
KNOT EXTERIORS WITH ALL COMPACT SURFACES OF

POSITIVE GENUS ESSENTIALLY EMBEDDED

JOÃO M. NOGUEIRA

Abstract. It is well known the existence of knots with Seifert surfaces of arbi-

trarily high genus. In this paper we show the existence of infinitely many knot
exteriors each of which having longitudinal essential surfaces of any positive

genus and number of boundary components.

1. Introduction

Essential surfaces have an important role on understanding 3-manifold topology
since the second half of the last century. One particularly interesting property is
the existence of essential surfaces of arbitrarily large Euler characteristics in some
3-manifolds. For knot exteriors in particular, it is well known since the work of
Lyon [8] that a knot exterior can have closed essential surfaces and also Seifert
surfaces of arbitrarily high genus. Many more examples of knot exteriors with
these properties have been published throughout the years. For instance, besides
the result of Lyon, several other collections of knots have been given for which there
are Seifert surfaces of arbitrarily high genus as in work of Parris [15] (see also [19]),
Gustafson [5], Ozawa and Tsutsumi [17] or Tsutsumi [18]. We will show further
that a knot exterior can have a collection of longitudinal essential surfaces with
arbitrarily large Euler characteristics not only because of large genus, as a collection
of Seifert surfaces can have, but also from the number of boundary components. In
fact, the collection of longitudinal essential surfaces can be with every number of
boundary components and all positive genus.

Theorem 1. There are infinitely many knots in the 3-sphere each of which hav-
ing in its exterior a longitudinal essential surface of any positive genus and any
number of boundary components. That is, all compact surfaces of positive genus
with boundary have an essential embedding into each of the knot exteriors in this
collection.

With respect to surfaces of genus zero, we know from work of Gabai [4] when
proving the Property R and the Poenaru conjectures, also related to the Cabling
conjecture, that there are no longitudinal essential planar surfaces in knot exte-
riors besides the disk bounded by the unknot. However, it is known by work
of Hatcher and Thurston, Proposition 1(3) of [6], the existence of a collection of
(non-meridional) essential surfaces with arbitrarily large number of boundary com-
ponents in some 2-bridge knot exteriors. As it is not clear in Proposition 1(3) of [6]
if the surfaces are orientable, the number of boundary components for orientable
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surfaces can only be claimed to be even, by taking the boundary of a regular neigh-
borhood of a non-orientable surface if that is the case. Also, as it is well known,
composite knots do not have genus one Seifert surfaces, and the boundary slope of
a Seifert surface in the knot exterior is 0 (longitudinal). Hence we cannot have a
statement as in this theorem for composite knots or for a different boundary slope.
This theorem contrasts with other results in the literature. For instance, Wilson
[19] proved that a small knot in S3, i.e. without closed essential surfaces in its com-
plement, cannot have an infinite number of Seifert surfaces. From work of Oertel in
[14], on a theorem of Jaco and Sedgwick, it is finite the number of compact essential
surfaces of uniformly bounded genus (closed or with boundary) in knot exteriors
without essential genus one surfaces (closed or with boundary). In [2], in work
related to the Kervaire conjecture, Eudave-Muñoz proved that any odd number
can be realized as the number of boundary components of an essential orientable
connected surface properly embedded in a knot exterior. However, not necessarily
the same knot exterior and the genus not arbitrarily large for the same number of
boundary components.
Besides closed or longitudinal boundary slope, a similar result exists for meridional
surfaces in knot exteriors. In fact, in [9] the author proved a prime knot exterior can
have a collection of meridional essential surfaces with two boundary components
and any positive genus. However, a collection of essential surfaces in a knot exterior
can be of arbitrarily large Euler characteristics not only because of large genus but
also from the number of boundary components. This was shown first by the author
in [10] with a collection of essential planar surfaces with arbitrarily large number
of boundary components, and, even further, in [11] and in [12] with a collection of
essential surfaces with independently large genus and number of boundary compo-
nents in a satellite knot exterior and hyperbolic knot exterior, respectively.

The paper is organized as follows: In section 2 we define a class of satellite knots
that we will use throughout the paper. In sections 3 and 4 we construct branched
surfaces and use branched surface theory to prove that the surfaces they carry as
in the statement of Theorem 1 are essential in the corresponding knot exterior.
Throughout this paper all manifolds are orientable, all submanifolds are assumed
to be in general position and we work in the smooth category.

2. Square double of a knot

In this section we define a class of satellite knots, which we refer to as square
double of a knot, that we will use to prove Theorem 1.

