A CHARACTERIZATION OF ONE-ELEMENT COMMUTATION CLASSES

RICARDO MAMEDE, JOSÉ LUIS SANTOS, AND DIOGO SOARES

Abstract

A reduced word for a permutation of the symmetric group is its own commutation class if it has no commutation moves available. These words have the property that every factor of length 2 is formed by consecutive integers, but in general words of this form may not be reduced. In this paper we give a necessary and sufficient condition for a word with the previous property to be reduced. In the case of involutions, we give an explicitly construction of their one-element commutation classes and relate their existence with pattern avoidance problems.

1. Introduction

Given a positive integer $n \geq 1$, let \mathfrak{S}_{n+1} denote the symmetric group of order $n+1$ formed by all permutations of the set $[n+1]:=\{1,2, \ldots n+1\}$, with composition (read from right) as group operation. We usually write a permutation σ using the one-line notation $\sigma=[\sigma(1), \ldots, \sigma(n+1)]$. In some cases, we will also use the cyclic notation of a permutation, using parenthesis to represent the cycles with commas to separate the images. For example, the permutation $\sigma=[2,5,7,1,4,3,6]$ can be written in cyclic notation as $\sigma=(1,2,5,4)(3,7,6)$.

The group \mathfrak{S}_{n+1} is generated by the involutions $\left\{s_{1}, \ldots, s_{n}\right\}$, also known as simple refletions, where $s_{i}=[1, \ldots, i+1, i, \ldots, n+1]=(i, i+1)$, for all $i \in[n]$. This fact can be easily understood by noticing that multiplying a permutation σ on the right by s_{i} interchanges the values in positions i and $i+1$ in the one-line notation of σ, that is $\sigma s_{i}=[\sigma(1), \ldots, \sigma(i+1), \sigma(i), \ldots, \sigma(n+1)]$. Since \mathfrak{S}_{n+1} is generated by the involutions s_{i}, any permutation σ can be written as a product $s_{i_{1}} s_{i_{2}} \cdots s_{i_{i}}$, with $i_{j} \in[n]$, for all $j \in[l]$. When l is minimal, we say that the product is a reduced decomposition and $i_{1} \cdots i_{l}$ a reduced word of σ. The integer $l(\sigma):=l$ is the length of σ. Let $R(\sigma)$ be the set of all reduced words of σ.

Reduced words of permutations are widely studied in combinatorics (see [1, 9, 10, 11, 13]). Perhaps, one of the most important facts concerning reduced words is a well known result of Tits [13], which says that two reduced words for the same permutation differ by a sequence of the following two types of moves:

$$
\begin{align*}
i j & \leftrightarrow j i, \text { if }|i-j|>1, \tag{1}\\
i(i+1) i & \leftrightarrow(i+1) i(i+1), \tag{2}
\end{align*}
$$

where (1) is called a commutation move, and (2) is called a braid move.
We can define an equivalence relation on the set $R(\sigma)$ by setting $s \sim t$ if s and t differ by a sequence of commutation moves. The equivalence classes generated by this relation are called commutation classes. These structures were already considered by some authors
(see $[3,4,5,6,7]$), but there is still much to understand about commutation classes. For instance, there is no known formula for the number of commutation classes of a given permutation. Recently, Tenner [12] studied the commutation classes which have only one reduced word, giving a necessary condition for a reduced word to be its own commutation class in terms of pinnacles and vales. A nice consequence of this result is that the number of one-element commutation classes of w_{0}, the longest element in \mathfrak{S}_{n+1}, is exactly 4 , a result previously obtained in [5]. The goal of this paper is to extend Tenner's work on this topic. We start Section 2 by introducing the terminology used in [12] in order to define what we have called a segment in a word. This notion will be crucial to prove the main result of Section 3, which is a necessary and sufficient condition for a word to be a oneelement commutation class of some permutation. An aplication of this caracterization will be done in Section 4, where we give an explicitly construction of the one-element commutation classes for involutions and relate their existence with pattern avoidance problems.

2. Definitions and background

Let $[n]^{*}$ be the set of all words with finite length over the alphabet [n]. A sub-word of a word $s=i_{1} \cdots i_{l}$ is a word obtained from s by deleting some of its letters, and a factor of s is a sub-word of s of the form $s_{i_{j}} s_{i_{j+1}} \cdots s_{i_{k}}$, with $1 \leq j \leq k \leq l$. When $j=1$, we call it a left factor of s. Given a permutation $\sigma \in \mathfrak{S}_{n+1}$, we denote by $R \bullet(\sigma) \subseteq R(\sigma)$ the set of reduced words of σ that are their own commutation class. By definition, a word in $R_{\bullet}(\sigma)$ has no commutation moves available, which means that all of its factors of length 2 are formed by consecutive integers. These words can be descripted in terms of its "peaks", a notion introduced in [12] to study one-element commutation classes.

Definition 2.1 ([12]). Let $s \in[n]^{*}$ be a word. The endpoints of s are its leftmost and rightmost letters. A pinnacle of s is a letter that is larger than its immediate neighbor(s), and a vale is a letter that is smaller than its immediate neighbor(s). We call pinnacles and vales the peaks of s. Write $\boldsymbol{p}(s)$ for the substring of pinnacles of s, and $\boldsymbol{v}(s)$ for the substring of vales. The substring of pinnacles and vales will be written as $\boldsymbol{p} \boldsymbol{v}(s)$. If every factor of length 2 of s is formed by consecutive integers, then we say that s is a word formed by consecutive integers.

As an example, if $s=23454321234$ we have $\mathbf{p}(s)=54, \mathbf{v}(s)=21$ and $\mathbf{p v}(s)=2514$. When s is a word formed by consecutive integers, each factor $i j$ of $\mathbf{p v}(s)$ corresponds in s to the factor $i(i+1) \cdots(j-1) j$ if $i<j$, or $i(i-1) \cdots(j+1) j$ if $i>j$. Sometimes, instead of writting all of its letters, it will be more usefull to write only the endpoints of those factors, and for that we use the notation \underline{i} and \bar{j} to denote a vale i or to denote a pinnacle j, respectevely. When using this identification to represent the entire word, we write $s \equiv \operatorname{pv}(s)$. In the example above, we have $23454321234 \equiv \underline{2} \overline{5} \underline{4} \overline{4}$. A graphical representation for these type of words can be given using line diagrams.

Definition 2.2. Let $s \in[n]^{*}$ be a word formed by consecutive integers with $\boldsymbol{p} \boldsymbol{v}(s)=$ $i_{1} \cdots i_{l}$. The line diagram of s is formed by the set of points $\left(j, i_{j}\right) \in[l] \times[n]$, where there is a line segment connecting each pair $\left(j, i_{j}\right)$ and $\left(j+1, i_{j+1}\right)$, for all $j \in[l-1]$.

