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Abstract. We use non symmetric Cauchy kernel identities to get the laws of last
passage percolation (LPP) models in terms of Demazure characters. The construc-
tion is based on the restrictions of the RSK correspondence to augmented stair
(Young) shape matrices and rephrased in a unified way compatible with crystal
bases.

1. Introduction

We introduce the Demazure measure on nonnegative vectors corresponding to the
directed last passage percolation (LPP) model on matrices of Young shape, that is,
nonnegative integer matrices whose positive entries fit a Young shape. A nonnegative
integer vector is always in the Weyl orbit of some partition and therefore all non-
negative vectors in a same Weyl orbit share the size of a largest entry which is the
length of a longest row of the unique partition in its orbit. When the Young shape is
a rectangle, we recover the Okounkov’s Schur measure [4, Chapter 4], on the unique
partition of each Weyl orbit, corresponding to the LPP model on nonnegative integer
matrices.

Our main contribution is the use of Demazure characters which are non symmet-
ric polynomials in general to study LPP problems: this has only been carried out
for models with more symmetries using symmetric polynomials, in particular, Schur
polynomials or Weyl characters or geometric analogues as incarnations of Whittaker
functions ([6, 7, 17, 13, 19] and references therein). Crystal theory allows the com-
patibility of Robinson–Schensted–Knuth (RSK) correspondence with non symmetric
Cauchy identities by Lascoux [14] and thus, in particular, the Cauchy identity (1).
This interpretation was discovered by Choi–Kwon [8] for the non-symmetric case on
stair cases (13). We complete the picture with the truncated and augmented stair
shape.

This extended abstract is organized in four sections. In §2 we gather relevant
definitions on crystals, in §3 present our contributions, and in §4 provide an example
for our main result. The full version [3] (to which we refer the reader for details and
proofs) containing the results hereby presented has been submitted for publication
elsewhere.
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1.1. LPP, rectangle shape and Schur measure. Given two sets of indeterminates
x = {x1, . . . , xm} and y = {y1, . . . , yn} the Cauchy identity asserts that

m
∏

i=1

n
∏

j=1

1

1− xiyj
=

∑

λ∈Pmin(m,n)

sλ(x)sλ(y) (1)

where Pmin(m,n) is the set of partitions with at most min(m,n) parts and, for each
such partition λ, sλ(x) and sλ(y) are the Schur polynomials in the indeterminates x
and y, respectively.

This identity has several interpretations, applications and generalizations (see [9]
and references therein). In particular, one can understand the left hand side as the
character of polynomial functions on the space Mm×n of matrices with m rows, n
columns and entries in Z≥0 and decompose this space into a direct sum of glm ×
gln bimodules. The products of Schur functions sλ(x) and sλ(y) on the righthand
side show this approach as the characters of the tensor product of irreducibles finite
dimensional representations of highest weight λ for the linear Lie algebras glm(C)
and gln(C). In factMm,n is a realization of the the bicrystal of the symmetric space
S(Cm ⊗ C

n) as a (glm, gln)-module (see [8] and references therein).
The identity (1) can also be proved using the RSK correspondence [10, 18]. This

is a one-to-one map ψ between the setMm,n and the set
⊔

λ∈Pmin(m,n)

SSY T (λ,m)× SSY T (λ, n)

of pairs (P,Q) of semistandard tableaux of the same shape λ, and entries in [m] :=
{1, . . . ,m} and [n] := {1, . . . , n}, respectively. (The convention that we use agrees
with that of Kashiwara [12] to which we refer for another description of the RSK
procedure and the connection with biwords. See §4 and [10] for variations on RSK.)
Regarding SSY T (λ, k) as the tableau realization for the glk-crystal B(λ, k) of highest
weight λ, then

ψ :Mm,n →
⊔

λ∈Pmin(m,n)

B(λ,m)×B(λ, n)

