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Abstract. A reduced word for a permutation of the symmetric group is its own com-
mutation class if it has no commutation moves available. These words have the property
that every factor of length 2 is formed by consecutive integers, but in general words of
this form may not be reduced. In this paper we give a necessary and sufficient condition
for a word with the previous property to be reduced. In the case of involutions, we
give an explicitly construction of their one-element commutation classes and relate their
existence with pattern avoidance problems.

1. Introduction

Given a positive integer n ≥ 1, let Sn+1 denote the symmetric group of order n + 1
formed by all permutations of the set [n + 1] := {1, 2, . . . n + 1}, with composition (read
from right) as group operation. We usually write a permutation σ using the one-line
notation σ = [σ(1), . . . , σ(n + 1)]. In some cases, we will also use the cyclic notation
of a permutation, using parenthesis to represent the cycles with commas to separate the
images. For example, the permutation σ = [2, 5, 7, 1, 4, 3, 6] can be written in cyclic
notation as σ = (1, 2, 5, 4)(3, 7, 6).

The group Sn+1 is generated by the involutions {s1, . . . , sn}, also known as simple
refletions, where si = [1, . . . , i + 1, i, . . . , n + 1] = (i, i + 1), for all i ∈ [n]. This fact
can be easily understood by noticing that multiplying a permutation σ on the right by
si interchanges the values in positions i and i + 1 in the one-line notation of σ, that is
σsi = [σ(1), . . . , σ(i+1), σ(i), . . . , σ(n+1)]. Since Sn+1 is generated by the involutions si,
any permutation σ can be written as a product si1si2 · · · sil , with ij ∈ [n], for all j ∈ [l].
When l is minimal, we say that the product is a reduced decomposition and i1 · · · il a
reduced word of σ. The integer l(σ) := l is the length of σ. Let R(σ) be the set of all
reduced words of σ.

Reduced words of permutations are widely studied in combinatorics (see [1, 9, 10, 11,
13]). Perhaps, one of the most important facts concerning reduced words is a well known
result of Tits [13], which says that two reduced words for the same permutation differ by
a sequence of the following two types of moves:

ij ↔ ji, if |i− j| > 1,(1)

i(i+ 1)i ↔ (i+ 1)i(i+ 1),(2)

where (1) is called a commutation move, and (2) is called a braid move.
We can define an equivalence relation on the set R(σ) by setting s ∼ t if s and t differ by

a sequence of commutation moves. The equivalence classes generated by this relation are
called commutation classes. These structures were already considered by some authors
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2 RICARDO MAMEDE, JOSÉ LUIS SANTOS, AND DIOGO SOARES

(see [3, 4, 5, 6, 7]), but there is still much to understand about commutation classes. For
instance, there is no known formula for the number of commutation classes of a given
permutation. Recently, Tenner [12] studied the commutation classes which have only one
reduced word, giving a necessary condition for a reduced word to be its own commutation
class in terms of pinnacles and vales. A nice consequence of this result is that the number
of one-element commutation classes of w0, the longest element in Sn+1, is exactly 4, a
result previously obtained in [5]. The goal of this paper is to extend Tenner’s work on this
topic. We start Section 2 by introducing the terminology used in [12] in order to define
what we have called a segment in a word. This notion will be crucial to prove the main
result of Section 3, which is a necessary and sufficient condition for a word to be a one-
element commutation class of some permutation. An aplication of this caracterization
will be done in Section 4, where we give an explicitly construction of the one-element
commutation classes for involutions and relate their existence with pattern avoidance
problems.

2. Definitions and background

Let [n]∗ be the set of all words with finite length over the alphabet [n]. A sub-word of
a word s = i1 · · · il is a word obtained from s by deleting some of its letters, and a factor
of s is a sub-word of s of the form sijsij+1

· · · sik , with 1 ≤ j ≤ k ≤ l. When j = 1, we call
it a left factor of s. Given a permutation σ ∈ Sn+1, we denote by R•(σ) ⊆ R(σ) the set of
reduced words of σ that are their own commutation class. By definition, a word in R•(σ)
has no commutation moves available, which means that all of its factors of length 2 are
formed by consecutive integers. These words can be descripted in terms of its “peaks”, a
notion introduced in [12] to study one-element commutation classes.

Definition 2.1 ([12]). Let s ∈ [n]∗ be a word . The endpoints of s are its leftmost and
rightmost letters. A pinnacle of s is a letter that is larger than its immediate neighbor(s),
and a vale is a letter that is smaller than its immediate neighbor(s). We call pinnacles
and vales the peaks of s. Write p(s) for the substring of pinnacles of s, and v(s) for the
substring of vales. The substring of pinnacles and vales will be written as pv(s). If every
factor of length 2 of s is formed by consecutive integers, then we say that s is a word
formed by consecutive integers.

As an example, if s = 23454321234 we have p(s) = 54, v(s) = 21 and pv(s) = 2514.
When s is a word formed by consecutive integers, each factor ij of pv(s) corresponds in
s to the factor i(i + 1) · · · (j − 1)j if i < j, or i(i − 1) · · · (j + 1)j if i > j. Sometimes,
instead of writting all of its letters, it will be more usefull to write only the endpoints of
those factors, and for that we use the notation i and j to denote a vale i or to denote
a pinnacle j, respectevely. When using this identification to represent the entire word,
we write s ≡ pv(s). In the example above, we have 23454321234 ≡ 2514. A graphical
representation for these type of words can be given using line diagrams.

