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Abstract. We study analytical and geometric properties of minimizers

of non-differentiable functionals epitomizing the degenerate quenching

problem. Our main finding unveils finite (n − 1)−Hausdorff measure

estimates for the pertaining free boundaries. The approach hinges upon

deriving optimal gradient decay estimates, coupled with a fine analysis

of an intrinsic auxiliary equation stripped of the singularity.

1. Introduction

In this work, we are concerned with minimizers of p−energy functionals

of the type

v 7−→

ˆ

Ω

|Dv|p

p
+ F (x, v) dx,

for non-differentiable potentials F (x, s) ≥ 0.

This class of problems is well-understood in the case p = 2, particularly

in the context of the obstacle problem, for which F (x, s) = s+ (see [6,

8] and the book [26]). Another emblematic potential is the discontinuous

F (x, s) = χ{s>0}, leading to the cavity or Bernoulli free boundary problem,

investigated by Alt and Caffarelli in [1]. An intermediary scenario emerges

by interpolating between the two previous cases and considering potentials

exhibiting γ−growth, namely with

F (x, s) = sγ+, γ ∈ (0, 1). (1.1)

Often known as Alt-Phillips potentials (cf. [2, 27, 28]), they bring about

the so-called quenching problem, which models phenomena characterized by

abrupt changes in certain quantities along unknown interfaces. In all these

cases, the absence of differentiability for F strongly influences the efficiency

of the regularity mechanisms for minimizers compared to the classical sce-

narios. Still, for p = 2, it has been shown that the optimal regularity class

Date: February 13, 2024.

2020 Mathematics Subject Classification. Primary 35R35. Secondary 35A21, 35J70.

Key words and phrases. Free boundary problems; Hausdorff estimates; degenerate

equations.

1

D
M

U
C

 P
re

pr
in

t 2
4-

06
, 1

3 
Fe

b 
20

24

[v1] Tue, 13 Feb 2024

https://www.mat.uc.pt/preprints/eng_2024.html
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for minimizers is C1,α
loc , with

α =
γ

2− γ
, γ ∈ (0, 1].

For the cavity problem, corresponding to γ = 0, minimizers are locally

Lipschitz. Concerning the free boundary, in the seminal works [7] for the

obstacle problem, and [28] for the case γ ∈ (0, 1), analytical and geometric

measure theory methods were applied to establish that interfaces have finite

(n−1)−dimensional Hausdorff measure. For the two-phase problem (p = 2),

the free boundaries are known to be C1 in dimension two (see [23]).

For the nonlinear case p ̸= 2 much less is known as the challenges posed by

the non-quadratic growth in the functional muddle the understanding of the

regularity and geometric properties of the minimizes and the free boundary.

Obstacle problems, corresponding to γ = 1, were treated in [3, 14] for non-

zero obstacles ϕ. In particular, in [3], the authors show that a minimizer u

is of class C1,p′−1 at the free boundary ∂{u > ϕ}, for p′ = p/(p−1). For the

sign-changing case, the intermediate scenario γ ∈ (0, 1) was treated in [22].

In [5], the authors considered potentials with varying non-differentiability

levels

F (x, s) ∼ (s− ϕ(x))γ+,

obtaining improved regularity estimates at contact points in ∂{u > ϕ}. For

the particular case of an obstacle ϕ ≡ 0, it is shown therein that minimizers

are of class C1,α at the quenching interface ∂{u > 0}, for

α =
γ

p− γ
,

revealing the precise interplay between the singularity parameter γ and the

exponent p in determining the regularity of minimizers. Related problems

were studied in [20, 11], establishing the Lipschitz regularity of minimizers

using a singular perturbation. These efforts notwithstanding, the study of

the free boundary for problems involving the p−Laplace operator remains

virtually virgin ground, the only significant contribution being the results

in [17, 21, 14, 10] for the p−obstacle problem, and in [12] for the cavity

problem, where it was shown that near flat points, the free boundary is of

class C1,β , for a β ∈ (0, 1).

In this paper, we advance the theory one step forward, carrying the anal-

ysis in the degenerate case p > 2 and for the quenching scenario (1.1),

for which the corresponding Euler-Lagrange equation is singular since the

right-hand side blows up at the free boundary

F(u) = ∂{u > 0}.

