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Abstract. We start the investigation of free boundary variational mod-

els featuring oscillatory singularities. The theory varies widely depend-

ing upon the nature of the singular power γ(x) and how it oscillates.

Under a mild continuity assumption on γ(x), we prove the optimal reg-

ularity of minimizers. Such estimates vary point-by-point, leading to a

continuum of free boundary geometries. We also conduct an extensive

analysis of the free boundary shaped by the singularities. Utilizing a new

monotonicity formula, we show that if the singular power γ(x) varies in

a W 1,n+

fashion, then the free boundary is locally a C1,δ surface, up to

a negligible singular set of Hausdorff co-dimension at least 2.
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1. Introduction

We develop a variational framework for the analysis of free boundary

problems that include a continuum of singularities. The mathematical setup

leads to the minimization of an energy-functional of the type

E (v,O) =

∫

O
F (Dv, v, x) dx, (1.1)

whose Lagrangian, F (p⃗, v, x), is non-differentiable with respect to the v ar-

gument, and the degree of singularity varies with respect to the spatial

variable x. The singularity oscillation exerts an intricate influence on the

free boundary’s trace and shape in a notably unpredictable manner. This

dynamic not only alters the geometric behaviour of the solution but also sig-

nificantly impacts the regularity of the free boundary. As a consequence, the

associated Euler-Lagrange equation gives rise to a rich new class of singular

elliptic partial differential equations, which, in their own right, present an

array of intriguing and independent mathematical challenges and interests.

Singular elliptic PDEs, particularly those involving free boundaries, find

applications in a variety of fields, including thin film flows, image segmenta-

tion, shape optimization, and biological invasion models in ecology, to cite

just a few. Mathematically, such models lead to the analysis of an elliptic

PDE of the form

∆u = s(x, u)χ{u>0}, (1.2)

within a domain Ω ⊂ R
n. The defining characteristic of the PDE above lies

in the singular term s : Ω × (0,∞) → R, which becomes arbitrarily large

near the zero level set of the solution, i.e.,

lim
v→0

s(x, v) = ∞. (1.3)

Fine regularity properties of solutions to (1.2), along with geometric mea-

sure estimates and eventually the differentiability of their free boundaries,

∂{u > 0}, are inherently intertwined with quantitative information concern-

ing the blow-up rate outlined in (1.3). Heuristically, solutions of PDEs with

a faster singular blow-up rate will exhibit reduced regularity along their free

boundaries. Existing methods for treating these singular PDE models, in

various forms, rely to some extent on the uniformity of the blow-up rate

prescribed in (1.3).

In this paper, we investigate a broader class of variational free boundary

problems, extending our focus to encompass oscillatory blow-up rates. That

is, we are interested in PDE models involving singular terms with fluctuating

asymptotic behavior,

∆u ∼ u−p(x), (1.4)
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for some function p : Ω → [0, 1). As anticipated, the analysis will be varia-

tional, i.e., we will investigate local minimizers of a given non-differentiable

functional, as described in (1.1), which exhibit a spectrum of oscillatory

exponents of non-differentiability.

The investigation of the static case, i.e., of PDE models in the form of

∆u ∼ u−p0 , where 0 < p0 < 1, has a rich historical lineage, tracing its roots

to the classical Alt-Phillips problem, as documented in [3, 16, 17]. This

elegant problem has served as a source of inspiration, sparking significant

advancements in the domain of free boundary problems, as exemplified by

works like [5, 8, 11, 10, 18, 19, 20, 21], to cite just a few. Remarkably, the Alt-

Phillips model serves as a bridge connecting the classical obstacle problem,

which pertains to the case p0 = 0, and the cavitation problem, achieved as

the limit when p0 ↗ 1. Each intermediary model exhibits its own unique

geometry. That is, solutions present a precise geometric behavior at a free

boundary point, viz. u ∼ distβ(x, ∂{u > 0}), for a critical, well-defined and

uniform exponent β(p0).

Mathematically, the oscillation of the singular exponent brings several

new challenges, as the model prescribes multiple free boundary geometries.

The main difficulty in analyzing free boundary problems with oscillatory

singularities relies on quantifying how the local free boundary geometry

fluctuations affect the regularity of the solution u as well as the behavior of

its associated free boundary ∂{u > 0}. In essence, the main quest in this

paper is to understand how changes in the free boundary geometry directly

influence its local behaviour.

From the applied viewpoint, the model studied in this paper accounts for

the heterogeneity of external factors influencing the reaction rates within

the porous catalyst region where the gas density u(x) is distributed. To be

more specific, when examining the theory of diffusion and reaction within

catalysts modeled in an isotropic, homogeneous medium, the task at hand

involves the minimization of an energy-functional, which takes the form

J (v,O) =

∫

O

1

2
|Dv|2dx+

∫

O
f(x, v)dx. (1.5)

Minimizers of J describe the density distribution of the gas in a station-

ary situation. The term
∫

O f(x, v)dx corresponds to the rupture law along

the free boundary. It models the complexities of the catalytic reaction, dic-

tated by the abrupt shifts and discontinuities in the reaction rates as they

intersect the catalyst’s surface. Mathematically, such factors prompt the

non-differentiability of the term f(x, v) with respect to the v−argument.

The singularity of ∂vf(x, v) along v = 0 carries critical information about

the model’s behavior. It is a no-static feature of the model, dynamically
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shifting in response to several external factors, including temperature, pres-

sure, and the roughness of the catalyst’s surface. Such considerations require

mathematical models allowing for non-differentiable terms whose singularity

may vary with respect to the spatial variable x.

In this inaugural paper, our focus is directed toward fine regularity prop-

erties of local minimizers of the energy-functional

J
γ(x)
δ(x) (v) :=

∫

1

2
|Dv|2 + δ(x)(v+)γ(x)dx, (1.6)

where the functions γ(x) and δ(x) possess specific properties that will be

elaborated upon in due course. In connection with the theory of singular

elliptic PDEs, minimizers of (1.6) are distributional solutions of

{

∆u = δ(x)γ(x)uγ(x)−1 in {u > 0}
Du = 0 on ∂{u > 0},

with the free boundary condition being observed by local regularity esti-

mates, to be shown in this paper.

The paper is organized as follows. In Section 2, we discuss the mathemat-

ical setup of the problem and the scaling feature of the energy-functional

(2.3). We also establish the existence of minimizers as well as local C1,α⋆-

regularity, for some 0 < α⋆ < 1, independent of the modulus of continuity of

γ(x). The final preliminary result in Section 2 concerns non-degeneracy es-

timates. In Section 3, we obtain gradient estimates near the free boundary,

quantifying the magnitude ofDu(y) in terms of the pointwise value u(y). We

highlight that the results established in Sections 2 and 3 are all independent

of the continuity of γ(x). However, when γ(x) varies randomly, regularity

estimates of u and its non-degeneracy properties along the free boundary

have different homogeneities, and thus no further regularity properties of

the free boundary are expected to hold. We tackle this issue in Section 4,

where under a very weak condition on the modulus of continuity of γ(x), we

establish sharp pointwise growth estimates of u. The estimates from Section

4 imply that near a free boundary point x0 ∈ ∂{u > 0}, the minimizer u

behaves precisely as ∼ d
2

2−γ(x0) , with universal estimates. Section 5 is de-

voted to Hausdorff estimates of the free boundary. In Section 6, we obtain

a Weiss-type monotonicity formula which yields blow-up classification, and

in Section 7, we discuss the regularity of the free boundary ∂{u > 0}.
We conclude this introduction by emphasizing that the complexities in-

herent in the dynamic singularities model extend far beyond the boundaries

of the specific problem under consideration in this study. The challenges

posed by the program put forward in this paper call for the development

of new methods and tools. We are optimistic that the solutions crafted in
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this research can have a broader impact, proving invaluable in the analy-

sis of a wide range of mathematical problems where similar intricacies and

complexities manifest themselves.