A 7→ ψ(A) = (P (A), Q(A)) (2)

is a (glm, gln)-bicrystal isomorphism where the bicrystal structure onMm,n is afforded
from B(λ,m)× B(λ, n) by ψ−1, that is, by reverse column Schensted insertion. The
RSK correspondence has interesting properties. For each matrix A in Mm,n, the
greatest integer p(A) obtained by summing up the entries in all the possible paths π
starting at position (1, n) and ending at position (m, 1) with steps ←− or ↓

p(A) := max
π path in A

∑

(i,j)∈π

aij (3)

coincides with the common largest row length of the tableaux P (A) and Q(A) in
(2). (We consider the paths which are compatible with the version of RSK that is
used here. See §4.) It is then natural to study percolation models based on the RSK
correspondence where random matrices whose entries follow independent geometric
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laws are considered [4]. This type of model, in the case of identical and independent
geometric distribution, has been deeply studied by Johansson in [11], who proved
that the fluctuations of the previous last passage percolation, once correctly normal-
ized, are controlled by the Tracy-Widom distribution (defined from the study of the
largest eigenvalues of random Hermitian matrices). The Schur measure, introduced
by Okounkov, based on the Cauchy kernel identity, is an extension of the probabil-
ity measure on the partitions corresponding to the directed last passage percolation
model with the independent and identical geometric distribution of Johansson in [11],
[4, Chapter 4].

Let ui, vj be real numbers in [0, 1), for 1 ≤ i ≤ m, 1 ≤ j ≤ n. Considering an array
W = {Wij : 1 ≤ i ≤ m, 1 ≤ j ≤ n} of independent random variables, with values in
Z≥0, called weights, geometrically distributed as

P(Wij = k) = (1− uivj)(uivj)k, for any k ∈ Z≥0, (4)

with parameter uivj , W is a random matrix with values inMm,n. We then get

P(W = A) =





∏

1≤i≤m,1≤j≤n

(1− uivj)



 (uv)A

where (uv)A =
∏

1≤i≤m,1≤j≤n(uivj)
ai,j . The Last Passage Percolation (LPP) time G of

W is defined to be the random variableG := p◦W . Applying the RSK correspondence,
its properties and the Cauchy identity (1), one obtains the law of the random variable
G, for any k ∈ Z≥0, in terms of Schur polynomials,

P(G = k) =
∏

1≤i,j≤n

(1− uivj)
∑

λ∈Pmin(m,n)|λ1=k

sλ(u1, . . . , um)sλ(v1, . . . , vn)

where the sum is over partitions λ with largest part k. Johansson [11] has established
this result in the special case of identical geometric distribution, ui = vj =

√
q, 1 ≤

i, j ≤ n, for a fixed q ∈]0, 1[, a special case of the Schur measure on partitions (see [4,
Chapter 10]). The RSK correspondence admits various generalizations and geometric
versions which can also be used to get interesting last passage percolation models
involving symmetric polynomials, in particular, characters of representations of Lie
algebras other than gln (symmetric with respect to the Weyl group) and geometric
analogues [6, 7, 17, 19].

2. Crystal and Demazure modules

The finite dimensional irreducible polynomial representations of gln = gln(C) are
parameterized by the partitions λ in Pn. To each partition λ ∈ Pn corresponds a finite
dimensional representation V (λ) (or gln-module), and a crystal graph B(λ) which can
be regarded as the combinatorial skeleton of the simple module V (λ). The vertices
of B(λ) label a distinguished basis of V (λ). On the other hand, B(λ) has various
combinatorial realizations (i.e., vertex labelings) in terms of semistandard tableaux,
Littelmann’s paths [15] or semiskylines [16].

The (abstract) crystal B(λ) is a graph whose set of vertices is endowed with a
weight function wt : B(λ) → Z

n and with the structure of a coloured and oriented
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graph given by the action of the crystal operators f̃i and ẽi with i ∈ I = [n − 1].

One has an oriented arrow b
i→ b′ between two vertices b and b′ in B(λ) if and only

if b′ = f̃i(b) ⇔ b = ẽi(b
′) in which case wt(b′) = wt(b) − αi, with αi a simple root

of gln. The crystal B(λ) is generated by the actions of the lowering (resp. raising)

operators f̃i (respect. ẽi) on the unique highest (resp. lowest) weight vertex bλ (resp.
bσ0λ) where one has wt(bλ) = λ, and σ0 is the longest element of the Weyl group W
here the symmetric group Sn =< s1, . . . , sn−1 >.