We consider non-negative minimizers and chiefly obtain the finiteness of the

(n− 1)−dimensional Hausdorff measure of the free boundary, a result that
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plays a significant role in the context of trying to universally characterize the

“size” or “dimension” of the interface. These estimates are closely related to

the (lack of) regularity and the geometric properties of the free boundary.

Our approach relies on a pointwise gradient control based on an intrinsic

Harnack-type inequality and a suitable application of regularity estimates

at points relatively close to the free boundary available in [5]. This gradient

control is already crucial in [28] for treating the case p = 2, but its proof

heavily relies on the linearity of the operator and fails to work in the degen-

erate case. After establishing a non-degeneracy estimate and porosity of the

free boundary, we remove the singularity, thereby obtaining a problem with

a positive and bounded right-hand side. This strategy, complemented by

ensuring that the gradient of the right-hand side of a transformed problem

belongs to a suitable Morrey space, allows us to analyze the free boundary

regularity as that of a refined obstacle problem.

The paper is organized as follows. In section 2, we introduce some no-

tation, formulate the problem rigorously and gather several preliminary re-

sults. Section 3 brings the optimal gradient decay, and, in Section 4, we

establish a non-degeneracy estimate and the porosity of the free boundary.

In Section 5, we remove the singularity in the problem and in Section 6, we

prove the main result.

2. Problem setting and preliminary results

Let Ω be an n−dimensional bounded domain and p > 2. For a given

non-negative boundary data g ∈ W 1,p(Ω), we consider minimizers of the

functional

J(v) :=

ˆ

Ω

(

|Dv(x)|p

p
+ [v+(x)]

γ

)

dx, (2.1)

among competitors in the set

K :=
{

v ∈ W 1,p(Ω); v ≥ 0, v − g ∈ W 1,p
0 (Ω)

}

. (2.2)

The corresponding Euler-Lagrange equation is the singular PDE, holding in

the non-coincidence set {u > 0} ∩ Ω,

∆pu := div
(

|Du|p−2Du
)

= γuγ−1, (2.3)

whose right-hand side blows up at free boundary points since γ is assumed

to be in (0, 1).

Most of the results in the paper are valid for local minimizers defined as

follows. Set

Jr(v) :=

ˆ

Br

(

|Dv(x)|p

p
+ [v+(x)]

γ

)

dx.
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Definition 2.1. A non-negative function u ∈ W 1,p(Ω) is called a local min-

imizer with respect to a ball Br ⊂ Ω if

Jr(u) ≤ Jr(v),

for all v ≥ 0 such that u− v ∈ W 1,p
0 (Br).

Remark 2.1. Observe that if u is a local minimizer with respect to a ball

Br, then

us(x) :=
u(sx)

s
p

p−γ

is a local minimizer with respect to the ball B r
s
. More precisely,

Jr(u) = s
pγ
p−γ J r

s
(us).

The existence of a minimizer for (2.1) is obtained in [5, Theorem 2.1] (see

also [22], for the particular case of a zero obstacle), together with the bound

∥u∥∞ ≤ ∥g∥∞,

for bounded boundary data. The local C1,α−regularity is the object of [5,

Theorem 3.1], where the existence of a constant C > 0, depending only on

dist(Ω′, ∂Ω), ∥u∥L∞(Ω), n, p and γ, is obtained such that

∥u∥C1,α(Ω′) ≤ C, (2.4)

for

α := min

{

σ−,
γ

p− γ

}

, (2.5)

where σ > 0 is the Hölder regularity exponent for the gradient of p−harmonic

functions. It follows from the results in [16] (see also [4]) that, for n = 2,

one has α = γ
p−γ . Note also that when γ = 0, the regularity result above

recovers the Lipschitz regularity of solutions obtained in [11, Theorem 3.3].