2. Preliminary results

2.1. Mathematical setup. We start by describing precisely the mathe-

matical setup of our problem. We assume Ω ⊂ R
n is a bounded domain and

δ, γ : Ω → R
+
0 are bounded mensurable functions.

For each subset O ⊂ Ω, we denote

γ⋆(O) := ess inf
y∈O

γ(y) and γ⋆(O) := ess sup
y∈O

γ(y). (2.1)

In the case of balls, we adopt the simplified notation

γ⋆(x, r) := γ⋆(Br(x)) and γ⋆(x, r) := γ⋆(Br(x)).

Throughout the whole paper, we shall assume

0 < γ⋆(Ω) ≤ γ⋆(Ω) ≤ 1. (2.2)

For a non-negative boundary datum 0 ≤ φ ∈ H1(Ω)∩L∞(Ω), we consider

the problem of minimizing the functional

J δ
γ (v,Ω) :=

∫

Ω

1

2
|Dv|2 + δ(x)(v+)γ(x)dx (2.3)

among competing functions

v ∈ A :=
{

v ∈ H1(Ω) : v − φ ∈ H1
0 (Ω)

}

.

We say u ∈ A is a minimizer of (2.3) if

J δ
γ (u,Ω) ≤ J δ

γ (v,Ω), ∀v ∈ A.
Note that minimizers as above are, in particular, local minimizers in the

sense that, for any open subset Ω′ ⊂ Ω,

J δ
γ (u,Ω

′) ≤ J δ
γ (v,Ω

′), ∀v ∈ H1(Ω′) : v − u ∈ H1
0 (Ω

′).

2.2. Scaling. Some of the arguments used recurrently in this paper rely

on a scaling feature of the functional (2.3) that we detail in the sequel for

future reference. Let x0 ∈ Ω and consider two parameters A,B ∈ (0, 1]. If

u ∈ H1(Ω) is a minimizer of J δ
γ (v,BA(x0)), then

w(x) :=
u(x0 +Ax)

B
, x ∈ B1 (2.4)

is a minimizer of the functional

J δ̃
γ̃ (v,B1) :=

∫

B1

1

2
|Dv|2 + δ̃(x)vγ̃(x)dx,
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with

δ̃(x) := Bγ(x0+Ax)

(

A

B

)2

δ(x0 +Ax) and γ̃(x) := γ(x0 +Ax).

Indeed, by changing variables,
∫

BA(x0)

1

2
|Du(x)|2 + δ(x)u(x)γ(x)dx

= An

∫

B1

1

2
|Du(x0 +Ax)|2 dx+An

∫

B1

δ(x0 +Ax)u(x0 +Ay)γ(x0+Ax)dy

= An

∫

B1

1

2

∣

∣

∣

∣

(

B

A

)

Dw(x)

∣

∣

∣

∣

2

+ δ(x0 +Ax) [Bw(x)]γ(x0+Ax) dx

= An−2B2

∫

B1

1

2
|Dw(x)|2 +Bγ(x0+Ax)−2A2δ(x0 +Ax) [w(x)]γ(x0+Ax) dx

= An−2B2

∫

B1

1

2
|Dw(x)|2 + δ̃(x) [w(x)]γ̃(x) dx.

Observe that since 0 < B ≤ 1, δ̃ satisfies

∥δ̃∥L∞(B1) ≤ Bγ⋆(x0,A)−2A2∥δ∥L∞(BA(x0)).

In particular, choosing A = r and B = rβ , with 0 < r ≤ 1 and

β =
2

2− γ⋆(x0, A)
,

we obtain ∥δ̃∥L∞(B1) ≤ ∥δ∥L∞(Br(x0)).

2.3. Existence of minimizers. We start by proving the existence of non-

negative minimizers of functional (2.3) and deriving global L∞-bounds.

Proposition 2.1. Under the conditions above, namely (2.2), there exists

a minimizer u ∈ A of the energy-functional (2.3). Furthermore, u is non-

negative in Ω and ∥u∥L∞(Ω) ≤ ∥φ∥L∞(Ω).

Proof. Let

m = inf
v∈A

J δ
γ (v,Ω)

and choose a minimizing sequence uk ∈ A such that, as k → ∞,

J δ
γ (uk,Ω) −→ m.

Then, for k ≫ 1, we have

∥Duk∥2L2(Ω) = 2J δ
γ (uk,Ω)− 2

∫

Ω
δ(x)(u+k )

γ(x)dx

≤ 2(m+ 1) + 2 ∥δ∥L∞(Ω)

(

|Ω|+ ∥uk∥L1(Ω)

)

≤ 2(m+ 1) + 2 ∥δ∥L∞(Ω)

(

|Ω|+
√

|Ω| ∥uk∥L2(Ω)

)

.
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From Poincaré inequality, we also have

∥uk∥L2(Ω) ≤ ∥uk − φ∥L2(Ω) + ∥φ∥L2(Ω)

≤ C ∥Duk −Dφ∥L2(Ω) + ∥φ∥L2(Ω)

≤ C ∥Duk∥L2(Ω) + C ∥Dφ∥L2(Ω) + ∥φ∥L2(Ω) ,

and so

∥uk∥L2(Ω) ≤ C2(4ϵ)−1 + ϵ ∥Duk∥2L2(Ω) + C ∥Dφ∥L2(Ω) + ∥φ∥L2(Ω) , (2.5)

with ϵ > 0 to be chosen. We thus obtain

∥Duk∥2L2(Ω) ≤ C1 + 2ϵ ∥δ∥L∞(Ω)

√

|Ω| ∥Duk∥2L2(Ω) ,

with

C1 = C1

(

m, ∥δ∥L∞(Ω) , |Ω|, C, ϵ, ∥φ∥H1(Ω)

)

.

Choosing

ϵ =
1

4 ∥δ∥L∞(Ω)

√

|Ω|
,

we conclude

∥Duk∥2L2(Ω) ≤ 2C1

and thus, using again (2.5), that {uk}k is bounded in H1(Ω). Consequently,

for a subsequence (relabelled for convenience) and a function u ∈ H1(Ω),

we have

uk −→ u,

weakly in H1(Ω), strongly in L2(Ω) and pointwise for a.e. x ∈ Ω. Using

Mazur’s theorem, it is standard to conclude that u ∈ A.

The weak lower semi-continuity of the norm gives
∫

Ω

1

2
|Du|2 dx ≤ lim inf

k→∞

∫

Ω

1

2
|Duk|2 dx

and the pointwise convergence and Lebesgue’s dominated convergence give
∫

Ω
δ(x)(u+k )

γ(x)dx −→
∫

Ω
δ(x)(u+)γ(x)dx.