Definition 2.2. Let s ∈ [n]∗ be a word formed by consecutive integers with pv(s) =
i1 · · · il. The line diagram of s is formed by the set of points (j, ij) ∈ [l]× [n], where there
is a line segment connecting each pair (j, ij) and (j + 1, ij+1), for all j ∈ [l − 1].

The line diagram of the word in the previous example is represented in Figure 1. Each
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Figure 1. Line diagram of 2514.

factor of length 2 of pv(s) is encoded by a line segment in the line diagram of s. Thereby,
we say that i j or ji are segments of s if ij or ji are factors of pv(s), with i < j. For
our running example, its segments are 25, 51 and 14, which we can see clearly from its
diagram in Figure 1. Notice that multiplying a permutation σ ∈ Sn+1 on the right by the
permutation associated to the segment i j (resp. ji ) has the effect of “moving” the integer
σ(i) to position j + 1 (resp. the integer σ(j + 1) to position i) in the one-line notation
of σ. In this sense, we say that the segment moves an integer. In the above example,
the segment 1 4 acts in the permutation [1, 6, 3, 4, 5, 2] (the permutation associated to
the left factor 2345432 of s) by moving the integer in the first position of the one-line
notation to position 5, obtaining the permutation [6, 3, 4, 5,1, 2]. Not every word formed
by consecutive integers is a reduced word. For instance, the word 1232123 ≡ 1313 is not
reduced. A set of necessary conditions for a word s to be a one-element commutation
class was given in [12] using properties of the strings p(s), v(s) and pv(s).

Definition 2.3. Let s = i1 · · · il ∈ [n]∗ be a word. If there exist j and k such that
1 ≤ j ≤ k ≤ l and

i1 < · · · < ij = ik > · · · > il,

then s is a wedge. If
i1 > · · · > ij = ik < · · · < sl,

then s is a vee. If j = k, then that wedge or vee is strict.

For example, the word 2 4 7 3 1 is a strict wedge and the word 2 4 5 5 2 1 is a wedge that
is not strict. The words 4 2 1 5 7 and 6 3 2 2 4 5 are examples of a strict vee and a non-strict
vee, respectively.

Theorem 2.1 ([12, Theorem 3.1]). For any σ ∈ Sn+1, if s ∈ R•(σ) then:

(1) p(s) is a wedge,
(2) v(s) is a vee,
(3) p(s) and/or v(s) is strict,
(4) the minimum and maximum values of pv(s) appear consecutively and,
(5) if p(s) (or v(s)) has more than one integer i, then one of those i’s is an endpoint

of s.

As a consequence, if s is a word formed by consecutive integers which does not satisfy
all of the previous 5 conditions, then s cannot be a reduced word. It follows directly
from condition 3 of the previous theorem that the word s ≡ 1 3 1 3 is not reduced because
neither p(s) = 33 nor v(s) = 11 are strict.
The “converse” of this theorem is not true, i.e. a word s formed by consecutive integers

that satisfies all the conditions of the previous theorem is not necessarily a reduced word.
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Consider for instance the word s = 2343212345654345 ≡ 241635, which satisfies all the
conditions of Theorem 2.1 but is not a reduced word. The reason is that s contains the
factor t = 34321234565434 ≡ 341634 which is not reduced (the permutation associated
to t is [5, 2, 7, 3, 4, 6, 1] which has length 12, but t has 14 letters). Notice that t contains
two occurrences of the segment 34. This is not a coincidence, as we are going to see in
the next section. The line diagrams of s and t are depicted in Figure 2.
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Figure 2. Line diagrams of s ≡ 241635 and t ≡ 341634.

We end this section with the following lemma which will be usefull more ahead.

Lemma 2.2. Let s ∈ [n]∗ be a word formed by consecutive integers. Suppose that t is a
factor of s. Then:

(1) Every peak of t that is not an endpoint of t is also a peak of s.
(2) If i j (resp. j i) is a segment of t which does not contain any endpoint of t, then

i j (resp. j i) is also a segment of s.

Proof. If i is a vale (resp. pinnacle) of t that is not one of its endpoints, then it is between
two letters that are larger (resp. smaller) in the word t. Since t is a factor of s, that
letter i is also between the same letters in the word s, implying that i is also a vale (resp.
pinnacle) of s. To prove condition 2, if i j or j i is a segment of t which does not contain
any endpoint, then i and j are also peaks of s, by condition 1, which appear consecutively
in pv(s). Therefore, it is also a segment of s. �

In other words, if we have a word s formed by consecutive integers and t a factor of s,
then the only segments of t that may not be segments of s are its leftmost and rightmost
ones. The reason is that endpoints are always considered peaks, and so the endpoints of t
will be always peaks of t, but not necessarly peaks of s. Considering s and t as in Figure
2, the only segments of t that are segments of s are 41, 16 and 63. If we consider the word
u = 123456543 ≡ 163 which is also a factor of s, then every segment of u is a segment of
s, because the endpoints of u are also peaks in s. The word v = 1234565434 ≡ 1634 is a
factor of s where only one of its endpoints is a peak of s. The line diagrams of u and v
are depicted in Figure 3.