Moreover, in [5, Theorem 4.1 and Theorem 6.1], the growth of the minimizer

away from free boundary points is revealed to be

u ≤ C r
p

p−γ , in Br(y) (2.6)

for any r ∈ (0, r0) and any y ∈ ∂{u > 0} ∩ Ω′, where Ω′ ⊂⊂ Ω, for uni-

versal constants C > 0 and r0 > 0. The approach is based on geometric

tangential analysis and a fine perturbation combined with an adjusted scal-

ing argument, the idea of which is to ensure that at the limit, one gets a

linear elliptic equation without the zero-order term. The intuition behind

the proof is that the problem behaves essentially as an obstacle problem for

a uniformly elliptic operator.

We conclude this section by showing that any minimizer u of (2.1) is

p−subharmonic and solves the corresponding Euler-Lagrange equation. As

u ∈ W 1,p(Ω), p−subharmonicity is equivalent to proving that u stays below
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any p−harmonic replacement, according to [24, Chapter 5]. The proof is

known and can be obtained by combining tools used in [1, 11, 22, 27]. We

include it below for the reader’s convenience.

Lemma 2.1. If u is a minimizer of (2.1) and v is a p−harmonic function

in B ⊂ Ω that agrees with u in Ω \B, then u ≤ v.

Proof. Set w := min(u, v). We aim to show that, in fact, w = u. As

w− u ∈ W 1,p(B), one has D(w− u) = 0 a.e. on {w = u}, [18, Lemma A.4].

Hence,
ˆ

B
|Dw|p−2Dw ·D(w − u) =

ˆ

B
|Dv|p−2Dv ·D(w − u) = 0, (2.7)

where the last equality follows from the fact that v is p−harmonic and agrees

with u on ∂B. On the other hand, defining for 0 ≤ s ≤ 1,

us(x) := su(x) + (1− s)w(x),

recalling (2.7) and noting that us − w = s(u− w), we have
ˆ

B
(|Du|p − |Dw|p)

=

ˆ 1

0

d

ds

(
ˆ

B
|Dus|

p

)

ds

= p

ˆ 1

0
ds

ˆ

B
|Dus|

p−2Dus ·D(u− w)

= p

ˆ 1

0
ds

ˆ

B

(

|Dus|
p−2Dus − |Dw|p−2Dw

)

·D(u− w)

= p

ˆ 1

0

ds

s

ˆ

B

(

|Dus|
p−2Dus − |Dw|p−2Dw

)

·D(us − w).

Combining this with the well-known inequality
(

|ξ|p−2ξ − |η|p−2η
)

· (ξ − η) ≥ c |ξ − η|p,

where c > 0 is a constant depending only on n and p, we reach
ˆ

B
(|Du|p − |Dw|p) ≥ cp

ˆ 1

0

ds

s

ˆ

B
|D(us − w)|p

= cp

ˆ 1

0
sp−1 ds

ˆ

B
|D(u− w)|p

= c

ˆ

B
|D(u− w)|p ≥ 0.

Using this and the fact that w ≤ u, we obtain

J(w)− J(u) ≤

ˆ

B
(wγ

+ − uγ+) ≤ 0.
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By the minimality of u, we conclude that J(w) = J(u), which only holds if

w = u. □

Proposition 2.1. If u is a minimizer of (2.1), then

∆pu = γuγ−1 in {u > 0}

in the sense of distributions.

Proof. Let y ∈ Ω be such that u(y) > 0. Since u is continuous (particularly),

2.4, then for r > 0 small, one has u ≥ u(y)/2 in Br(y). Therefore, if

ξ ∈ C∞
0 (Ω) and |ε| is small enough, then u+ εξ ≥ u(y)/4, i.e., u+ εξ ∈ K.

As u is a minimizer of (2.1), then ε = 0 is a minimizer of ε 7→ J(u+ εξ). In

other words, one should have J ′(u+ εξ)|ε=0 = 0, i.e.,
ˆ

Br(y)

(

|Du|p−2Du ·Dξ + γuγ−1ξ
)

dx = 0,

which is the desired result. □

3. Pointwise gradient estimate

In this section, we prove a pointwise gradient estimate, which plays an

essential role in the analysis of the free boundary. We first establish an

intrinsic Harnack-type inequality for small radii.

Lemma 3.1. If u is a local minimizer of (2.1) in B1, then there exists a

constant C > 0, depending only on n, p, γ and ∥u∥∞, such that

sup
Br(x)

u ≤ C u(x),

for each x ∈ B1/2 such that r := [u(x)]
p−γ
p ≤ 1.

