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Abstract. We define Bender–Knuth involutions for Kashiwara–Nakashima tableaux
of type Cn via partial symplectic Schützenberger–Lusztig (SL) involutions and thereby
a symplectic analogue of the Berenstein–Kirillov group. We use the symplectic cactus
group as well as the virtualization of Kashiwara–Nakashima tableaux by Baker.

1. Introduction

The type A Berenstein–Kirillov or Gelfand–Tsetlin group [6] is the free group gen-
erated by the Bender–Knuth involutions [3] ti, i > 0, modulo the relations they satisfy
on semi-standard Young tableaux of any straight shape. The Bender–Knuth involution
ti, i ≥ 1, is an operation that acts on a semi-standard tableau T of any straight (or
skew) shape as follows. Pairs of letters (i, i+1) within each column of T are considered
fixed, and other occurrences of i’s or i+1’s are considered free. Now, if a row of T has
k free i’s followed by l free i + 1’s, then we replace these letters by l free i’s followed
by k free i+1’s. Although the t′is have many known relations (see (60)-(64) in [1, §10]
and references within), it is not known whether these form a complete set of relations
[5]. Let BKn be the subgroup of BK generated by t1, . . . , tn−1, and let

q[1,i] := t1(t2t1) · · · (titi−1 · · · t1), for i ≥ 1,

q[j,k−1] := q[1,k−1]q[1,k−j]q[1,k−1], for j < k.

Then [6, Remark 1.3] as elements of BK,

t1 = q[1,1], ti = q[1,i−1]q[1,i]q[1,i−1]q[1,i−2], for i ≥ 2, q0 := 1.

The elements q[1,1], . . . , q[1,n−1] are generators of BKn and coincide with the partial
Schüt - zenberger involutions restricted to the connected subdiagrams [1, i], 1 ≤ i ≤
n− 1, of the Dynkin diagram An−1. Motivated by the relation between these two sets
of involutions in type An−1, we similarly define a symplectic version of BKn by defin-
ing Bender–Knuth involutions on the set of type Cn Kashiwara–Nakashima tableaux
of straight shape [16], thereby defining a type Cn analogue of the Berenstein–Kirillov
group. We also do this by analogy to an interesting interpretation of Bender–Knuth
involutions in type An−1 in terms of the cactus group Jn. For this we study the sym-
plectic cactus group as defined by Halacheva [13, 11], as well as its action on the set
of Kashiwara–Nakashima tableaux in detail, for which we present new explicit algo-
rithms. Along the way, we revisit a virtualization map of Baker which will unwrap our
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symplectic Bender–Knuth involutions while providing aditional structure, and allowing
the computation of explicit examples.

This extended abstract is organized in three sections. The full version [1] (to which
we refer the reader for details) containing the results hereby presented has been sub-
mitted for publication elsewhere.

2. The cactus group, crystals, and virtualization

2.1. The cactus group. Although the cactus group was classically and originally in-
troduced by Henriques–Kamnitzer [14] in the context of the commutator and cobound-
ary categories, Halacheva [11, 13] has generalized this concept by defining a cactus
group JX associated to any Dynkin diagram X as follows. The group JX is defined by
generators sI , for each connected subdiagram I ⊆ X, subject to the relations

s2I = 1, (1)

sIsJ = sJsI if J ⊂ X, J ⊔ I is disconnected (2)

sIsJ = sθI(J)sI if J ⊆ I (3)

where θ : X → X is the Dynkin diagram automorphism defined by αθ(i) = −w0αi,

where w0 is the longest element of the Weyl group associated to X, and {αi}
n
i=1 is a set

of simple roots of a reduced root system of type X. For I ⊆ X, θI : I → I is the Dynkin
diagram automorphism on the subdiagram I and the associated Weyl group is the para-
bolic subgroupW I ⊆W . In [11, 13], Halacheva defines an internal action of the cactus
group JX on a normal gX -crystal B, where gX is the simple complex Lie algebra asso-
ciated to X. The generator sX acts on B via the Schützenberger–Lusztig involution.
This action coincides with the Schützenberger evacuation on semi-standard Young
tableaux, and has been defined by Santos [18] on Kashiwara–Nakashima tableaux of
type Cn, making use of the Sheats–Baker–Lecouvey sliding algorithm [7, 19, 17]. The
other generators sJ , for J ⊊ X act on B by first taking the Levi-branching BJ of B
(obtained from B by removing from it all arrows not labelled by elements in J while
keeping all the vertices) and applying the Schützenberg–Lusztig involution there.