We conclude that

J δ
γ (u,Ω) ≤ lim inf

k→∞
J δ
γ (uk,Ω) = m

and so u is a minimizer.

We now turn to the bounds on the minimizer. That u is non-negative

for a non-negative boundary datum is trivial since (u+)+ = u+, and testing

the functional against u+ ∈ A immediately gives the result. For the upper
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bound, test the functional with v = min
{

u, ∥φ∥L∞(Ω)

}

∈ A to get, by the

minimality of u,

0 ≤
∫

Ω
|D(u− v)|2 dx =

∫

Ω∩{u>∥φ∥L∞(Ω)}
|Du|2 dx

=

∫

Ω
|Du|2 − |Dv|2 dx

≤ 2

∫

Ω
δ(x)

[

(v+)γ(x) − (u+)γ(x)
]

dx

≤ 0.

We conclude that v = u in Ω and thus ∥u∥L∞(Ω) ≤ ∥φ∥L∞(Ω). □

Remark 2.1. If the boundary datum φ changes sign, the existence theorem

above still applies, but the minimizer is no longer non-negative. Uniqueness

may, in general, fail, even in the case of γ ≡ γ0 < 1.

2.4. Local C1,α−regularity estimates. Our first main regularity result

yields local C1,α−regularity estimates for minimizers of the energy-functional

(2.3), under no further assumption on γ(x) other than (2.2).

Theorem 2.1. Let u be a minimizer of the energy-functional (2.3) under

assumption (2.2). For each subdomain Ω′ ⋐ Ω, there exists a constant

C > 0, depending only on n, ∥δ∥∞, γ⋆(Ω
′), dist (Ω′, ∂Ω) and ∥u∥∞, such

that

∥u∥C1,α(Ω′) ≤ C,

for α =
γ⋆(Ω

′)

2− γ⋆(Ω′)
.

For the proof of Theorem 2.1, we will argue along the lines of [13, 14],

but several adjustments are needed, and we will mainly comment on those.

We start by noting that, without loss of generality, one can assume that the

minimizer satisfies the bound

∥u∥L∞(Ω) ≤ 1. (2.6)

Indeed, u minimizes (2.3) if, and only if, the auxiliary function

u(x) :=
u(x)

M
,

minimizes the functional

v 7→
∫

Ω

1

2
|Dv|2 + δ(x)(v+)γ(x) dx,

where

δ(x) :=Mγ(x)−2δ(x).
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Taking M = max{1, ∥u∥L∞(Ω)}, places the new function u under condition

(2.6); any regularity estimate proven for u automatically translates to u.

Next, we gather some useful estimates, which can be found in [14, Lemma

2.4 and Lemma 4.1, respectively]. We adjust the statements of the lemmata

to fit the setup treated here. Given a ball BR(x0) ⋐ Ω, we denote the

harmonic replacement (or lifting) of u in BR(x0) by h, i.e., h is the solution

of the boundary value problem

∆h = 0 in BR(x0) and h− u ∈ H1
0 (BR(x0)).

By the maximum principle, we have h ≥ 0 and

∥h∥L∞(BR(x0)) ≤ ∥u∥L∞(BR(x0)). (2.7)

Lemma 2.1. Let ψ ∈ H1(BR) and h be the harmonic replacement of ψ in

BR. There exists c, depending only on n, such that

c

∫

BR

|Dψ −Dh|2 dx ≤
∫

BR

|Dψ|2 − |Dh|2 dx. (2.8)

Lemma 2.2. Let ψ ∈ H1(BR) and h be the harmonic replacement of ψ in

BR. Given β ∈ (0, 1), there exists C, depending only on n and β, such that
∫

Br

|Dψ − (Dψ)r|2 dx ≤ C
( r

R

)n+2β
∫

BR

|Dψ − (Dψ)R|2 dx

+C

∫

BR

|Dψ −Dh|2 dx,

for each 0 < r ≤ R.

We are ready to prove the local regularity result.

Proof of Theorem 2.1. We prove the result for the case of balls BR(x0) ⋐ Ω.

Without loss of generality, assume x0 = 0 and denote BR := BR(0). Since u

is a local minimizer, by testing (2.3) against its harmonic replacement, we

obtain the inequality
∫

BR

|Du|2 − |Dh|2 dx ≤ 2

∫

BR

δ(x)
(

h(x)γ(x) − u(x)γ(x)
)

dx. (2.9)

Next, with the aid of [14, Lemma 2.5], one obtains

h(x)γ(x) − u(x)γ(x) ≤ |u(x)− h(x)|γ(x),
and, using (2.2), together with (2.6) and (2.7), we get

|u(x)− h(x)|γ(x) ≤ |u(x)− h(x)|γ⋆(0,R), a.e. in BR. (2.10)
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This readily leads to
∫

BR

δ(x)
(

h(x)γ(x) − u(x)γ(x)
)

dx ≤ ∥δ∥L∞(Ω)

∫

BR

|u(x)− h(x)|γ⋆(0,R) dx.

In addition, by combining Hölder and Sobolev inequalities, we obtain

∫

BR

|u− h|γ⋆(0,R) dx ≤ C|BR|1−
γ⋆(0,R)

2∗







∫

BR

|u− h|2∗ dx







γ⋆(0,R)
2∗

≤ C|BR|1−
γ⋆(0,R)

2∗







∫

BR

|Du−Dh|2 dx







γ⋆(0,R)
2

(2.11)

for 2∗ =
2n

n− 2
.

Therefore, using Lemma 2.1, together with (2.9), (2.10) and (2.11), we

get
∫

BR

|Du−Dh|2 dx ≤ C|BR|
2(2∗−γ⋆(0,R))
2∗(2−γ⋆(0,R)) = CR

n+2
γ⋆(0,R)

2−γ⋆(0,R) . (2.12)

Finally, by taking

β =
γ⋆(0, R)

2− γ⋆(0, R)
∈ (0, 1),

in Lemma 2.2, we conclude
∫

Br

|Du− (Du)r|2 dx

≤ C
( r

R

)n+2
γ⋆(0,R)

2−γ⋆(0,R)

∫

BR

|Du− (Du)R|2 dx+ CR
n+2

γ⋆(0,R)
2−γ⋆(0,R) ,

for each 0 < r ≤ R. Campanato’s embedding theorem completes the proof.

□

Hereafter, in this paper, we assume Ω = B1 ⊂ R
n and, according to

what was argued around (2.6), fix a normalized, non-negative minimizer,

0 ≤ u ≤ 1, of the energy-functional (2.3).

Remark 2.2. It is worth noting that the proof of Theorem 2.1 does not rely

on the non-negativity property of u. Therefore, the same conclusion applies

to the two-phase problem, and the proof remains unchanged.
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2.5. Non-degeneracy. We now turn our attention to local non-degeneracy

estimates. We will assume δ(x) is bounded below away from zero, namely

that it satisfies the condition

ess inf
x∈B1

δ(x) =: δ0 > 0. (2.13)

Theorem 2.2. Assume (2.13) is in force. For any y ∈ {u > 0} and 0 <

r ≪ 1, we have

sup
∂Br(y)

u ≥ c r
2

2−γ⋆(y,r) , (2.14)

where c > 0 depends only on n, δ0 and γ⋆(0, 1).