First we consider the 2-string tangle T1 = (B1; s1 ∪ s2) as in Figure 1(a) which
we refer to as the square tangle, following nomenclature in the literature [16].

Let T ′

2 denote the n/1 rational tangle, where n is an integer, with T ′

2 = (B2; p1∪
p2). The arcs p1 and p2 co-bound a diskD in B2 with two arcs in ∂B2, say a1 and a2.
Consider the operation on T ′

2 where we assume the core of a regular neighborhood
of D in B2 follows the pattern of a knot J . Hence, the image of the arcs pi, i = 1, 2,
in B2, follow this pattern. That is, through the closure of pi with an arc in ∂B2 we
obtain the knot J . We denote the resulting tangle as T2(n; J), or only as T2, and
we assume that the arcs ai, of ∂D∩ ∂B2, are in the boundary circle of the diagram
disk of T2. (See Figure 1(b)).
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T1 T2

(a) (b)

Figure 1: In (a) we have a diagram of the square tangle, denoted T1;
in (b) we have represented a tangle of two twisted parallel arcs following
the pattern of a knot J , denoted T2.

Definition 1. For each integer n, consider now the knot K(n; J) obtained as the
closure of T1 with T2(n; J), such that the boundary circle of their diagram disks, as
in Figure 1, are identified with opposite orientation and, for each i = 1, 2, the end
points of ai are connected to si. The knot K(n; J) is referred to as a square double
of J .

Note that the square knot is a square double of the unknot, more exactly
K(0; unknot). In case the knot J is non-trivial a square double of J is a satel-
lite knot with companion J . In Figure 2, we have diagrams of two examples of
square doubles, the square knot and a square double of a trefoil. In Figure 3, we
have a schematic diagram illustration of a square double of J .

(a) (b)

Figure 2: (a) A diagram of the square knot, which is a square double
of the unknot; (b) a diagram of a square double of the trefoil knot.

T1

T2

Figure 3: Square double of a knot J .

Lemma 1. A square double of a knot is a ribbon 2 knot.
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α1a1

D1

α2 a2

D2

Figure 4:

Proof. Each arc si cobounds with ai a disk Di in B1, i = 1, 2. In general position,
D1 and D2 intersect each other in two arcs, α1 and α2, as illustrated schematically
in Figure 4.

Let E be the immersed disk obtained by connecting D1, D and D2 along a1 and
a2. The immersed disk E has boundary K and self-intersects in two disjoint arcs
which are ribbon singularities in E, that is the preimage of each of these arcs is two
disjoint arcs in the preimage of E. Hence, as there are no other singularities, E is
a ribbon disk of K with two ribbon singularities. �

Lemma 2. A square double of a non-trivial knot is prime. The only square double
of the unknot that is composite is the square knot.

Proof. The first part of this theorem is a consequence of a result of Lickorish [7]
stating that a knot with a 2-string prime decomposition is a prime knot. We recall
that a tangle is said prime if it is essential and there are no local knots, that is no
ball intersects the strings of the tangle in a single non-trivial arc. As it is observed
also in [7] the tangle T1 is a 2-string prime tangle. The tangle T2 is defined by two
parallel arcs with a pattern of a non-trivial knot. Hence, there are no local knots
in T2, otherwise the strings could not be parallel, and T2 is an essential tangle,
otherwise the pattern J would be of the unknot. Therefore, the square double of
a non-trivial knot has a 2-string prime tangle decomposition. Hence, from [7] it is
prime.
One other way to prove this statement is by using the wrapping number. The
wrapping number of a square double of a non-trivial knot is 2, as it can be seen by
taking the meridian of the companion solid torus that is a regular neighborhood of
ai. If there was a decomposing sphere, by taking its intersection with the companion
torus and an innermost curve argument on the intersecting curves on the sphere,
we would obtain a compressing disk for the companion torus or a meridian disk
for the companion solid torus intersecting K once, contradicting the existence of a
meridian disk intersecting K at two points.
For the second part of the theorem note first that if the pattern of the parallel arcs
in T2 is the unknot then the tangle is an integral rational tangle. We know that
if T2 is the 0 rational tangle we obtain the square knot, which is composite. From
Eudave-Muñoz work [1], if r/s and p/q are two rational tangles whose closure of T1

return a composite knot then |ps − qr| ≤ 1. Then, the only other possibilities for
T2 when closing T1 to return a composite knot is if T2 is a 1 or −1 rational tangle.
However, these knots have genus 1, as it can easily seen by an adaptation of the
diagram of Figure 7 for the knots K(2m + 1, J), where in this case 2m + 1 = ±1
and J is the unknot. As genus is additive under connected sum it cannot be 1 if the
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knot is composite. Therefore, these knots are also prime. Hence, the only square
double of the unknot that is not prime is the square knot. �

3. Longitudinal branched surface in a square double exterior

For the proof of Theorem 1 we use branched surface theory based on work of Oer-
tel in [13] and of Floyd and Oertel in [3]. First, we revise the definition of branched
surface and of surface carried by a branched surface in the following paragraphs.