Example 1. For X = An−1 the connected subdiagrams are intervals I = [p, q], for

1 ≤ p ≤ q ≤ n−1. We will denote the generators by s
An−1

[p,q] from now on. The relations

in this case are well-known and given by:

• s
An−1

[p,q]

2
= 1

• sAn−1
[p,q]s

An−1

[k,l] = s
An−1

[p,q] s
An−1

[k,l] if [p, q] ∪ [k, l], 1 ≤ k ≤ l ≤ n− 1 is disconnected.

• s
An−1

[p,q] s
An−1

[k,l] = s
An−1

[p+q−l,p+q−k]s
An

[p,q] for p ≤ k ≤ l ≤ q ≤ n− 1.

Note that the automorphism θ[p,q] : [p, q]→ [p, q] is given by θ[p,q](d) = p+ q − d

Example 2. For X = Cn the connected subdiagrams can also be regarded as intervals
I = [p, q], for 1 ≤ p ≤ q ≤ n. We will denote the generators by sCn

[p,q] from now on. In

this case we have two types of intervals: those containing, respectively not containing
the node labelled by n. For those subintervals [p, q], q ̸= n, we have θ[p,q](d) = p+ q−d,
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since these are subdiagrams of type Aq−p+1. For I = [p, n] we have θ[p,n](d) = d.
Therefore the relations defining the cactus group JCn

(or symplectic cactus group) are:

• sCn
[p,q]

2
= 1

• sCn
[p,q]s

Cn

[k,l] = sCn

[p,q]s
Cn

[k,l] if [p, q] ∪ [k, l], 1 ≤ k ≤ l ≤ n, is disconnected.

• sCn

[p,q]s
Cn

[k,l] = sCn

[p+q−l,p+q−k]s
Cn

[p,q] for p ≤ k ≤ l ≤ n.

• sCn

[p,n]s
Cn

[k,l] = sCn

[k,l]s
Cn

[p,n] for p ≤ k ≤ l ≤ q < n.

Remark 1. Note that from the above examples we can deduce that JAm
is a subgroup

of JCk
, for m < k. JAn−1

is also generated by the elements s[1,j], 1 ≤ j ≤ n [1].

2.2. Embedding of JCn
into JA2n−1

. We have observed that JAm
= Jm+1 is a sub-

group of JCk
, for m < k, in particular JAn−1

= Jn is a subgroup of JCn
. We now show

that there is a group embedding of JCn
into J2n by folding A2n−1 through the middle

node n:

1 2 3 n− 1 n
−֒→

1 2 3 n− 1

n

n+ 12n− 32n− 22n− 1

Why should such an embedding exist? Let us consider the following elements of J2n:

s′[p,q] := s
A2n−1

[p,q] s
A2n−1

[2n−q,2n−p] = s
A2n−1

[2n−q,2n−p]s
A2n−1

[p,q] , for all [p, q] ⊆ [n− 1].

In Proposition 1 we see that these elements together with the generators s[p,2n−p] for
p ≤ n generate a subgroup of JA2n−1

isomorphic to JCn
. We denote this subgroup

of JA2n−1
by J̃A2n−1

and call it virtual symplectic cactus group. Notice the similarity
between this and the construction of sp(2n,C) as a sub-algebra of sl2n by folding [15,
Chapter 8, pp. 89 – 102].

Proposition 1. [1] The following assignment defines a group injection from JCn
to

JA2n−1
:

Γ : JCn
→֒ JA2n−1

sCn

[p,q] 7→ s′[p,q], 1 ≤ p ≤ q < n,

sCn

[p,n] 7→ s
A2n−1

[p,2n−p], 1 ≤ p ≤ n.