The line diagram of the word in the previous example is represented in Figure 1. Each

Figure 1. Line diagram of $2 \overline{5} 1 \overline{1}$.
factor of length 2 of $\mathbf{p v}(s)$ is encoded by a line segment in the line diagram of s. Thereby, we say that $\underline{i} \bar{j}$ or $\bar{j} \underline{i}$ are segments of s if $i j$ or $j i$ are factors of $\mathbf{p v}(s)$, with $i<j$. For our running example, its segments are $\underline{2} \overline{5}, \overline{5} \underline{1}$ and $\underline{1} \overline{4}$, which we can see clearly from its diagram in Figure 1. Notice that multiplying a permutation $\sigma \in \mathfrak{S}_{n+1}$ on the right by the permutation associated to the segment $\underline{i} \bar{j}$ (resp. $\bar{j} \underline{i}$) has the effect of "moving" the integer $\sigma(i)$ to position $j+1$ (resp. the integer $\sigma(j+1)$ to position i) in the one-line notation of σ. In this sense, we say that the segment moves an integer. In the above example, the segment $\underline{1} \overline{4}$ acts in the permutation $[\mathbf{1}, 6,3,4,5,2]$ (the permutation associated to the left factor 2345432 of s) by moving the integer in the first position of the one-line notation to position 5 , obtaining the permutation $[6,3,4,5,1,2]$. Not every word formed by consecutive integers is a reduced word. For instance, the word $1232123 \equiv \underline{1} \overline{3} \overline{3}$ is not reduced. A set of necessary conditions for a word s to be a one-element commutation class was given in [12] using properties of the strings $\mathbf{p}(s), \mathbf{v}(s)$ and $\mathbf{p v}(s)$.

Definition 2.3. Let $s=i_{1} \cdots i_{l} \in[n]^{*}$ be a word. If there exist j and k such that $1 \leq j \leq k \leq l$ and

$$
i_{1}<\cdots<i_{j}=i_{k}>\cdots>i_{l},
$$

then s is a wedge. If

$$
i_{1}>\cdots>i_{j}=i_{k}<\cdots<s_{l},
$$

then s is a vee. If $j=k$, then that wedge or vee is strict.
For example, the word 24731 is a strict wedge and the word 245521 is a wedge that is not strict. The words 42157 and 632245 are examples of a strict vee and a non-strict vee, respectively.
Theorem 2.1 ([12, Theorem 3.1]). For any $\sigma \in S_{n+1}$, if $s \in R_{\bullet}(\sigma)$ then:
(1) $\boldsymbol{p}(s)$ is a wedge,
(2) $\boldsymbol{v}(s)$ is a vee,
(3) $\boldsymbol{p}(s)$ and/or $\boldsymbol{v}(s)$ is strict,
(4) the minimum and maximum values of $\boldsymbol{p} \boldsymbol{v}(s)$ appear consecutively and,
(5) if $\boldsymbol{p}(s)$ (or $\boldsymbol{v}(s)$) has more than one integer i, then one of those i 's is an endpoint of s.

As a consequence, if s is a word formed by consecutive integers which does not satisfy all of the previous 5 conditions, then s cannot be a reduced word. It follows directly from condition 3 of the previous theorem that the word $s \equiv \underline{1} \overline{3} \underline{3}$ is not reduced because neither $\mathbf{p}(s)=33$ nor $\mathbf{v}(s)=11$ are strict.

The "converse" of this theorem is not true, i.e. a word s formed by consecutive integers that satisfies all the conditions of the previous theorem is not necessarily a reduced word.

Consider for instance the word $s=2343212345654345 \equiv \underline{2} \overline{4} \underline{1} \overline{6} \underline{3} \overline{5}$, which satisfies all the conditions of Theorem 2.1 but is not a reduced word. The reason is that s contains the factor $t=34321234565434 \equiv \underline{3} \overline{4} \underline{1} \overline{6} \underline{\underline{4}}$ which is not reduced (the permutation associated to t is $[5,2,7,3,4,6,1]$ which has length 12 , but t has 14 letters). Notice that t contains two occurrences of the segment $\underline{3} \overline{4}$. This is not a coincidence, as we are going to see in the next section. The line diagrams of s and t are depicted in Figure 2.

Figure 2. Line diagrams of $s \equiv \underline{2} \overline{4} \underline{1} \overline{6} \underline{3} \overline{5}$ and $t \equiv \underline{3} \overline{4} \underline{1} \overline{6} \underline{3} \overline{4}$.
We end this section with the following lemma which will be usefull more ahead.
Lemma 2.2. Let $s \in[n]^{*}$ be a word formed by consecutive integers. Suppose that t is a factor of s. Then:
(1) Every peak of that is not an endpoint of t is also a peak of s.
(2) If $\underline{i} \bar{j}$ (resp. $\bar{j} \underline{i}$) is a segment of t which does not contain any endpoint of t, then $\underline{i} \bar{j}$ (resp. $\bar{j} \underline{i}$) is also a segment of s.

Proof. If i is a vale (resp. pinnacle) of t that is not one of its endpoints, then it is between two letters that are larger (resp. smaller) in the word t. Since t is a factor of s, that letter i is also between the same letters in the word s, implying that i is also a vale (resp. pinnacle) of s. To prove condition 2 , if $\underline{i} \bar{j}$ or $\bar{j} \underline{i}$ is a segment of t which does not contain any endpoint, then i and j are also peaks of s, by condition 1 , which appear consecutively in $\mathbf{p v}(s)$. Therefore, it is also a segment of s.

In other words, if we have a word s formed by consecutive integers and t a factor of s, then the only segments of t that may not be segments of s are its leftmost and rightmost ones. The reason is that endpoints are always considered peaks, and so the endpoints of t will be always peaks of t, but not necessarly peaks of s. Considering s and t as in Figure 2 , the only segments of t that are segments of s are $\overline{4} \underline{1}, \underline{1} \overline{6}$ and $\overline{6} \underline{3}$. If we consider the word $u=123456543 \equiv \underline{1} \overline{6} \underline{3}$ which is also a factor of s, then every segment of u is a segment of s, because the endpoints of u are also peaks in s. The word $v=1234565434 \equiv \underline{1} \overline{3} \underline{4}$ is a factor of s where only one of its endpoints is a peak of s. The line diagrams of u and v are depicted in Figure 3.

3. A Characterization of one-Element commutation classes

As we saw in the previous section, the conditions stated in Theorem 2.1 are not enough to completely characterize one-element commutation classes, as there are words formed by consecutive integers satisfying all five conditions of the theorem which are not reduced. In this section, we give a necessary and sufficient condition for a word formed by consecutive integers to be reduced.

Figure 3. Line diagrams of $u \equiv \underline{1} \overline{6} \underline{3}$ and $v \equiv \underline{1} \overline{6} \underline{3} \overline{4}$.
Given $s=i_{1} \cdots i_{l} \in[n]^{*}$, define the words

- $s^{r}=i_{l} \cdots i_{1}$, called the reverse word of s,
- $s^{c}=i_{1}^{\prime} \cdots i_{l}^{\prime}$ with $i_{j}^{\prime}=n+1-i_{j}$, called the complement word of s,
- $s^{r c}=\left(s^{r}\right)^{c}=\left(s^{c}\right)^{r}$, called the reverse complement word of s.