A branched surface R with generic branched locus is a compact space locally
modeled on Figure 5(a). Hence, a union of finitely many compact smooth surfaces
in a 3-manifold M , glued together to form a compact subspace of M respecting
the local model, is a branched surface. We denote by N = N(R) a fibered reg-
ular neighborhood of R (embedded) in M , locally modeled on Figure 5(b). The
boundary of N is the union of three compact surfaces ∂hN , ∂vN and ∂M ∩ ∂N ,
where a fiber of N meets ∂hN transversely at its endpoints and either is disjoint
from ∂vN or meets ∂vN in a closed interval in its interior. We say that a surface
S is carried by R if it can be isotoped into N so that it is transverse to the fibers.
Furthermore, S is carried by R with positive weights if S intersects every fiber of
N . If we associate a weight wi ≥ 0 to each component on the complement of the
branch locus in R we say that we have an invariant measure provided that the
weights satisfy branch equations as in Figure 5(c). Given an invariant measure on
R we can define a surface carried by R, with respect to the number of intersections
between the fibers and the surface. We also note that if all weights are positive
then the surface carried can be isotoped to be transverse to all fibers of N , and
hence is carried with positive weights by R.

(a) (b) (c)

∂ Nh

∂ Nv

w3 = w2 + w1

w1

w2w3

Figure 5: Local model for a branched surface, in (a), its regular neigh-
borhood, in (b), and weights with branch equations, in (c).

In this section we will construct a branched surface in square double exteriors of
composite knots which we use on the proof of Theorem 1.

Let K = K(2m+1; J), with m an integer, be a square double of J , a composite
knot with summands J1 and J2, where we assume J1 is as in [9]. That is, J1 has
in its exterior meridional essential surfaces of any genus with two boundary com-
ponents, which we denote Xg for genus g − 1. Denote by Qi the ball intersecting
J in a single arc with pattern Ji. We assume, after an ambient isotopy if needed,
that Qi is in B2, and the intersection of Qi with p1 ∪ p2 is two parallel arcs with
pattern Ji. Let Si be the boundary sphere of Qi. The sphere Si intersects A at
two circles. These two circles cobound an annulus Ui in A, and an annulus Vi in
Si. With U1 as the boundary of a tubular neighborhood of an arc with pattern J1,
we can assume, after an isotopy if needed, that the boundary components of Xg

are also the two boundary circles of U1.
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Without loss of generality we assume that a path in A from ∂1A must first
intersect S1 before S2 and S2 before ∂2A. Let A1 (resp., A2) be the annulus in A
between ∂1A and U1 (resp., ∂2A and U2). At last we denote by A′ the annulus in
A from U1 and U2. (See Figure 6.)

∂1A

A1 U1 A′ U2 A2

∂2A

S1 S2

Figure 6: Partition of the annulus A with respect to the intersection
with S1 and S2.

Consider the union of P , A1, U1, Xg, V1, A
′, U2, V2 and A2 denoted by Rg. We

smooth the space Rg on the intersection of these union parts as follows: At ∂iA,
i = 1, 2, there is no singularity in Rg, hence it is smoothed with P . The annulus
Ui at Ai ∩ Ui, i = 1, 2 respectively, is smoothed towards Ai. The annulus Vi at
Vi ∩ Ai is smoothed towards Ai, and at Vi ∩ A′ is smoothed towards Ui, i = 1, 2.
The surface Xg at Xg ∩ A1 is smoothed towards A1, and at Xg ∩ A′ is smoothed
towards A′. The annulus A′ at A′ ∩ U2 is smoothed towards V2 and at A′ ∩ U1 it
is smoothed towards U1 (and Xg). In Figure 7, we have an illustration of Rg.

P

A1

V1

Xg

U1 A′

V2

U2
A2

P

P

P

Figure 7: An illustration of the branched surface Rg.