For λ ∈ Pn, Wλ is the stabilizer of λ under the action of W , and W λ collects the
unique minimal length representative of each coset in W/Wλ. Let λ ∈ Pn and σ ∈W .
Up to a scalar in C, there exists a unique vector vσλ in V (λ) of weight σλ. Recall
the triangular decomposition gln = gl+n ⊕ h ⊕ gl−n of gln into its upper, diagonal and
lower parts. The Demazure module associated to vσλ is the U(gl+n )-module defined by
Vσ(λ) := U(gl+n ) · vσλ. Demazure introduced the character κσ,λ of Vσ(λ) and showed

that it can be computed by applying to xλ a sequence of divided difference operators
Di1 · · ·Diℓ given by any reduced decomposition of σ = si1 · · · siℓ ∈ W where ℓ is the
length of σ. For i ∈ I, Di is a certain linear operator on Z[x1, . . . , xn] (see [3] and
references therein) satisfying the relations

D2
i = Di for any i = 1, . . . , n− 1,

DiDi+1Di = Di+1DiDi+1 for any i = 1, . . . , n− 2,

DiDj = DjDi for any i, j = 1, . . . , n− 1 such that |i− j| > 1.

Thus, by Mastumoto’s Lemma, the operator Dσ = Di1 · · ·Diℓ only depends on σ and
not on the chosen reduced decomposition, and κσ,λ = Dσ(x

λ) ∈ Z[x1, . . . , xn] is the

(Demazure) character of Vσ(λ). In particular, we have κid,λ = xλ and κσ0,λ
= sλ.

Kashiwara [12] and Littelmann [15] defined a relevant notion of crystals for the
Demazure modules. Recall O(λ) = {σ · bλ = bσλ | σ ∈ W/Wλ} the orbit of the
highest weight vertex bλ of B(λ). Its elements, uniquely determined by their weight,
are called the keys of B(λ). (In this sense we may identify O(λ) with Wλ.) Given
σ, σ′ ∈W/Wλ, we write σ ≤ σ′ for the Bruhat order on the cosets in W/Wλ to mean
that their unique minimal (maximal) coset representatives satisfy the same relation
in the strong Bruhat order restricted to W λ. We also write bσλ ≤ bσ′λ when σ ≤ σ′

in W/Wλ.
From the dilatation of crystals [12] each vertex b of B(λ) carries a pair of keys

K+(b) ≥ K−(b), right, respectively, left key of b, in O(λ). For any σ ∈ W , consider
the Demazure atom

Bσ(λ) = {b ∈ B(λ) | K+(b) = bσλ}, where Bid(λ) = {bλ}. (5)

For any σ ∈W , the opposite Demazure module, is defined to be V σ(λ) := Uq(gl
−
n ) ·vσλ,

for which we define the opposite Demazure atom

B
σ
(λ) = {b ∈ B(λ) | K−(b) = bσλ}, where Bσ0(λ) = {bσ0λ}. (6)
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By definition we have Bσ(λ) = Bσ′(λ) and B
σ
(λ) = B

σ′

(λ) whenever σ and σ′ belong
to the same left coset of W/Wλ. We then get

B(λ) =
⊔

σ∈Wλ

Bσ(λ) =
⊔

σ∈Wλ

B
σ
(λ).

The Demazure crystal Bσ(λ) and its opposite Demazure crystal Bσ(λ) are then defined
by

Bσ(λ) =
⊔

σ′∈Wλ, σ′Wλ≤σWλ

Bσ′(λ) = {b ∈ B(λ) | K+(b) ≤ bσλ}, Bid(λ) = {bλ} (7)

Bσ(λ) =
⊔

σ′∈Wλ, σWλ≤σ′Wλ

B
σ′

(λ) = {b ∈ B(λ) | K−(b) ≥ bσλ}, Bσ0(λ) = {bσ0λ}. (8)

In particular, we have Bσ0(λ) = B(λ) = Bid(λ). We then note that for a given λ ∈ Pn,
⊔

σ∈Wλ

B
σ
(λ)×Bσ(λ) = {(b, b′) ∈ B(λ)×B(λ) : K−(b) ≥ K+(b′)} ≃ B(2λ). (9)

We refer to [8], for the translation of (9) to the crystal of Lakshmibai-Seshadri paths.
The Demazure and its opposite, respectively, atoms and its opposite crystals are con-
nected via the Lusztig-Schützenberger involution ι on the crystal B(λ), a realization
of the action of the longest element of W on finite irreducible representations. The
map ι is a set involution on B(λ) reversing the arrows, flipping the labels i and n− i,
and reversing the weight. We then have K−(b) = σ0.K

+(ι(b)) and we get

Bσ(λ) = ι(Bσ0σ(λ)), or equivalently B
σ0σ(λ) = ιBσ(λ), B

σ
(λ) = ι(Bσ0σ(λ)).