Proof. With y ∈ {u > 0} and 0 < r ≪ 1 fixed, define the auxiliary function

φ by

φ(x) := u(x)2−γ⋆(y,r) − c|x− y|2,
for c > 0 to be chosen later. Note that in {u > 0} ∩Br(y), we have

∆φ = (2− γ⋆(y, r))
(

(1− γ⋆(y, r))u−γ⋆(y,r)|Du|2 + u1−γ⋆(y,r)∆u
)

− 2nc

= (2− γ⋆(y, r))
(

(1− γ⋆(y, r))u−γ⋆(y,r)|Du|2 + δ(x)γ(x)uγ(x)−γ⋆(y,r)
)

−2nc

≥ (2− γ⋆(y, r))δ(x)γ(x)uγ(x)−γ⋆(y,r) − 2nc.

Hence, choosing c > 0 small enough such that

0 < c ≤ min

{

1,
δ0γ⋆(0, 1)

2n

}

,

we obtain ∆φ ≥ 0 in {u > 0} ∩ Br(y). In addition, since φ(y) > 0, by the

Maximum Principle,

∂ ({u > 0} ∩Br(y)) ∩ {φ > 0} ≠ ∅.

Consequently, since 1
2−γ⋆(y,r) ≤ 1

sup
∂Br(y)

u > c
1

2−γ⋆(y,r) r
2

2−γ⋆(y,r) ≥ c r
2

2−γ⋆(y,r) ,

and the proof is complete for y ∈ {u > 0}; the general case follows by

continuity. □

3. Gradient estimates near the free boundary

In this section, we study gradient oscillation estimates for minimizers of

(2.3) in regions relatively close to the free boundary. We first show that

pointwise flatness implies an L∞−estimate.
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Lemma 3.1. Let u be a local minimizer of the energy-functional (2.3) in

B1. Assume that

γ⋆(0, 1) > 0.

There exists a constant C > 1, depending only on γ⋆(0, 1) and universal

parameters, such that, if

u(x) ≤ 1

C
r

2
2−γ⋆(x,r) , (3.1)

for x ∈ B1/2 and r ≤ 1/4, then

sup
Br(x)

u ≤ Cr
2

2−γ⋆(x,r) .

Proof. We suppose the thesis of the lemma fails. Then, for each integer

k > 0, there exist a minimizer uk of (2.3) in B1, xk ∈ B1/2 and 0 < rk < 1/4,

such that

uk(xk) ≤
1

k
r

2
2−γk

k ,

but

k r
2

2−γk

k < sup
Brk

(xk)
uk =: sk ≤ 1,

where γk := γ⋆(xk, rk). Note that from the last two estimates,

uk(xk) ≤
1

k
r

2
2−γk

k <
1

k2
sk,

and

r
2

2−γk

k

sk
<

1

k
. (3.2)

In the sequel, define

φk(x) :=
uk(xk + rkx)

sk
in B1.

Hence,

sup
B1

φk = 1, and φk(0) <
1

k2
. (3.3)

In addition, note that φk minimizers

v 7−→
∫

B1

1

2
|Dv|2 + δk(x)v

γk(x)dx,

for

δk(x) := δ(xk + rkx)
r2k

s
2−γ(xk+rkx)
k

and γk(x) := γ(xk + rkx).

From (3.2), we obtain

s
γ(xk+rkx)−2
k r2k ≤ s

γ(xk+rkx)−2
k

(sk
k

)2−γk
= s

γ(xk+rkx)−γk
k

(

1

k

)2−γk

≤ 1

k
,
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for each x ∈ B1. The last estimate is guaranteed since, for each k,

γk = inf
y∈Brk

(xk)
γ(y) = inf

x∈B1

γ(xk + rkx) ≤ γ(xk + rkx).

Hence,

∥δk∥L∞(B1) ≤ ∥δ∥L∞(B1)k
−1.

Next, we apply Theorem 2.1 for the lower bound

inf
y∈B1

γk(y) = inf
y∈B1

γ(xk + rky) = inf
x∈Brk

(xk)
γ(x) = γ⋆(xk, rk) ≥ γ⋆(0, 1) =: θ,

and observe that the sequence {φk}k is C1, θ
2−θ−equicontinuous. Therefore,

up to a subsequence, φk converges uniformly to φ∞ in B1/2, as k → ∞.

Taking into account the estimates above, we conclude that φ∞ minimizers

the functional

v 7−→
∫

B1

1

2
|Dv|2 dx.

In particular, φ∞ is harmonic in B1, and φ∞(0) = 0. Therefore, by the

strong maximum principle, one has φ∞ ≡ 0 in B1. But this contradicts

sup
B1

φ∞ = 1,

and the proof of the lemma is complete. □

Next, we prove a pointwise gradient estimate.

Lemma 3.2. Let u be a local minimizer of energy-functional (2.3) in B1.

Assume γ is lower semi-continuous in Ω and that

γ⋆(0, 1) > 0.

There exists a small universal parameter τ > 0 and a constant C, depending

only on γ⋆(0, 1) and universal parameters, such that if

0 ≤ u ≤ τ in B1, (3.4)

then

|Du(x)|2 ≤ C [u(x)]γ⋆(0,1), (3.5)

for each x ∈ B1/2.

Proof. The case x ∈ ∂{u > 0} ∩ B1/2 follows from Theorem 2.1. In fact,

since solutions are locally C1,β , for some β > 0, the fact that u attains at

each x ∈ ∂{u > 0} its minimum value implies that |Du(x)| = 0.

We now consider x ∈ {u > 0} ∩B1/2 and choose

τ :=
1

C

(

1

4

) 2
2−γ⋆(0,1)

,
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for C as in Lemma 3.1. Note that

lim
s→0+

s
2

2−γ⋆(x,s) = 0,

for each x ∈ B1/2. From this and the fact that γ⋆(x, ·) is continuous, we

select r > 0 such that

r
2

2−γ⋆(x,r) = Cu(x) ≤
(

1

4

) 2
2−γ⋆(0,1)

,

the inequality following from (3.4). This implies, in particular, that

r ≤
(

1

4

)
2−γ⋆(x,r)
2−γ⋆(0,1)

≤ 1

4
,

since the exponent in the above expression is greater than 1. We can now

apply Lemma 3.1 since condition (3.1) holds trivially, obtaining

sup
Br(x)

u ≤ C r
2

2−γ⋆(x,r) .

Define

v(y) := u(x+ ry) r
− 2

2−γ⋆(x,r) in B1,

and observe that it satisfies the uniform bound

sup
B1

v ≤ C.