Note that some sections of Rg branch into three sections, as A1 with V1, Xg, U1,
or two branches into two branches, as Xg, U1 and V1, A

′, as illustrated in Figure 7,
which is not in conformity with the local model of branched surface. However, a
small isotopy corrects this for the purpose of the local model. For convenience on
the number of sections involved, we continue with the current choice of sections up
to a small isotopy correction. So, from this construction and up to a small isotopy,
the space Rg is a branched surface with sections denoted by P , A1, U1, Xg, V1, A

′,
U2, V2 and A2.
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4. Longitudinal essential surfaces from a branched surface

In this section we prove Theorem 1. We will do so by proving that the surfaces
carried by Rg are essential.

We recall that the components on the complement of the branched locus of Rg

are P , A1, U1, Xg, V1, A
′, U2, V2 and A2. We denote the weights of each component

on an invariant measure for Rg as WP , WA1
, WU1

, WXg
, WV1

, WA′ , WU2
, WV2

and
WA2

, respectively.

Now we define surfaces Fn
g carried by Rg with genus g and any number n of

longitudinal boundary components. We define F 1
g as the surface carried by Rg

with invariant measure WP = 1, WA1
= 1, WU1

= 0, WXg
= 1, WV1

= 0, WA′ = 1,

WU2
= 1, WV2

= 0 and WA2
= 1. Let us define F 2

g as the surface carried by Rg

with invariant measure WP = 2, WA1
= 2, WU1

= 0, WXg
= 1, WV1

= 1, WA′ = 0,
WU2

= 1, WV2
= 1 and WA2

= 2. For n ≥ 3, we define Fn
g as the surface carried by

Rg with invariant measure WP = n, WA1
= n, WU1

= n − 2, WXg
= 1, WV1

= 1,
WA′ = n−2, WU2

= 1, WV2
= n−1 and WA2

= n. In Figure 8 we have a schematic
illustration of the surfaces Fn

g for n ≥ 3.

Lemma 3. The surface Fn
g is orientable and connected.

Proof. For convenience of notation, without loss of generality, we consider one side
of P to be the positive “+” side and the other side to be the negative “−” side.
If n = 1, we connect the non-peripheral boundary components of P respecting the
orientation of P . If n = 2 we connect the non-peripheral boundary components of
P1 to the ones of P2 always from the + or − side of P1 to the corresponding + or
− side of P2. Hence, we obtain an orientable connected surface.
Suppose now that n ≥ 3. As it can be observed from the schematic representation of
Fn
g in Figure 8, all the odd indexed Pi’s are connected in linear order, and similarly

the even indexed are connected in linear order. Here, we respect the positive and
negative sides of the Pi’s. The positive side of P1 is connected to the negative side
of P2, and the positive side of Pn−1 is connected to the negative side of Pn. So,
we connect the odd indexed to the even indexed sequences of Pi’s to opposite sides
at the beginning and at the end of the odd and even sequences, forming a loop.
Hence, Fn

g is connected and orientable. �

Lemma 4. The surface Fn
g has genus g and n boundary components.

Proof. From the construction of Fn
g , its boundary components come from the lon-

gitudinal boundary component of each copy of P . As for Fn
g we use n copies of

P , and all the other components have their boundaries connected to each other,
we have that Fn

g has n boundary components. In the definition of Fn
g , the com-

ponents other than copies of P and Xg are always annuli. The Euler characteris-
tic, χ, of an annulus is 0 and χ is additive under gluing components along their
boundaries. Hence, the Euler characteristic of Fn

g is n × χ(P ) + χ(Xg), which is
−n+ (2− 2(g − 1)− 2) = 2− 2g − n. As Fn

g is orientable and connected (Lemma
3) with n boundary components, it comes from the Euler characteristics formula
of a n punctured orientable connected surface that it has genus g, completing the
proof of the lemma. �
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P1

P1

P2

P2

P3

P3 P4

Pn
Pn

Pn−1

Pn−1

Pn−2

Pn−2 Pn−3

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

+
−

Figure 8: On the left, there is a schematic representation of Fn
g , n ≥ 3,

on how the components corresponding to sections of Rg connect. On
the right, there is a schematic representation on how the copies of P are
connected in F

n
g , for n ≥ 3 odd.