These words are called the symmetries of s. It is easy to check that if $s \in R_{\bullet}(\sigma)$, then $s^{r} \in R_{\bullet}\left(\sigma^{-1}\right), s^{c} \in R_{\bullet}\left(w_{0} \sigma w_{0}\right)$ and $s^{r c} \in R_{\bullet}\left(w_{0} \sigma^{-1} w_{0}\right)$, since all permutations σ, σ^{-1} and $w_{0} \sigma w_{0}$ have the same length. (see [1]). The following result is a well known property about reduced words of permutations, which we will use in a moment.

Lemma 3.1 ([1]). Let $\sigma \in \mathfrak{S}_{n+1}$ and $i \in[n]$. Then

$$
l\left(\sigma s_{i}\right)=\left\{\begin{array}{ll}
l(\sigma)+1, & \text { if } \sigma(i)<\sigma(i+1) \\
l(\sigma)-1, & \text { if } \sigma(i)>\sigma(i+1)
\end{array} .\right.
$$

As a consequence we have the following.
Corollary 3.2. Let $s=t \cdot i \in R(\sigma)$ be a reduced word for some $\sigma \in \mathfrak{S}_{n+1}$, with $t \in[n]^{*}$ and $i \in[n]$. Then, $\sigma(i)>\sigma(i+1)$.
Proposition 3.3. Let $s=\underline{i} \bar{j} t \underline{i} \bar{j} \in[n]^{*}$ be a word formed by consecutive integers, with $1 \leq i<j \leq n$ and $t \in[n]^{*}$. Then, s is not reduced.
Proof. Suppose that s is reduced, and let σ be its associated permutation so that $s \in$ $R \cdot(\sigma)$. We know that t must contain a peak of s, otherwise $s \equiv \underline{i} \bar{j} \underline{i} \bar{j}$ which is not reduced by condition 3 of Theorem 2.1. Let $\mathbf{v}(s)=i v_{1} \cdots v_{l} i$ and $\mathbf{p}(s)=j p_{1} \cdots p_{l} j$ be the strings of vales and pinnacles of s, respectively, for some integer l. From Theorem 2.1, since $\mathbf{v}(s)$ is a vee (resp. $\mathbf{p}(s)$ is a wedge) we have $v_{k}<i$ (resp. $p_{k}>j$), for all $k \in[l]$. This allow us to write s as

$$
s=(i \cdots j \cdots i)\left(i-1 \cdots v_{1} \cdots i-1\right) \cdots\left(i \cdots p_{k} \cdots i\right)(i+1 \cdots j) .
$$

(See Figure 4) The permutation associated to the bold left factor of s is

$$
\pi=(i, j+1)\left(i, v_{1}\right) \cdots\left(i, p_{k}+1\right)=\left(i, p_{k}+1, \cdots, v_{1}, j+1\right) .
$$

Notice that the permutation associated to $(i+1 \cdots j)$ moves the integer $\pi(i+1)$ to position $j+1$. Since $\pi(i+1)=i+1$ and $\pi(j+1)=i$, we have that $\sigma(j)=i$ and $\sigma(j+1)=i+1$, which contradicts Corollary 3.2. Therefore, s cannot be reduced.

It follows from the previous lemma and the definition of reverse word that a word of the form $\bar{j} \underline{i} t \bar{j} \underline{i}$, with $i<j$ that is formed by consecutive integers is also not reduced.

Figure 4. Diagram of a word of the form $\underline{i} \bar{j} t \underline{i} \bar{j}$
These words contain at least two occurences of the same segment, a fact that motivated the following definition.

Definition 3.1. A word formed by consecutive integers is said to have a factor with repeated segments if it contains a factor $\underline{i} \bar{j} t \underline{i} \bar{j}$ or $\bar{j} \underline{i} t \bar{j} \underline{i}$, for some $i<j$ and $t \in[n]^{*}$.

For example, the word $s \equiv \underline{2} \overline{4} \underline{1} \overline{6} \underline{3} \overline{5}$ has a factor with repeated segments since $u=\underline{3} \overline{4} t \underline{3} \overline{4}$, with $t=3212345654$, is a factor of s. As a consequence of Proposition 3.3, we have a new necessary condition for a word to be a one-element commutation class of some permutation.

Theorem 3.4. Let $\sigma \in \mathfrak{S}_{n+1}$ and $s \in R_{\bullet}(\sigma)$. Then s does not have a factor with repeated segments.

Proof. If s has a factor with repeated segments, then it contain a factor $\underline{i} \bar{j} t \underline{i} \bar{j}$ or $\bar{j} \underline{i} t \bar{j} \underline{i}$ for some word $t \in[n]^{*}$, which by the previous proposition is not reduced.

A natural question that one may ask is whether this new condition plus the ones stated in Theorem 2.1 are sufficient to completely characterize one-element commutation classes. As we are going to see, we just need this new one and condition 5 of Theorem 2.1 to complete this characterization. We will start by giving a criteria to identify words that contain factors with repeated segments just by looking at its line diagram.

Proposition 3.5. Let $s \in[n]^{*}$ be a word formed by consecutive integers. The following statements are equivalent:
(1) There is no factor of s with repeated segments.
(2) The word s does not contain a factor $\underline{x} \bar{j} t \underline{i} \bar{y}$ with $x \leq i<j \leq y$, or a factor $\bar{y} \underline{i} t \bar{j} \underline{x}$ with $y \geq j>i \geq x$, for some word $t \in[n]^{*}$, where x and y are peaks of s.

Proof. We prove the contra-positive assertions. A word s contains a factor with repeated segments if and only if s contains a factor $\underline{i} \bar{j} t \underline{i} \bar{j}$ or $\bar{j} \underline{i} t \bar{j} \underline{i}$. Consider the first case (the second is analogous). From Lemma 2.2, the only peaks of $\underline{i} \bar{j} t \underline{i} \bar{j}$ that may not be peaks of s are its endpoints. Therefore s contains a factor $\underline{x} \bar{j} t \underline{i} \bar{y}$ with $x \leq i<j \leq y$, with x and y peaks of s.

Reciprocally, suppose that s contains a factor $\underline{x} \bar{j} t \underline{i} \bar{y}$ with $x \leq i<j \leq y$ (the other case is analogous). Then, $\underline{i} \bar{j} t \underline{i} \bar{j}$ is a factor of s, and we have the result.

It follows that if s is a one-element commutation class, then its line diagram must avoid the two shapes depicted in Figure 5.

Figure 5. Avoiding shapes for one-element commutation classes.
The following definition will allows us to translate condition 5 of Theorem 2.1 into the language os segments.

Definition 3.2. A word formed by consecutive integers is said to have a factor with symmetric segments if it has a factor $\underline{i} \bar{j} t \bar{j} \underline{i}$ or $\bar{j} \underline{i} t \underline{i} \bar{j}$, for some $i<j$ where $t \in[n]^{*}$ contains at least one peak of s.
For instance, the word $s \equiv \underline{2} \overline{4} \underline{1} \overline{4} \underline{2}$, depicted in Figure 6, has symmetric segments. The word $s \equiv \overline{4} \underline{2} \overline{4}$ does not contains symmetric segments.