2.3. Crystals and virtualization. Let g be a simple Lie algebra with Dynkin dia-
gram X, and integral weight lattice Λ. Crystals corresponding to finite-dimensional
(quantum group) Uq(g)-representations belong to a family of crystals called normal
crystals [8]. In classical types, these crystals may be realized by a tableau model [16]
and have nice combinatorial properties. Normal crystals arise as the crystals associ-
ated to the finite-dimensional representations of a quantum group Uq(g) [8]. These
crystals decompose into connected components, one for each irreducible component to
the representation at hand. The Levi restriction of a normal crystal is still a normal
crystal, and the union of some connected components of a normal crystal is also a
normal crystal [8]. We work with tableau crystals for finite-dimensional representa-
tions of Uq(sl(n,C)) and Uq(sp(2n,C)). Recall the sl(n,C) simple roots αi = ei−ei+1,
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i ∈ [n − 1], and the sp(2n,C) simple roots αi = ei − ei+1, i ∈ [n − 1] and αn = 2en,
where ei, i ∈ [n], is the Rn standard basis. The weight lattices are Λ = Zn for sp(2n,C)
and Λ = Zn/ < (1, ..., 1) > for sl(n,C). We will often work with representatives in the

case of sl(n,C). The fundamental weights are ωi =
∑i

j=1 ei, 1 ≤ i ≤ n and respectively
have representatives ωi, 1 ≤ i ≤ n− 1.

A g-crystal is a finite set B along with maps

wt : B → Λ, ei, fi : B → B ⊔ {0}, εi, φi : B → Z,

satisfying the following axioms for any b, b′ ∈ B and i ∈ X,

• b′ = ei(b) if and only if b = fi(b
′),

• if fi(b) ̸= 0 then wt(fi(b)) = wt(b)− αi;
if ei(b) ̸= 0, then wt(ei(b)) = wt(b) + αi, and
• εi(b) = max{a ∈ Z≥0 : e

a
i (b) ̸= 0} and φi(b) = max{a ∈ Z≥0 : f

a
i (b) ̸= 0}.

• φi(b)− εi(b) = ⟨wt(b), α
∨
i ⟩,

where α∨
i = 2αi

⟨αi,αi⟩
are the coroots.

Remark 2. Our abstract g-crystals are defined with the additional condition that they
are seminormal [8].

The crystal graph of B is the directed graph with vertices in B and edges labelled
by i ∈ X. If fi(b) = b′ for b, b′ ∈ B, then we draw an edge b→ b′. Given an arbitrary
subset J ⊆ X, BJ is defined to be the crystal B restricted to the sub-diagram J of X,
the Levi branched crystal. The crystal graph of BJ has the same vertices as B, but the
arrows are only those labelled in J ; that is, we forget the maps ei, fi, φi, and εi, for i ̸∈ J

[8]. The weight map, which we denote by wtJ , is B
wt

→ Λ
can
→ ΛJ , where wt is the weight

map of B, Λ is the weight lattice of g, a Levi-subalgebra, and ΛJ = Λ/ < ωi : i /∈ J >

is the weight lattice of gJ , and Λ
can
→ ΛJ is the canonical projection. If g = sp(2n,C)

and we restrict to J = [n − 1], then we obtain a sl(n,C)-crystal. Given b ∈ B,
B(b) denotes the connected component of B containing b. A g-crystal is normal if it
is isomorphic to a disjoint union of irreducible crystals associated to an irreducible,
finite-dimensional g-representation of highest weight λ, where λ ∈ Λ is a dominant
weight. The dominant weights in Zn, respectively in Zn/ < (1, ..., 1) >, correspond
precisely to partitions with at most n parts, that is, weakly decreasing vectors in Zn

with non-negative entries, respectively to weakly decreasing vectors in Zn, and each
such representative is equivalent to a unique partition in Zn−1 →֒ Zn, where the last
entry is fixed as zero. An important property of normal crystals B is the existence of
a unique highest weight vertex for each connected component of B, that is, an element
which is a source in the corresponding crystal graph, whose weight is dominant. Note
that we work solely with highest weight crystals, namely, crystals B such that for each
b ∈ B, there exists a finite sequence a1, a2, . . . , al ∈ X and a highest weight element
ub ∈ B(b) such that b = fal · · · fa2fa1(ub). For b, b′ ∈ B, we have B(b) = B(b′) if and
only if ub = ub′ . From now on, we will refer to sp(2n,C)-crystals by Cn-crystals, and
sl(n,C)-crystals by An−1-crystals.