The following concepts are relevant for the definition of incompressible branched
surface. Let R denote a branched surface in a 3-manifoldM , with regular neighbood
N in M . A disc of contact is a disc O embedded in N transverse to fibers and with
∂O ⊂ ∂vN . A half-disc of contact is a disc O embedded in N transverse to fibers
with ∂O being the union of an arc in ∂M ∩ ∂N and an arc in ∂vN . A monogon in
the closure of M −N is a disc O with O∩N = ∂O which intersects ∂vN in a single
fiber. (See Figure 9.) We say a branched surface R in M contains a Reeb component
if R carries a compressible torus or properly embedded annulus, transverse to the
fibers of N , bounding a solid torus in M . (This is a weaker version of the definition
of Reeb component in [13] by Oertel.)

(a)

monogon

(b)

disk of
contact

Figure 9: Illustration of a monogon and a disk of contact on a branched
surface.

We recall that a branched surface R embedded in a 3-manifold M is said to be
incompressible if it satisfies the following three properties:

(i) R has no disk of contact or half-disks of contact;
(ii) ∂hN is incompressible and boundary incompressible in the closure ofM−N ,

where a boundary compressing disk is assumed to have boundary defined
by an arc in ∂M and an arc in ∂hN ;

(iii) There are no monogons in the closure of M −N .

and without Reeb components if it satisfies the following property:

(iv) R doesn’t carry a Reeb component.

The following theorem, proved by Oertel in [13], let us infer if a surface carried
by a branched surface is essential. Note that condition (iv), R not carrying a torus
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or an annulus cutting a solid torus from M , implies the non-existence of Reeb
components in the sense of Oertel [13].

Theorem 2 (Oertel, [13]). If R is an incompressible branched surface without Reeb
components (i.e. satisfies (i)-(iv)) and R carries some surface with positive weights
then any surface carried by R is essential.

Lemma 5. The branched surface Rg, g ≥ 1, is incompressible and without Reeb
components.

Proof. First we observe that Rg doesn’t carry a Reeb component. In fact, if Rg

would carry a torus T , this torus couldn’t be transverse to the regular neighbor-
hood of sections of Rg with boundary components, or of sections of Rg of genus
bigger than 1. In this case, it could only be transverse to regular neighborhoods of
sections A1, A

′, Xg (in case g = 1), U1, V1, U2, V2 and A2. Only one boundary
component of A1 and of A2 is connected to these other sections. Hence, A1 and of
A2 cannot contribute for Rg to carry a torus. The annulli U2 and V2 are smoothed
towards A2. As WA2

= 0 in an invariant measure for a torus carried by Rg, we have
that necessarily WU2

= WV2
= 0 as well. Similarly, U1, V1 and Xg are smoothed

towards A1. As WA1
= 0 in an invariant measure for a torus carried by Rg, we also

have that WU1
= WV1

= WXg
= 0. Then A′ is the only section left whose regular

neighborhood could be transverse to a torus. As A′ is smoothed towards U1, Xg

and V2, similarly we have that WA′ = 0 in an invariant measure of a torus carried
by Rg. Therefore, Rg does not carry a torus.

If Rg would carry a properly embedded annulus in the exterior of K, E(K),
this annulus would have to be transverse to the regular neighborhood of sections of
Rg with boundary components, that is P . However, P has negative Euler charac-
teristics, and the remaining sections of Rg have non-positive Euler characteristics.
Hence, any surface carried by Rg with positive weight on P has negative Euler
characteristics, which cannot be an annulus. Therefore, Rg does not carry an an-
nulus.

Now we prove that Rg is incompressible in E(K). First observe that there are
no (half) disks of contact as no circle on the branched locus of R bounds a disk
in ∂hN(Rg) and there are no properly embedded arcs on the branched locus of
Rg. The space N(Rg) decomposes E(K) into four components: a component cut
from E(K) by Xg and V1, denoted M1; a component cut from E(K) by Xg and U1,
denoted M ′

1; a component cut from E(K) by U2, and V2, denoted M2; a component
cut from E(K) by all sections but Xg denoted M .