Figure 6. Diagram of the word $s=\underline{2} \overline{4} \underline{1} \overline{4} \underline{2}$.
Proposition 3.6. Let $s \in[n]^{*}$ be a word formed by consecutive integers. The following statements are equivalent:
(1) There is no factor of s with symmetric segments.
(2) If $\boldsymbol{p}(s)$ (or $\boldsymbol{v}(s)$) has more than one integer i, then one of those i 's is an endpoint of s.

Proof. We prove the contra-positive assertions. If s contains a factor with symmetric segments, then s must contain a factor $u=\underline{i} \bar{j} t \bar{j} \underline{i}$, or $u=\bar{j} \underline{i} t \underline{i} \bar{j}$, with $i, j \in[n]$ and $t \in[n]^{*}$ a word which contains some peak of s. Considering the first case (the other is analogous), by Lemma 2.2 we have that both \bar{j} in u are pinnacles of s, and neither of them is an endpoint. Therefore, condition 2 does not hold.

Now suppose that $\mathbf{v}(s)$ contains two letters i such that neither of them is an endpoint (the $\mathbf{p}(s)$ case is analogous). Then s will contain a factor u of the form $u=\bar{j} \underline{i} t \underline{i} \bar{k}$, with $j, k \in[n]$ and t a word which contain some peak of s. If $j \leq k$, then s will contain the factor $\bar{j} \underline{i} t \underline{i} \bar{j}$. If $j>k$, then s will contain the factor $\bar{k} \underline{i} t \underline{i} \bar{k}$ (see Figure 7). In either case, we have a factor with symmetric segments.

Given $i<j$, let $[i, j]:=\{i, i+1, \ldots, j\}$ and $[i, j]^{*}$ the set of words with finite length in the alphabet $[i, j]$. The following lemma will be usefull more ahead.
Lemma 3.7. Let $s \in R(\sigma)$ a reduced word for some $\sigma \in \mathfrak{S}_{n+1}$. If $s \in[i, j]^{*}$, then $\sigma(k)=k$ for all $k \in[n+1] \backslash[i, j+1]$.

Figure 7. Diagram of the word $u=\bar{j} \underline{i} t \underline{i} \bar{k}$ with $j \leq k$ and $j>k$.
Proof. Suppose that there is $k \in[n+1] \backslash[i, j+1]$ such that $\sigma(k) \neq k$. Then, every reduced word for σ must contain a letter k or a letter $k-1$. But this is a contradiction because k and $k-1$ belong to $[n+1] \backslash[i, j+1]$ and $s \in[i, j]^{*}$.

Before stating the main result of this section, we need a better understanding of how segments behave. Suppose that $s=\underline{i} \bar{j} t \in R_{\bullet}(\sigma)$, for some word $t \in[n]^{*}$. The segment $\underline{i} \bar{j}$ moves the integer i to position $j+1$. If s contains another segment that moves the integer i, then the following segment to move this integer is of the form $\underline{j} \bar{y}$, with $j<y$, or $\bar{j} \underline{x}$ with $j>x$. Notice that the second case cannot hold, otherwise we would have two pinnacles j in s where neither is an endpoint, contradicting condition 5 of Theorem 2.1. We can do a similar reasoning if $s=\bar{j} \underline{i} t$ and concluding the following results:
Lemma 3.8. Let $s \in R_{\bullet}(\sigma)$ for some $\sigma \in \mathfrak{S}_{n+1}$. If a segment $\underline{i} \bar{j}$ (resp. $\left.\bar{j} \underline{i}\right)$ of s moves an integer $k \in[n+1]$, then every segment of s that moves k is of the form $\underline{x} \bar{y}$ (resp. $\bar{y} \underline{x}$).

Lemma 3.9. Let $s \in R_{\bullet}(\sigma)$ for some $\sigma \in \mathfrak{S}_{n+1}$ and $i \in[n]$.
(1) If $\sigma(i+1)<i$, then there is a segment $\underline{x} \bar{y}$ of s that moves the integer $\sigma(i+1)$.
(2) If $i+1<\sigma(i)$, then there is a segment $\bar{y} \underline{x}$ of s that moves the integer $\sigma(i)$.

There is also a restriction on the integers that are moved by segments.
Lemma 3.10. Let $s \in R_{\bullet}(\sigma)$ for some $\sigma \in \mathfrak{S}_{n+1}$. If $\underline{i} \bar{j}$ (resp. $\bar{j} \underline{i}$) is a segment of s, then it moves an integer $k \in[i+1]$ (resp. $k \in[j, n+1]$).

Proof. Assume that s contains a segment $\underline{i} \bar{j}$ (the other case is similiar) which moves an integer k. Then, we can write $s=t_{1} \underline{\underline{j}} t_{2}$, for some words $t_{1}, t_{2} \in[n]^{*}$. Suppose by contradiction that $i+1<k$. Since s is a reduced word, the word t_{1} is also a reduced word for some permutation $\pi \in \mathfrak{S}_{n+1}$ with $\pi(i)=k$ (because $i \underline{j}$ moves the integer k). But $i+1<k$, which from the previous lemma implies that t contains a segment $\bar{y} \underline{x}$ that moves k, contradicting Lemma 3.8. Therefore $k \leq i+1$.

Proposition 3.11. Let $s \in[n]^{*}$ be a word formed by consecutive integers such that $s=t \cdot j$ with $t \in R_{\bullet}(\sigma)$ for some $\sigma \in \mathfrak{S}_{n+1}$ and $j \in[n]$. If s is not reduced, then s contains a factor with repeated or symmetric segments.

Proof. Since s is not reduced, from Lemma 3.1 we have $\sigma(j)>\sigma(j+1)$. Assume that j is a pinnacle of s (the case when j is a vale follows from the application of complement word). Then, we can write $s=u \underline{i} \bar{j}$ for some $i<j$, and we need to consider two cases.
Case 1: $j>i+1$
If $j>i+1$, we have $t=u i \overline{j-1}$ and from the previous lemma, since t is a one-element commutation class, the segment $\underline{i} \overline{j-1}$ moves an integer $k \in[i+1]$ to position j. But
then, $\sigma(j)=k$ and we have $j>i+1 \geq k>\sigma(j+1)$ which implies, from Lemma 3.9, that t contains a segment $\underline{x} \bar{y}$ that moves the integer $\sigma(j+1$) (call it l), for some $x<y$. The rightmost such segment $x \bar{y}$ must have $y=j$, so we can write

$$
t=u^{\prime} \underline{\bar{j}} u^{\prime \prime} \underline{i} \overline{j-1},
$$