Additionally, by the scaling properties of section 2, v is a minimizer of a

scaled functional as (2.3) in B1, and so, by Theorem 2.1,

|Dv(0)| ≤ L,

for some L, depending only on γ⋆(0, 1) and universal parameters. This

translates into

|Du(x)| ≤ Lr
γ⋆(x,r)

2−γ⋆(x,r)

= L (Cu(x))
γ⋆(x,r)

2−γ⋆(x,r)
·
2−γ⋆(x,r)

2

≤ L
√
C [u(x)]

γ⋆(x,r)
2 ,

recalling that C > 1. Since γ⋆(x, r) ≥ γ⋆(0, 1) and 0 ≤ u ≤ 1, the proof

follows with C = L2C, which depends only on γ⋆(0, 1) and universal param-

eters. □

Remark 3.1. We have proved Lemma 3.2 under the assumption that (3.4)

holds. Observe, however, that the conclusion is trivial otherwise. Indeed, if

u(x) > τ , then by Lipschitz regularity we have

|Du(x)|2 ≤ L2 = L2
(τ

τ

)γ⋆(0,1) ≤ L2

τγ⋆(0,1)
[u(x)]γ⋆(0,1).
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Remark 3.2. It is worthwhile mentioning that the lower semi-continuity

assumption on γ(x) in Lemma 3.2 can be removed. To do so, one has

to prove a weaker version of Lemma 3.1, with 2/(2 − γ∗(0, 1)) replacing

2/(2− γ∗(x, r)). The reasoning follows seamlessly.

4. Weak Dini-continuous exponents and sharp estimates

The local regularity result in Theorem 2.1 yields a (1+α)−growth control

for a minimizer u near its free boundary. More precisely, if z0 is a free

boundary point then u(z0) = Du(z0) = 0. Consequently, with r = |y − z0|,
we have, by continuity,

u(y) ≤ sup
x∈Br(z0)

|u(x)− u(z0)−Du(z0) · (x− z0)|

≤ Cr1+α

= C|y − z0|
2

2−γ⋆(z0,r) .

However, such an estimate is suboptimal and a key challenge is to understand

how the oscillation of γ(x) impacts the prospective (point-by-point) C1,α

regularity of minimizers along the free boundary.

In this section, we assume γ is continuous at a free boundary point z0,

with a modulus of continuity ω satisfying

ω(1) + lim
t→0

ω(t) ln

(

1

t

)

≤ C̃, (4.1)

for a constant C̃ > 0. Such a condition often appears in models involving

variable exponent PDEs as a critical (minimal) assumption for the theory;

see, for instance, [1] for functionals with p(x)-growth and [6] for the non-

variational theory.

Note that assumption (4.1) is weaker than the classical notion of Dini

continuity. In fact, if (4.1) is violated then, for a constant M > 0 and

0 < t0 ≪ 1, we have

ω(t) ln

(

1

t

)

≥M, ∀t ∈ (0, t0)

and then
∫ 1

0

ω(t)

t
dt ≥

∫ t0

0

M

t ln
(

1
t

)dt =M

∫ +∞

− ln t0

dy

y
= +∞,

so γ is not Dini continuous.

We are ready to state a sharp pointwise regularity estimate for local min-

imizers of (2.3) under (4.1). We define the subsets

Ω(u) :=
{

x ∈ B1

∣

∣ u(x) > 0
}

and F (u) := ∂Ω(u),



16 D.J. ARAÚJO, A. SOBRAL, E. V. TEIXEIRA, AND J.M. URBANO

corresponding to the non-coincidence set and the free boundary of the prob-

lem, respectively.

Theorem 4.1. Let u be a local minimizer of (2.3) in B1 and z0 ∈ F (u) ∩
B1/2. Assume γ satisfies (4.1) at z0. Then, there exist universal constants

r0 > 0 and C ′ > 1 such that

u(y) ≤ C ′ |y − z0|
2

2−γ(z0) , (4.2)

for all y ∈ Br0(z0).

Proof. Since (4.1) is in force, let r0 ≪ 1 be such that, for r < r0,

ω(r) ln

(

1

r

)

≤ 2
[

C̃ − ω(1)
]

=: C∗. (4.3)

Fix y ∈ Br0(z0) and let

r := |y − z0| < r0.

Apply Theorem 2.1 to u over Br(z0), to get

sup
x∈Br(z0)

u(x) ≤ C r
2

2−γ⋆(z0,r) .

In particular, by continuity, it follows that

u(y) ≤ C r
2

2−γ∗(z0,r) . (4.4)

In view of (4.1), we can estimate

γ(z0)− γ⋆(z0, r) ≤ ω(r),

and, since the function g : [0, 1] → [0, 1] given by

g(t) :=
2

2− t

satisfies 1
2 ≤ g′(t) ≤ 2, for all t ∈ [0, 1], we have

g (γ(z0))− g (γ⋆(z0, r)) ≤ 2 (γ(z0)− γ⋆(z0, r))

≤ 2ω(r).

Combining (4.4) with this inequality, and taking (4.3) into account, we reach

u(y) ≤ C r−[g(γ(z0))−g(γ⋆(z0,r))] r
2

2−γ(z0)

≤ C r−2ω(r) r
2

2−γ(z0)

≤ C e2C
∗

r
2

2−γ(z0)

= C ′ |y − z0|
2

2−γ(z0) ,

as desired. □

We also obtain a sharp strong non-degeneracy result.
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Theorem 4.2. Let u be a local minimizer of (2.3) in B1 and z0 ∈ F (u) ∩
B1/2. Assume (2.13) and that (4.1) is in force at z0. Then, there exist

universal constants r0 > 0 and c∗ > 0 such that

sup
∂Br(z0)

u ≥ c∗ r
2

2−γ(z0) ,

for every 0 < r < r0.

Proof. As before, let r0 ≪ 1 be such that (4.3) holds and fix r < r0. From

Theorem 2.2, we know

sup
∂Br(z0)

u ≥ c r
2

2−γ⋆(z0,r) ,

with c > 0 depending only on n, δ0 and γ⋆(0, 1).

Now, observe that

2

2− γ⋆(z0, r)
=

2

2− γ(z0)
+

2

2− γ⋆(z0, r)
− 2

2− γ(z0)

and

2

2− γ⋆(z0, r)
− 2

2− γ(z0)
=

2(γ⋆(z0, r)− γ(z0))

(2− γ⋆(z0, r)) (2− γ(z0))

≤ 2(γ⋆(z0, r)− γ(z0))

≤ 2ω(r).

Thus,

r
2

2−γ⋆(z0,r) ≥ r2ω(r)r
2

2−γ(z0)

= e2ω(r) ln r r
2

2−γ(z0)

≥ e−2C∗

r
2

2−γ(z0) ,

due to (4.3), and the result follows with c∗ := c e−2C∗

. □

With sharp regularity and non-degeneracy estimates at hand, we can now

prove the positive density of the non-coincidence set.

Theorem 4.3. Let u be a local minimizer of (2.3) in B1 and z0 ∈ F (u) ∩
B1/2. Assume (2.13) and that (4.1) is in force at z0. There exists a constant

µ0 > 0, depending on n, δ0, γ⋆(0, 1) and the constant from (4.1), such that

|Br(z0) ∩ Ω(u)|
|Br(z0)|

≥ µ0,

for every 0 < r < r0. In particular, F (u) is porous and there exists an ϵ > 0

such that Hn−ϵ(F (u) ∩B1/2) = 0.
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Proof. Fix r < r0, with r0 as in Theorem 4.1. It follows from the non-

degeneracy (Theorem 4.2) that there exists y ∈ ∂Br(z0) such that

u(y) ≥ c∗r
2

2−γ(z0) .

Now, let z ∈ F (u) be such that

|z − y| = dist (y, F (u)) =: d.

