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ON FREE BOUNDARY PROBLEMS SHAPED BY
OSCILLATORY SINGULARITIES

DAMIAO J. ARAUJO, AELSON SOBRAL, EDUARDO V. TEIXEIRA,
AND JOSE MIGUEL URBANO

ABSTRACT. We start the investigation of free boundary variational mod-
els featuring oscillatory singularities. The theory varies widely depend-
ing upon the nature of the singular power «(x) and how it oscillates.
Under a mild continuity assumption on y(z), we prove the optimal reg-
ularity of minimizers. Such estimates vary point-by-point, leading to a
continuum of free boundary geometries. We also conduct an extensive
analysis of the free boundary shaped by the singularities. Utilizing a new
monotonicity formula, we show that if the singular power «(z) varies in
a Wit fashion, then the free boundary is locally a C*° surface, up to
a negligible singular set of Hausdorff co-dimension at least 2.
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2 D.J. ARAUJO, A. SOBRAL, E. V. TEIXEIRA, AND J.M. URBANO

1. INTRODUCTION

We develop a variational framework for the analysis of free boundary
problems that include a continuum of singularities. The mathematical setup
leads to the minimization of an energy-functional of the type

éa(v,O):/OF(Dv,v,a?)dx, (1.1)

whose Lagrangian, F'(p, v, x), is non-differentiable with respect to the v ar-
gument, and the degree of singularity varies with respect to the spatial
variable x. The singularity oscillation exerts an intricate influence on the
free boundary’s trace and shape in a notably unpredictable manner. This
dynamic not only alters the geometric behaviour of the solution but also sig-
nificantly impacts the regularity of the free boundary. As a consequence, the
associated Euler-Lagrange equation gives rise to a rich new class of singular
elliptic partial differential equations, which, in their own right, present an
array of intriguing and independent mathematical challenges and interests.

Singular elliptic PDEs, particularly those involving free boundaries, find
applications in a variety of fields, including thin film flows, image segmenta-
tion, shape optimization, and biological invasion models in ecology, to cite
just a few. Mathematically, such models lead to the analysis of an elliptic
PDE of the form

Au :E(ZE,U)X{U>O}, (12)

within a domain €2 C R™. The defining characteristic of the PDE above lies
in the singular term s: Q x (0,00) — R, which becomes arbitrarily large
near the zero level set of the solution, i.e.,

lim s(x,v) = oo. (1.3)

v—0
Fine regularity properties of solutions to (1.2), along with geometric mea-
sure estimates and eventually the differentiability of their free boundaries,
0{u > 0}, are inherently intertwined with quantitative information concern-
ing the blow-up rate outlined in (1.3). Heuristically, solutions of PDEs with
a faster singular blow-up rate will exhibit reduced regularity along their free
boundaries. Existing methods for treating these singular PDE models, in
various forms, rely to some extent on the wuniformity of the blow-up rate
prescribed in (1.3).

In this paper, we investigate a broader class of variational free boundary
problems, extending our focus to encompass oscillatory blow-up rates. That
is, we are interested in PDE models involving singular terms with fluctuating
asymptotic behavior,

Au ~ uP®) (1.4)
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for some function p: Q — [0,1). As anticipated, the analysis will be varia-
tional, i.e., we will investigate local minimizers of a given non-differentiable
functional, as described in (1.1), which exhibit a spectrum of oscillatory
exponents of non-differentiability.

The investigation of the static case, i.e., of PDE models in the form of
Au ~ u™Po where 0 < pg < 1, has a rich historical lineage, tracing its roots
to the classical Alt-Phillips problem, as documented in [3, 16, 17]. This
elegant problem has served as a source of inspiration, sparking significant
advancements in the domain of free boundary problems, as exemplified by
works like [5, 8, 11, 10, 18, 19, 20, 21], to cite just a few. Remarkably, the Alt-
Phillips model serves as a bridge connecting the classical obstacle problem,
which pertains to the case pg = 0, and the cavitation problem, achieved as
the limit when pg 1. Each intermediary model exhibits its own unique
geometry. That is, solutions present a precise geometric behavior at a free
boundary point, viz. u ~ dist?(z, 8{u > 0}), for a critical, well-defined and
uniform exponent 3(po).

Mathematically, the oscillation of the singular exponent brings several
new challenges, as the model prescribes multiple free boundary geometries.
The main difficulty in analyzing free boundary problems with oscillatory
singularities relies on quantifying how the local free boundary geometry
fluctuations affect the regularity of the solution u as well as the behavior of
its associated free boundary d{u > 0}. In essence, the main quest in this
paper is to understand how changes in the free boundary geometry directly
influence its local behaviour.

From the applied viewpoint, the model studied in this paper accounts for
the heterogeneity of external factors influencing the reaction rates within
the porous catalyst region where the gas density u(z) is distributed. To be
more specific, when examining the theory of diffusion and reaction within
catalysts modeled in an isotropic, homogeneous medium, the task at hand
involves the minimization of an energy-functional, which takes the form

_ (1 v|da x,v)dx
j(v,(’))-/@le\d —|—/Of( ,v)dz. (1.5)

Minimizers of ¢ describe the density distribution of the gas in a station-
ary situation. The term fo f(z,v)dx corresponds to the rupture law along
the free boundary. It models the complexities of the catalytic reaction, dic-
tated by the abrupt shifts and discontinuities in the reaction rates as they
intersect the catalyst’s surface. Mathematically, such factors prompt the
non-differentiability of the term f(x,v) with respect to the v—argument.
The singularity of 0, f(z,v) along v = 0 carries critical information about
the model’s behavior. It is a no-static feature of the model, dynamically
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shifting in response to several external factors, including temperature, pres-
sure, and the roughness of the catalyst’s surface. Such considerations require
mathematical models allowing for non-differentiable terms whose singularity
may vary with respect to the spatial variable x.

In this inaugural paper, our focus is directed toward fine regularity prop-
erties of local minimizers of the energy-functional

z 1
Jg(; ))(v) = / 3 |Do|? + 6(x) (v) V@ de, (1.6)
where the functions v(x) and d(x) possess specific properties that will be

elaborated upon in due course. In connection with the theory of singular
elliptic PDEs, minimizers of (1.6) are distributional solutions of

Au §(2)y(x)u’@=1 in {u > 0}
Du = 0 on O{u > 0},

with the free boundary condition being observed by local regularity esti-
mates, to be shown in this paper.

The paper is organized as follows. In Section 2, we discuss the mathemat-
ical setup of the problem and the scaling feature of the energy-functional
(2.3). We also establish the existence of minimizers as well as local C%+-
regularity, for some 0 < a4 < 1, independent of the modulus of continuity of
~(x). The final preliminary result in Section 2 concerns non-degeneracy es-
timates. In Section 3, we obtain gradient estimates near the free boundary,
quantifying the magnitude of Du(y) in terms of the pointwise value u(y). We
highlight that the results established in Sections 2 and 3 are all independent
of the continuity of v(z). However, when +(x) varies randomly, regularity
estimates of u and its non-degeneracy properties along the free boundary
have different homogeneities, and thus no further regularity properties of
the free boundary are expected to hold. We tackle this issue in Section 4,
where under a very weak condition on the modulus of continuity of v(x), we
establish sharp pointwise growth estimates of u. The estimates from Section
4 imply that near a free boundary point zy € d{u > 0}, the minimizer u

behaves precisely as ~ dﬁ(%), with universal estimates. Section 5 is de-
voted to Hausdorff estimates of the free boundary. In Section 6, we obtain
a Weiss-type monotonicity formula which yields blow-up classification, and
in Section 7, we discuss the regularity of the free boundary 9{u > 0}.

We conclude this introduction by emphasizing that the complexities in-
herent in the dynamic singularities model extend far beyond the boundaries
of the specific problem under consideration in this study. The challenges
posed by the program put forward in this paper call for the development
of new methods and tools. We are optimistic that the solutions crafted in
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this research can have a broader impact, proving invaluable in the analy-
sis of a wide range of mathematical problems where similar intricacies and
complexities manifest themselves.

2. PRELIMINARY RESULTS

2.1. Mathematical setup. We start by describing precisely the mathe-
matical setup of our problem. We assume {2 C R” is a bounded domain and
4,7:0Q — R(T are bounded mensurable functions.

For each subset O C ), we denote

1% (O0) :==ess inf v(y) and ~*(O) :=ess sup Y(y). (2.1)
yeo yeO

In the case of balls, we adopt the simplified notation
W(@,r) = (Br(@)  and  Y(a,r) =y (B ().
Throughout the whole paper, we shall assume
0 < 7%(2) <4*(N) < 1. (2.2)

For a non-negative boundary datum 0 < ¢ € H'(Q)NL>(Q), we consider
the problem of minimizing the functional

T3 (0,Q) := /Q % |Dv|? + §(z) (vT)"®da (2.3)
among competing functions
veA:= {veHl(Q) : v—goeHol(Q)}.
We say u € A is a minimizer of (2.3) if
To(u, Q) < T0(v,Q), Yve A

Note that minimizers as above are, in particular, local minimizers in the
sense that, for any open subset ' C Q,

jf(u,Q’)ﬁjj(v,Q’), VYo e HY(QY) : v—ue HY(Y).