Proof. Suppose the conclusion fails. Then there exist a sequence of points

xk ∈ B1/2 and local minimizers uk in B1, such that

sk := sup
Brk

(xk)
uk > kuk(xk) = kr

p
p−γ

k . (3.1)

where rk := [uk(xk)]
p−γ
p . Set

vk(y) := s−1
k uk (xk + rky) in B1.

Note that vk(y) ∈ [0, 1], and, using (3.1),

vk(0) = s−1
k uk(xk) = s−1

k r
p

p−γ

k <
1

k
.

Additionally,

sup
B1

vk = 1.
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On the other hand, vk minimizes

ˆ

B1

(

|Dv|p

p
+

rpk
sp−γ
k

vγ

)

dx,

and, recalling (3.1) once more,

rpk
sp−γ
k

<
1

kp−γ
. (3.2)

Hence, from 2.4, up to a subsequence, vk converges locally uniformly to a

function v∞ defined in B1. Obviously, v∞(0) = 0 and

sup
B1

v∞ = 1. (3.3)

Moreover, from (3.2), it follows that v∞ minimizes
ˆ

B1

|Dv|p

p
dx,

so v∞ is p−harmonic in B1. Hence, as v∞(0) = 0, we conclude that v∞ ≡ 0,

which contradicts (3.3). □

As a consequence, we obtain the following pointwise gradient estimate.

Theorem 3.1. If u is a local minimizer of (2.1) in B1, then there exists a

constant C > 0, depending only on n, p, γ and ∥u∥∞, such that

|Du(x)|p ≤ C uγ(x),

for each x ∈ B1/2.

Proof. Let x ∈ B1/2. We divide the proof into two steps.

Step 1. If ∥u∥∞ ≤ 1, then setting

v(y) := r
− p

p−γ u(x+ ry), y ∈ B1,

for r := [u(x)]
p−γ
p ≤ 1 and applying Lemma 3.1, we conclude that there

exists a universal constant C > 0 such that

sup
B1

v ≤ C.

Local C1,α regularity of u implies, in particular,

|Dv(0)| ≤ C ′C,

for a universal constant C ′ > 0. Observe now that

|Dv(0)| = r
− γ

p−γ |Du(x)| = |Du(x)|u
− γ

p (x),

and the result follows.
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Step 2. If ∥u∥∞ > 1, set r := [u(x)/∥u∥∞]
p−γ
p ≤ 1. Applying Lemma 3.1

for w(x) := [u(x)/∥u∥∞], we obtain

sup
Br(x)

w ≤ Cw(x).

Therefore, arguing as in Step 1, we get

|Dw(x)|p ≤ Cwγ(x),

i.e.,

|Du(x)|p ≤ C∥u∥p−γ
∞ uγ(x).

□

4. Non-degeneracy and porosity

In this section, we prove non-degeneracy and positive density results for

minimizers of (2.1), obtaining, as a consequence, the porosity of the free

boundary.

Lemma 4.1. If u is a minimizer of (2.1) and x0 ∈ {u > 0}, then there

exists a constant c > 0, depending only on n, p and γ, such that

sup
∂Br(x0)

u ≥ cr
p

p−γ , (4.1)

for any r < dist(x0,Ω).

Proof. By continuity, it is enough to prove the result for x0 ∈ {u > 0}. Set

λ :=
p− γ

p− 1

and define

v(x) := uλ(x)− c|x− x0|
p

p−1 in {u > 0} ∩Br(x0),

for a constant c > 0. A direct calculation shows that

∆p

(

uλ
)

= λp−1u−γ [(1− γ)|Du|p + u∆pu] ,

which, recalling Proposition 2.1, leads to

∆p

(

uλ
)

= λp−1u−γ [(1− γ)|Du|p + γuγ ] ≥ γλp−1 > 0.

Moreover,

∆p(c|x− x0|
p

p−1 ) = cp−1n

(

p

p− 1

)p

.