(10)

Demazure (resp. opposite) crystals can also be generated by the actions of the low-
ering (resp. raising) operators given by the reduced words in W λ (resp. σ0W

λσ0) on
the highest (resp. lowest) vertex of B(λ). The Demazure character κσ,λ(x) of the De-

mazure module V σ(λ) satisfies κσ,λ(x) =
∑

b∈Bσ(λ)
xwt(b), and the opposite Demazure

character κσλ(x) for the opposite Demazure module V σ(λ) satisfies

κσλ(x) =
∑

b∈Bσ(λ)

xwt(b).

Using the involution ι and (10), we have

κσλ(x1, . . . , xn) = κσ0σλ(xn, . . . , x1)

and

κσλ(x1, . . . , xn) = κσ0σλ(xn, . . . , x1) =
∑

b∈B
σ
(λ)

xwt(b).

Alternatively we may also label the Demazure crystals and the Demazure characters of
B(λ) directly by the elements in the orbit of λ,Wλ. Given µ ∈Wλ where µ = σλ and
σ ∈ W λ, we write Bµ, B

µ = ιBσ0µ instead of Bσ(λ), B
σ(λ) respectively, and κµ, κ

µ
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= κσ0µ, κµ, κ
µ = κσ0µ instead of κσ,λ, κ

σ
λ and κσ,λ, κ

σ
λ respectively. The operators Di

act on Demazure characters κµ and Demazure atoms κµ as follows

Di(κµ) =

{

κsiµ if µi > µi+1

κµ if µi ≤ µi+1,
Di(κµ) =











κsiµ + κµ if µi > µi+1

κµ if µi = µi+1

0, else.

(11)

For i ∈ [n − 1], we define below ∆i and ∆̇i as operators on Demazure respectively
Demazure atom crystals to mimic the action of the operator Di on Demazure respec-
tively on Demazure atom charaters (11), and we then always have char(∆i(Bµ)) =

Di(κµ), and char(∆̇i(Bµ)) = Di(κµ),

∆i(Bµ) =

{

Bsiµ if µi > µi+1,
Bµ otherwise,

∆̇i(Bµ) =







∆i(Bµ) = Bµ

⊔

Bsiµ if µi > µi+1

∆i(Bµ) = Bµ if µi = µi+1,
∅ if µi < µi+1.

(12)

3. Non symmetric Cauchy kernels, RSK on Young shapes and LPP

We now consider last passage percolation models based on the non symmetric
Cauchy kernel (13) as studied by Lascoux in [14] and its extensions to augmented stair
shapes. Demazure with its opposite Demazure atom crystals, and certain parabolic
subcrystals will describe the image of RSK as a bicrystal isomorphism restricted to
stair shape, truncated stair shape and to augmented stair shape matrices. We detach
the truncated case from the general Young shape due to its more explicit as well
interesting structure.

3.1. LPP, staircase and Demazure measure. The ordinary Cauchy identity (1)
is then replaced by its non-symmetric analogue

∏

1≤j≤i≤n

1

1− xiyj
=

∑

µ∈Zn
≥0

κµ(x)κµ(y) (13)

where κµ(x) and κµ(y) are this time (opposite) Demazure atoms and Demazure char-
acters in the indeterminates x and y (with m = n). These polynomials are not
symmetric in x and y. They correspond to characters of representations for subal-
gebras of the enveloping algebra U(gln). It was proved in [14] that the identity (13)
can be obtained by restricting the RSK correspondence ψ to the set of lower triangu-
lar matrices. (The convention of our paper differs from that in [14] which considers
matrices with nonzero entries in positions (i, j) with 1 ≤ i + j ≤ n + 1 rather than
lower-triangular matrices.) Since then, other proofs have been proposed using com-
binatorial objects which explicitly carry the pairs of right and left keys [10]. More
precisely, [1, Theorem 3, Corollary 2] uses the combinatorics of Mason’s semiskyline
augmented fillings [16], and [8] uses the combinatorics of crystal bases, in particular,
the combinatorial model of Lakshmibai-Seshadri paths [15]. Recently Assaf-Schilling
provided an explicit tableau crystal for Mason’s semiskyline augmented fillings [16]
by using combinatorially equivalent objects, semistandard key tableaux (see [3] and
references therein). Here we stand on the tableau model for gln crystals where we have
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effective ways to compute the right key K+(T ) and left key K−(T ) of a semistandard
tableau T as Lascoux’s jeu de taquin procedure [10].