2.2. Scaling. Some of the arguments used recurrently in this paper rely
on a scaling feature of the functional (2.3) that we detail in the sequel for
future reference. Let g € 2 and consider two parameters A, B € (0,1]. If
u € HY(Q) is a minimizer of j,f(v, By(xp)), then

w(x) == u(moB—l—Asc)7 x € By (2.4)

is a minimizer of the functional

0. B0) = |

1 .
~|Duf* + §(z)vT @ dx,
B, 2
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with

_ A\ 2
é(z) := BY(@wotAz) (B) d(zo + Az) and F(z) := y(zo + Ax).
Indeed, by changing variables,

1
/ ~ | Du(x)* + 6(z)u(x) @ da
Ba(zo) 2
_ 4 /B %|Du(azo A dr ot A" [ oao+ Avyuan + gy dy
1 1
1|(B
= An/ ‘()Dwx
(5 pete)

= A"2p? / %|Dw(g;)|2+BV<$O+A$>—2A25(Q;U+AJ;) [w(z)]" @A) gy
By

2
+ (0 + Az) [Bw(z)] @0+ gy

_ Anp? /B %\Dw(m)]Q—i—S(a}) (@)@ da.

Observe that since 0 < B < 1, & satisfies
16]1 oo (By) < B2 A2(15]| oo (B4 (20)-
In particular, choosing A = r and B =, with 0 < r < 1 and
2
p= 2 — Y (o, A)’
we obtain ”SHLOO(Bl) < 18] oo (B, (20)) -

2.3. Existence of minimizers. We start by proving the existence of non-
negative minimizers of functional (2.3) and deriving global L*>*-bounds.

Proposition 2.1. Under the conditions above, namely (2.2), there exists
a minimizer u € A of the energy-functional (2.3). Furthermore, u is non-
negative in Q and |ul| oo ) < |||l Lo (0)-

Proof. Let
. 5
m = inf v,
vEA ‘77( ’ )
and choose a minimizing sequence uy € A such that, as k — oo,
j$ (ug, Q) — m.

Then, for k> 1, we have

| Durllze@) = 275wy, @) =2 /&(x)(a;jw@)dm

IN

2(m +1) + 28] gy (1921 + el 1)

<2+ 1) + 28] ey (190 + VIO a2y ) -
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From Poincaré inequality, we also have

lurllpz@) < lluk = @l 2 + 1€l 20
< C|Du - DSOHLQ(Q) + H80”L2(Q)
< ClDugl| 2y + C Dol 2y + 0l 20 »
and so
lurll 20y < C*(4€) ™ + €| Dugl[72() + C 1ID@l 20y + 2l 2y (2:5)

with € > 0 to be chosen. We thus obtain

IDu 720y < Cr +2€ 18l 1 () V19 1Dkl 720
with
Cr = C1 (1,118 ey - 1920, G ey ) -

Choosing
1

6 - M
416] oy V1]

we conclude
1Dk 72y < 2C:

and thus, using again (2.5), that {ug}, is bounded in H!(£2). Consequently,
for a subsequence (relabelled for convenience) and a function u € H(Q),
we have

Uy, — U,

weakly in H'(Q), strongly in L?(Q2) and pointwise for a.e. = € Q. Using
Mazur’s theorem, it is standard to conclude that u € A.
The weak lower semi-continuity of the norm gives

1 1

/ ~ | Duf? dx < liminf/ = | Dug|* dz

and the pointwise convergence and Lebesgue’s dominated convergence give
/ §(2)(uf )Y@ dz — / §(x)(ut)"®dz.

Q Q

We conclude that
j,f(u, ) < liminf jf(uk, Q)=m
k—o0

and so v is a minimizer.

We now turn to the bounds on the minimizer. That u is non-negative
for a non-negative boundary datum is trivial since (u*)*t = u™, and testing
the functional against u™ € A immediately gives the result. For the upper
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bound, test the functional with v = min {u, ||g0HLoo(Q)} € A to get, by the
minimality of u,

Og/\D(u—v)\Qdm = |Dul? da:
Q

/Qﬂ{u>||<ﬁ||L<>°(Q)}

/ |Du|? — |Dv|* dx:
Q

< 9 / 5(z) [(w)ﬂx) ~ (@] dx
Q
< 0
We conclude that v = u in Q and thus [|ul|ge ) < [|¢ll Lo (@)- O

Remark 2.1. If the boundary datum ¢ changes sign, the existence theorem
above still applies, but the minimizer is no longer non-negative. Uniqueness
may, in general, fail, even in the case of v =9 < 1.

2.4. Local C1®—regularity estimates. Our first main regularity result
yields local C'1®—regularity estimates for minimizers of the energy-functional
(2.3), under no further assumption on v(x) other than (2.2).

Theorem 2.1. Let u be a minimizer of the energy-functional (2.3) under
assumption (2.2). For each subdomain Q' € S, there exists a constant
C > 0, depending only on n, ||6]ls, V(2), dist (', 09Q) and ||ul|co, such
that
[ulleta@y < C,
7()
2 — ()

For the proof of Theorem 2.1, we will argue along the lines of [13, 14],

for a =

but several adjustments are needed, and we will mainly comment on those.
We start by noting that, without loss of generality, one can assume that the
minimizer satisfies the bound

|l oo () < 1. (2.6)

Indeed, u minimizes (2.3) if, and only if, the auxiliary function

minimizes the functional
1 _
v / 5 |Dv|? + 8(x) (vF)"®) da,
Q

where
3(z) = MY@)=25(z).
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Taking M = max{1, ||ul[ ()}, places the new function u under condition
(2.6); any regularity estimate proven for u automatically translates to w.

Next, we gather some useful estimates, which can be found in [14, Lemma
2.4 and Lemma 4.1, respectively]. We adjust the statements of the lemmata
to fit the setup treated here. Given a ball Br(zg) € 2, we denote the
harmonic replacement (or lifting) of u in Br(zg) by h, i.e., h is the solution
of the boundary value problem

Ah =0 in Bgp(zg) and h—u€ Hi(Bg(xo)).
By the maximum principle, we have h > 0 and
17l oo (Br(z0)) < ltllLoe (B (0))- (2.7)

Lemma 2.1. Let 1) € HY(Bg) and h be the harmonic replacement of ¥ in
Bpr. There exists ¢, depending only on n, such that

c/ |Dtp — Dh|? dx < / |Dy|? — | Dh|? d. (2.8)
B

Lemma 2.2. Let ¢ € HY(Bg) and h be the harmonic replacement of ¥ in
Bpgr. Given B € (0,1), there exists C, depending only on n and 3, such that

/uw (DY), |2 dx < C’ " 6/]1)1/; (DY) g|? dx
+C/\D¢—Dhy2da;,

for each 0 <r < R.
We are ready to prove the local regularity result.

Proof of Theorem 2.1. We prove the result for the case of balls Br(xo) € .
Without loss of generality, assume xy = 0 and denote Bg := Br(0). Since u
is a local minimizer, by testing (2.3) against its harmonic replacement, we
obtain the inequality

/ \Dul? — | Dh[2dz < 2 / (@) (h@)® —u(ey®) do.  (29)

Next, with the aid of [14, Lemma 2.5, one obtains
Ae) @ — u(@)® < Ju() — b)),
and, using (2.2), together with (2.6) and (2.7), we get
lu(z) — h(z)"® < |u(z) — h(z)]*OF)  ae. in Bg. (2.10)
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This readily leads to

/5 1) (e )Wx)) dz < |0 oo (a) /|u h(z)[*OF) dz.

Br

In addition, by combining Hélder and Sobolev inequalities, we obtain

’Y*(Q?;R)
*( ] ) *
/|u—h|7*(0’R) dz < C|Bp|= %" /|u—h2 dz
Br
Y% (0,R)
2
*( )
< C|Bg/— " /Du—Dhy2da; (2.11)
Br
2
for 2* = i .
n—2

Therefore, using Lemma 2.1, together with (2.9), (2.10) and (2.11), we
get

9 2(2* —v4 (0,R)) nto 1 (O.R) )
|Du — Dh|*dzx < C’|BR|2*<2 o = OR""? A0 (2.12)
Finally, by taking

740, R)

p= 2 — ,(0,R)

€ (0,1),

in Lemma 2.2, we conclude

/|Du — (Du),|*dx

By
n+2 v%(0,R) o,
= C(;) T /|Du— (Du)Rle:c+CR”+22 0w
Br

for each 0 < r < R. Campanato’s embedding theorem completes the proof.
O

Hereafter, in this paper, we assume ) = B; C R" and, according to
what was argued around (2.6), fix a normalized, non-negative minimizer,
0 <wu <1, of the energy-functional (2.3).

Remark 2.2. [t is worth noting that the proof of Theorem 2.1 does not rely
on the non-negativity property of u. Therefore, the same conclusion applies
to the two-phase problem, and the proof remains unchanged.
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2.5. Non-degeneracy. We now turn our attention to local non-degeneracy
estimates. We will assume d(x) is bounded below away from zero, namely
that it satisfies the condition

ess inf §(x) =: §p > 0. (2.13)
rx€EB,

Theorem 2.2. Assume (2.13) is in force. For any y € {u >0} and 0 <
r K 1, we have

2
sup u > cr2=7wn, (2.14)
9Br(y)

where ¢ > 0 depends only on n, dy and v,(0,1).