Since ∆pv is continuous with respect to c, we can choose c > 0 so small that

∆pv ≥ 0 in {u > 0} ∩Br(x0). As v(x0) > 0, the maximum principle implies

the existence of y ∈ ∂ ({u > 0} ∩Br(x0)) such that v(y) > 0. But v ≤ 0 on

∂{u > 0}, hence y ∈ ∂Br(x0), and therefore u(y) ≥ cr
p

p−γ . □
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Remark 4.1. Note that from 2.6, we already knew that in Br(x0), with

x0 ∈ ∂{u > 0}, the supremum of a minimizer grows at most like r
p

p−γ .

Lemma 4.1 reveals that it grows exactly as r
p

p−γ .

As a consequence of the lemma, we get the following positive density

result.

Corollary 4.1. If u is a minimizer of (2.1), then, for every Ω′ ⊂⊂ Ω, there

exists a constant δ ∈ (0, 1), depending only on Ω′, n, p and γ, such that, for

any small ball Br(x0) ⊂ Ω′, with x0 ∈ ∂{u > 0}, one has

|{u > 0} ∩Br(x0)|

|Br(x0)|
≥ δ.

Proof. Indeed, Lemma 4.1 guarantees the existence of y ∈ ∂Br/2(x0) such

that

u(y) ≥ cr
p

p−γ > 0.

Therefore, u > 0 in Bρr(y) ⊂ Br(x0), for ρ > 0 small. In other words,

Bρr(y) ⊂ {u > 0} ∩Br(x0). Thus,

|{u > 0} ∩Br(x0)|

|Br(x0)|
≥

|Bρr(y)|

|Br(x0)|
= ρn =: δ.

□

We recall the definition of a porous set to state another consequence of

the non-degeneracy estimate.

Definition 4.1. A set E ⊂ R
n is called porous, with porosity constant δ > 0,

if there exists a constant ρ > 0 such that, for each x ∈ E and r ∈ (0, ρ),

there exists a y ∈ R
n such that

Bδr(y) ⊂ Br(x) \ E.

The Hausdorff dimension of a porous set does not exceed n−Cδn, where

C > 0 is a constant depending only on n (see, for example, [25]). Hence,

the Lebesgue measure of a porous set is zero.

Corollary 4.2. Let u be a minimizer of (2.1). If x0 ∈ Ω and r > 0 are

such that B2r(x0) ⊂ Ω, then the set

E := ∂{u > 0} ∩Br(x0)

is porous. Hence, the free boundary ∂{u > 0} is a set of Lebesgue measure

zero.

Proof. Let x ∈ E. We have Br/2(x) ⊂ B2r(x0) ⊂ Ω. From Lemma 4.1, there

exists y ∈ ∂Br/2(x) such that

u(y) ≥ cr
p

p−γ ,
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for a constant c > 0 depending only on n, p and γ. Hence,

y ∈ B2r(x0) ∩ {u > 0}.

Set d(y) := dist
(

y,B2r(x0) \ {u > 0}
)

, then 2.6 provides

u(y) ≤ C [d(y)]
p

p−γ ,

for a constant C > 0 depending only on n, p and γ. Therefore, setting

δ := min

{

1

2
,
[

cC−1
]

p−γ
p

}

< 1,

we have

d(y) ≥ δr.

Hence, Bδr(y) ⊂ Bd(y)(y) ⊂ {u > 0}. In particular,

Bδr(y) ∩Br(x) ⊂ {u > 0}.

On the other hand, if z ∈ [x, y] is such that |z − y| = δr/2, then

B(δ/2)r(z) ⊂ Bδr(y) ∩Br(x).

Indeed, if z∗ ∈ B(δ/2)r(z), then

|z∗ − y| ≤ |z∗ − z|+ |z − y| <
δr

2
+

δr

2
= δr

and, since |x− y| = |x− z|+ |z − y|,

|z∗ − x| ≤ |z∗ − z|+ |x− y| − |z − y| <
δr

2
+ r −

δr

2
= r.

Thus,

B(δ/2)r(z) ⊂ Bδr(y) ∩Br(x) ⊂ Br(x) \ ∂{u > 0} ⊂ Br(x) \ E,

i.e., E is porous with porosity constant δ/2. □

5. Removing the singularity

One of the main difficulties in analyzing equation (2.3) is the fact that

the right-hand side blows up across the free boundary ∂{u > 0}. How-

ever, Proposition 2.1 combined with Theorem 3.1 allow us to transform the

problem into one with a bounded right-hand side. That is the gist of this

section.