Then, we have

c∗r
2

2−γ(z0) ≤ u(y) ≤ sup
Bd(z)

u ≤ Cd
2

2−γ(z) .

Furthermore, observe that

|z − z0| ≤ |z − y|+ |y − z0| ≤ d+ r,

and so, since d ≤ r, we have |z − z0| ≤ 2r. Therefore, one can proceed as in

Theorem 4.1 to obtain

c∗r
2

2−γ(z0) ≤ u(y) ≤ Cd
2

2−γ(z0) .

This implies that

r ≤
(

C

c∗

)

2−γ(z0)
2

d ≤ max

{

1,
C

c∗

}

d.

So for κ = min {1, c∗/C}, we have

Bκr(y) ⊂ Bd(y) ⊂ Ω(u).

Since also Bκr(y) ⊂ B2r(z0), we conclude

|B2r(z0) ∩ Ω(u)| ≥
(κ

2

)n
α(n)(2r)n,

where α(n) is the volume of the unit ball in R
n, and the result follows with

µ0 =
(

κ
2

)n
. □

Next we establish an optimized version of Lemma 3.2, assuming that γ(x)

satisfies condition (4.1). First, observe that if x ∈ Ω(u) ∩B1/2 is such that

u(x) ≤ 1

C
r

2
2−γ(x) ,

for r ≤ 1/4, then (3.1) also holds at x. Therefore, Lemma 3.1 applies and

we also have

sup
Br(x)

u ≤ Cr
2

2−γ∗(x,r) .

Condition (4.1) comes into play, and proceeding as in the proof of Theorem

4.2, for a larger constant C1, we have

sup
Br(x)

u ≤ C1r
2

2−γ(x) , (4.5)
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for r universally small. This remark leads to the following result.

Lemma 4.1. Let u be a local minimizer of the energy-functional (2.3) in B1.

Assume (2.13) and (4.1) are in force. There exists a constant C, depending

on γ⋆(0, 1) and universal parameters, such that

|Du(x)|2 ≤ C [u(x)]γ(x),

for each x ∈ B1/2.

Proof. The proof is essentially the same as the proof of Lemma 3.2, except

for the steps we highlight below. By Remark 3.1, it is enough to prove the

result at points such that 0 ≤ u(x) ≤ τ . First, we choose r so that

r
2

2−γ(x) = Cu(x),

which can be taken small enough depending on τ . As a consequence, (4.5)

implies that the function, defined in B1 by

v(y) := u(x+ ry)r
− 2

2−γ(x) ,

is uniformly bounded. What remains to be shown is that the parameters

in the functional that v minimizes are also controlled. Due to the scaling

properties from section 2, we have

∥δ̃∥L∞(B1) ≤ r
2

2−γ(x)
γ∗(x,r)−2

r2∥δ∥L∞(B1) ≤ rγ∗(x,r)−γ(x)∥δ∥L∞(B1).

Condition (4.1) comes into play once more so that the power

rγ∗(x,r)−γ(x)

can be uniformly bounded. Consequently, Lipschitz estimates are also avail-

able for v, and the lemma follows. □

Example 4.1. We conclude this section with an insightful observation lead-

ing to a class of intriguing free boundary problems. Initially, it is worth

noting that the proof of the existence of a minimizer can be readily adapted

for more general energy functionals of the form

J(v) =

∫

1

2
|Dv|2 + δ(x)(v+)γ(x,v(x)) dx, (4.6)

provided γ : Ω × R → R is a Carathéodory function. We further emphasize

that our local C1,α regularity result, Theorem 2.1, also applies to this class

of functionals.

To illustrate the applicability of these results, let us consider the follow-

ing toy model, where the oscillatory singularity γ(v) is given only globally

measurable and bounded, such that γ(v) ≥ 1/6, and

γ(x, v) =
1

2
− 3

(ln(v))2
for 0 < v ≪ 1, (4.7)
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see figure 1. One easily checks that γ is Dini continuous along the surface

{γ(x, u) = 0} ⊂ F (u),

for any minimizer u of the corresponding functional J in (4.6). Since

γ⋆(0, 1) =
1

6
,

the local regularity estimate obtained in Theorem 2.1, gives that minimizers

are locally of class C12/11. In contrast, observe that

γ ≡ 1

2
at F (u),

and so, Theorem 4.1 asserts that local minimizers are precisely of class C4/3

at free boundary points. A wide range of meaningful examples can be con-

structed out of functions obtained in [4, Section 2].

Figure 1. The graph above illustrates a power singularity

γ(x, u), characterized by pronounced measurement impreci-

sion arising from inherent randomness in the microstructure

composition of the material. Despite this inherent uncer-

tainty, our regularity results, applicable both locally and at

free boundary points, offer universal and accurate estimates.

Remarkably, these estimates remain independent of the sub-

stantial oscillations observed in the function γ(x, u).
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Applying similar reasoning, we can provide examples of energy functionals

for which minimizers are locally of class C1,ϵ, for 0 < ϵ≪ 1, whereas along

the free boundary, they are C1,1−ϵ−regular. We anticipate revisiting the

analysis of such models in future investigations.

5. Hausdorff measure estimates

In this section, we prove Hausdorff measure estimates for the free bound-

ary under the stronger regularity assumptions on the data

δ(x) ∈W 2,∞(B1) and γ(x) ∈W 2,∞(B1). (5.1)

Differentiability of the free boundary will be obtained in Section 7, assuming

only δ, γ ∈W 1,q(B1), for some q > n.

Furthermore, we shall also assume

γ∗(0, 1) := γ∗(B1(0)) < 1. (5.2)

We will need a few preliminary results, as in [3]. We begin with a slightly

different pointwise gradient estimate with respect to Lemma 4.1.

Lemma 5.1. Let u be a local minimizer of the energy-functional (2.3) in

B1. Assume (2.13), (4.1), (5.2) and (5.1) are in force and let x0 ∈ F (u) ∩
B1/2. There exists a constant c1, depending only on n, δ0, γ⋆(0, 1), ∥Dδ∥∞,

∥D2δ∥∞, ∥Dγ∥∞ and ∥D2γ∥∞, such that

|Du(x)|2 ≤ 2δ(x) [u(x)]γ(x) + c1u(x),

for each x ∈ B1/8(x0).

Proof. Consider ζ : [0, 3τ ] → R, defined by

ζ(t) =







0 if t ∈ [0, τ ]

K1 (t− τ)3 if t ∈ [τ, 3τ ],

and define, for τ = 1/8 and K > 0 a large constant to be chosen later,

w(y) := |Du(y)|2 − 2δ(y)[u(y)]γ(y) −Ku(y)− ζ(|y − x0|)[u(y)]γ(y),

for y ∈ Ω(u) ∩ B3τ (x0). By Lemma 4.1, we can suitably choose K1 > 0 so

that w ≤ 0 on ∂B3τ (x0), and so w ≤ 0 on ∂[Ω(u) ∩B3τ (x0)]. We will show

that w ≤ 0 in Ω(u)∩B3τ (x0). To do so, we assume, to the contrary, that w

attains a positive maximum at p ∈ Ω(u)∩B3τ (x0). Since w is smooth within

Ω(u) and p is a point of maximum for w, we have ∆w(p) ≤ 0. To reach a

contradiction, we will show that ∆w(p) > 0, for τ small and K large.