3. A characterization of one-element commutation classes

As we saw in the previous section, the conditions stated in Theorem 2.1 are not
enough to completely characterize one-element commutation classes, as there are words
formed by consecutive integers satisfying all five conditions of the theorem which are not
reduced. In this section, we give a necessary and sufficient condition for a word formed
by consecutive integers to be reduced.
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Figure 3. Line diagrams of u ≡ 163 and v ≡ 1634.

Given s = i1 · · · il ∈ [n]∗, define the words

• sr = il · · · i1, called the reverse word of s,
• sc = i′1 · · · i

′

l with i′j = n+ 1− ij, called the complement word of s,
• src = (sr)c = (sc)r, called the reverse complement word of s.

These words are called the symmetries of s. It is easy to check that if s ∈ R•(σ), then
sr ∈ R•(σ

−1), sc ∈ R•(w0σw0) and src ∈ R•(w0σ
−1w0), since all permutations σ, σ−1 and

w0σw0 have the same length. (see [1]). The following result is a well known property
about reduced words of permutations, which we will use in a moment.

Lemma 3.1 ([1]). Let σ ∈ Sn+1 and i ∈ [n]. Then

l(σsi) =

{

l(σ) + 1, if σ(i) < σ(i+ 1)
l(σ)− 1, if σ(i) > σ(i+ 1)

.

As a consequence we have the following.

Corollary 3.2. Let s = t · i ∈ R(σ) be a reduced word for some σ ∈ Sn+1, with t ∈ [n]∗

and i ∈ [n]. Then, σ(i) > σ(i+ 1).

Proposition 3.3. Let s = i j t i j ∈ [n]∗ be a word formed by consecutive integers, with
1 ≤ i < j ≤ n and t ∈ [n]∗. Then, s is not reduced.

Proof. Suppose that s is reduced, and let σ be its associated permutation so that s ∈
R•(σ). We know that t must contain a peak of s, otherwise s ≡ ijij which is not reduced
by condition 3 of Theorem 2.1. Let v(s) = i v1 · · · vl i and p(s) = j p1 · · · pl j be the
strings of vales and pinnacles of s, respectively, for some integer l. From Theorem 2.1,
since v(s) is a vee (resp. p(s) is a wedge) we have vk < i (resp. pk > j), for all k ∈ [l].
This allow us to write s as

s = (i · · ·j · · ·i)(i− 1 · · ·v1· · ·i− 1)· · ·(i· · ·pk· · ·i)(i+ 1 · · · j).

(See Figure 4) The permutation associated to the bold left factor of s is

π = (i, j + 1)(i, v1) · · · (i, pk + 1) = (i, pk + 1, · · · , v1, j + 1).

Notice that the permutation associated to (i+1 · · · j) moves the integer π(i+1) to position
j+1. Since π(i+1) = i+1 and π(j+1) = i, we have that σ(j) = i and σ(j+1) = i+1,
which contradicts Corollary 3.2. Therefore, s cannot be reduced. �

It follows from the previous lemma and the definition of reverse word that a word of
the form j i t j i, with i < j that is formed by consecutive integers is also not reduced.
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i

j

Figure 4. Diagram of a word of the form i jti j

These words contain at least two occurences of the same segment, a fact that motivated
the following definition.

Definition 3.1. A word formed by consecutive integers is said to have a factor with
repeated segments if it contains a factor i j t i j or j i t j i, for some i < j and t ∈ [n]∗.

For example, the word s ≡ 241635 has a factor with repeated segments since u = 34t34,
with t = 3212345654, is a factor of s. As a consequence of Proposition 3.3, we have
a new necessary condition for a word to be a one-element commutation class of some
permutation.

Theorem 3.4. Let σ ∈ Sn+1 and s ∈ R•(σ). Then s does not have a factor with repeated
segments.

Proof. If s has a factor with repeated segments, then it contain a factor i j t i j or j i t j i
for some word t ∈ [n]∗, which by the previous proposition is not reduced. �

A natural question that one may ask is whether this new condition plus the ones
stated in Theorem 2.1 are sufficient to completely characterize one-element commutation
classes. As we are going to see, we just need this new one and condition 5 of Theorem
2.1 to complete this characterization. We will start by giving a criteria to identify words
that contain factors with repeated segments just by looking at its line diagram.

Proposition 3.5. Let s ∈ [n]∗ be a word formed by consecutive integers. The following
statements are equivalent:

(1) There is no factor of s with repeated segments.
(2) The word s does not contain a factor x j t i y with x ≤ i < j ≤ y, or a factor

y i t j x with y ≥ j > i ≥ x, for some word t ∈ [n]∗, where x and y are peaks of s.

Proof. We prove the contra-positive assertions. A word s contains a factor with repeated
segments if and only if s contains a factor i j t i j or j i t j i. Consider the first case (the
second is analogous). From Lemma 2.2, the only peaks of i j t i j that may not be peaks
of s are its endpoints. Therefore s contains a factor x j t i y with x ≤ i < j ≤ y, with x
and y peaks of s.

Reciprocally, suppose that s contains a factor x j t i y with x ≤ i < j ≤ y (the other
case is analogous). Then, i j t i j is a factor of s, and we have the result. �

It follows that if s is a one-element commutation class, then its line diagram must avoid
the two shapes depicted in Figure 5.
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Figure 5. Avoiding shapes for one-element commutation classes.