for some words $u^{\prime}, u^{\prime \prime} \in[n]^{*}$. Our goal is to prove that $x \leq i$. If $x>i$, the fact that $\mathbf{v}(t)$ is a vee implies that u^{\prime} is a word in the alphabet $[x+1, n]$, because u^{\prime} cannot contain vales of t that are smaller than or equal to x. Considering π the permutation associated to u^{\prime}, from Lemma 3.7 we have $\pi(x)=x$. Since the segment $\underline{x} \bar{j}$ moves the integer l, we have $x=l$. But this is a contradicion because $x \geq i+1>l$. Therefore $x \leq i$ and we have $s=u^{\prime} \underline{\underline{j}} u^{\prime \prime} \underline{i} \bar{j}$, which, by Lemma 3.5, contain a factor with repeated segments (the factor $\left.x \bar{j} u^{\prime \prime} \underline{j} \bar{j}\right)$.
Case 2: $j=i+1$
In this case we have $s=u \underline{i} \bar{i}+1$, with $t=u i$. If u does not contain any letter i, then u is a word in the alphabet $[i+1, n]$. But then, its associated permutation fixes i, so $\sigma(i+1)=i$. Since $\sigma(i+1)>\sigma(i+2)$, we have $i+1>i>\sigma(i+2)$, which from Lemma 3.9 implies that t contains a segment $\underline{x} \bar{y}$ that moves the integer $\sigma(i+2)$, for some $x<y$. The rightmost such segment $\underline{x} \bar{y}$ must have $y=i+1$, and so we can write

$$
s=u^{\prime} \underline{x} \bar{i}+1 u^{\prime \prime} \underline{\underline{i}+1},
$$

for some words $u^{\prime}, u^{\prime \prime} \in[n]^{*}$. Since $x \leq i$, we have that s contains a factor with repeated segments (the factor $\underline{x} \overline{\bar{i}+1} u^{\prime \prime} \underline{i} \overline{i+1}$).
For the case where u contains letters i, we need to consider two sub-cases:
Sub-case 1: u does not contain vales i
Our goal is to prove that $i+1>\sigma(i+2)$ in order to use the previous argument. If the first appereance of a letter i in t is preeced by a letter $i-1$, then $\sigma(i+1)=i+1$. If it's preceed by a letter $i+1$, then $\sigma(i+1)=i$. Since $\sigma(i+1)>\sigma(i+2)$ we have the result. Sub-case 2: u contains vales i
We can write $s=u^{\prime} \underline{i} \bar{y} u^{\prime \prime} \underline{i} \bar{i}+1$. If u^{\prime} is not empty, then s contains two vales i where neither is an endpoint, which from Proposition 3.6 implies that s contains symmetric segments. If u^{\prime} is empty, then $t=\underline{i} \bar{y} u^{\prime \prime} \underline{i}$, which from the proof of Proposition 3.3 we have $\sigma(i+1)=i+1$. Using the same argument as in Sub-case 1, we have that s contains a factor with repeated segments.

We are now in condition to state and prove the main result of this section.
Theorem 3.12. Let $s \in[n]^{*}$ be a word formed by consecutive integers and let $\sigma \in \mathfrak{S}_{n+1}$ be the corresponding permutation. Then, $s \in R \cdot(\sigma)$ if and only if there is no factor of s with repeated or symmetric segments.
Proof. From Theorem 3.4, if $s \in R_{\bullet}(\sigma)$, then s cannot contain factors with repeated segments. Moreover, s must satisfy condition 5 of Theorem 2.1 , which is equivalent to say that s does not have a factor with symmetric segments by Proposition 3.6. Reciprocally, suppose that $s \notin R_{\bullet}(\sigma)$ for all $\sigma \in \mathfrak{S}_{n+1}$ (we want to prove the contra-positive assertion). Then, s cannot be a reduced word and so it must contain a left factor $s^{\prime}=t \cdot j$ where t is reduced but s^{\prime} is not, for some $j \in[n]$. From the previous proposition, s^{\prime} contains a factor with repeated or symmetric segments and we have the result.

Notice that when a word formed by consecutive integers contains repeated or symmetric segments, then it repeats vales and pinnacles at the same time. Therefore, another way to interpret the previous is that a word formed by consecutive integers is reduced if and only if does not contain any factor that repeats vales and pinnacles at the same time.

4. One-ELEMENT CLASSES FOR INVOLUTIONS

In this section we give an explicit construction of one-element commutation classes for involutions and relate their existence with pattern avoidance problems. We start by recalling the following result proved in [5].

Lemma 4.1. The word $\underline{1} \bar{n}$ (resp. $\bar{n} \underline{1}$) is the only reduced word formed by consecutive integers with length $\geq n$ over the alphabet $[n]$, having left (resp. right) endpoint the letter 1 and right (resp. left) endpoint the letter n.

In other words, there are no peaks between letters 1 and n in a one-element commutation class. As a consequence, we have the following.
Lemma 4.2. Let σ be a permutation in \mathfrak{S}_{n+1} that fixes neither 1 nor $n+1$. If $|R \cdot(\sigma)|>0$, then $\sigma(n+1)=1$ or $\sigma(1)=n+1$. Moreover, if $\sigma(n+1)=1$ (resp. $\sigma(1)=n+1)$ every one-element commutation class of σ contains a segment $\underline{1} \bar{n}$ (resp. $\underline{n} \overline{1}$).

Proof. Since 1 and $n+1$ are not fixed points of σ, every reduced word for σ must contain at least a letter 1 and a letter n. Let $s \in R_{\bullet}(\sigma)$ and suppose that there is a letter 1 proceeded by a letter n in s. By Lemma 4.1, we can write s as

$$
s=u \underline{1} \bar{n} v,
$$

where u is a word that does not contain letters 1 and v is a word that does not contain letters n. But then, the permutation associated to u fixes the integer 1 , and so the segment $\underline{1} \bar{n}$ will move the integer 1 to position $n+1$. Since the permutation associated to v fixes the integer $n+1$, we have $\sigma(n+1)=1$. With analogous arguments one can prove that if there is a letter n proceeded by a letter 1 , then $\sigma(1)=n+1$ and every one-element commutation class contains a segment $\bar{n} \underline{1}$.

The previous lemma gives us a necessary condition for a permutation that does not fix 1 nor $n+1$ to contain one-element commutation classes. It is not, however, a sufficient condition; consider for instance the permutation $\sigma=[3,4,5,2,1] \in \mathfrak{S}_{5}$, which does not fix 1 nor 5 and $\sigma(5)=1$. One can check that this permutation contains 4 commutation classes and neither of them is a one-element commutation class. In the case of involutions, one can get more information. Before that, let's recall that the symmetries of a word s are the words s, s^{r}, s^{c} and $s^{c r}$.