Let D be any subset of [n]× [m] and writeMD
m,n for the subset ofMm,n containing

the matrices A such that ai,j ̸= 0 only if (i, j) ∈ D. In general, the set ψ(MD
m,n) is

not stable by the glm × gln-crystals operators. Nevertheless, when D corresponds to
the Young diagram of a fixed partition Λ, see (19), D = DΛ is stable under the action
of the crystal raising operators. When m = n and ϱ = (n, n − 1, . . . , 1), we get in
matrix coordinates Dϱ = {(i, j) | 1 ≤ j ≤ i ≤ n}.

Then the bijection ψ (2) restricts to a bijection from the setMDϱ
m,n of n× n lower

triangular matrices to the set of pairs (P,Q) of semistandard Young tableaux of the
same shape on the alphabet [n] such that K−(P ) ≥ K+(Q) (entrywise comparison).
(See also [1, Corollary 2] for the Knuth version of RSK.) This means that the image

of this restriction, for a fixed λ ∈ Pn, is
⊔

σ∈Wλ

B
σ
(λ)×Bσ(λ) (9). Thus the restriction

of RSK correspondence ψ to Dϱ gives

ψ :MDϱ
n,n →

⊔

λ∈Pn

⊔

σ∈Wλ

B
σ
(λ)×Bσ(λ) (14)

A 7→ ψ(A) = (P (A), Q(A)) : K+(Q(A)) ≤ K−(P (A)), (15)

where Bσ(λ) is a Demazure crystal (7) and B
σ
(λ) an opposite Demazure atom (6).

This time, we only consider independent random variables Wi,j when 1 ≤ j ≤ i ≤ n
with geometric distributions as in (4). This defines a lower triangular random square
matrix L with nonnegative integer entries. In this model we consider paths from
position (1, n) to position (n, 1) where only the entries in the lower part of A contribute
to the length of the paths. We define the random variable L = p ◦ L and determine
its law. Since (14) gives a bijective correspondence obtained as the restriction of the
RSK map ψ (2) to lower triangular matrices, the value of L still corresponds to the
length of the largest part of the partitions on the right hand side of (15).

Theorem 1. For any k ∈ Z≥0, we have the law

P(L = k) =
∏

1≤j≤i≤n

(1− uivj)
∑

µ∈Zn
≥0|max(µ)=k

κµ(u1, . . . , un)κµ(v1, . . . , vn). (16)

This law was also obtained by Baik-Rains [5, 6, Section 4] when ui = vi. In this
case, (9), and (13) with xi = yi, together give a refinement of a Littlewood identity:

∏

1≤j≤i≤n

(1− xixj)−1 =
∑

µ∈Zn
≥0

κµ(x)κµ(x) =
∑

λ∈Pn

s2λ(x).

In [6] it is called a law in the point-to-line last passage percolation in zero temperature
limit. However this formula is not produced in [6] by the geometric RSK but rather
one in terms of a symplectic Cauchy like identity.

3.2. Main results: LPP on Young shapes and Demazure measure. Lascoux
[14] also established generalizations of the formula (13) where positions with nonzero
entries are allowed in the matrices outside their lower triangular part. These aug-
mented staircase formulas below (∗) were then obtained just by computations on
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polynomials and thus not related to the RSK correspondence. This connection was
partially done in [2] where certain truncated staircases formulas are proved to be
compatible with the RSK correspondence using the combinatorics of semiskyline aug-
mented fillings [16]. More precisely, this applies to the case where nonzero entries
are authorized only in positions (i, j) with n − p ≤ i ≤ j ≤ q, for p and q two
nonnegative integers such that n ≥ q ≥ p ≥ 1. We consider the Young diagram
Dp,q = {(i, j) | n − p + 1 ≤ i ≤ n, 1 ≤ j ≤ q} ∩ Dϱ defined by using the matrix
coordinates (i, j). It is the intersection of Dϱ with a quarter of plane defined by the
lines i = p and j = q (in Cartesian coordinates). When n − p + 1 ≤ q, we get
the Young diagram Dp,q = DΛ(p,q) with Λ(p, q) = (qn−q+1, q − 1, . . . , n − p + 1), and
Dn,n = DΛ(n,n) = Dϱ.