The following definition will allows us to translate condition 5 of Theorem 2.1 into the
language os segments.

Definition 3.2. A word formed by consecutive integers is said to have a factor with
symmetric segments if it has a factor i j t j i or j i t i j, for some i < j where t ∈ [n]∗

contains at least one peak of s.

For instance, the word s ≡ 2 4 1 4 2, depicted in Figure 6, has symmetric segments. The
word s ≡ 424 does not contains symmetric segments.

2

4

Figure 6. Diagram of the word s = 24 1 4 2.

Proposition 3.6. Let s ∈ [n]∗ be a word formed by consecutive integers. The following
statements are equivalent:

(1) There is no factor of s with symmetric segments.
(2) If p(s) (or v(s)) has more than one integer i, then one of those i’s is an endpoint

of s.

Proof. We prove the contra-positive assertions. If s contains a factor with symmetric
segments, then s must contain a factor u = i j t j i, or u = j i t i j, with i, j ∈ [n] and
t ∈ [n]∗ a word which contains some peak of s. Considering the first case (the other is
analogous), by Lemma 2.2 we have that both j in u are pinnacles of s, and neither of
them is an endpoint. Therefore, condition 2 does not hold.

Now suppose that v(s) contains two letters i such that neither of them is an endpoint
(the p(s) case is analogous). Then s will contain a factor u of the form u = j i t i k, with
j, k ∈ [n] and t a word which contain some peak of s. If j ≤ k, then s will contain the
factor j i t i j. If j > k, then s will contain the factor k i t i k (see Figure 7). In either
case, we have a factor with symmetric segments. �

Given i < j, let [i, j] := {i, i+ 1, . . . , j} and [i, j]∗ the set of words with finite length in
the alphabet [i, j]. The following lemma will be usefull more ahead.

Lemma 3.7. Let s ∈ R(σ) a reduced word for some σ ∈ Sn+1. If s ∈ [i, j]∗, then σ(k) = k
for all k ∈ [n+ 1] \ [i, j + 1].
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j

k

k

j

Figure 7. Diagram of the word u = j i t i k with j ≤ k and j > k.

Proof. Suppose that there is k ∈ [n+1]\ [i, j+1] such that σ(k) 6= k. Then, every reduced
word for σ must contain a letter k or a letter k − 1. But this is a contradiction because
k and k − 1 belong to [n+ 1] \ [i, j + 1] and s ∈ [i, j]∗. �

Before stating the main result of this section, we need a better understanding of how
segments behave. Suppose that s = ijt ∈ R•(σ), for some word t ∈ [n]∗. The segment
ij moves the integer i to position j + 1. If s contains another segment that moves the
integer i, then the following segment to move this integer is of the form jy, with j < y,

or jx with j > x. Notice that the second case cannot hold, otherwise we would have two
pinnacles j in s where neither is an endpoint, contradicting condition 5 of Theorem 2.1.
We can do a similar reasoning if s = jit and concluding the following results:

Lemma 3.8. Let s ∈ R•(σ) for some σ ∈ Sn+1. If a segment ij (resp. ji) of s moves an
integer k ∈ [n+ 1], then every segment of s that moves k is of the form xy (resp. yx).

Lemma 3.9. Let s ∈ R•(σ) for some σ ∈ Sn+1 and i ∈ [n].

(1) If σ(i+ 1) < i, then there is a segment xy of s that moves the integer σ(i+ 1).
(2) If i+ 1 < σ(i), then there is a segment yx of s that moves the integer σ(i).

There is also a restriction on the integers that are moved by segments.

Lemma 3.10. Let s ∈ R•(σ) for some σ ∈ Sn+1. If ij (resp. ji) is a segment of s, then
it moves an integer k ∈ [i+ 1] (resp. k ∈ [j, n+ 1]).

Proof. Assume that s contains a segment ij (the other case is similiar) which moves an
integer k. Then, we can write s = t1ijt2, for some words t1, t2 ∈ [n]∗. Suppose by
contradiction that i + 1 < k. Since s is a reduced word, the word t1 is also a reduced
word for some permutation π ∈ Sn+1 with π(i) = k (because ij moves the integer k).
But i+ 1 < k, which from the previous lemma implies that t contains a segment yx that
moves k, contradicting Lemma 3.8. Therefore k ≤ i+ 1. �

Proposition 3.11. Let s ∈ [n]∗ be a word formed by consecutive integers such that s = t·j
with t ∈ R•(σ) for some σ ∈ Sn+1 and j ∈ [n]. If s is not reduced, then s contains a
factor with repeated or symmetric segments.

Proof. Since s is not reduced, from Lemma 3.1 we have σ(j) > σ(j + 1). Assume that j
is a pinnacle of s (the case when j is a vale follows from the application of complement
word). Then, we can write s = uij for some i < j, and we need to consider two cases.