We consider the realization of An−1-crystals by semi-standard Young tableaux of
shape a partition λ of at most n − 1 parts and filling with letters in the ordered
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alphabet [n]. We will denote this set together with its crystal structure by SSY T (λ, n)
(we refer the reader to [8] for the definition of the crystal structure). We will also and
importantly consider the realization of Cn-crystals given by Kashiwara–Nakashima
[16], or, as we will from now on refer to them, KN, tableaux. These are semi-standard
tableaux in the ordered alphabet (see also [8, 17])

[±n] :=
{
1 < · · · < n < n < · · · < 1

}

such that, additionally each one of their columns is admissible, and that their splitting
is a semi-standard Young tableau. A semi-standard column C in the alphabet [±n] of
length at most n is admissible if there exists a set T = {t1 > ... > tm} of non-barred
letters that satisfy t1 < z1 and is maximal with the property t1, t̄1 /∈ C, and ti <
min(ti−1, zi), ti, t̄i /∈ C and is maximal with these properties, where Z = {z1 > ... > zm}
is the set of non-barred letters z.

The splitting of a column is the two-column tableau lCrC where lC is the column
obtained from C by replacing zi by ti and possibly re-ordering, and rC is obtained
from C by replacing z̄i by t̄i and possibly re-ordering. The splitting of a semi-standard
Young tableau consisting of admissible columns is the concatenation of the splitting
of its columns. The weight of a KN tableau is a vector of Zn whose i-th entry is the
number of occurrences of i minus the number of ocurrences of ī in the tableau. We
will denote the set of KN tableaux of shape λ with entries in [±n], together with their
crystal structure (see [8, 17]) by KN(λ, n).

Example 3. Let n = 2. The column
2

2̄
is admissible (we have Z = {2} and T = {1}),

thus a KN tableau of weight (0, 0). However,
1

1̄
is not. Notice that the tableau

2 2

2̄ 2̄
,

despite having all admissible columns, is not KN, because its split,
1 2 1 2

2̄ 1̄ 2̄ 1̄
, is not

semi-standard.

2.4. Baker’s virtualization map. Let λ = λ1ω1 + · · · + λnωn ∈ Zn with ωj =∑j
i=1 ei ∈ Zn the Cn fundamental weights. Moreover, let ωA

j =
∑j

i=1 ei ∈ Z2n for

1 ≤ j ≤ n, ωA
j̄
= ω2n−j+1 =

∑2n−j+1
i=1 ei ∈ Z2n for 1 < j ≤ n be the A2n−1 fundamental

weights, and the Z2n partition

λA = 2λnω
A
n +

n−1∑

i=1

λi(ω
A
i + ωA

i+1
).

Let SSY T (λA, n, n) be the set, considered with its A2n−1-crystal structure, of semi-
standard Young tableaux of shape λA with filling in the ordered alphabet [±n]. We
will denote the corresponding crystal operators by fAi for i ∈ [±n], and consider for
1 ≤ i ≤ n, the operators fEi = fAi f

A
i+1

if i < n and fEn = (fAn )2. Let E denote the

virtualization map on type Cn Kashiwara-Nakashima tableaux defined by Baker [2,
Proposition 2.2, Proposition 2.3]. More precisely, E is an injective map
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E : KN(λ, n) →֒ SSY T (λA, n, n) (4)

such that E(fi(T )) = fEi (E(T )) for T ∈ KN(λ, n), 1 ≤ i ≤ n. We will denote by E−1

the restriction of any left inverse of E to the image of KN(λ, n) under E.
Given an admissible column C of shape ωi, for some 1 ≤ i ≤ n, denote by ψ(C) its
Baker virtual split [2, Proposition 2.2], a two column type A2n−1 tableau of shape
ωA
i + ωA