Lemma 4.3. Let σ be an involution in \mathfrak{S}_{n+1} that fixes neither 1 nor $n+1$. If $\left|R_{\bullet}(\sigma)\right|>0$, then $\sigma(n+1)=1$ and $\sigma(1)=n+1$. Moreover, if $s \in R \cdot(\sigma)$, then s is a symmetry of $\underline{1} \bar{n} \underline{1} t$, for some word $t \in[2, n-1]^{*}$.
Proof. The equalities $\sigma(1)=n+1$ and $\sigma(n+1)=1$ follows from the previous lemma and from the fact that σ is an involution. We have also from the previous lemma that, if $s \in R_{\bullet}(\sigma)$, then s contains a segment $\underline{1} \bar{n}$ (because $\sigma(n+1)=1$) and a segment $\bar{n} \underline{1}$ (because $\sigma(1)=n+1$). The only possibility for s to contain those segments at the same
time is to have the factor $\underline{1} \bar{n} \underline{1}$ or $\bar{n} \underline{n} \bar{n}$, which must contain an endpoint, by Theorem 3.12.

The previous two lemmas can be generalized for any permutation σ by replacing 1 and $n+1$ with the minimum and maximum non-fixed points of σ, respectively.

Notice that there is always an endpoint of a one-element commutation class of an involution that does not fix 1 nor $n+1$ that is the letter 1 or n. We have the following.

Proposition 4.4. Let σ be an involution in \mathfrak{S}_{n+1} that fixes neither 1 nor $n+1$. Then:
(1) σ has a one-element commutation class that contains a letter 1 as endpoint if and only if $\sigma=\prod_{k=1}^{l}\left(k, j_{k}+1\right)$, with $j_{1}=n>j_{2}>\cdots>j_{l}$ for some integer l, and $k<j_{k}+1$ for all $k \in[l]$.
(2) σ has a one-element commutation that contains a letter n as endpoint if and only if $\sigma=\prod_{k=1}^{l}\left(i_{k}, n+2-k\right)$, with $i_{1}=1<i_{2}<\cdots<i_{l}$ for some integer l, and $i_{k}<n+2-k$ for all $k \in[l]$.

Proof. We prove only statement 1 (the proof of 2 is analogous). Since σ is an involution, if there is a one-element commutation class of σ that contains a letter 1 as endpoint, there must be $s \in R_{\bullet}(\sigma)$ such that $s=\underline{1} \bar{n} \underline{1} t$, for some word $t \in[2, n-1]^{*}$. Note that the permutation associated to t (call it π) is also an involution because the left factor $\underline{1} \bar{n} \underline{1}$ is a reduced word for the cycle $(1, n+1)$ and π fixes 1 and $n+1$. Since the left-endpoint of t is a letter 2 , we must have $t=\underline{2} \underline{j} \underline{2} t^{\prime}$ for some $j<n$ and $t^{\prime} \in[3, j-1]^{*}$. Continuing this procedure, we conclude that

$$
\begin{equation*}
s=\left(1 \cdots j_{1} \cdots 1\right)\left(2 \cdots j_{2} \cdots 2\right) \cdots\left(l \cdots j_{l} \cdots l\right) \tag{3}
\end{equation*}
$$

with $n=j_{1}>\cdots>j_{l}$. Notice that l can be equal to j_{l} if the right endpoint of s is a pinnacle. In that case $\left(l \cdots j_{l} \cdots l\right)$ would be just the letter l. Each factor $\left(k \cdots j_{k} \cdots k\right)$ encodes the involution $\left(k, j_{k}+1\right)$, so $\sigma=\prod_{k=1}^{l}\left(k, j_{k}+1\right)$. Moreover, s does not contain any factor with repeated or symmetric segments. Therefore, from Theorem 3.12, s is a reduced word of σ.
For the converse, just consider s as in (3), which is a reduced word for σ and is a word formed by consecutives integers.

Figure 8. Possible diagrams for a one-element commutation class of an involution that fixes neither 1 nor $n+1$

If $s=\underline{1} \bar{n} \underline{1} t$, then its associated permutation is completly determined by its pinnacles, as we saw in the previous proof. Hence we can conclude the following.

Lemma 4.5. Let σ be an involution in \mathfrak{S}_{n+1} that fixes neither 1 nor $n+1$. Then, there is at most one word in $R_{\bullet}(\sigma)$ of the form $\underline{1} \bar{n} \underline{1} t$ (the same is true for its symmetries).

Before stating one of the main results of this section, we need two auxiliar lemmas.
Lemma 4.6. Let σ be an involution in \mathfrak{S}_{n+1} that fixes neither 1 nor $n+1$ and $s \in R_{\bullet}(\sigma)$. If $\boldsymbol{p}(s)$ or $\boldsymbol{v}(s)$ is a symmetry of the word $12 \cdots l$ for some l, then $s^{c} \in R_{\bullet}(\sigma)$.

Proof. Suppose that $s=\underline{1} \bar{n} \underline{1} t$ for some $t \in[2, n-1]^{*}$ (the other cases are analogous). Since $\mathbf{v}(s)$ is not strict we must have that $\mathbf{p}(s)$ is the string that belong to the symmetries of $12 \cdots l$ for some l. From the proof of the previous lemma $\sigma=\prod_{k=1}^{l}(k, n+2-k)$, and since $w_{0} \sigma w_{0}=\sigma$, we have $s^{c} \in R_{\bullet}(\sigma)$.

Lemma 4.7. Let σ be an involution in \mathfrak{S}_{n+1} that fixes neither 1 nor $n+1$ and $s \in R_{\bullet}(\sigma)$. If $s=s^{r}$, then $s \equiv \underline{1} \bar{n} \underline{1}$ or $s \equiv \bar{n} \underline{n} \bar{n}$.

Proof. The assumption that $s=s^{r}$ implies that its endpoints are equal. Therefore, both of its endpoints are the letter 1 or n, which from Lemma 4.5 we have the result.

Theorem 4.8. Let σ be an involution in \mathfrak{S}_{n+1} that fixes neither 1 nor $n+1$. Suppose that $s \in R_{\bullet}(\sigma)$.
(1) If $n=1$, then $R_{\bullet}(\sigma)=\{1\}$.
(2) If $\sigma=(1, n+1)$, then $R_{\bullet}(\sigma)=\{\underline{1} \bar{n} \underline{1}, \bar{n} \underline{1} \bar{n}\}$.
(3) If $n>1$ and neither $\boldsymbol{p}(s)$ nor $\boldsymbol{v}(s)$ is a symmetry of the word $12 \cdots l$ for some integer l, then $R_{\bullet}(\sigma)=\left\{s, s^{r}\right\}$.
(4) If $n>1, \sigma \neq(1, n+1)$ and one of the strings $\boldsymbol{p}(s)$ or $\boldsymbol{v}(s)$ is a symmetry of the word $12 \cdots l$, then $R \cdot(\sigma)=\left\{s, s^{r}, s^{c}, s^{c r}\right\}$