Case 1 : j > i+ 1

If j > i + 1, we have t = uij − 1 and from the previous lemma, since t is a one-element
commutation class, the segment ij − 1 moves an integer k ∈ [i + 1] to position j. But
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then, σ(j) = k and we have j > i + 1 ≥ k > σ(j + 1) which implies, from Lemma 3.9,
that t contains a segment xy that moves the integer σ(j + 1) (call it l), for some x < y.
The rightmost such segment xy must have y = j, so we can write

t = u′xju′′ij − 1,

for some words u′, u′′ ∈ [n]∗. Our goal is to prove that x ≤ i. If x > i, the fact that v(t) is
a vee implies that u′ is a word in the alphabet [x+ 1, n], because u′ cannot contain vales
of t that are smaller than or equal to x. Considering π the permutation associated to u′,
from Lemma 3.7 we have π(x) = x. Since the segment xj moves the integer l, we have
x = l. But this is a contradicion because x ≥ i + 1 > l. Therefore x ≤ i and we have
s = u′xju′′ij, which, by Lemma 3.5, contain a factor with repeated segments (the factor
xju′′ij).

Case 2 : j = i+ 1

In this case we have s = uii+ 1, with t = u i. If u does not contain any letter i, then
u is a word in the alphabet [i + 1, n]. But then, its associated permutation fixes i, so
σ(i+ 1) = i. Since σ(i+ 1) > σ(i+ 2), we have i+ 1 > i > σ(i+ 2), which from Lemma
3.9 implies that t contains a segment xy that moves the integer σ(i+ 2), for some x < y.
The rightmost such segment xy must have y = i+ 1, and so we can write

s = u′xi+ 1u′′ii+ 1,

for some words u′, u′′ ∈ [n]∗. Since x ≤ i, we have that s contains a factor with repeated
segments (the factor xi+ 1u′′ii+ 1).
For the case where u contains letters i, we need to consider two sub-cases:

Sub-case 1: u does not contain vales i
Our goal is to prove that i + 1 > σ(i + 2) in order to use the previous argument. If the
first appereance of a letter i in t is preeced by a letter i− 1, then σ(i+ 1) = i+ 1. If it’s
preceed by a letter i+ 1, then σ(i+ 1) = i. Since σ(i+ 1) > σ(i+ 2) we have the result.

Sub-case 2: u contains vales i
We can write s = u′ iy u′′ ii+ 1. If u′ is not empty, then s contains two vales i where
neither is an endpoint, which from Proposition 3.6 implies that s contains symmetric
segments. If u′ is empty, then t = iy u′′ i, which from the proof of Proposition 3.3 we
have σ(i+1) = i+1. Using the same argument as in Sub-case 1, we have that s contains
a factor with repeated segments. �

We are now in condition to state and prove the main result of this section.

Theorem 3.12. Let s ∈ [n]∗ be a word formed by consecutive integers and let σ ∈ Sn+1

be the corresponding permutation. Then, s ∈ R•(σ) if and only if there is no factor of s
with repeated or symmetric segments.

Proof. From Theorem 3.4, if s ∈ R•(σ), then s cannot contain factors with repeated
segments. Moreover, s must satisfy condition 5 of Theorem 2.1, which is equivalent to say
that s does not have a factor with symmetric segments by Proposition 3.6. Reciprocally,
suppose that s /∈ R•(σ) for all σ ∈ Sn+1 (we want to prove the contra-positive assertion).
Then, s cannot be a reduced word and so it must contain a left factor s′ = t · j where t
is reduced but s′ is not, for some j ∈ [n]. From the previous proposition, s′ contains a
factor with repeated or symmetric segments and we have the result. �
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Notice that when a word formed by consecutive integers contains repeated or symmetric
segments, then it repeats vales and pinnacles at the same time. Therefore, another way
to interpret the previous is that a word formed by consecutive integers is reduced if and
only if does not contain any factor that repeats vales and pinnacles at the same time.

4. One-element classes for involutions

In this section we give an explicit construction of one-element commutation classes
for involutions and relate their existence with pattern avoidance problems. We start by
recalling the following result proved in [5].

Lemma 4.1. The word 1n (resp. n 1) is the only reduced word formed by consecutive
integers with length ≥ n over the alphabet [n], having left (resp. right) endpoint the letter
1 and right (resp. left) endpoint the letter n.

In other words, there are no peaks between letters 1 and n in a one-element commutation
class. As a consequence, we have the following.

Lemma 4.2. Let σ be a permutation in Sn+1 that fixes neither 1 nor n+1. If |R•(σ)| > 0,
then σ(n+ 1) = 1 or σ(1) = n+ 1. Moreover, if σ(n+ 1) = 1 (resp. σ(1) = n+ 1) every
one-element commutation class of σ contains a segment 1n (resp. n1).

Proof. Since 1 and n+1 are not fixed points of σ, every reduced word for σ must contain
at least a letter 1 and a letter n. Let s ∈ R•(σ) and suppose that there is a letter 1
proceeded by a letter n in s. By Lemma 4.1, we can write s as

s = u1nv,

where u is a word that does not contain letters 1 and v is a word that does not contain
letters n. But then, the permutation associated to u fixes the integer 1, and so the segment
1n will move the integer 1 to position n+ 1. Since the permutation associated to v fixes
the integer n + 1, we have σ(n + 1) = 1. With analogous arguments one can prove that
if there is a letter n proceeded by a letter 1, then σ(1) = n + 1 and every one-element
commutation class contains a segment n1. �

The previous lemma gives us a necessary condition for a permutation that does not fix
1 nor n + 1 to contain one-element commutation classes. It is not, however, a sufficient
condition; consider for instance the permutation σ = [3, 4, 5, 2, 1] ∈ S5, which does not
fix 1 nor 5 and σ(5) = 1. One can check that this permutation contains 4 commutation
classes and neither of them is a one-element commutation class. In the case of involutions,
one can get more information. Before that, let’s recall that the symmetries of a word s
are the words s, sr, sc and scr.