Proof. With y € {u > 0} and 0 < r < 1 fixed, define the auxiliary function
@ by
pla) = u(@)* ") —cr —yP?,

for ¢ > 0 to be chosen later. Note that in {u > 0} N B, (y), we have
Ap = (=7 () (1= r)u™ @0 |Duf 4wl 00 Au) — 2nc

= 27 ) (0= ) DU 4 5@y (@) 00
—2nc
> (2= (g, )@y (@)@ ) o,
Hence, choosing ¢ > 0 small enough such that

O<c§min{1,(wo’l)},
2n

we obtain Ap > 0 in {u > 0} N B,(y). In addition, since p(y) > 0, by the
Maximum Principle,

O ({u >0} N B.(y)) N{p >0} #0.

Consequently, since 5— <1

1
v*(yr)
1 2 2
sup u > c2-7*wr) p2=7*(yr) > C'r2*’y*(yyr)’
0B (y)

and the proof is complete for y € {u > 0}; the general case follows by
continuity. [l

3. GRADIENT ESTIMATES NEAR THE FREE BOUNDARY

In this section, we study gradient oscillation estimates for minimizers of
(2.3) in regions relatively close to the free boundary. We first show that
pointwise flatness implies an L°°—estimate.
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Lemma 3.1. Let u be a local minimizer of the energy-functional (2.3) in
Bi. Assume that
7%(0,1) > 0.
There exists a constant C' > 1, depending only on 7,(0,1) and universal
parameters, such that, if
u(z) < ér?*vfwu (3.1)

forx € Byjy and v < 1/4, then
2
sup u < Crz=—w@n,
Br(z)
Proof. We suppose the thesis of the lemma fails. Then, for each integer

k > 0, there exist a minimizer uy, of (2.3) in By, 2, € Byjp and 0 < 1 < 1/4,
such that

2

1 =~
ug(zr) < ET’: ™,
but )
krljﬂ’“ < sup wuy =:s <1,
Brk. (xk)
where g := Y. (g, 7). Note that from the last two estimates,
2
1
2—7,
ug(z) < 77k k< 725k
and )
2=k
T 1
< 3.2
" ’ (3.2)

In the sequel, define

or(z) = n B.
Sk
Hence,
1
suppr =1, and ¢r(0) < 5. (3.3)
Bi k

In addition, note that (; minimizers

1
v 5 |Dv|? + 6 ()0 @ dz,

B1
for
Ok(x) :=0(z + rkx)m and g (x) == y(xg + rpx).
s

k
From (3.2), we obtain

2_
Y(@p+rrz)—2, 2 < Y(zp+rie)—2 Sk 2= _ (@)= 1 Tk <
Sk Ty = Sy & = S >
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for each x € B;. The last estimate is guaranteed since, for each k,

o= _inf y(y)= inf y(@k +rez) < y(2p + ).
YEBy, (zk) r€B;

Hence,
H(SkHLOO(Bl) < H5||Loo(31)k_1.
Next, we apply Theorem 2.1 for the lower bound

inf y(y) = inf y(zp +rey) = inf (@) = Y(@p, %) 2 1(0,1) =20,
yeBy yeEB,

x€Br, (z1)

and observe that the sequence {py}x is Cl’%—equicontinuous. Therefore,
up to a subsequence, ¢y converges uniformly to ¢ in By, as k — oo.
Taking into account the estimates above, we conclude that p., minimizers
the functional

1
v— = |Dv]? d.
By 2

In particular, @o is harmonic in Bj, and ¢ (0) = 0. Therefore, by the
strong maximum principle, one has ¢o, = 0 in B;. But this contradicts

SUp Yoo = 1,
By

and the proof of the lemma is complete. ([
Next, we prove a pointwise gradient estimate.

Lemma 3.2. Let u be a local minimizer of energy-functional (2.3) in Bj.
Assume 7y is lower semi-continuous in  and that

7:(0,1) > 0.

There exists a small universal parameter 7 > 0 and a constant C, depending
only on v.(0,1) and universal parameters, such that if

0<u<7t in By, (3.4)
then
|Du(@)* < C lu(z)]+ Y, (3.5)
for each x € By ;.

Proof. The case © € 9{u > 0} N By, follows from Theorem 2.1. In fact,
since solutions are locally C1#, for some 5 > 0, the fact that u attains at
each z € 0{w > 0} its minimum value implies that |Du(x)| = 0.

We now consider x € {u > 0} N By, and choose

o 1 1 27w3(071)
T.—C 4 s
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for C as in Lemma 3.1. Note that

2
lim s2-x(zs) = O’
s—07t

for each € By/p. From this and the fact that v.(z,-) is continuous, we
select r > 0 such that

2
2 1\ 2=~*(0,1)
r2-v(z,r) = Cu(x) < <4> ,

the inequality following from (3.4). This implies, in particular, that

1 2—7*(0:1) 1
r<|- < -
— \4 — 4

since the exponent in the above expression is greater than 1. We can now

apply Lemma 3.1 since condition (3.1) holds trivially, obtaining
2
sup u < C'r2=n),
By (x)
Define ,
v(y) i=u(x+ry)r =G0 in By,

and observe that it satisfies the uniform bound

supv < C.

By
Additionally, by the scaling properties of section 2, v is a minimizer of a
scaled functional as (2.3) in Bj, and so, by Theorem 2.1,

|Dv(0)] < L,

for some L, depending only on 7,(0,1) and universal parameters. This
translates into

yx(2,7)

|Du(xz)] < Lr2zo@n

(@,r)  2=7x(z,7)
2

= L(Cu(x))™Cn

< L\@[u(m)]w*(;w),
recalling that C' > 1. Since v, (z,7) > 7(0,1) and 0 < u < 1, the proof
follows with C' = L2C, which depends only on 7, (0, 1) and universal param-
eters. ([

Remark 3.1. We have proved Lemma 3.2 under the assumption that (3.4)
holds. Observe, however, that the conclusion is trivial otherwise. Indeed, if

u(x) > 7, then by Lipschitz reqularity we have
2 2 _ p2(T\OD L? 74(0,1)
Du(@)P <22 = 12 (2)" < — s lu(@)Oh.
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Remark 3.2. It is worthwhile mentioning that the lower semi-continuity
assumption on ~y(xz) in Lemma 3.2 can be removed. To do so, one has
to prove a weaker version of Lemma 3.1, with 2/(2 — 7(0,1)) replacing
2/(2 — v«(z,7)). The reasoning follows seamlessly.

4. WEAK DINI-CONTINUOUS EXPONENTS AND SHARP ESTIMATES

The local regularity result in Theorem 2.1 yields a (1+«)—growth control
for a minimizer u near its free boundary. More precisely, if zg is a free
boundary point then u(zp) = Du(z9) = 0. Consequently, with r = |y — 2|,
we have, by continuity,

u(y) < sup |u(x) —u(z0) — Du(z0) - (z — 20|
z€Br(20)
< CT1+a

= Cly — 20| 27“/*2(207” .

However, such an estimate is suboptimal and a key challenge is to understand
how the oscillation of v(x) impacts the prospective (point-by-point) C1:¢
regularity of minimizers along the free boundary.

In this section, we assume ~ is continuous at a free boundary point zg,
with a modulus of continuity w satisfying

w(1) + limw(t) In <1> <C, (4.1)

for a constant C' > 0. Such a condition often appears in models involving
variable exponent PDEs as a critical (minimal) assumption for the theory;
see, for instance, [1] for functionals with p(x)-growth and [6] for the non-
variational theory.

Note that assumption (4.1) is weaker than the classical notion of Dini
continuity. In fact, if (4.1) is violated then, for a constant M > 0 and
0 < tg < 1, we have

() In <1> > M, Ve (0,t)

1 to —+o00
/ @dtz / 1 =M / dy 00,
o ¢ o tln(§) Into

so v is not Dini continuous.

and then

We are ready to state a sharp pointwise regularity estimate for local min-
imizers of (2.3) under (4.1). We define the subsets

Qu) :={z € B } u(z) >0} and  F(u):=0Q(u),
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corresponding to the non-coincidence set and the free boundary of the prob-
lem, respectively.

Theorem 4.1. Let u be a local minimizer of (2.3) in By and zo € F(u) N
Byjy. Assume vy satisfies (4.1) at zg. Then, there exist universal constants
ro > 0 and C' > 1 such that

2
u(y) < Oy — 20[>C0) (4.2)
for all y € By (20).

Proof. Since (4.1) is in force, let 79 < 1 be such that, for r < ro,

1 -
w(r)ln <T> <2 [0 - w(l)} = O, (4.3)
Fix y € By (z0) and let
r= |y — zo| < ro.
Apply Theorem 2.1 to u over B;(zp), to get

2
sup u(z) < Cr2-mGon,
z€Br(20)

In particular, by continuity, it follows that
u(y) <C PEGom. (4.4)
In view of (4.1), we can estimate
V(20) = (20, 7) Sw(r),
and, since the function g: [0,1] — [0, 1] given by

g(t) = %

satisfies 3 < ¢/(t) < 2, for all t € [0, 1], we have

9 (1(20)) =9 ((20,7)) < 2(v(20) — (20, 7))
< 2w(r).