Proof. Condition 1 is trivial. From Lemma 4.5, we have at most one word $s \in R_{\bullet}(\sigma)$ with left (resp. right) endpoint the letter 1 or with left (resp. right) endpoint the letter n. If $\sigma=(1, n+1)$, then $\underline{1} \overline{1} \underline{1}$ and $\bar{n} \underline{n}$ are one-element commutation classes and they must be the only ones. To prove conditions 3 and 4 , we are going to assume that $s=\underline{1} \bar{n} \underline{1} t$ (the other cases are analogous). We need to consider two cases:
Case 1: $\mathbf{p}(s)$ is not a symmetry of $12 \cdots l$
From Lemma 4.4 we have $\sigma=\prod_{k=1}^{l}\left(k, j_{k}+1\right)$, where j_{k} is the k-th pinnacle of s and $k<j_{k}$. Our goal is to show that σ cannot contain one-element commutation classes with endpoint the letter n. If it contains such class, from Lemma 4.4 we have $\sigma=\prod_{k=1}^{l}\left(i_{k}, n+2-k\right)$. Since $i_{k}<n+2-k$ for all $k \in[l]$, and since σ has a unique decomposition into disjoint cycles, we must have $\mathbf{p}(s)=j_{1} j_{2} \cdots j_{l}=n n \cdots n+1-l$, which is a symmetry of the word $12 \cdots l$, contradicting our assumption. Since $s^{r} \in R_{\bullet}(\sigma)$, we have $R_{\bullet}(\sigma)=\left\{s, s^{r}\right\}$. Case 2: $\mathbf{p}(s)$ is a symmetry $12 \cdots l$
From Lemma 4.6 we have $s^{c} \in R_{\bullet}(\sigma)$, and since σ is an involution, $s^{c r} \in R_{\bullet}(\sigma)$. The fact that $\sigma \neq(1, n+1)$ implies that $s \neq s^{r}$. Therefore, we have $R_{\bullet}(\sigma)=\left\{s, s^{r}, s^{c}, s^{c r}\right\}$.

For an arbitrary involution $\sigma \in \mathfrak{S}_{n+1}$, the previous theorem can be generalized by defining the complementary word of $s=i_{1} i_{2} \cdots i_{l}$ as

$$
\left(M+m-1-i_{1}\right)\left(M+m-1-i_{2}\right) \cdots\left(M+m-1-i_{l}\right),
$$

where m and M are the minimum and maximum non-fixed points of σ, respectively.
We end this section with a relation between involutions that contains one-element commutation classes and pattern avoidance problems.
Definition 4.1. Let $\sigma \in \mathfrak{S}_{n+1}$ and $p \in \mathfrak{S}_{k}$ with $k \leq n+1$. We say that σ contains the patters p if there is a substring of the one-line notation of σ order isomorphic to p. If not, we say that σ is p-avoiding.

When writting permutation as patterns, we drop the brackets and commas. For instance, the permutation $[4,1,2,5,3]$ is 321 -avoiding, but contains two patterns 123 , namely the substrings 125 and 123 .
Proposition 4.9. Let σ be an involution in \mathfrak{S}_{n+1} that fixes neither 1 nor $n+1$. If σ is 132 and 3412 -avoiding, then $\sigma(1)=n+1$ and $\sigma(n+1)=1$.
Proof. Assume by contradiction that $\sigma(1) \neq n+1$ and $\sigma(1) \neq 1$. Since σ does not fix 1 nor $n+1$, we must have

$$
\sigma=[i, \ldots, 1, \ldots, n+1, \ldots, j]
$$

or

$$
\sigma=[i, \ldots, n+1, \ldots, 1, \ldots, j]
$$

for some integers $i, j \in[2, n]$. The first case cannot hold because we have the subword $1 n+1 j$, which is a 132 -pattern. In the second case, if $i<j$, then $i n+1 j$ is a 132-pattern. If $i>j$, then σ contains the substring $i n+11 j$, which is a 3412-pattern. Therefore, we must have $\sigma(1)=n+1$ or $\sigma(1)=n+1$. The fact that σ is an involution implies $\sigma(1)=n+1$ and $\sigma(n+1)=1$.

Before stating the main result of this section, we need to recall two known results about pattern avoidance.
Proposition 4.10 ([8]). A permutation σ is 2143 and 3412 -avoiding if and only if σ can be partitioned into an increasing and decreasing sequence.

For instance, the permutation $\sigma=[3,6,4,7,5,2,1]$ is 2143 and 3412 -avoiding because we can partioned σ into the sequences 347 and 6521 .

Proposition 4.11 ([2]). Let $\sigma \in \mathfrak{S}_{n+1}$ and $p \in \mathfrak{S}_{k}$ with $k \leq n+1$. Then σ contains the pattern p if and only if $w_{0} \sigma w_{0}$ contains the patterns $w_{0} p w_{0}$.

We have the following.
Theorem 4.12. Let σ be an involution in \mathfrak{S}_{n+1} that fixes neither 1 nor $n+1$. Then, $\left|R_{\bullet}(\sigma)\right|>0$ if and only if σ avoids the patterns 132 and 3412 or the patterns 213 and 3412.

Proof. Assume that $\left|R_{\bullet}(\sigma)\right|>0$. Using Lemma 4.4, we start by consider $\sigma=\prod_{k=1}^{l}\left(k, j_{k}+\right.$ 1), with $j_{1}=n>j_{2}>\cdots>j_{l}$ for some integer l. To prove that σ is 3412 -avoiding, just notice that the non-fixed points forms a decreasing sequence and the fixed points forms an increasing sequence. Then, by Proposition 4.10 we have the result. It remains to prove that σ is 132 -avoiding. By way of contradiction, assume that σ contains a pattern 132. Then σ contains a subword $x z y$ such that $x<y, x<z$ and $z>y$. We then have two
cases.
Case 1: x is not a fixed point.
Since the sequence of non-fixed points of σ is decreasing, we have that y and z are fixed points. But that cannot happen because $z>y$ and the sequence of fixed points is increasing.
Case 2: x is a fixed point.
If x is a fixed point of σ, then $x>l$. We have that all non-fixed points of σ that are to the right of x are smaller than x. Since $x<y$ and $x<z$, the integers y and z are also fixed points of σ. But that cannot be possible because $z>y$. Therefore, σ must be 132-avoiding.
Now considering the case where $\sigma=\prod_{k=1}^{l}\left(i_{k}, n+2-k\right)$, with $i_{1}=1<i_{2}<\cdots<i_{l}$ for some integer l, we have that $w_{0} \sigma w_{0}=\prod_{k=1}^{l}\left(k, n+2-i_{k}\right)$, which we already proved is 132 and 3412-avoiding. From Proposition 4.11, σ is 213 and 3412 -avoiding.