Below one illustrates the truncated Young shape DΛ(p,q), in green, fitting the p by
q rectangle so that the staircase Dϱ of size n, in red, is the smallest one containing
DΛ(p,q). If p ≤ q, D(p,p−1,...,1) is the biggest staircase inside DΛ(p,q).

p
n

q

We write Bp(λ) for the subcrystal of the gln-crystal B(λ, 0n−p) with λ ∈ Pp, obtained
by keeping only the vertices connected to its highest weight vertex by i-arrows with
i ∈ [p−1]. Given u ∈ Sp, Bp,u(λ), B

u
p (λ), Bp,u(λ) and B

u
p(λ) denote the Demazure, its

opposite, respectively, atom and its opposite crystals associated to u in the glp-crystal

Bp(λ). See Example 4 and (21), (22). The restriction of the map ψ fromMDϱ
n,n (15)

toMDΛ(p,q)
n,n gives

ψ(MDΛ(p,q)
n,n ) =

⊔

λ∈Pn

⊔

σ∈Wλ

B
σ
(λ) ∩Bp(λ)×Bσ(λ) ∩Bq(λ)

=
⊔

µ∈Zn
≥0

B
µ ∩Bp(λ)×Bµ ∩Bq(λ).

By the Borel-Weil theorem, Demazure crystals are in natural correspondence with

Schubert varieties. Let σ ∈ Sn and σ
[q]
0 be the longest element ofSq. From the Billey–

Fan–Losonczy parabolic map (see [3, Algorithm 3.1, Proposition 3.4] and references
therein) the set {v ∈ Sq | v ≤ σ} has a unique maximal element σIq for the Bruhat
order ≤ in W . Then the intersections

S
σ
[q]
0

∩ Sσ = SσIq

and

Bσ(λ) ∩Bq(λ) = Bσ(λ) ∩Bσ
[q]
0

(λ) = Bq,σIq (λ)

translate into each other, where Sσ = ∪v≤σOv; here Ov is the orbit BvB/B of the
Borel subgroup B of the reductive group G with Weyl group W acting on the flag
variety G/B, and Sσ is the Schubert variety, that is, the orbit closure of Oσ (we refer
to [10, Chapter III] for definitions).
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However B
σ
(λ) ∩ Bp(λ) = ∅ unless σ ∈ σ0Sλ

p , λ ∈ Pp and then B
σ
(λ) ∩ Bp(λ) =

ιBp,σ0σ(λ) [3]. In this case Bσ(λ) ∩ Bq(λ) = Bq,σIq (λ). The restriction of the RSK

correspondence ψ toMDΛ(p,q)
n,n then gives a one-to-one correspondence

ψ :MDΛ(p,q)
n,n → ⊔

µ∈Zp

≥0

ι(Bp,µ)×Bq,µ̃, and (17)

∏

(i,j)∈DΛ(p,q)

1

1− xiyj
=

∑

(µ1,...,µp)∈Z
p

≥0

κ(µp,...,µ1)(xn, . . . , xn−p+1)κµ̃(y1, . . . , yq), (18)

where for each µ ∈ Z
p
≥0, the vector µ̃ = (σ0τ)

Iq(λ, 0q−p, 0n−q) with τ ∈ Sλ
p such that

µ = τλ. It can also be explicitly computed by a simple algorithm in [1, 3, Theorem
3.20] (see also examples in [3, Section 3.1]).

One can then similarly use (17) to study the percolation model on random matrices
Tp,q with nonnegative random integer coefficients having zero entries in each position
(i, j) such that i ≤ n−p and j > q. Each random variable Wi,j with i ≥ n−p+1 and
j ≤ q follows a geometric distribution of parameter uivj . Using the same arguments
as before, we obtain the law of the random variable Tp,q = p ◦ Tp,q.

