)⇒(b)⇒(a). It seems
that none of the opposite implications holds. In fact it is very easy to construct
counterexamples for (a)⇒(b) and, using Theorem 6.5 for (c)⇒(d), but we have no
counterexamples for (b)⇒(c).

7.2. For a monad T on the category of sets, consider the forgetful functor

U : Alg(T ) → CLS.

The category Alg(T ) is Barr exact and, for a morphism p in it, we have

p in an effective descent morphism ⇔ p is a surjective map,

and the functor U sends all morphisms of Alg(T ) to closed maps; in particular it pre-
serves regular epimorphisms, descent morphisms, and effective descent morphisms.
However, it obviously does not preserve kernel pairs of non-injective maps.

7.3. Let E be one of the following three classes of morphisms in CLS: (i)
of closed maps; (ii) of surjective closed maps; (iii) of surjective open maps. As
follows from Propositions 6.2 and 6.3 (and simple arguments used in the proof of
Proposition 6.4), every effective descent morphism in CLS is also an effective E-
descent morphism. And it is obvious that every descent morphism in CLS is also
an E-descent morphism. However, none of these assertions is true for the class of
(all) open maps. Indeed, consider the pullback diagram

{−1, 1}

β

��

q
// {1}

α

��

{−2,−1, 1, 2}
p

// {1, 2}

in which:

• {−2,−1, 1, 2} has five closed subsets; apart from itself and the empty set
they are {−2, 2}, {1, 2}, and {2}.

• {1, 2} has three closed subsets; apart from itself and the empty set it is just
the set {2}.

• p is defined by p(k) = |k|.
• α and β are the inclusion maps, q is induced by p, and the closure space
structures on the top are induced by the bottom ones; that is,

C{1} = {∅, {1}}, C{−1,1} = {∅, {1}, {−1, 1}}

(this makes {−1, 1} isomorphic to {1, 2}, but that is not relevant for our
purposes).

It is easy to check that p and α are open maps; furthermore, since p is sujective,
it is an effective descent morphism. On the other hand, β is not open since {−1}
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is open in {−1, 1} but not in {−2,−1, 1, 2}, and so the pullback functor along p is
not even well defined for the class of all open maps.

In spite of all this, a complete characterization of effective E-descent morphisms
remains an open question for E being any of the four classes of morphisms that
appear in this subsection. Of course in the ‘forth case’, that is, when E is the class
of open maps, one should suitably reformulate the problem first characterizing those
p : E → B in CLS for which the above-mentioned pullback functor is well defined.
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