Combining (4.4) with this inequality, and taking (4.3) into account, we reach

uly) < Crl80G)=90:Gon)] 75t
< Cp2) rﬁ(%)
< C e2C” rﬁ(zw
= C'ly— Zo|ﬁ<zo),
as desired. 0

We also obtain a sharp strong non-degeneracy result.
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Theorem 4.2. Let u be a local minimizer of (2.3) in By and zy € F(u) N
Byjp. Assume (2.13) and that (4.1) is in force at zo. Then, there exist
universal constants rg > 0 and ¢* > 0 such that

2
sup u > c*r2-1Go,
8B, (20)
for every 0 < r < rg.

Proof. As before, let ryp < 1 be such that (4.3) holds and fix r < rg. From
Theorem 2.2, we know

2
sup u > cr2-7"or)
0By (z0)

with ¢ > 0 depending only on n, dy and 7,(0,1).
Now, observe that
2 2 n 2 2
2=y (z0,7)  2=7(20) 2-7(20,7) 2—7(20)

and
2 2 _ 2(v*(20,7) — v(20))
2—7*(20,7) 2 —7(20) (2 =7*(20,7)) (2 = 7(20))
< 2(v*(20,7) = 7(20))
< 2w(r).
Thus,
PTG > 20ty
_ eQw(r) Inr 7“72,4220)
2 6—20* ,,,.2772(,20) ,
due to (4.3), and the result follows with ¢* := ce™2¢". O

With sharp regularity and non-degeneracy estimates at hand, we can now
prove the positive density of the non-coincidence set.

Theorem 4.3. Let u be a local minimizer of (2.3) in By and zy € F(u) N
Byja. Assume (2.13) and that (4.1) is in force at zo. There exists a constant
o > 0, depending on n, oy, 7x(0,1) and the constant from (4.1), such that

|B,(20) N Q(u)|
B.(z0)] "

for every 0 < r < rg. In particular, F(u) is porous and there exists an € > 0
such that H"~(F(u) N By /) = 0.
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Proof. Fix r < rg, with rg as in Theorem 4.1. It follows from the non-
degeneracy (Theorem 4.2) that there exists y € 0B, (zp) such that

u(y) > c*rﬁ(zw.
Now, let z € F(u) be such that
|z — y| = dist (y, F(u)) =: d.
Then, we have

2 2
c*r2=1Go) <wu(y) < sup u < Cd2-GE),
By(2)

Furthermore, observe that
|z =20 <[z —yl+ ]y — 20| <d+,

and so, since d < r, we have |z — zyg| < 2r. Therefore, one can proceed as in
Theorem 4.1 to obtain

2 2
cFrzGto < u(y) < Cd?Go) .

This implies that

c 2772(%)) C
r < <*> dgmax{l,*}d.
c c
So for kK = min {1, ¢*/C}, we have
Bm"(y) - Bd(y) - Q(u)

Since also B (y) C Bar(z0), we conclude
K n
By (20) N Q)| = (5)" alm)@n)",

where a(n) is the volume of the unit ball in R™, and the result follows with
no=(5)" O

Next we establish an optimized version of Lemma 3.2, assuming that ~(x)
satisfies condition (4.1). First, observe that if = € Q(u) N By /5 is such that

< 1 2 2( )
— —v(x
u(x) —_ CT. )

for < 1/4, then (3.1) also holds at x. Therefore, Lemma 3.1 applies and
we also have

2
sup u < Crz=v(n,
Br(z)

Condition (4.1) comes into play, and proceeding as in the proof of Theorem
4.2, for a larger constant C1, we have

2
sup u < Cyr2—@) (4.5)
By (x)
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for 7 universally small. This remark leads to the following result.

Lemma 4.1. Let u be a local minimizer of the energy-functional (2.3) in By.
Assume (2.13) and (4.1) are in force. There exists a constant C, depending
on Y«(0,1) and universal parameters, such that

|Du(a)|* < C [u(z)]"®,
for each x € By 3.

Proof. The proof is essentially the same as the proof of Lemma 3.2, except
for the steps we highlight below. By Remark 3.1, it is enough to prove the
result at points such that 0 < u(z) < 7. First, we choose r so that

2
r2=@ = Cu(x),

which can be taken small enough depending on 7. As a consequence, (4.5)
implies that the function, defined in By by

2
v(y) =u(z +ry)r 2@,

is uniformly bounded. What remains to be shown is that the parameters
in the functional that v minimizes are also controlled. Due to the scaling
properties from section 2, we have

~ 2 (2r)—2 . _
18] oo 51y < 7@ ED 2026 L5,y < P ED TS L ).
Condition (4.1) comes into play once more so that the power

y (@)= (z)

can be uniformly bounded. Consequently, Lipschitz estimates are also avail-
able for v, and the lemma follows. O

Example 4.1. We conclude this section with an insightful observation lead-
ing to a class of intriguing free boundary problems. Initially, it is worth
noting that the proof of the existence of a minimizer can be readily adapted
for more general energy functionals of the form

J(v) = / %|Dv|2 +6(2) () @) g (4.6)

provided v: 2 x R — R is a Carathéodory function. We further emphasize
that our local CY® regularity result, Theorem 2.1, also applies to this class
of functionals.

To illustrate the applicability of these results, let us consider the follow-
ing toy model, where the oscillatory singularity v(v) is given only globally
measurable and bounded, such that v(v) > 1/6, and

7(33,1)):;(111(?;))2 for 0<v<l, (4.7)
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see figure 1. One easily checks that v is Dini continuous along the surface

{v(z,u) = 0} C F(u),
for any minimizer u of the corresponding functional J in (4.6). Since

1

7*(07 1) = 6,

the local regularity estimate obtained in Theorem 2.1, gives that minimizers
are locally of class C*2/'. In contrast, observe that
1
vy== at F(u),
2
and so, Theorem 4.1 asserts that local minimizers are precisely of class C*/3

at free boundary points. A wide range of meaningful examples can be con-
structed out of functions obtained in [4, Section 2].

u=>0

FI1GURE 1. The graph above illustrates a power singularity
~v(x,u), characterized by pronounced measurement impreci-
sion arising from inherent randomness in the microstructure
composition of the material. Despite this inherent uncer-
tainty, our regularity results, applicable both locally and at
free boundary points, offer universal and accurate estimates.
Remarkably, these estimates remain independent of the sub-
stantial oscillations observed in the function v(x,u).
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Applying similar reasoning, we can provide examples of energy functionals
for which minimizers are locally of class CY¢, for 0 < € < 1, whereas along
the free boundary, they are C“'~¢—regular. We anticipate revisiting the
analysis of such models in future investigations.

5. HAUSDORFF MEASURE ESTIMATES

In this section, we prove Hausdorff measure estimates for the free bound-
ary under the stronger regularity assumptions on the data

§(z) € W»*(By) and ~(x) € W™ (By). (5.1)

Differentiability of the free boundary will be obtained in Section 7, assuming
only 6,7 € Wh4(By), for some ¢ > n.
Furthermore, we shall also assume

+(0,1) == ~*(B1(0)) < 1. (5.2)

We will need a few preliminary results, as in [3]. We begin with a slightly
different pointwise gradient estimate with respect to Lemma 4.1.

Lemma 5.1. Let u be a local minimizer of the energy-functional (2.3) in
By. Assume (2.13), (4.1), (5.2) and (5.1) are in force and let xo € F(u) N
Byjy. There exists a constant c1, depending only on n, &, 7x(0,1), || D6][o,
D28 |00, |PY|lco and || D?Y||oo, such that

|Du(a)? < 28(2) [u(@)]"™ + cru(z),
for each x € By g(wo).
Proof. Consider (: [0,37] — R, defined by

0 if telo,7]

(1) =
Ki(t—7)% if te]r,37],

and define, for 7 = 1/8 and K > 0 a large constant to be chosen later,

w(y) = [Du(y)® — 28(y)[w(y)]"Y — Kuly) — ¢(ly — o) [u(y)]™,

for y € Q(u) N B3, (xp). By Lemma 4.1, we can suitably choose K1 > 0 so
that w < 0 on dBs3.(x¢), and so w < 0 on 9[Q(u) N B, (zg)]. We will show
that w < 0 in Q(u) N Bs,(x0). To do so, we assume, to the contrary, that w
attains a positive maximum at p € Q(u)N Bz, (xp). Since w is smooth within
Q(u) and p is a point of maximum for w, we have Aw(p) < 0. To reach a
contradiction, we will show that Aw(p) > 0, for 7 small and K large.

We will omit the point p whenever possible to ease the notation. We also
rotate the coordinate system so that e; is in the direction of Du(p). We
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then have
0 = 0ww(p)
= 2Du-DOju — 2010u7 — 26 (Wﬂ_l@lu + O1yu” ln(u)) — KOoju
—01Cu” — ¢ (’yzﬂ_l@lu + Oryu” ln(u))

v
= Ou [231116 - 57(2515 +01¢) —u (26 + () - K
LU

u?
Since d1u(p) > 0, we obtain
¥ ¥
20111 = —— (2018 + O1C) + u " Y(20 + ¢) + K + ——d1y In(u) (26 + ).
81u 81u

(p)

Moreover, since w(p) > 0, it also holds that dyu(p) > 1/20(p)u(p) 2 , and

SO 5
u” uz 1
— < <

O1u ~ V25 T /260

(1]

uz.