Let u be a minimizer of (2.1) and set

v(x) := uθ(x), x ∈ Ω, (5.1)



DEGENERATE QUENCHING PROBLEM 11

where θ > 1 is defined by

θ := max

{

p− 1

p− 2
,
p+ 1

p− 1

}

=











p−1
p−2 if 2 < p ≤ 3

p+1
p−1 if p ≥ 3.

(5.2)

Recalling Proposition 2.1, in {u > 0} = {v > 0}, one has

∆pv = f,

where

f := θp−1u(θ−1)(p−1)−1 [(θ − 1)(p− 1)|Du|p + γuγ ] . (5.3)

Observe that (θ − 1)(p− 1)− 1 ≥ 0, and therefore, in {u > 0}, one has

0 < f ≤ C, (5.4)

where the upper bound is a consequence of Theorem 3.1, with C > 0 a

constant depending only on n, p, γ and ∥u∥∞. Thus, v is a (weak) solution

of the obstacle problem














∆pv = f in {v > 0},

v ≥ 0 in Ω,

v − gθ ∈ W 1,p
0 (Ω),

(5.5)

where f is defined by (5.3).

Remark 5.1. Note that the free boundaries for v and u coincide. Hence,

the conclusions of Corollary 4.1 and Corollary 4.2 are valid for ∂{v > 0}.

Remark 5.2. Although the obstacle problem (5.5) has a unique solution

(see, for example, [9, 10, 26]), every minimizer u of (2.1) generates a right-

hand side f defined by (5.3). Hence, there are as many v solutions as

minimizers of (2.1).

Since v is the weak solution of (5.5), then we have

fχ{v>0} ≤ ∆pv ≤ f,

almost everywhere in Ω (cf. [9, Proposition 1.2]). Therefore, as a direct

consequence of the porosity of the free boundary, we obtain

∆pv = f a.e. in Ω.

Moreover, v ∈ W 2,2
loc (Ω) thanks to (5.4) (see [19, 29]), and, by (5.1), one has

|D2u| ≤ θ2
(

|Du|2

u
+ u1−θ|D2v|

)

, (5.6)

in {u > 0}.
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6. Hausdorff measure estimates

From Corollary 4.2, we already know that the n−dimensional Lebesgue

measure of the free boundary is zero. In this section, we show that the

(n− 1)−dimensional Hausdorff measure of the free boundary is finite. The

case p = 2 is treated in [28], but the nonlinear setting is considerably more

demanding.

Recall that the s−dimensional Hausdorff measure of a set E is defined by

Hs(E) := lim
δ→0

Hs
δ(E),

where

Hs
δ(E) := inf







∞
∑

j=1

µ(s)

(

diamEj

2

)s






.

Here, the infimum is taken over all countable coverings {Ej} of E such that

diamEj ≤ δ, µ(s) := πs/2

Γ( s
2
+1)

and Γ(s) :=
´∞
0 e−tts−1 dt, for s > 0, is the

usual Gamma function.

Since the free boundaries of u and v coincide, we study the free boundary

regularity for v, as the latter solves (5.5) with a bounded right-hand side f

defined by (5.3).

Remark 6.1. A Hausdorff measure estimate for problem (5.5) is obtained

in [21, Theorem 3.3], provided f > 0 is Lipschitz. As observed in [10,

Section 4] (see also [9]), the Lipschitz continuity assumption can be relaxed,

assuming instead that Df is locally in a Morrey space. More precisely, it

can be replaced in our context by the assumption that
ˆ

Br

|Df | dx ≤ Crn−1, r ∈ (0, 1). (6.1)

Proposition 6.1. The function f defined by (5.3) satisfies (6.1).