2n−i. The map ψ is injective and embeds admissible columns of length i into

SSYT(ωA
i + ωA

2n−i), 1 ≤ i ≤ n. Indeed E reduces to ψ on admissible columns and we

define ψ−1 analogously to E−1. From [2, Proposition 2.3] we know that, if we write
T ∈ KN(λ, n) as a concatenation of its columns, that is, T = Ck · · ·C1, then

E(T ) = [∅ ← w(ψ(C1))← · · · ← w(ψ(Ck))].

where the word w(ψ(C)) of a two-column ψ(C) is given by the Japanese reading of its
two columns (from top to bottom and right to left), and P ← w is the column insertion
of a word w into a semi-standard Young tableau P .

Let Tλ ∈ KN(λ, n) be the highest weight element, that is, Tλ is the Yamanouchi
tableau of shape and weight λ on the alphabet [n]. Then E(Tλ) = TλA is the highest
weight element of SSY T (λA, n, n), that is, the A2n−1 Yamanouchi tableau of shape
and weight λA in the alphabet [±n]. The image of KN(λ, n) by E in SSY T (λA, n, n)
is the crystal generated by acting with the lowering operators fEi on the highest weight
element TλA of SSY T (λA, n, n). For T ∈ KN(λ, n) a tableau, where T = Ck · · ·C1, let

wT = w(ψ(C1)) · · ·w(ψ(Ck)).

Then wT is a word in the monoid C∗n, and E(T ) = ∅ ← wT . We will call the recording
tableau of the column insertion of wT , the Baker recording tableau associated to T .

Proposition 2. [1] For T ∈ KN(λ, n), the Baker recording tableau Q(wT ) depends
only on λ. From now on, we will denote by Qλ the Baker recording tableau associated
to λ.

2.5. Internal cactus group action on a normal crystal and virtualization.

Recall first the Schützenberger–Lusztig involution ξ : B(λ) → B(λ) acting on an
irreducible normal crystal of highest weight λ. This set involution can be seen as
flipping the crystal upside down while reversing the edge crystal colours by i 7→ θ(i),
i ∈ X and applying the longest element of the Weyl group to the vertex weights. For
type An−1, ξ coincides with the evacuation evac on the set of semi-standard Young
tableaux SSY T (λ, n) [20], and with reversal on the set SSYT(λ/µ, n) of type An−1

tableaux of skew-shape λ/µ in the alphabet [n] [4]. In [18], Santos has introduced a
symplectic evacuation algorithm on KN tableaux, which he has proved to coincide with
the full Lusztig–Scützenberger involution on a given crystal KN(λ, n).

Partial Schützenberger involutions were first studied in the type An−1 case for con-
nected sub-diagrams by Berenstein and Kirillov who have used them alternatively to
define Bender–Knuth involutions [6], but the former involutions have been defined by
Halacheva in general. Given J any subset of X, the partial SL involution ξJ is defined



THE TYPE Cn BERENSTEIN–KIRILLOV GROUP 7

to be the SL involution on each connected component of the normal crystal BJ . The
partial SL involutions ξJ for any connected subdiagram J of X satisfy the JX cactus
relations.

Theorem 1 ([11]). The map sJ 7→ ξJ , J a connected sub-diagram of X, defines an
action of the cactus group JX on the set B, that is, the following is a group homomor-
phism

ΦX : JX → SB

sJ 7→ ξJ .

Moreover wt(ξJ(b)) = wJ
0wt(b), b ∈ B where wJ

0 is the longest element of W J ⊆W .

That is, sJ acts on each connected component of BJ , as a set, by permuting its
vertices via ξJ and exchanging its highest and lowest weight elements.