This implies that
20111 > 2600 + K + (yu !t — Cru? — Cou? | In(u)l,

for constants C; = C1(do, || Dd||ec, K1) and Cay = Ca(do, || DY||ec, K1). For a
small n* > 0 so that v/2 —n* > 0 and a larger constant C'3, we then have

2011u > 2670+ K+ Cyu? Tt — Cauz
Writing K = nK + (1 —n)K, for n € (0,1), we obtain, for large K,
2011u > 20yu' "t + nK 4 (yu L,
and as a consequence, squaring and dropping positive terms,
2 (O11u)* > 2 (5’yu7_1)2 + 26y Ku 4 26¢ (7u7_1)2. (5.3)
Now, we calculate Aw at the point p. By direct computations, we obtain

Aw = 2 Z(ak,jU)Q +2Du - D(Au) —2u"A§ —4D§ - D(u")
k.3

—20A(u7) — KAu —u"AC —2D(¢ - D(u”) — CA(u”).

Moreover,
D) = ) In(u)Dy+~yu' " Du,
A) = o' In(u)Ay + " (In(u))?|Dv]* + 2yu" ! In(u) Dy - Du

+2u7 " Dy - Du + y(y — Du? 2| Dul® + yu? " Aw.
Observe that, by Lemma 4.1 and since v < 1,
|ID(uY)| < Cyyu® L.
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We also have

(v = 1) [Duf?
~d uY

A(u) < Csu’ ™ + 6722 [ + 1} ,

for a constant Cs = C5(||D7¥|c0s | D*Y|ls0s 75(0,1)). One can now further

estimate Aw from below to obtain

Aw > 2(01u)? — Ceu ™t + 26y(y — D)~ 2|Dulf?

_ 2
9524222 (v —1) [Dy| 11| - Koyt
%) uY
_ 2
¢y 2ut2 [(”Y 1) | Dul + 1]
~d uY

= 2(011u)? — 26%°y*u* % — Ceu ™!

_ 2
Kyt — 6(7%27_2 [(’7 1) |Du| + 1} .
~¥d uY

By (5.3), it follows that
Aw > 20ynKu'~! 4 26¢ (’ﬂﬂ_l)2 — Cur !

_ 2
_K(S,yu'yfl . 5C72u2%2 [(7 1) | Dul + 1]
~d uY

= W 26ynK — Cs — K&v] + 26¢ (vzﬂ_l)z

— 1) |Dul?
Y T [(’Y : ) | Tf/| _1_1]_
v U

Since v < 1, we conclude
Aw > w7 209K — C5 — K] .

Now we fix any 1/2 < 7 < 1 and choose K so large that the above expression
is positive. This leads to a contradiction, as discussed before. Since (
vanishes on B;(zg), the result is proved. O

The second preliminary result concerns the integrability of a negative
power of the minimizer.

Lemma 5.2. Let u be a local minimizer of the energy-functional (2.3) in
By. Assume (2.13), (4.1), (5.1) and (5.2) are in force. If 0 € F(u), then

y(x)

u(z)" "2 € LY(Qu) N By /s).

Proof. Observe that it is enough to show that

_a(x)

u(z)” "2 € LY (Qu) N B,(2)), (5.4)
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for some small 7 > 0 and every z € F'(u). Indeed, once this is proved, we can
cover F'(u) N By, with finitely many balls with radius 7 > 0, say {B-(2)}.

Then,
/ u_w(;c) < Z / u_w(;) <c
Qu)N(UB(21)) b Q(u)NBs (1)

Also, by continuity of u, we have

u>c in (Q(u) N Bl/z) \ Ui Br(z),

from which the statement in the lemma follows.
To prove (5.4), we follow closely the argument in [17, Lemma 2.5]. Set

w = u? 27,
First, take p € C°(R™), satisfying p’ > 0, p =0 in [0,1/2] and p(t) = ¢ in
[1,00). For 6 > 0, let ps(t) = 6p(6~1t). If § < ¢, then

1 1
/ Dw-Du pls(u) = / Dw-Dps(min(u,e€)) =: A. (5.5)
€ J{0<u<e}nBr(2;) € JB- (%)
Integrating by parts, we obtain
1 :
A= —/ ps(min(u, €))Aw —I—/ Mﬁyw.
€ J{o<u}NBr(z;) OB+ (2;) €
Now we choose § = €/2, observing that ps(u) = 0 in the set {0 < u < €/4}.
Therefore,

A = —1/ p<2u>Aw—/ Aw
2 J{c/a<u<einBo(z) \€ {e<u}NBy (z)

. / pa(min(u,9) )
9By (2:)

€

By Lemma 4.1, we have

[Dw(@)] < 2|Dy(@)|u()?"2" @ n(u(z))

+ (2 3@ ) ute)H O Duta)
C(1DA()] +1),

for some universal constant C' > 0, and so

A<ormt - 1/ p (2u> Aw — / Aw. (5.6)
2 J{e/a<u<enB, (=) \€ {e<u}NB; ()

By direct computations, it follows that

sue) = a@)+ (2= 59@) ((1- 52@) w0 P 1Dua)?

IN

+u($)1_§7(w)Au(33)> ,
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za(@) = —w(z)In(u(z))Ay(z) - In(u(z)) Dy(z) - Du(=)
—2u($)17%7($)D'y(a:) - Du(x)

- (2 3@ mu@)u@ P Dr(a) - Do),

By Lemma 5.1, there exists a universal constant ¢ > 0 such that

<(1 - 27(9&)) u(x)_%7(1)|Du(x)’2 + u(x)l—gv(zmu(m)) _

,M w2
() g o)
u(w) 2 6(x) (21— y(@) + (1 - g(a)u(z) >
o) 5 (21 =77(0,1) — ey ),

where, for the last inequality, we used Theorem 4.1. Since v*(0,1) < 1, we
can choose 7 > 0 small enough, such that

v

V

2(1 — 7*(0, 1)) — T 7<Zz) > ( (0 1))

and so
()

Aw(z) > a(x) + cou(z)” "2 .

Furthermore, notice that

la(2)] < C(|Dy(x)] + | D*y()| +1),

for some positive universal constant C' > 0. Therefore, by (5.6), we have

: 2 (=)
4= / (u> a(r) + cou(z)” 2
2 {6/4<USE}OB7—(zi>p € < () ou () )
_/ (a(:r) + cQu(x)—@)
{E<U}QBT(ZZ-)

_ _ (=)
< (1Dl 1D ) — / u(z) 5.
{e/4<u}NBr(z)

Now, we estimate the left-hand side of (5.5). By Lemma 4.1 and since
v*(0,1) < 1, we obtain

Dw - Du —QU(x)Z’%”(””)\ In(u(x))|| Dy ()] | Du(z)]
—Cu(2)* 7@ In(u(x))|| Dy ()|
—Cu(2)*7" Y In(u(x))||Dy(x)]

—Cru(z) [Dy(x)],

AV VAR \VAR V]
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for some universal constant C. Thus, from (5.5), we have

1
ol / ()| D ()] ()
€ J{0<u<e}NB-(2;)
_ _ (=)
< C (1D, [ D*]1p) — @ / u(z) 5.
{e/4<u}NBr(2;)

Since p§j < 1, we obtain

/ u(w)E < C(e.Cr Dl D)
{e/4<u}NBr(2;)

We get the result by passing to the limit as e — 0. (]
We are now ready to state and prove the main result of this section.

Theorem 5.1. Let u be a local minimizer of the energy-functional (2.3) in
By. Assume (2.13), (4.1), (5.1) and (5.2) are in force. Then, there exists
a universal constant C' > 0, depending only on n, 8y, Vx(0,1), || D] oo,
1D%8|00, |1PY|loo and || D?*y||so, such that

Hn_l(F(U) N 31/2) <C.
Proof. Assume 0 € F'(u). It is enough to prove that for some small r,
HY(F(u) N B,) < .

Given a small parameter € > 0, we cover F(u) N B, with finitely many balls
{Be(x;) }ier, with finite overlap, that is,

Z XBe(xi) S c,

i€ F.
for a constant ¢ > 0 that depends only on the dimension n. It then follows
that

H Y (F(u)N B,) < clim inf "L (F).
Since x; € F(u), by Theorem 4.1, we have
Q(u) N Be(z) {o <u< Meﬂi} A Be(z:),
where 3; = 2/(2 — v(z;)). By assumption (4.1), it follows that
O(w) N Be(zi) {o <u< Mleﬁ*(%e)} A Be(z;),

for a universal constant M > M. Let us assume, to simplify, that M = 1.
Now, observe that

U (Be(wi) N {0 <u(z) < 6’8*(“’6)}) C By N {0 < u(a:)ff(lx) < e} .