We will omit the point p whenever possible to ease the notation. We also

rotate the coordinate system so that e1 is in the direction of Du(p). We
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then have

0 = ∂1w(p)

= 2Du ·D∂1u− 2∂1δu
γ − 2δ

(

γuγ−1∂1u+ ∂1γu
γ ln(u)

)

−K∂1u

−∂1ζuγ − ζ
(

γuγ−1∂1u+ ∂1γ u
γ ln(u)

)

= ∂1u

[

2∂11u− uγ

∂1u
(2∂1δ + ∂1ζ)− uγ−1γ(2δ + ζ)−K

]

+∂1u

[

− uγ

∂1u
∂1γ ln(u)(2δ + ζ)

]

.

Since ∂1u(p) > 0, we obtain

2∂11u =
uγ

∂1u
(2∂1δ + ∂1ζ) + uγ−1γ(2δ + ζ) +K +

uγ

∂1u
∂1γ ln(u)(2δ + ζ).

Moreover, since w(p) > 0, it also holds that ∂1u(p) >
√

2δ(p)u(p)
γ(p)
2 , and

so
uγ

∂1u
≤ u

γ
2√
2δ

≤ 1√
2δ0

u
γ
2 .

This implies that

2∂11u ≥ 2δγuγ−1 +K + ζγuγ−1 − C1u
γ
2 − C2u

γ
2 | ln(u)|,

for constants C1 = C1(δ0, ∥Dδ∥∞,K1) and C2 = C2(δ0, ∥Dγ∥∞,K1). For a

small η∗ > 0 so that γ/2− η∗ > 0 and a larger constant C3, we then have

2∂11u ≥ 2δγuγ−1 +K + ζγuγ−1 − C3u
γ
2
−η∗ .

Writing K = ηK + (1− η)K, for η ∈ (0, 1), we obtain, for large K,

2∂11u ≥ 2δγuγ−1 + ηK + ζγuγ−1,

and as a consequence, squaring and dropping positive terms,

2 (∂11u)
2 ≥ 2

(

δγuγ−1
)2

+ 2δγηKuγ−1 + 2δζ
(

γuγ−1
)2
. (5.3)

Now, we calculate ∆w at the point p. By direct computations, we obtain

∆w = 2
∑

k,j

(∂k,ju)
2 + 2Du ·D(∆u)− 2uγ∆δ − 4Dδ ·D(uγ)

−2δ∆(uγ)−K∆u− uγ∆ζ − 2Dζ ·D(uγ)− ζ∆(uγ).

Moreover,

D(uγ) = uγ ln(u)Dγ + γuγ−1Du,

∆(uγ) = uγ ln(u)∆γ + uγ(ln(u))2|Dγ|2 + 2γuγ−1 ln(u)Dγ ·Du
+2uγ−1Dγ ·Du+ γ(γ − 1)uγ−2|Du|2 + γuγ−1∆u.

Observe that, by Lemma 4.1 and since γ < 1,

|D(uγ)| ≤ C4γu
2γ−1.
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We also have

∆(uγ) ≤ C5u
γ−1 + δγ2u2γ−2

[

(γ − 1)

γδ

|Du|2
uγ

+ 1

]

,

for a constant C5 = C5(∥Dγ∥∞, ∥D2γ∥∞, γ⋆(0, 1)). One can now further

estimate ∆w from below to obtain

∆w ≥ 2(∂11u)
2 − C6u

γ−1 + 2δγ(γ − 1)uγ−2|Du|2

−2δ2γ2u2γ−2

[

(γ − 1)

γδ

|Du|2
uγ

+ 1

]

−Kδγuγ−1

−δζγ2u2γ−2

[

(γ − 1)

γδ

|Du|2
uγ

+ 1

]

= 2(∂11u)
2 − 2δ2γ2u2γ−2 − C6u

γ−1

−Kδγuγ−1 − δζγ2u2γ−2

[

(γ − 1)

γδ

|Du|2
uγ

+ 1

]

.

By (5.3), it follows that

∆w ≥ 2δγηKuγ−1 + 2δζ
(

γuγ−1
)2 − C6u

γ−1

−Kδγuγ−1 − δζγ2u2γ−2

[

(γ − 1)

γδ

|Du|2
uγ

+ 1

]

= uγ−1 [2δγηK − C6 −Kδγ] + 2δζ
(

γuγ−1
)2

−δζγ2u2γ−2

[

(γ − 1)

γδ

|Du|2
uγ

+ 1

]

.

Since γ < 1, we conclude

∆w ≥ uγ−1 [2δγηK − C6 −Kδγ] .

Now we fix any 1/2 < η < 1 and choose K so large that the above expression

is positive. This leads to a contradiction, as discussed before. Since ζ

vanishes on Bτ (x0), the result is proved. □

The second preliminary result concerns the integrability of a negative

power of the minimizer.

Lemma 5.2. Let u be a local minimizer of the energy-functional (2.3) in

B1. Assume (2.13), (4.1), (5.1) and (5.2) are in force. If 0 ∈ F (u), then

u(x)−
γ(x)
2 ∈ L1(Ω(u) ∩B1/2).

Proof. Observe that it is enough to show that

u(x)−
γ(x)
2 ∈ L1(Ω(u) ∩Bτ (z)), (5.4)
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for some small τ > 0 and every z ∈ F (u). Indeed, once this is proved, we can

cover F (u) ∩B1/2 with finitely many balls with radius τ > 0, say {Bτ (zi)}.
Then,

∫

Ω(u)∩(∪Bτ (zi))

u−
γ(x)
2 ≤

∑

i

∫

Ω(u)∩Bτ (zi)

u−
γ(x)
2 ≤ C.

Also, by continuity of u, we have

u ≥ c in
(

Ω(u) ∩B1/2

)

\ ∪i Bτ (zi),

from which the statement in the lemma follows.

To prove (5.4), we follow closely the argument in [17, Lemma 2.5]. Set

w = u2−
3
2
γ(x).

First, take ρ ∈ C∞(R+), satisfying ρ′ ≥ 0, ρ ≡ 0 in [0, 1/2] and ρ(t) = t in

[1,∞). For δ > 0, let ρδ(t) = δρ(δ−1t). If δ < ϵ, then

1

ϵ

∫

{0≤u<ϵ}∩Bτ (zi)
Dw ·Duρ′δ(u) =

1

ϵ

∫

Bτ (zi)
Dw ·Dρδ(min(u, ϵ)) =: A. (5.5)

Integrating by parts, we obtain

A = −1

ϵ

∫

{0<u}∩Bτ (zi)
ρδ(min(u, ϵ))∆w +

∫

∂Bτ (zi)

ρδ(min(u, ϵ))

ϵ
∂νw.

Now we choose δ = ϵ/2, observing that ρδ(u) = 0 in the set {0 < u ≤ ϵ/4}.
Therefore,

A = −1

2

∫

{ϵ/4<u≤ϵ}∩Bτ (zi)
ρ

(

2

ϵ
u

)

∆w −
∫

{ϵ<u}∩Bτ (zi)
∆w

+

∫

∂Bτ (zi)

ρδ(min(u, ϵ))

ϵ
∂νw.