Theorem 2. [1] The map s̃J 7→ ξ̃J , J a connected sub-diagram of Cn, below, defines

an action of the virtual cactus group J̃2n on the set B = SSY T (λA, 2n), that is, the
following is a group homomorphism

Φ̃A2n−1
:J̃2n →SB

(∗) s̃[1,q] 7→ξ̃[1,q] = ξ
A2n−1

[1,q] ξ
A2n−1

[2n−q,2n−1]

= evacq+1evac2nevacq+1evac2n, 1 ≤ q < n,

s̃[q,n] 7→ξ̃[q,n] = ξ
A2n−1

[q,2n−q] = reversal
A2n−1

[q,2n−q], 1 ≤ q ≤ n.

where evaci is the evacuation on the tableau restricted to the alphabet [1.i], and reversal
A2n−1

[q,2n−q]

the reversal of the skew-tableau restricted to the alphabet [q, 2n− q]. This action of J̃2n
on SSY T (λA, 2n) preserves the subset E(K(λ, n)), and thus it is also an action of J̃2n
on E(KN(λ, n)).

We have then the following commutative diagram [1] corresponding to the crystal

embedding E and the partial Cn and the virtual SL involutions ξ̃J , where J = [1, q] ⊆
[n− 1] and J = [p, n] ⊆ [n] are connected subintervals of the Dynkin diagram of Cn,

KN(λ, n) SSY T (λA, n, n̄)

KN(λ, n) SSY T (λA, n, n̄)

E

E

ξCn

[p,n] ξCn

[1,q] ξ
A2n−1

[p,p+1]
ξ
A2n−1

[1,q] ξ
A2n−1

[q+1,2]
.

Example 4. Consider n = 5, J=[1,4] and the KN tableau T of shape λ = ω4 + ω3:

T =

1 1

3 5

4 3

3

, wt(T ) = (2, 0,−1,−1,−1).
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Labelling the columns of T from left to right as C2 and C1, we obtain E(T ) with shape
λA = ω7 + ω3 + ω6 + ω4:

ψ(C2) =

1 1

2 5
4 3

5

4

3

2

, ψ(C1) =

1 1

2 3

5 4

5 2

4

3

⇒ E(T ) = [∅ ← w(ψ(C2))← w(ψ(C1))] =

1 1 1 1

2 2 4 5
3 5 4 3
5 4 2

5 3

4 2

3

.

Considering the barred and unbarred parts of E(T ) separately (denoted by E(T )+, resp.
E(T )−), we compute the evacuation, evac, of the unbarred part and the reversal, rev,
of the barred part, yielding:

evac

1 1 1 1

2 2 4

3

5

=

1 3 4 5

2 5 5

4

5

, rev

∗ ∗ ∗ ∗
∗ ∗ ∗ 5
∗ 5 4 3
∗ 4 2

5 3

4 2

3

=

∗ ∗ ∗ ∗
∗ ∗ ∗ 3
∗ 4 2 2
∗ 3 1

4 2

3 1

1

.

Putting these tableaux together, one obtains from (∗) the A9 tableau ξ̃[1,4](E(T )) =

ξA9

[1,4]ξ
A9

[5̄,2̄]
(E(T )) = (evac(E(T )+), rev(E(T )−)). Using Qλ to perform the reverse column

Schensted insertion on ξ̃[1,4](E(T )) provides the image under ψ of two KN columns C ′
1

and C ′
2. Applying ψ−1 to each column results in:

Qλ =

1 4 11 15

2 5 12 16

3 6 13 17

7 14 18

8 19

9 20

10

⇒ ψ(C ′
2) =

1 5

4 3
5 2

4

3

2

1

, ψ(C ′
1) =

2 3

4 5

5 2

4 1

3

1

⇒ C ′
1C

′
2 =

3 5

5 3

3 2

1

= ξC[1,4](T ).

3. The symplectic Berenstein–Kirillov group

Recall the cactus group Jn is also generated by the elements s[1,j], 1 ≤ j ≤ n. In fact
the following assignments define group epimorphisms from Jn to BKn: s[i,j] 7→ q[i,j] [9,
Theorem 1.4]; s[1,j] 7→ q[1,j] [6, Remark 1.3], [11, Section 10.2], [12, Remark 3.9]. Thus
the group BKn is isomorphic to a quotient of Jn.