1€l
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Since the covering { B¢(z;) }icr. has finite overlap, it then follows that
S [9u) 1 Bo(ai)] < ¢
1€ Fe

By Theorem 4.3, this implies that

[€2(w) N Be(i)| = poe”,

Ba, N {0 < u(x)ﬁgz) < 6}‘ .

and so

1
nly(F) < < B2 0 {0 < u(@)7 <o}
€ € S - 9

Ho €

which readily leads to
Ze |)B2Tﬂ{0<u(:p)ﬁ<lf> <6H
H Y (F(u) N B,) < — liminf )
Mo €0 €

27

We will show below that the right-hand side of the inequality above can be

bounded above uniformly in e. To do so, let

v(x) = u(J:)B(1I>.

Observe that
/ |Du|* = / D(min(v,€)) - Dv =: I.
Ba,N{0<v<e} Bar

Integrating by parts, we get

I:—/min(v,e)Av—i— / min(v, €)0,v,
BQ,- 8B2r

and so,

|Dv|? +vAv = —¢ / Av + / min(v, €)0,v.
Ba,N{0<v<e} Barn{v>e} 0Bar
By direct computations, we readily obtain
1 1 1y
Dv(z) =g(x)D | = | + =5—=u(x)?@® "Du(z
(@) =90 (505 ) + 5072 @ " Dulo)

and
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and

B(z) = B(lx)D (uﬁA) - Du(x).

Let us first bound (5.7) from below. To do so, we estimate
!

D(555)| * 7T
+2- L g(@)D <1> . Du(z)

1
|Duf* +vAv = g(z)? u(:v)Q(W“f)_l)]DM2

Hmw+3mm@m;+ﬂzgw
> B(a)u(z)™® + 6(;QU($)2<:3<1@1)\DU,2
1 1
+2%g(az)D <5($)> - Du(z)
+A(x)u(z) Ee) + d07x(0,1)

By Lemma 4.1, we have

B(x)?

1 %—1 nlulz L - Du(z
> gy Inu ))D(W)) Du(z)
> —u(z)7@ In(u(z))|Dy(z)|
> —u@ | Dy(z)],

which implies
|Dv|? +vAv > —Cuﬁ|ny(x)|

421 g(2)D (1) . Du(z)

B(x) p(x)
007%(0,1
+A(z)u(z) P + ”2(0)
for some universal constant C'. Using Lemma 4.1 once more, we can show
that
2505000D (55 ) - Dulo)| < Crute) |1 0)

——g(x —— | - Du(x)| < Cru(z)B@ | Dy(x

B(@) B(@) 1
and

[A(z)| < C1(ID(2)] + [D*(x)| + | Dy ()] In(u(z))]),
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for some universal constant C, and so

1 1
|Dv|? +vAv > —Cou?@ |Dy(z)| — CLuP@®

00 vx(0,1
i 072( ),

(DY ()| + |D*y(2)])

for a universal constant Cy. We can now estimate the left-hand side of (5.7)
as

/ 1Dv|? + vAv > —Co||DY]lece/?|Bar N {0 < v < €}
Ba,N{0<v<e}
~Cre(| DAl B2y + 10" 11 (82,)

50 7*(07 1)
+ 2
60 ’7*(0’ 1)

4

|Ba, N{0 < v < €}

> ‘BQTH{O<U§€}|—C3€7

for € small enough and depending only on universal constants. By Lemma
4.1, there exists a constant Cy > 0 such that |Dv| < Cy, and so (5.7) implies

90 ’Y*( )

1 |Bar N {0 < v < e}| —Cae < —¢ / Av + Cye,

Bgrﬂ{v>e}
and so

607x(0,1) [Ba, N {0 < v < €}
4 €

<Cy+Cy— / Awv.

BarN{v>e}

The proof will then be complete as long as this remaining integral is uni-
formly bounded in € > 0. Recalling the expression for Av, we have

—Av < |A(2)| + B(x) + 5(:;)(1)(@ ($)75(lz)
< Ci(IDY()] +|D*y(@)| + | Dy(w)|| In(u(x))])
rue) 5 (G n(u)Dr(e) - Dute) + 2P s iDutel)
(B)(z)(w)u(m) 5o
< C5(ID(@)] + [D*4(@)]) + Col Dy ()| n(u(z))| + Cru(z) %
< Cs5(|Dy(z)| + |D*v(x)|) + Cs| DY|sou(z)™ ”(2“7



30 D.J. ARAUJO, A. SOBRAL, E. V. TEIXEIRA, AND J.M. URBANO

where we used Lemma 5.1 and the fact that |In(u(x))| can be bounded above
_a@) .. .
by u(x)” 2 . This implies that

_ (=)
/ Av < C5(|Dy ]l + 1D*111) + CelDyloo + / w(z) 5,
Born{v>e} Born{v>e}

from which the conclusion of the theorem follows in view of Lemma 5.2. O

6. MONOTONICITY FORMULA AND CLASSIFICATION OF BLOW-UPS

In this section, we obtain a monotonicity formula valid for local minimiz-
ers of the energy-functional (2.3). Given 2y € Bj, let

2
v = v(20) and B = 3

Now, for a Lipschitz function v and zg € F(v), define

—(n - 1 x
Woalr) = w0200 [ 2Du? 4 50007 x om0

BT‘(ZO)
_ gr—((n=1)+2) / V2
8B (20)
/ Bt—(n+Br+1) / )U’Y(m)X{v>0}
Bt(z0)

_/O —(n+By+1) / (Dy(z) - (& — 2)) 6(2)v?@ In(v)X fv>01

_ / —(n+By+1)
0

For our formula to hold, we will further need to assume that, for some
0<ryg <1,

V(@)

(= 200" x gy (6.1)

\;O;;

Lot / D5(2)|dz € LY(0, o) (6.2)
Bt(z0)

and
t—t" lnt/ |Dy(z)|dz € L'(0,70). (6.3)
Bt(zo)

We remark that sufficient conditions for these to hold are |Dd| € L9(B;)
and |D~y| € LY(By), for ¢ > n. Indeed, we readily have

t—”lnt/B - |Dvy(x)|dx < C(n, Q)HDVHL‘Z(BTO(zO)) t alInt,
t(20
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and

T0 n
/ t alntdt<oo <= g¢q>n.
0

Remark 6.1. If we assume~y € WY4, for ¢ > n, then v is Holder continuous
and therefore condition (4.1) is automatically satisfied. We also point out
that these integrability conditions are important to assure that Wy, ,, (1) < oo,
for every 0 < r and zy € F(u) such that B,(z9) € B1, for u a local minimizer

of (2.3).

We are now ready to state and prove the monotonicity formula for local
minimizers of our oscillatory exponent functional.

Theorem 6.1. Let u be a local minimizer of (2.3) and assume (6.2) and
(6.3) are in force. If zo € F(u), then
d
dr

Proof. Without loss of generality, we consider zy = 0. Let

Wz (1) > 0.

Walr) = w200 [ DU 6) w0y mo)
B

_ g ((n=1)+28) / 2,

OB,
and define

up(x) == e and v (z) = y(rz).

By scaling,
— 1
Wa(r) = / *‘Dur|2 +8(rz) Tﬁ(%(m)*'ﬂuzr(:p)x{w>o} _ 5/ u%a
Bl 2 831

where we used that, by definition of the parameter 3, we have

2(8—1) = B.
Differentiating W, with respect to r leads to
d — d d o) .
G = [ pu-p (du) 2 (5ra) rPOr @) gy
d
-0 20Uy —— Uy
oB; dT

Integrating by parts, we obtain

2 Wul(r) = (4) +(B) + (C) + (D) + (),
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for

d
(A) T B, 7Au’l” ' aurv

d
B = 2/ ayu’r‘ - /Bur Uy,
(B) aBl( )dr
d
_ @ (. Bly(z)—) (@)
©) : /B O (r )6(m) U X >0}
d
- B(yr(z)—7) vr(z)
(D) : /B lr o(ra) - (u )X{ur>0}7

(B) = [ (Do(ra)-a) 1P oy
1

In order to simplify the notation, we write 7, = 7,(x) and notice that

d d
D) = Blr=7)§ o g, 4w In(uy) —
(D) /Blr (ra) | yru) e + w" In(u )dT’Y X{u,>0}
= (D.1)+(D.2).
Since w is a minimizer to (2.3), it follows that (D.1) 4+ (A) = 0, and so
d

—Wu(r) = (B) + (C) + (D.2) + ().

By direct computations, it follows that

d
dr
Since v is the normal vector at 0Bj, we obtain

dyur(x) = 1P, u(rz) = r' =P Du(rz) - z,

up(z) =r° (Du(rw) cx— ﬁrﬁflur(x» :

which implies that

d 1
%ur = (Oyur — Buy) .
Hence,
(B) = 2/ 0,1, — Buy|?.
" JoB;
Moreover,
C) = [ By =07 s (ra) u) X, 50y
By
d
—I—/ rﬂ(%_wﬁln(r)d(m‘) ulr (d%) X{u,>0}
B r
and

(D.2) = /B T’B('YTJY)(s(TJ;) u” (In(u(rz)) — Bln(r)) <CZ"’YT> X{ur>0}-
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Therefore,

(C)+(D:2) = v~ [ B(y(z) —7)8(2)u” xqus0y
B,

= (D (@) In(u)u @ (Dy(x) - @) X pus oy
Br
This implies that

d — 2
- W = - 81/ r 7"2
G = 7o

D [ By () — )8(@)u" X o)
B

D 5 () In(w)u? @ (DAy(2) - 2) X pusoy
B,

+r(n+ﬁv+1)/ (Dé(m)'w)UV(m)X{u>0}~

r

Now, recalling the definition of W, o(r), we have

d d — —(n z
g Weo) = ZWu(r) == [ Bly(@) = d(e)e P xpusoy

(kD) / 8(a) In(u)u™™) (Dy(x) - )xqus0)
B,

which implies, by our previous computations, that
d 2
df u,O(T) = / |auur - Bur|2 > 0.
r 9B,

r

O

As a consequence of the monotonicity formula, we obtain the homogeneity
of blow-ups.