Lemma 4.3. Let σ be an involution in Sn+1 that fixes neither 1 nor n+1. If |R•(σ)| > 0,
then σ(n + 1) = 1 and σ(1) = n + 1. Moreover, if s ∈ R•(σ), then s is a symmetry of
1n1t, for some word t ∈ [2, n− 1]∗.

Proof. The equalities σ(1) = n + 1 and σ(n + 1) = 1 follows from the previous lemma
and from the fact that σ is an involution. We have also from the previous lemma that,
if s ∈ R•(σ), then s contains a segment 1n (because σ(n + 1) = 1) and a segment n1
(because σ(1) = n+ 1). The only possibility for s to contain those segments at the same



A CHARACTERIZATION OF ONE-ELEMENT COMMUTATION CLASSES 11

time is to have the factor 1n1 or n1n, which must contain an endpoint, by Theorem
3.12. �

The previous two lemmas can be generalized for any permutation σ by replacing 1 and
n+ 1 with the minimum and maximum non-fixed points of σ, respectively.
Notice that there is always an endpoint of a one-element commutation class of an

involution that does not fix 1 nor n+ 1 that is the letter 1 or n. We have the following.

Proposition 4.4. Let σ be an involution in Sn+1 that fixes neither 1 nor n+ 1. Then:

(1) σ has a one-element commutation class that contains a letter 1 as endpoint if and

only if σ =
l

∏

k=1

(k, jk + 1), with j1 = n > j2 > · · · > jl for some integer l, and

k < jk + 1 for all k ∈ [l].
(2) σ has a one-element commutation that contains a letter n as endpoint if and only

if σ =
l

∏

k=1

(ik, n + 2 − k), with i1 = 1 < i2 < · · · < il for some integer l, and

ik < n+ 2− k for all k ∈ [l].

Proof. We prove only statement 1 (the proof of 2 is analogous). Since σ is an involution,
if there is a one-element commutation class of σ that contains a letter 1 as endpoint,
there must be s ∈ R•(σ) such that s = 1n1t, for some word t ∈ [2, n− 1]∗. Note that the
permutation associated to t (call it π) is also an involution because the left factor 1n1 is
a reduced word for the cycle (1, n+ 1) and π fixes 1 and n+ 1. Since the left-endpoint of
t is a letter 2, we must have t = 2j2t′ for some j < n and t′ ∈ [3, j − 1]∗. Continuing this
procedure, we conclude that

s = (1 · · · j1 · · · 1)(2 · · · j2 · · · 2) · · · (l · · · jl · · · l),(3)

with n = j1 > · · · > jl. Notice that l can be equal to jl if the right endpoint of s is a
pinnacle. In that case (l · · · jl · · · l) would be just the letter l. Each factor (k · · · jk · · · k)

encodes the involution (k, jk + 1), so σ =
∏l

k=1
(k, jk + 1). Moreover, s does not contain

any factor with repeated or symmetric segments. Therefore, from Theorem 3.12, s is a
reduced word of σ.
For the converse, just consider s as in (3), which is a reduced word for σ and is a word
formed by consecutives integers. �

1
2
3

n

· · ·

1
2
3

n

· · ·

1

n− 1
n− 2

n

· · ·

1

n− 1
n− 2

n

· · ·

Figure 8. Possible diagrams for a one-element commutation class of an
involution that fixes neither 1 nor n+ 1

If s = 1n1t, then its associated permutation is completly determined by its pinnacles,
as we saw in the previous proof. Hence we can conclude the following.
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Lemma 4.5. Let σ be an involution in Sn+1 that fixes neither 1 nor n+ 1. Then, there
is at most one word in R•(σ) of the form 1n1t (the same is true for its symmetries).

Before stating one of the main results of this section, we need two auxiliar lemmas.

Lemma 4.6. Let σ be an involution in Sn+1 that fixes neither 1 nor n+1 and s ∈ R•(σ).
If p(s) or v(s) is a symmetry of the word 1 2 · · · l for some l, then sc ∈ R•(σ).

Proof. Suppose that s = 1n1t for some t ∈ [2, n − 1]∗ (the other cases are analogous).
Since v(s) is not strict we must have that p(s) is the string that belong to the symmetries

of 1 2 · · · l for some l. From the proof of the previous lemma σ =
∏l

k=1
(k, n+2− k), and

since w0σw0 = σ, we have sc ∈ R•(σ). �

Lemma 4.7. Let σ be an involution in Sn+1 that fixes neither 1 nor n+1 and s ∈ R•(σ).
If s = sr, then s ≡ 1n1 or s ≡ n1n.

Proof. The assumption that s = sr implies that its endpoints are equal. Therefore, both
of its endpoints are the letter 1 or n, which from Lemma 4.5 we have the result. �

Theorem 4.8. Let σ be an involution in Sn+1 that fixes neither 1 nor n + 1. Suppose
that s ∈ R•(σ).