Definition 1. [1] The symplectic Berenstein–Kirillov group BKCn, n ≥ 1, is the free
group generated by the 2n− 1 symplectic partial Schützenberger-Lusztig involutions

qC[1,i] := ξCn

[1,i], 1 ≤ i < n, and qC[i,n] := ξCn

[i,n], 1 ≤ i ≤ n,
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on straight shaped KN tableaux on the alphabet [±n] modulo the relations they satisfy
on those tableaux.

Theorem 3. The following is a group epimorphism from JCn
to BKCn:

sCn

[1,j] 7→ qCn

[1,j], 1 ≤ j < n, sCn

[j,n] 7→ qC[j,n], 1 ≤ j ≤ n.

The group BKCn is isomorphic to a quotient of JCn
.

Definition 2. [1] For n ≥ 1, the symplectic Bender–Knuth involutions tCn

i , 1 ≤ i ≤
2n− 1, on straight shaped KN tableaux on the alphabet [±n], are defined as

tCn

i := qCn

[1,i−1]q
Cn

[1,i]q
Cn

[1,i−1]q
Cn

[1,i−2] = E−1t
A2n−1

i t̃
A2n−1

2n−i E, 1 ≤ i ≤ n− 1,

t̃
A2n−1

2n−i := q
A2n−1

[1,2n−1]t
A2n−1

i q
A2n−1

[1,2n−1] 1 ≤ i ≤ n− 1,

tCn

n−1+i := qCn

[n−i+1,n]q
Cn

[n−i+2,n] = E−1q
A2n−1

[n−(i−1),n+(i−1)]q
A2n−1

[n−(i−2),n+(i−2)]E, 1 ≤ i ≤ n.

(5)

Proposition 3. [1] The symplectic Bender-Knuth involutions tCn

i , 1 ≤ i ≤ 2n − 1

also generate BKCn. In fact, qCn

[1,n−1] = tCn

1 (tCn

2 tCn

1 ) · · · (tCn

n−1t
Cn

n−2 · · · t
Cn

1 ), qCn

[1,n] =

tCn

2n−1t
Cn

2n−2 · · · t
Cn

n .

Example 5. Continue from Example 4. We have E(T ) =

1 1 1 1

2 2 4 6

3 6 7 8

5 7 9

6 8

7 9

8

, and

t̃7E(T ) =

1 1 1 1

2 2 4 6

3 6 7 9

5 7 8

6 8

7 9

8

, tA3 t̃7E(T ) =

1 1 1 1

2 2 3 6
4 6 7 9

5 7 8

6 8

7 9

8

⇒ EtC3 (T ) = tA3 t̃7E(T ).

Proposition 4. [1] The symplectic Bender–Knuth involutions tCn

i = 1, i = 1, . . . ,
2n− 1, satisfy the following relations:

(1) (tCn

i )2 = 1, i = 1, . . . , 2n− 1.

(2) (tCn

n+i−1t
Cn

n+j−1)
2 = 1, 1 ≤ i, j ≤ n.

(3) (tCn

i tCn

j )2 = 1, |i− j| > 1, 1 ≤ i, j < n.

(4) (tCn

i tCn

n+j−1)
2 = 1, i < n− j.

(5) (tCn

i qCn

[j,k−1])
2 = 1, i+ 1 < j < k ≤ n.
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(6) (tCn

i qCn

[j,n])
2 = 1, i+ 1 < j ≤ n.

(7) (tCn

n+i−1q
Cn

[j,n])
2 = 1, 1 ≤ i, j ≤ n.

(8) (tCn

n+i−1q
Cn

[j,k−1])
2 = 1, n− i+ 1 < j < k ≤ n.

(9) (tCn

1 tCn

2 )6 = 1, n ≥ 3.

(10) (tCn

n−1 · · · t
Cn

2 tCn

1 tCn

2 · · · t
Cn

n−1t
Cn

n )4 = 1.

All relations except for 10. can be obtained using Baker’s virtualization map E.
Relation 10. has its origin in the braid relations of the Weyl group of type Cn (the
hyperoctahedral group). The action of the Weyl group on KN(λ, n) can be translated
into an action of partial SL involutions defined on Dynkin sub-diagrams of one single
node.
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