Definition 6.1 (Blow-up). Given a point zy € F(u), we say that ug is a
blow-up of u at zy if the family {u,},~o, defined by
_u(zo + 7o) _ o 2
ur(z) = T B0 with - B(z0) = m,

converges, through a subsequence, to ug, when r — 0.
We say ug is B(zo)-homogeneous if

up(Az) = N yg(z), VA >0, Vo € R™
Unlike in the constant case v(x) = 79, the homogeneity property of blow-

ups will vary depending on the free boundary point we are considering. This
is the object of the following result.
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Corollary 6.1. Let u be a local minimizer of (2.3) and assume (6.2) and
(6.3) are in force. If ug is a blow-up of u at a point 20 € F'(u) N By /9, then
ug 18 B(zo)-homogeneous.

Proof. Without loss of generality, we assume zg = 0. Recall
B :=—— where ~:=~(0).
Y

In order to ease the notation, for each j € N, we will write «; instead of
y(Ajx), and define

. 1 L
Wi(r) = r~(+26-1) /B §|Dv\2+)\f(% ”W(S(ij)x{wo}
_ gr(n=D+28) / 2
0B,

B /ﬁt(nJrB'erl)/ (fyj—7))\?(%'_”6()\]'33)11%X{U>o}
0 By

= [ e [ Dy 2) ATV 500 )
0 By

_ /t_(n+m+l)/ (D3() - 2) A] T i gy
0 By

and

Wpe(r) == T(nH(Bl))/ 1\DU’2+5(0)UV(O)X{U>0}_W((n1)+26)/ 2,
B, 2 9B,

We now show that

W(r) = lim Wi (r) aslongas lim A7) 1.
’ j—ro0 ! j—oo J

Indeed,

: i 1 ._ |
W) = 2 [ 2D AT 500 x o)

r

_ g ((n=1)+26) / u?

0B

_/0 pt= (B B (V5 —’Y)Agﬁ'(w_7)5()‘j$)“;‘/j><{“j>0}

_/0 t‘<”+ﬂ7+1)/3 (DY) - ) AT S ()l In(u(Ae)) X u >0y
t

_/ t—(n+67+1)/ (D(S()\j:n)-:z‘) )\f(w_’Y)HU;jX{upO}
0 Bt
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and scaling back to u, we obtain

Wi = Oy

B/\jr

_B(r)(+28) / u?

BB)\]-T

- [ e | ) = )i s
Ajt

1
i\DUP +0(2)u" P X 0y

" (n+Byt1) y—(n467) .
_/0 T /B (Dy(z) - ) 6(x)u"™ I (u(x)) Xguso}
J

T
_/ t—(n—Q—ﬂ'y—i-l))\j—(n—i—ﬁ“/) / (Dd(m) . x) U’Y(x)X{u>0}-
0 ijt
Changing variables in the last three integrals, we reach

j —(n - 1 T
Wi) = Our) ) [ Duf? )y

B)\j’l’
_B(Ajr)*((nfl)ﬁﬁ) u?
8B)\j'r
Ajr .
- /0 s [ (3(@) = )o@y
t

Air
_ / "Byt / (Dy(x) - ) §(w)u™ n(u) xuso)
0 By

Air
_/ 7 t(n+ﬁ7+1)/ (D(;(x).g;)m(‘”)x{wo}v
0 By

and so
Wi (1) = Wu(\jr).

uj

Therefore

Wio(r) = lim Wi (r) = lim Wy(\jr) = W, (01),

j—00 J j—00

where the last inequality is guaranteed by the monotonicity of the functional
at the minimizer u. We conclude that W7¥ is constant. We note that ug is
a minimizer to the functional

1
| 5ID0P + 8007 x gm0y (6.4)
Br

for every R > 0, and thus entitled to the regularity results from [3]. In
particular, it follows, from [3, Lemma 7.1], that ug is 5(0)-homogeneous. [
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Remark 6.2. To assure the existence of blow-ups, one needs to guarantee
that the family (uy)r>o0, defined as

ur(z) = W for B(z0) = 2_,2y(2,0)7

is locally bounded in CYP0)=1 " Indeed, by Theorem 4.1, there exists a
constant C' > 1 such that

l|ur |l oo (my) < C.

Moreover, by applying Theorem 2.1 to u over B,(zy), we obtain

¥ (20,27)
0SCR, (z)|Du| == | sup |Du| | — ( inf ]Du\) < Cr2=lzo2n)
Br(z0 BT(ZO)

Proceeding as at the end of the proof of Theorem 4.1, we use condition (4.1)
to obtain

7= (20,27) _ _2(20)
Cr2—«(z0,2r) S C’rQ—’Y(ZO)7

which implies

_ _2(zq)
0SCR, (z0) < Cr2=Go),

As a consequence, the family {u,}r~o is locally bounded in C1B(z0)—1,

Given the above, blow-up limits of minimizers of the variable singularity
functional (2.3) are global minimizers of an energy-functional with constant
singularity, namely (zp). Corollary 6.1 further yields that blow-ups are
B(zp)-homogeneous.

The pivotal insight here is that the blow-up limits of minimizers of the
variable singularity functional are entitled to the same theoretical framework
applicable to the constant coefficient case. In particular, in dimension n = 2,
blow-up profiles are thoroughly classified due to [3, Theorem 8.2]. More
precisely, if ug is the blow-up of u at zp € F(u), for u a local minimizer of
(2.3) and 0 < v(20) < 1, then ug verifies

Bx(/zg)uo(x)ﬁém =0(20)((x —wo) - v)4 for xR,

for some v € 0B;.

Classifying minimal cones in lower dimensions is crucial, chiefly because of
Federer’s dimension reduction argument that we will utilize in our upcoming
session.
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7. FREE BOUNDARY REGULARITY

In this final section, we investigate the regularity of the free boundary.
For models with constant exponent -, differentiability of the free boundary
was obtained in [3], following the developments of [2]. Although it may
seem plausible, the task of amending the arguments from [2, 3] to the case
of oscillatory exponents — the object of study of this paper — proved quite
intricate. More recently, similar free boundary regularity estimates have
been obtained via a linearization argument in [8] (see also [7]). Here, we
will adopt the latter strategy, ¢.e., and proceed through an approximation
technique, where the tangent models are the ones with constant ~.

More precisely, given a point zg € F'(u) N By 5, let us define

(a(z0) — 1)ex(20) TR
7(20)d(20)

co(z0) =

and
_1
w = ¢y “ul/a,
for o := a(z0) = 2/(2—~(z0)). We note that since the equation holds within
the set where u is positive, we have

§(2) (@) = caw? [wAw + (a = 1)| Dw]
and so
wAWw = 5(w)f)/(oéx)cg(x)—2wa('y(x)l)+2a - (Ck - 1)]Dw|2

Since
a(y(z) —1) +2 - a=aly(x) —7(20)),
we can rewrite the equation as

Aw — M’ (7.1)
w

where h: By x RT x R® — R is defined as
i, 5,€) = () DD G2 000 0D (o 1)

The crucial insight here is that given appropriate continuity conditions
on 7y(x), we can achieve a uniform approximation of the classical Alt-Philips
problem. To put it differently, the oscillatory exponent model will be uni-
formly close to the classical Alt-Philips functional. Since minimizers of the
latter have smooth free boundaries, one should be able to infer the free
boundary regularity of the former via compactness methods. To put this
strategy into practice, though, we must first introduce and discuss some
necessary tools.
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We first remark that defining w, as

wy(x) = w(zo:—rx)’ (7.2)

direct calculations yield
hr (z, wr, Dwy)

Aw, = —21— 7
Wy
where
he(y,s,6) = 020+ TSC)ch(ZOJFM)Q(TS)CV(’Y(ZO-FT&?)—’Y(ZO))
—(a— 1)l

We can now pass to the limit as » — 0, and in view of the choice of ¢y, we
reach

hT(y7 375) — E(Z(bf))
where h(zg, ) is given by
h(zo,€) = (a(z0) — 1)(1 — [¢).

The second key remark is that if the exponent function ~y(x) is assumed
to be Holder continuous, say, of order u € (0,1), then for a fixed s > 0,
the above convergence does not depend on the free boundary point, zy €
F(u) N Byp. Indeed, we can estimate

a(z0)(v(20 + 72) = ¥(20)) In(rs)| < Cr¥|(In(r) + In(s)]
C([)cow, | In(s))r2,

IN

which implies that

lim (rs) X000 Gotre)=3(:0)) _ 1.
r—0

uniformly in 29 € F(u) N By /2. Arguing similarly, one also obtains that

lim 6 (2 + Tx)wcg(zo+r$)_2 = a(z) — 1,

r—0 o
uniformly in zp € F(u) N By /9. Here, we only need the uniform continuity
of the ingredients involved.