Theorem 2. For any nonnegative integer k, we have for v = (v1, . . . , vq)

P(Tp,q = k) =
∏

(i,j)∈DΛ(p,q)

(1− uivj)·

·
∑

(µ1,...,µp)∈Z
p

≥0|max(µ)=k

κ(µp,...,µ1)(un, . . . , un−p+1)κµ̃(v).

In [14] Lascoux gave other non symmetric Cauchy type identities for any partition
Λ ∈ Pn. One considers the largest staircase ρΛ = (m,m − 1, . . . , 1) contained in
the Young diagram of Λ. Then one chooses a box at position (i0, j0), in Cartesian
coordinates, in the augmented staircase (m + 1,m, . . . , 1) which is not in Λ. The
diagonal Li,j : j − i = j0 − i0, in Cartesian coordinates, cuts Λ in a northwest part
and a southeast part corresponding to the boxes above and below Li,j , respectively.
Now fill the boxes (i, j), in the n×n matrix convention, of the NW part of Λ by n− i
(i.e., by the n×n matrix reverse row index (equivalently counting rows from bottom
to top) minus one), and the boxes (i, j) of the SE part by j − 1 (i.e., by the index of
the column minus one). Let σ(Λ, NW ) = si1 · · · sia be the element of W where the
word i1 · · · ia is obtained from right to left column reading of the NW part of Λ, each
column being read from top to bottom. Similarly, let σ(Λ, SE) = sj1 · · · sjb be the
element of W where the word j1 · · · jb is obtained from top to bottom row reading of
the SE part of Λ, each row being read from right to left.
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For instance, let n = 8 and Λ = (7, 4, 2, 2, 2). Take (i0, j0) = (3, 3) (the box with
▲). Hence m = 4, ρΛ = (4, 3, 2, 1), and σ(Λ, NW ) = s4s3s4, σ(Λ, SE) = s3s6s5s4,

4 4
■ 3
■■ ▲

■■■ 3
■■■■ 4 5 6

(19)

The following identity was established in [14] and reproved for near stair shapes
in [2],

(∗)
∏

(i,j)∈Λ

1

1− xiyj
=

∑

(µ1,...,µm)∈Zm

Dσ(Λ,NW )κ(µm,...,µ1)(xn, . . . , xn−m+1)Dσ(Λ,SE)κ(µ1,...,µm)(y),

where y = (y1, . . . , ym), and Dσ(Λ,NW ) = Di1 · · ·Dia , Dσ(Λ,SE) = Dj1 · · ·Djb are
compositions of Demazure operators (11).

Theorem 3. The restriction of the RSK correspondence ψ toMDΛ
n,n gives the one-to-

one correspondence

ψ :MDΛ
n,n →

⊔

(µ1,...,µm)∈Zm
≥0

ι
(

∆̇σ(Λ,NW )(B(µm,...,µ1))
)

×∆σ(Λ,SE)

(

B(µ1,...,µm)

)

(20)

where ∆σ(Λ,SE) = ∆j1 · · ·∆jb and ∆̇σ(Λ,NW ) = ∆̇i1 · · · ∆̇ia (12). (As usual ∅×U = ∅.)

Now, for a fixed partition Λ in Pn, we consider random matrices AΛ with nonneg-
ative random integer coefficients having zero entries in each position (i, j) such that
(i, j) /∈ Λ. Here again each random variable Wi,j for (i, j) ∈ Λ follows a geometric
distribution of parameter uivj . Define the random variable AΛ = p ◦ AΛ. Then, by
(∗) and (20), we get the law of AΛ.

Theorem 4. For any nonnegative integer k,

P(AΛ = k) =
∏

(i,j)∈DΛ

(1− uivj).

.
∑

(µ1,...,µm)∈Zm|max(µ)=k

Dσ(Λ,NW )κ(µm,...,µ1)(un, . . . , un−m+1)Dσ(Λ,SE)κ(µ1,...,µm)(v),

where (v1, . . . , vm).