There are six components in ∂vN(Rg): one in M1, two in M ′

1, one in M2 and two
in M . The component of ∂vN(Rg) in M1 corresponds to a non-separating circle in
Xg ∪V1. Hence, a monogon in M1 is a compressing disk for Xg ∪V1 in M1, but this
contradicts Xg being essential in the exterior of J1. A monogon in M ′

1 is impossible
as the boundary of a monogon disk in M ′

1 would have to intersect one boundary
component of the annulus U1 but be disjoint from the other boundary component,
as both correspond to components of ∂vN(Rg). Therefore, there are no monogons
in M1 and in M ′

1. Similarly, as ∂vN(Rg) in M2 corresponds to a non-separating
circle in U2∪V2 and U2∪V2 is essential in the exterior of J2, there are no monogons
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in M2.
Each curve of the branched locus corresponding to the two components of ∂vN(Rg)
in M are non-separating in ∂M . Hence, a monogon in M corresponds to a com-
pressing disk for ∂M in M . Let c1 be the curve V1∩A′ and c2 be the curve V2∩A′.
Suppose there is a monogon O1 corresponding to c1. Then the surface Y1 defined
by P , A1, V1, A

′, V2 and A2 has a compressing disk O1. But Y1 is a genus one
surface bounded by K, which is incompressible because K is non-trivial and hence
we have a contradiction. Suppose there is a monogon O2 corresponding to c2. Then
the surface defined by P, A1, U1, A

′, U2 and A2 has compressing disk O2. But Y2

is a genus one surface bounded by K, so it is a minimal genus Seifert surface and
hence it is essential, contradicting O2 being a compressing disk for O2. Therefore,
there are no monogons in M .

We proceed to prove that ∂hN(Rg) is (boundary) incompressible in the exte-
rior of K. In M1, ∂hN(Rg) corresponds to the complement of A1 ∩ Xg ∩ V1 in
Xg ∪ V1. Hence, as Xg is incompressible in M1 we have that ∂hN(Rg) ∩ M1 is
incompressible. In M ′

1, we argue similarly that ∂hN(Rg) ∩ M ′

1 is incompressible.
In M2, ∂hN(Rg) ∩M2 corresponds to the complement of A2 ∩ U2 ∩ V2 in U2 ∪ V2,
which corresponds to the exterior in S3 of the knot J2. Hence, ∂hN(Rg) ∩ M2 is
incompressible in M2. At last, in M , ∂hN(Rg)∩M corresponds to the complement
of ∂A′ in ∂M , which is represented by A′ and P , after an ambient isotopy. An
essential simple closed curve in A′ corresponds to a meridian of the satellite torus
of K (with pattern J1#J2), hence there is no compressing disk for A′ in M . The
twice punctured disk P is essential in M , otherwise a (boundary) compressing disk
would also be a (boundary) compressing disk for the Seifert surface defined by P ∪A
(see also the end of proof for Lemma 2).

Hence, ∂hN(Rg) is incompressible and boundary incompressible in E(K), and
there are no Reeb components, monogons or disks of contact in Rg. Therefore, Rg,
g ≥ 1, is an incompressible branched surface without Reeb components. �

Proof of Theorem 1. Let K = K(2m+1; J), with m an integer, be a square double
of a composite knot J and Rg, g ≥ 1, as defined in section 3. The collection of
such knots is infinite. In fact, the choice of companion J can be for arbitrarily large
bridge number, and by work of Schubert, so is the bridge number of a corresponding
satellite K.
Now we prove that the knots K are as in the statement of the theorem. From
Proposition 5 we have that Rg, g ≥ 1, is an incompressible branched surface with-
out Reeb components. We also have that the surfaces Fn

g , n ≥ 3, are carried
with positive weights by Rg. Hence, we are under the conditions of Theorem 2.
It then follows that all surfaces carried by Rg are incompressible and boundary
incompressible in E(K). Therefore, as Fn

g , n ≥ 1, is carried by Rg, g ≥ 1, and is
orientable (Lemma 3), it is essential in E(K). From Lemma 4, the surfaces Fn

g ,
g ≥ 1, n ≥ 1, have genus g and n boundary components. Then, as we wanted to
prove, each compact orientable connected surface of positive genus with boundary
has an essential proper embedding into the exterior of K. �

If we apply and follow the proof of Theorem 2 of [11] with the collection of
knot exteriors and essential surfaces of Theorem 1 of this paper, we can conclude
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that there are hyperbolic 3-manifolds with torus boundary each with a collection of
longitudinal essential surfaces of independently unbounded genus and any number
of boundary components.
As a final remark, note that the knots J1 or J2 can be chosen with closed essential
surfaces in their exteriors of every genus or meridional essential surfaces of every
genus and (even) number of boundary components. (See [11] for instance.) So, in
this case, the exterior of K, as in the proof of Theorem 1, has (meridional) planar
essential surfaces in its exterior but with the number of boundary components
divisible by 4. Furthermore, in this case, the exterior of K has in fact all compact
surfaces of positive genus essentially embedded, closed and with boundary.
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