Proof. Recalling (5.2) and (5.6), a direct calculation and the use of Young’s

inequality reveal

|Df | ≤ Cu(θ−1)(p−1)−2|Du|p+1

+C ′u(θ−1)(p−1)−2+γ |Du|

+C ′′u(θ−1)(p−1)−θ
(

|Du|2(p−1) + |D2v|2
)

≤ C
(

1 + |D2v|2
)

,

where in the last inequality we used the fact that (θ − 1)(p − 1) − 2 ≥ 0,

(θ−1)(p−1)−θ ≥ 0 and that u and its gradient are bounded. The constant

C > 0 depends only on n, p and γ.
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Then, we obtain, for r ∈ (0, 1),
ˆ

Br

|Df | dx ≤ Crn + C

ˆ

Br

|D2v|2 dx

≤ Crn + Crn∥D2v∥2L2(Br)

≤ Crn, (6.2)

since v ∈ W 2,2
loc (Ω). The result follows because rn ≤ rn−1. □

We next define a class of functions on the unit ball.

Definition 6.1. We say that v ∈ F if, in B1, it satisfies ∆pv = fχ{v>0},

0 ≤ v ≤ 1 and 0 ∈ ∂{v > 0}.

Since f is continuous and positive, one has the following estimates, de-

duced in [10, Lemma 4.3], [21, Lemma 2.4] and [21, Lemma 2.5].

Lemma 6.1. If v ∈ F and x0 ∈ ∂{v > 0} ∩ B1/2, then there exist positive

constants M = M(p, n, γ) and 0 < σ = σ(f) such that
 

Br(x0)

[

|Dv(x)|p−2|D2v(x)|
]2

dx ≤ M, ∀r ≤ 1/2

and
σ

(p− 1)2
≤
[

|Dv(x)|p−2|D2v(x)|
]2

, a.e. in {v > 0}.

We now define the sets

Qε :=
{

|Dv| ≤ ε
1

p−1

}

and Qi
ε :=

{

|vxi | ≤ ε
1

p−1

}

.

The next result is the main step towards proving the finiteness of the

(n − 1)−dimensional Hausdorff measure of the free boundary. Its proof is

essentially the same as in [21, Theorem 3.3] (see also [10, Section 4]). We

sketch it here for the reader’s convenience.

Lemma 6.2. If v ∈ F and x0 ∈ ∂{v > 0} ∩B1/2, then

|Qε ∩Br(x0) ∩ {v > 0}| ≤ Cεrn−1, ∀r < 1/4,

where C > 0 is a constant depending only on n, p and γ.

Proof. Note that it is enough to prove that
ˆ 1

0
|Qε ∩Brs(x0) ∩ {v > 0}| ds ≤ Cεrn, (6.3)

for any Br(x0) ⊂ B1, r < 1/2. Indeed, if (6.3) holds, then the lemma

follows, since otherwise there exists Br(x0) such that

|Qε ∩Br(x0) ∩ {v > 0}| ≥ C0εr
n−1,
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with C0 > 0 arbitrarily large, and we would have

C0εr
n−1 ≤ |Qε ∩Br(x0) ∩ {v > 0}|

≤

ˆ 1

0
|Qε ∩Brs(x0) ∩ {v > 0}| ds

≤ Cεrn,

which leads to a contradiction for C0 large enough. Thus, it remains to prove

(6.3). The idea is to differentiate the PDE satisfied by v on its positivity

set, multiply the outcome by the truncated function

G(η) :=











ε if η > ε
1

p−1

|η|p−1sign(η) if |η| ≤ ε
1

p−1

−ε if η < −ε
1

p−1

and integrate over Brs(x0).

From (5.5), in {v > 0} we have

De∆pv = Def,

where e is any unit vector and De is the directional derivative. Thus, putting

ve := Dev,

div
(

|Dv|p−2Dve + (p− 2)|Dv|p−4DvDv ·Dve
)

= Def,

in the weak sense. Multiplication by G(ve) and integration over Brs(x0),

s ∈ (0, 1), leads to
ˆ

Brs(x0)

(

|Dv|p−2Dve + (p− 2)|Dv|p−4DvDv ·Dve
)

·DG(ve) dx

=

ˆ

∂Brs(x0)

(

|Dv|p−2Dνve + (p− 2)|Dv|p−4DνvDv ·Dve
)

G(ve) dx

−

ˆ

Brs(x0)
DefG(ve) dx,

(6.4)

where Dν denotes the outward normal derivative.