(1) If n = 1, then R•(σ) = {1}.
(2) If σ = (1, n+ 1), then R•(σ) = {1n1, n1n}.
(3) If n > 1 and neither p(s) nor v(s) is a symmetry of the word 1 2 · · · l for some

integer l, then R•(σ) = {s, sr}.
(4) If n > 1, σ 6= (1, n + 1) and one of the strings p(s) or v(s) is a symmetry of the

word 1 2 · · · l, then R•(σ) = {s, sr, sc, scr}

Proof. Condition 1 is trivial. From Lemma 4.5, we have at most one word s ∈ R•(σ) with
left (resp. right) endpoint the letter 1 or with left (resp. right) endpoint the letter n. If
σ = (1, n+ 1), then 1n1 and n1n are one-element commutation classes and they must be
the only ones. To prove conditions 3 and 4, we are going to assume that s = 1n1t (the
other cases are analogous). We need to consider two cases:

Case 1: p(s) is not a symmetry of 1 2 · · · l

From Lemma 4.4 we have σ =
∏l

k=1
(k, jk+1), where jk is the k-th pinnacle of s and k < jk.

Our goal is to show that σ cannot contain one-element commutation classes with endpoint
the letter n. If it contains such class, from Lemma 4.4 we have σ =

∏l

k=1
(ik, n + 2− k).

Since ik < n + 2− k for all k ∈ [l], and since σ has a unique decomposition into disjoint
cycles, we must have p(s) = j1j2 · · · jl = n n · · ·n + 1 − l, which is a symmetry of the
word 1 2 · · · l, contradicting our assumption. Since sr ∈ R•(σ), we have R•(σ) = {s, sr}.

Case 2: p(s) is a symmetry 1 2 · · · l

From Lemma 4.6 we have sc ∈ R•(σ), and since σ is an involution, scr ∈ R•(σ). The fact
that σ 6= (1, n+ 1) implies that s 6= sr. Therefore, we have R•(σ) = {s, sr, sc, scr}. �

For an arbitrary involution σ ∈ Sn+1, the previous theorem can be generalized by
defining the complementary word of s = i1i2 · · · il as

(M +m− 1− i1)(M +m− 1− i2) · · · (M +m− 1− il),



A CHARACTERIZATION OF ONE-ELEMENT COMMUTATION CLASSES 13

where m and M are the minimum and maximum non-fixed points of σ, respectively.
We end this section with a relation between involutions that contains one-element

commutation classes and pattern avoidance problems.

Definition 4.1. Let σ ∈ Sn+1 and p ∈ Sk with k ≤ n + 1. We say that σ contains the
patters p if there is a substring of the one-line notation of σ order isomorphic to p. If
not, we say that σ is p-avoiding.

When writting permutation as patterns, we drop the brackets and commas. For in-
stance, the permutation [4, 1, 2, 5, 3] is 321-avoiding, but contains two patterns 123, namely
the substrings 1 2 5 and 1 2 3.

Proposition 4.9. Let σ be an involution in Sn+1 that fixes neither 1 nor n + 1. If σ is
132 and 3412-avoiding, then σ(1) = n+ 1 and σ(n+ 1) = 1.

Proof. Assume by contradiction that σ(1) 6= n + 1 and σ(1) 6= 1. Since σ does not fix 1
nor n+ 1, we must have

σ = [i, . . . , 1, . . . , n+ 1, . . . , j]

or
σ = [i, . . . , n+ 1, . . . , 1, . . . , j],

for some integers i, j ∈ [2, n]. The first case cannot hold because we have the subword
1 n + 1 j, which is a 132-pattern. In the second case, if i < j, then i n + 1 j is a
132-pattern. If i > j, then σ contains the substring i n + 1 1 j, which is a 3412-pattern.
Therefore, we must have σ(1) = n + 1 or σ(1) = n + 1. The fact that σ is an involution
implies σ(1) = n+ 1 and σ(n+ 1) = 1. �

Before stating the main result of this section, we need to recall two known results about
pattern avoidance.

Proposition 4.10 ([8]). A permutation σ is 2143 and 3412-avoiding if and only if σ can
be partitioned into an increasing and decreasing sequence.

For instance, the permutation σ = [3, 6, 4, 7, 5, 2, 1] is 2143 and 3412-avoiding because
we can partioned σ into the sequences 3 4 7 and 6 5 2 1.

Proposition 4.11 ([2]). Let σ ∈ Sn+1 and p ∈ Sk with k ≤ n+ 1. Then σ contains the
pattern p if and only if w0σw0 contains the patterns w0pw0.

We have the following.

Theorem 4.12. Let σ be an involution in Sn+1 that fixes neither 1 nor n + 1. Then,
|R•(σ)| > 0 if and only if σ avoids the patterns 132 and 3412 or the patterns 213 and
3412.

Proof. Assume that |R•(σ)| > 0. Using Lemma 4.4, we start by consider σ =
∏l

k=1
(k, jk+

1), with j1 = n > j2 > · · · > jl for some integer l. To prove that σ is 3412-avoiding, just
notice that the non-fixed points forms a decreasing sequence and the fixed points forms
an increasing sequence. Then, by Proposition 4.10 we have the result. It remains to prove
that σ is 132-avoiding. By way of contradiction, assume that σ contains a pattern 132.
Then σ contains a subword xzy such that x < y, x < z and z > y. We then have two
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cases.
Case 1: x is not a fixed point.