The insights above are critical to ensure the linearized problem is uni-
formly close to the one with constant exponent as treated in [8]. To be
more precise, we borrow the following improvement of flatness result, [8,
Proposition 6.1], available for the constant exponent case.

Lemma 7.1. Let w be a viscosity solution to

h(Z(), D@)

Aw = in {w >0}, (7.3)
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with 0 € FW'S(@) and 2o € Byjp. There exist eg,n > 0 such that if € < €
and
(xn—€)y <wW < (zp+€)4 in By,
then
€ €
(x-y—§n>+ <w< (x-V+§?7)+ in By,
with |[v| =1 and |v — e,| < Ce, for C > 0 universal.

It’s important to note that in [8], and thus in Lemma 7.1, being a free
boundary point conveys additional information. This is encoded in the free
boundary condition held in the viscosity sense, as defined in [8, Definition
1.1]. We display the precise definition below for the readers’ convenience.

Definition 7.1. We say that xo € FWS(E) in the viscosity sense if g €
F(w), and if ¥ € C? is such that ¥ touches W from below (resp., from
above) at xq, with |Dy(xg)| # 0, then

D(ao)| <1 (resp., | Dib(ao)| = 1).

Next, we will argue that, as the solutions we address in this paper arise
from a variational problem, we can still employ the flatness improvement
technique outlined in Lemma 7.1. The rationale behind this is explained in
the sequel.

Let u be a minimizer to the functional (2.3) and 29 € F'(u). The distorted
solution w, as defined before, solves (7.1). By optimal regularity, Theorem
4.1, Lipschitz rescalings of w defined as in (7.2) converge to a viscosity
solution to (7.3), say w. The rescalings are related to a sequence of the form

2
up(z) = WD) e 2
2 —(20)
which is a minimizer to a scaled functional that converges to the one with
constant y(z) = y(zp). Thus, we get

ro ’

U):CO

Q=

_1
U« )
for a minimizer w of the functional with constant exponent.

What is left to show is that w satisfies the free boundary condition as
in Definition 7.1. However, as pointed out in [7], see also [9], this is a
consequence of a one-dimensional analysis. For a free boundary point xg €
F(w), there holds

u(xo + tv) = cot®,
where ¢ > 0 small and v is the unit normal pointing towards {@ > 0}.

With this well understood, we proceed with the discussion of another
delicate issue in the program, namely the necessity to control the dependence
of the constant C', appearing in Lemma 7.1, as the free boundary point zg
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varies. The results in [8] guarantee that this dependence will be contingent
on the dimension and the C' —norm of h(zg, £) within a neighborhood of 9 B; .
Importantly, this norm remains uniformly bounded due to our assumptions
regarding the range of the function v(z).

The discussions presented above bring us to the next crucial tool required
in the proof of the free boundary regularity.

Lemma 7.2. Let w be a solution to (7.1), 0 € F(w) and r,e > 0 be two
positive small parameters such that

(xn —er)y <w < (x, +er)y in B
Then, there exists n > 0 small enough such that
(x-v—mer)y <w < (x-v+ner)y in By

Lw(rx), the flatness assumption reads as

Proof. By considering w,(x) = r~
(tn —€)+ <wp < (xp,+€); in By.
We will prove that there exist €y, > 0 such that
(z-v—ne)y Swe < (@-v+ndy in By

for 7 > 0 small enough. By Theorem 4.1, it follows that w, is bounded and
Lipschitz continuous. Thus, w, — w, for some sequence » — 0. By Lemma
7.1, there exist €y, > 0 such that

(zov=gn) sm<(ovagn) B
T-v—= w T v+ - in .
277 + - = 277 + K
Observe that since we can restrict to the set where w is positive, for r small
enough, we obtain
(x-v—en)y Sw < (v-vtea)y in By,
as desired. O

Notice that, by taking w, = n~!

that w, satisfies

w(nz), the conclusion of Lemma 7.2 says

(x-v—er)y Sw, < (x-v+er)y in B,

By further composing with an orthogonal linear transformation, Lemma 7.2
leads to the existence of v/ € 9By such that [/ — v| < Ce/2 and

(- —mer)y <w, < (z-V +ner)y in By,
Therefore,
(z-V —nPer)y <w < (z-V +n’er)y in B2,
By induction, one gets a sequence (vg)reny C OBj such that

e — vp_1| < C27%e



ON FBP SHAPED BY OSCILLATORY SINGULARITIES 41

and
(- vy —nfer)y <w < (z-vp +n%er), in B,k

As a consequence, F(w) is C™9 at 0.

We conclude by commenting on Federer’s classical dimension reduction
argument, [12], and how one can adapt it to the free boundary problem
investigated in this paper.

We start by arguing, as explored above, that when ~(x) is a continuous
function, blow-ups converge to minimizers of the functional with constant
exponent y(zp). Now, at least in dimension n = 2, it is possible to classify
them using ODE techniques, see [3]. Hence, a successful implementation of
Federer’s reduction argument will imply that the singular part of the free
boundary, Sing(F'(u)), satisfies

H”_2+5(Sing(F(U))) =0 for every s> 0.

This, in particular, will allow us to conclude the portion of the free boundary
to which Lemma 7.2 can be applied has total measure.
Here are the ingredients needed. Let zg € F'(u) and define

u(zp +re . 2
U/T-(.’I,') = (/r-O,B(Z())), with 5(20) = m

Such a family converges, up to a subsequence, to some function ug that is a
minimizer to the Alt-Philips functional with constant exponent y(zp). The
first step is to establish the convergence of the singular sets of the family
{u,} as r — 0. This is a consequence of the sharp non-degeneracy, Theorem
2.2, and that the set of regular points is locally an open set because of our
Lemma 7.2. Next, as a consequence of optimal regularity estimates and
monotonicity formula, Corollary 6.1, blow-up limits of the family {u,}, are
homogeneous of degree §(zp). The final step of Federer’s routine is to prove a
dimension reduction result to the singular set of a global (zp)-homogeneous
minimizer of the Alt-Philips functional with constant parameters. To do so,
one must prove a sort of translation invariance of global minimizers. This
part follows using similar arguments found in [9], and thus we omit it here.

The comprehensive discussion above leads to the regularity of the free
boundary, which can be briefly summarized in the following theorem. We
say a function belongs to Wt if it belongs to W14, for some ¢ > n.

Theorem 7.1. Let u be a local minimizer of (2.3) and assume
v(z) € Wit

Then, the free boundary F(u) is locally a C™0 surface, up to a negligible
singular set of Hausdorff dimension less or equal to n — 2.
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Proof. With all the ingredients from the preceding discussion available, the
proof is standard, and we only highlight the main steps.

We start by decomposing the free boundary as the disjoint union of its
regular points and its singular points, that is,

F(u) = Reg(u) U Sing(u).

The set Reg(u) stands for the points where blow-ups can be classified. More
precisely, zo € Reg(u), if for a sequence of radii r,, converging to zero and a
unitary vector v, there holds

2
2—7(2q)

w oz v)E

U, () = ——
rfov(Zo)
The set Sing(u) is simply the complement of Reg(u). That is
Sing(u) = F(u)\Reg(u).
The dimension reduction argument mentioned earlier assures that

M2 (Sing(u)) = 0,

for all s > 0. Thus, one can estimate the Hausdorff dimension of the singular
set as

dimy (Sing(u)) := inf{d : H%(Sing(u)) =0} < n — 2+ s,
for every s > 0, and so
dimy (Sing(u)) < n — 2.

In particular, we conclude that Sing(u) is a negligible set with respect to
the Hausdorff measure H" 1, i.e.,

M (F(u) \ Reg(u)) = 0.

Now, we show that Reg(u) is locally C'°, for some § > 0 universal.
Consider zy € Reg(u) and let ug be a blow-up limit of u at zp. In other
words, for a sequence r = o(1), and up to a change of coordinates, there
holds

u(zo +re 3~ (z0)
up(a) = AT )
r2—7(20)

~(20)

1,20,
in the C), c2 700 (R™) topology. By such a convergence, one deduces that

2 2
co(zn — 6)177(20) < up(z) < colxn + 6)177(20) in Bj.

As a consequence, we obtain

2 2
(2 —er)y "7 < cglulzo + ) < (2 +er)y " in By.
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Next, we define

1
w(z) = ¢y O u(zg + x)ﬁzo), for a(z9) = 2/(2 — v(20)),

which is a function satisfying the assumptions of Lemma 7.2. Hence, scaling
back to w the thesis of Lemma 7.2 and repeating the process inductively,
keeping in mind the remarks previously noted, we conclude that F(u) is
CL9 at 2.

By Hélder continuity of v(z) and the computations made at the beginning
of the section, the proximity condition in Lemma 7.2 is uniform in zy €
F(u) N Byjp. By the boundedness assumption on 7(z), the constant C' in
Lemma 7.1 is universally bounded, and therefore F(u) is locally in C9,
with universal estimates. O
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