Integrating the first term of the right-hand side and using Hölder’s in-

equality combined with the first estimate in Lemma 6.1, we obtain
ˆ 1

0

ˆ

∂Brs(x0)

(

|Dv|p−2Dνve + (p− 2)|Dv|p−4DνvDv ·Dve
)

G(ve) dx ds

≤ (p− 1)

ˆ

Br(x0)
|Dv|p−2|D2v||G(ve)| dx

≤ (p− 1)εrn/2

(

ˆ

Br(x0)

[

|Dv|p−2|D2v|
]2

)
1

2

≤ Cεrn.

(6.5)
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To estimate the second term of the right-hand side, we use (6.2), obtaining
ˆ

Brs(x0)
DefG(ve) dx ≤

ˆ

Br(x0)
|Df ||G(ve)| dx ≤ Cεrn. (6.6)

The constants C > 0 in (6.5) and (6.6) depend only on n, p and γ.

Now, to estimate below the left-hand side of (6.4), we take e = ei, where

{ei}
n
i=1 is the standard basis in R

n. Note that

G′(η) = (p− 1)|η|p−2χ{

|η|<ε
1

p−1

}

and Qε ⊂ Qi
ε. Recalling the second estimate in Lemma 6.1, we obtain

n
∑

i=1

[

ˆ

Brs(x0)
|Dv|p−2Dvxi + (p− 2)|Dv|p−4DvDv ·Dvxi

]

·DG(vxi)

≥ (p− 1)

ˆ

Qi
ε∩Brs(x0)∩{v>0}

|Dv|2(p−2)|D2v|2

+ (p− 1)(p− 2)

ˆ

Qi
ε∩Brs(x0)∩{v>0}

|Dv|2(p−2)
n
∑

i=1

(

Dv

|Dv|
·Dvxi

)2

≥ (p− 1)

ˆ

Qi
ε∩Brs(x0)∩{v>0}

[

|Dv|p−2|D2v|
]2

≥ σ
|Qi

ε ∩Brs(x0) ∩ {v > 0}|

p− 1

≥ σ
|Qε ∩Brs(x0) ∩ {v > 0}|

p− 1
.

Combining the last inequality with (6.4), (6.5), and (6.6), we obtain (6.3).

□

We are now ready to prove the main result of this section.

Theorem 6.1. If u is a minimizer of (2.1), and x0 ∈ ∂{u > 0} ∩ B1/2,

then

Hn−1(∂{u > 0} ∩Br(x0)) < Crn,

for any r ∈ (0, 1/4), where the constant C > 0 depends only on n, p and γ.

Proof. It is enough to prove the result for the solution v of the obstacle

problem (5.5), since ∂{v > 0} = ∂{u > 0}.

Recalling Besicovitch’s covering lemma, let {Bε(xi)}i∈I be a finite cover-

ing of ∂{v > 0}∩Br(x0), with xi at the free boundary and at most L = L(n)

overlapping at each point. From the proof of Corollary 4.2, there exists a

constant c such that, for any i ∈ I, there exists yi ∈ Bε(xi) such that

Bcε(yi) ⊂ Qε ∩Bε(xi) ∩ {v > 0}.
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Using Lemma 6.2, we deduce

|B1|c
nεn#I =

∑

i∈I

|Bcε(yi)|

≤
∑

i∈I

|Qε ∩Bε(xi) ∩ {v > 0}|

≤ L(n)|Qε ∩Bε(x0) ∩ {v > 0}|

≤ L(n)Cεrn−1.

Thus,

Hn−1
δ (∂{v > 0} ∩Br(x0)) ≤ Crn−1,

and letting δ → 0, we arrive at

Hn−1(∂{u > 0} ∩Br(x0)) ≤ Crn−1.

□

We conclude with two remarks.

Remark 6.2. Since the free boundary has locally finite Hn−1−measure, the

set {u > 0} has locally finite perimeter in Ω. Thus, D(χ{u>0}) is, in the

sense of distributions, a vector-valued Borel measure supported on the free

boundary. Moreover, its total variation is a Radon measure (see [13]).

Remark 6.3. Up to a negligible set of null perimeter, the free boundary is

a union of, at most, a countable family of C1 hypersurfaces (see [15]).
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