For the converse, suppose that σ avoids the patterns 132 and 3412. From Lemma 4.9, we have $\sigma(1)=n+1$ and $\sigma(n+1)=1$, so σ contains the cycle $(1, n+1)$ in its disjoint cycle decomposition. Without loss of generality, the disjoint decomposition of σ can be written as

$$
\sigma=\left(i_{1}, j_{1}\right)\left(i_{2}, j_{2}\right) \cdots\left(i_{l}, j_{l}\right),
$$

with $1=i_{1}<i_{2}<i_{3}<\cdots<i_{l}, j_{1}=n+1$ and $i_{k}<j_{k}$ for all $k \in[l]$. Notice that $i_{2}=2$, otherwise $2<i_{2}<j_{2}$ and 2 would be a fixed point of σ implying that $2 j_{2} i_{2}$ would be a substring of σ, which is a 132 -pattern. We also have that $n+1=j_{1}>j_{2}$. Now suppose that

$$
\sigma=(1 n+1)\left(2 j_{2}\right) \cdots\left(m j_{m}\right)\left(i_{m+1} j_{m+1}\right) \cdots\left(i_{l}, j_{l}\right),
$$

with $n+1>j_{2}>j_{3}>\cdots j_{m}$ and $i_{k}<j_{k}$ for all $k \in[m+1, l]$. Our goal is to show that $i_{m+1}=m+1$ and $j_{m}>j_{m+1}$. If $i_{m+1} \neq m+1$, then $m+1<i_{m+1}<j_{m+1}$ and we have two cases. If $m+1$ is a fixed point, then σ will contain the subword $m+1 j_{m+1} i_{m+1}$, which is a 132-pattern. If $m+1$ is not a fixed point, then $\left(m, j_{m}\right)=(m, m+1)$. But then, σ will contain the subword $m j_{m+1} i_{m+1}$, which is a 132-pattern. Therefore $i_{m+1}=m+1$. If $j_{m}<j_{m+1}$, then σ will contain the subword $j_{m} j_{m+1} m m+1$, which is a 3412pattern. Using an inductive argument we show that $\sigma=\left(1, j_{1}\right)\left(2, j_{2}\right) \cdots\left(l, j_{l}\right)$, with $n+1=j_{1}>j_{2}>\cdots>j_{l}$. From Lemma 4.4, we have that σ contains a one-element commutation class with some endpoint the letter 1. If σ avoids the patters 213 and 3412, then $w_{0} \sigma w_{0}$ avoids the patterns 132 and 3412 from Proposition 4.11, which we proved to have a one-element commutation class s. Hence s^{c} is a one-element commutation class for σ, proving that $R_{\bullet}(\sigma)>0$.

Notice that this result is not true in general for any permutation that does not fix 1 nor $n+1$. For instance, the permutation $[3,4,5,2,1]$ is 132,213 and 3412 - avoiding and does not contain one-element commutation classes.

As a corollary, we have a necessary and sufficient condition for an involution to contain 4 one-element commutation classes.

Corollary 4.13. Let σ be an involution in \mathfrak{S}_{n+1} that fixes neither 1 nor $n+1$. Assume that $\sigma \neq(1, n+1)$. The following are equivalent:
(1) $\left|R_{\bullet}(\sigma)\right|=4$.
(2) σ is 132, 213 and 3412-avoiding.

Proof. From Theorem 4.8, if $\left|R_{\bullet}(\sigma)\right|=4$, then $R_{\bullet}(\sigma)=\left\{s, s^{r}, s^{c}, s^{c r}\right\}$ for some word $s \in[n]^{*}$ formed by consecutive integers. We can assume that $s=\underline{1} \bar{n} \underline{1} t$ for some word $t \in[2, n-1]^{*}$. From the proof of the previous theorem, its associated permutation is 132 and 3412 avoiding. Since $s^{c} \in R_{\bullet}(\sigma)$, we have $\sigma=w_{0} \sigma w_{0}$ and from Proposition 4.11, σ will also avoid the pattern 213. Reciprocally, since σ avoids the patterns 132 and 3412 , from the proof of the previous theorem we have that σ contains a one-element commutation class s with some endpoint the letter 1 . We also have that σ is 213 and 3412-avoiding, so σ contains a one-element commutation class t with some endpoint the letter n. Since $\sigma \neq(1, n+1)$, from Lemma 4.5 we have $R_{\bullet}(\sigma)=\left\{s, s^{r}, t, t^{r}\right\}$.

Corollary 4.13 allow us to recover the result from [5] and [12] which states that for $n>1$ the longest permutation w_{0} contains 4 one-element commutation classes, since w_{0} is an involution that fix neither 1 nor $n+1$ and the only patterns of length 3 and 4 that w_{0} contains are 321 and 4321, respectively. One can generalize the previous results to any involution.

Corollary 4.14. Let $\sigma \in S_{n+1}$ an involution such that m and M are the minimum and maximum non-fixed points of σ. Consider the permutation $\pi=[\sigma(m), \sigma(m+1), \cdots, \sigma(M)]$. Then:
(1) $\left|R_{\bullet}(\sigma)\right|>0$ if and only if π avoids the patterns 132 and 3412 or the patterns 213 and 3412.
(2) Suppose that $\sigma \neq(m, M)$. Then $\left|R_{\bullet}(\sigma)\right|=4$ if and only if π avoids the patterns 132, 213 and 3412.

5. Acknowledgements

This work was partially supported by the Centre for Mathematics of the University of Coimbra (funded by the Portuguese Government through FCT/MCTES, DOI 10.54499/UIDB/00324/2020).

References

[1] A. Björner and F. Brenti. Combinatorics of Coxeter Groups. Springer, 2005.
[2] F. Negassi L. Pudwell C. Cratty, S. Erickson. Pattern avoidance in double lists. Involve, a Journal of Mathematics, 10:379-398, 012017.
[3] S. Elnitsky. Rhombic tilings of polygons and classes of reduced words in coxeter groups. Journal of Combinatorial Theory, Series A, 77(2):193-221, 1997.
[4] J. Santos G. Gutierres, R. Mamede. Diameter of the commutation classes graph of a permutation. European Journal of Combinatorics, 103, 2022.
[5] G. Gutierres, R. Mamede, and J. Santos. Commutation classes of the reduced words for the longest element of sn. The Electronic Journal of Combinatorics, 27(2), 2020.
[6] D. Knuth. Axioms and hulls. In Lecture Notes in Computer Science, 1992.
[7] D. Soares R. Mamede, J. Santos. The commutation graph for the longest signed permutation. Discrete Mathematics, 345(11):113055, 2022.
[8] Z. Stankova. Forbidden subsequences. Discrete Mathematics, 132(1):291-316, 1994.
[9] R. Stanley. On the number of reduced decompositions of elements of coxeter groups. European Journal of Combinatorics, 5(4):359-372, 1984.
[10] B. Tenner. Reduced decompositions and permutation patterns. Journal of Algebraic Combinatorics, 24:263-284, 2005.
[11] B. Tenner. Reduced word manipulation: patterns and enumeration. Journal of Algebraic Combinatorics, 46:189-217, 2015.
[12] B. Tenner. One-element commutation classes. arXiv, 2212.02480, 2023.
[13] J. Tits. Le problème des mots dans les groupes de coxeter. In: Symposia Mathematica, pages 175-185, 1969.

University of Coimbra, Department of Mathematics, CMUC, 3000-143 Coimbra, PorTUGAL

Email address: mamede@mat.uc.pt
University of Coimbra, Department of Mathematics, CMUC, 3000-143 Coimbra, PortUGAL

Email address: zeluis@mat.uc.pt
University of Coimbra, Department of Mathematics, CMUC, 3000-143 Coimbra, PortUGAL

Email address: soaresdiogo@hotmail.com