Since the sequence of non-fixed points of σ is decreasing, we have that y and z are fixed
points. But that cannot happen because z > y and the sequence of fixed points is
increasing.

Case 2: x is a fixed point.

If x is a fixed point of σ, then x > l. We have that all non-fixed points of σ that are
to the right of x are smaller than x. Since x < y and x < z, the integers y and z are
also fixed points of σ. But that cannot be possible because z > y. Therefore, σ must be
132-avoiding.
Now considering the case where σ =

∏l

k=1
(ik, n + 2 − k), with i1 = 1 < i2 < · · · < il for

some integer l, we have that w0σw0 =
∏l

k=1
(k, n + 2 − ik), which we already proved is

132 and 3412-avoiding. From Proposition 4.11, σ is 213 and 3412-avoiding.
For the converse, suppose that σ avoids the patterns 132 and 3412. From Lemma 4.9,

we have σ(1) = n + 1 and σ(n + 1) = 1, so σ contains the cycle (1, n + 1) in its disjoint
cycle decomposition. Without loss of generality, the disjoint decomposition of σ can be
written as

σ = (i1, j1)(i2, j2) · · · (il, jl),

with 1 = i1 < i2 < i3 < · · · < il, j1 = n+ 1 and ik < jk for all k ∈ [l]. Notice that i2 = 2,
otherwise 2 < i2 < j2 and 2 would be a fixed point of σ implying that 2 j2 i2 would be a
substring of σ, which is a 132-pattern. We also have that n + 1 = j1 > j2. Now suppose
that

σ = (1 n+ 1)(2 j2) · · · (m jm)(im+1 jm+1) · · · (il, jl),

with n + 1 > j2 > j3 > · · · jm and ik < jk for all k ∈ [m + 1, l]. Our goal is to show that
im+1 = m + 1 and jm > jm+1. If im+1 6= m + 1, then m + 1 < im+1 < jm+1 and we have
two cases. If m + 1 is a fixed point, then σ will contain the subword m + 1 jm+1 im+1,
which is a 132-pattern. If m+1 is not a fixed point, then (m, jm) = (m,m+1). But then,
σ will contain the subword m jm+1 im+1, which is a 132-pattern. Therefore im+1 = m+1.
If jm < jm+1, then σ will contain the subword jm jm+1 m m + 1, which is a 3412-
pattern. Using an inductive argument we show that σ = (1, j1)(2, j2) · · · (l, jl), with
n + 1 = j1 > j2 > · · · > jl. From Lemma 4.4, we have that σ contains a one-element
commutation class with some endpoint the letter 1. If σ avoids the patters 213 and 3412,
then w0σw0 avoids the patterns 132 and 3412 from Proposition 4.11, which we proved to
have a one-element commutation class s. Hence sc is a one-element commutation class
for σ, proving that R•(σ) > 0. �

Notice that this result is not true in general for any permutation that does not fix 1
nor n + 1. For instance, the permutation [3, 4, 5, 2, 1] is 132, 213 and 3412- avoiding and
does not contain one-element commutation classes.
As a corollary, we have a necessary and sufficient condition for an involution to contain

4 one-element commutation classes.

Corollary 4.13. Let σ be an involution in Sn+1 that fixes neither 1 nor n+ 1. Assume
that σ 6= (1, n+ 1). The following are equivalent:

(1) |R•(σ)| = 4.



A CHARACTERIZATION OF ONE-ELEMENT COMMUTATION CLASSES 15

(2) σ is 132, 213 and 3412-avoiding.

Proof. From Theorem 4.8, if |R•(σ)| = 4, then R•(σ) = {s, sr, sc, scr} for some word
s ∈ [n]∗ formed by consecutive integers. We can assume that s = 1n1t for some word
t ∈ [2, n − 1]∗. From the proof of the previous theorem, its associated permutation is
132 and 3412 avoiding. Since sc ∈ R•(σ), we have σ = w0σw0 and from Proposition
4.11, σ will also avoid the pattern 213. Reciprocally, since σ avoids the patterns 132
and 3412, from the proof of the previous theorem we have that σ contains a one-element
commutation class s with some endpoint the letter 1. We also have that σ is 213 and
3412-avoiding, so σ contains a one-element commutation class t with some endpoint the
letter n. Since σ 6= (1, n+ 1), from Lemma 4.5 we have R•(σ) = {s, sr, t, tr}. �

Corollary 4.13 allow us to recover the result from [5] and [12] which states that for
n > 1 the longest permutation w0 contains 4 one-element commutation classes, since w0

is an involution that fix neither 1 nor n+ 1 and the only patterns of length 3 and 4 that
w0 contains are 321 and 4321, respectively. One can generalize the previous results to any
involution.

Corollary 4.14. Let σ ∈ Sn+1 an involution such that m and M are the minimum and
maximum non-fixed points of σ. Consider the permutation π = [σ(m), σ(m+1), · · · , σ(M)].
Then:

(1) |R•(σ)| > 0 if and only if π avoids the patterns 132 and 3412 or the patterns 213
and 3412.

(2) Suppose that σ 6= (m,M). Then |R•(σ)| = 4 if and only if π avoids the patterns
132, 213 and 3412.
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