4. An example for RSK on augmented stair shapes

Let us resume to the setting of (19) with n = 8, Λ = (7, 4, 2, 2, 2), and σ(Λ, NW ) =

s4s3s4, σ(Λ, SE) = s3s6s5s4. Let ψ be the RSK applied to MDΛ
8,8 the set of 8 × 8
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nonnegative integer matrices whose positive entries fit the shape Λ. Then (20) gives
for m = 4

ψ :MD(7,4,2,2,2)

8,8 → ⊔

(µ1,...,µ4)∈Z4
≥0

ι
(

∆̇4∆̇3∆̇4(B(µ4,...,µ1))
)

×∆3∆6∆5∆4

(

B(µ1,...,µ4)

)

A 7→ ψ(A) = (P,Q).

Let A=




0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
2 0 1 1 0 0 0 0
0 0 0 0 1 0 2 0



∈M

DΛ
8,8 encoded as a tensor product of row tableaux on the

alphabet [8] where ai,j gives the number of letters i in the j-th component of the
tensor product

577⊗ 45⊗ 7⊗ 7⊗ 8⊗ ∅ ⊗ 88⊗ ∅.
One then applies the column insertion procedure from left to right. This means that
we begin by reading the first column (of A) 775 and compute the column insertions
5 → 7 → 7 to get 577 then read the second column 54 and compute the column
insertion 4 → 5 → 577 to get 45577, then 7 → 45577 to get 7

4 5 5 7 7 , and eventually
get the tableau P below. The ”recording tableau” Q is obtained by filling with letters
j the new boxes appearing during the insertion of column j of A,

P =
8 8
7 7 8
4 5 5 7 7

K−(P ) =
8 8
7 7 8
4 4 4 4 4

= K(03, 5, 02, 2, 3) (21)

Q =
5 7
3 4 7
1 1 1 2 2

K+(Q) =
7 7
4 4 7
2 2 2 2 2

= K(0, 5, 0, 2, 02, 3, 0). (22)

We show that there exists µ = (µ1, µ2, µ3, µ4) ∈ Z
4
≥0 such that ψ(A) = (P,Q) ∈

ι(∆̇4∆̇3∆̇4B(σ0µ,04))×∆3∆6∆5∆4B(µ,04), where σ0 ∈ S4 and ι is the Schützenberger
(evacuation) involution on tableaux in the alphabet [8]. From (12) one has

ι(∆̇4∆̇3∆̇4B(µ4,...,µ1,04)) =

=







































ιB(µ4,µ3,µ2,0,04)

⊔

ιB(µ4,µ3,0,µ2,04)

⊔

ιB(µ4,µ3,02,µ2,03), if µ2 > µ1 = 0 (∗∗)
ιB(µ4,µ3,0,0,04), if µ1 = µ2 = 0

ιB(µ4,µ3,µ2,µ2,04)

⊔

ιB(µ4,µ3,µ2,0,µ2,03)

⊔

ιB(µ4,µ3,0,µ2,µ2,03), if µ1 = µ2 > 0

∅, if µ1 > µ2 ≥ 0

ιB(µ4,...,µ1,04)

⊔

ιB(µ4,µ3,µ1,µ2,04)

⊔

ιB(µ4,µ3,µ2,0,µ1,03)

⊔

ιB(µ4,µ3,0,µ2,µ1,03)

⊔

⊔

ιB(µ4,µ3,0,µ1,µ2,03)

⊔

ιB(µ4,µ3,µ1,0,µ2,03), if µ2 > µ1 > 0.

Then, by (6),

K−(P ) = K(03, 5, 02, 2, 3)⇔ P ∈ B(03,5,02,2,3)
= ιB(3,2,02,5,03),

and we are in case (∗∗), where µ2 = 5 > µ1 = 0, µ3 = 2, µ4 = 3. Hence, µ = (0, 5, 2, 3)
and

ι(∆̇4∆̇3∆̇4B(3,2,5,0,04)) = ιB(3,2,5,0,04)

⊔

ιB(3,2,0,5,04)

⊔

ιB(3,2,02,5,03).
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Therefore, by the LHS of (12), ∆3∆6∆5∆4B(µ,04) = B(0,5,0,2,0,0,3,0). Indeed K+(Q) ≤
K(0, 5, 0, 2, 02, 3, 0) and from (8), Q ∈ B(0,5,0,2,02,3,0). Hence,

(P,Q) ∈ B(03,5,02,2,3) ×B(0,5,0,2,02,3,0)

and
ψ(A) ∈ ι(∆̇4∆̇3∆̇4B(3,2,5,0,04))×∆3∆6∆5∆4B(0,5,2,3,04).
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