By Lemma 4.1, we have

|Dw(x)| ≤ 2|Dγ(x)|u(x)2− 3
2
γ(x) ln(u(x))

+

(

2− 3

2
γ(x)

)

u(x)1−
3
2
γ(x)|Du(x)|

≤ C (|Dγ(x)|+ 1) ,

for some universal constant C > 0, and so

A ≤ Cτn−1 − 1

2

∫

{ϵ/4<u≤ϵ}∩Bτ (zi)
ρ

(

2

ϵ
u

)

∆w −
∫

{ϵ<u}∩Bτ (zi)
∆w. (5.6)

By direct computations, it follows that

∆w(x) = a(x) +

(

2− 3

2
γ(x)

)((

1− 3

2
γ(x)

)

u(x)−
3
2
γ(x)|Du(x)|2

+u(x)1−
3
2
γ(x)∆u(x)

)

,
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where

2

3
a(x) = −w(x) ln(u(x))∆γ(x)− ln(u(x))Dγ(x) ·Du(x)

−2u(x)1−
3
2
γ(x)Dγ(x) ·Du(x)

−
(

2− 3

2
γ(x)

)

ln(u(x))u(x)1−γ(x)Dγ(x) ·Du(x).

By Lemma 5.1, there exists a universal constant c > 0 such that
((

1− 3

2
γ(x)

)

u(x)−
3
2
γ(x)|Du(x)|2 + u(x)1−

3
2
γ(x)∆u(x)

)

=

u(x)
−γ(x)

2

((

1− 3

2
γ(x)

) |Du(x)|2
u(x)γ(x)

+ δ(x)γ(x)

)

≥

u(x)
−γ(x)

2 δ(x) (2(1− γ(x)) + c(1− g(x))u(x)) ≥
δ0u(x)

−γ(x)
2

(

2(1− γ∗(0, 1))− c1τ
2

2−γ(zi)

)

,

where, for the last inequality, we used Theorem 4.1. Since γ∗(0, 1) < 1, we

can choose τ > 0 small enough, such that

2(1− γ∗(0, 1))− c1τ
2

2−γ(zi) ≥ (1− γ∗(0, 1)),

and so

∆w(x) ≥ a(x) + c2u(x)
−

γ(x)
2 .

Furthermore, notice that

|a(x)| ≤ C(|Dγ(x)|+ |D2γ(x)|+ 1),

for some positive universal constant C > 0. Therefore, by (5.6), we have

A ≤ −1

2

∫

{ϵ/4<u≤ϵ}∩Bτ (zi)
ρ

(

2

ϵ
u

)

(

a(x) + c2u(x)
−

γ(x)
2

)

−
∫

{ϵ<u}∩Bτ (zi)

(

a(x) + c2u(x)
−

γ(x)
2

)

≤ C
(

∥Dγ∥L1 , ∥D2γ∥L1

)

− c

∫

{ϵ/4<u}∩Bτ (zi)
u(x)−

γ(x)
2 .

Now, we estimate the left-hand side of (5.5). By Lemma 4.1 and since

γ∗(0, 1) < 1, we obtain

Dw ·Du ≥ −2u(x)2−
3
2
γ(x)| ln(u(x))||Dγ(x)| |Du(x)|

≥ −Cu(x)2−γ(x)| ln(u(x))||Dγ(x)|
≥ −Cu(x)2−γ∗(0,1)| ln(u(x))||Dγ(x)|
≥ −C1u(x) |Dγ(x)|,
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for some universal constant C1. Thus, from (5.5), we have

−C1
1

ϵ

∫

{0≤u<ϵ}∩Bτ (zi)
u(x)|Dγ(x)| ρ′δ(u)

≤ C
(

∥Dγ∥L1 , ∥D2γ∥L1

)

− c

∫

{ϵ/4<u}∩Bτ (zi)
u(x)−

γ(x)
2 .

Since ρ′δ ≤ 1, we obtain
∫

{ϵ/4<u}∩Bτ (zi)
u(x)−

γ(x)
2 ≤ C

(

c, C1, ∥Dγ∥L1 , ∥D2γ∥L1

)

.

We get the result by passing to the limit as ϵ→ 0. □

We are now ready to state and prove the main result of this section.

Theorem 5.1. Let u be a local minimizer of the energy-functional (2.3) in

B1. Assume (2.13), (4.1), (5.1) and (5.2) are in force. Then, there exists

a universal constant C > 0, depending only on n, δ0, γ⋆(0, 1), ∥Dδ∥∞,

∥D2δ∥∞, ∥Dγ∥∞ and ∥D2γ∥∞, such that

Hn−1(F (u) ∩B1/2) < C.

Proof. Assume 0 ∈ F (u). It is enough to prove that for some small r,

Hn−1(F (u) ∩Br) <∞.

Given a small parameter ϵ > 0, we cover F (u)∩Br with finitely many balls

{Bϵ(xi)}i∈Fϵ with finite overlap, that is,
∑

i∈Fϵ

XBϵ(xi) ≤ c,

for a constant c > 0 that depends only on the dimension n. It then follows

that

Hn−1(F (u) ∩Br) ≤ c lim inf
ϵ→0

ϵn−1#(Fϵ).

Since xi ∈ F (u), by Theorem 4.1, we have

Ω(u) ∩Bϵ(xi) ⊂
{

0 < u ≤Mϵβi

}

∩Bϵ(xi),

where βi = 2/(2− γ(xi)). By assumption (4.1), it follows that

Ω(u) ∩Bϵ(xi) ⊂
{

0 < u ≤M1ϵ
β∗(xi,ϵ)

}

∩Bϵ(xi),

for a universal constant M1 > M . Let us assume, to simplify, that M1 = 1.

Now, observe that
⋃

i∈Fϵ

(

Bϵ(xi) ∩
{

0 < u(x) ≤ ϵβ
∗(xi,ϵ)

})

⊆ B2r ∩
{

0 < u(x)
1

β(x) < ϵ
}

.
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Since the covering {Bϵ(xi)}i∈Fϵ has finite overlap, it then follows that
∑

i∈Fϵ

|Ω(u) ∩Bϵ(xi)| ≤ c
∣

∣

∣
B2r ∩

{

0 < u(x)
1

β(x) < ϵ
}∣

∣

∣
.

By Theorem 4.3, this implies that

|Ω(u) ∩Bϵ(xi)| ≥ µ0ϵ
n,

and so

ϵn−1#(Fϵ) ≤
c

µ0

∣

∣

∣B2r ∩
{

0 < u(x)
1

β(x) < ϵ
}∣

∣

∣

ϵ
,

which readily leads to

Hn−1(F (u) ∩Br) ≤
c c

µ0
lim inf
ϵ→0

|
∣

∣

∣B2r ∩
{

0 < u(x)
1

β(x) < ϵ
}∣

∣

∣

ϵ
.

We will show below that the right-hand side of the inequality above can be

bounded above uniformly in ϵ. To do so, let

v(x) := u(x)
1

β(x) .

Observe that
∫

B2r∩{0<v≤ϵ}

|Dv|2 =
∫

B2r

D(min(v, ϵ)) ·Dv =: I.

Integrating by parts, we get

I = −
∫

B2r

min(v, ϵ)∆v +

∫

∂B2r

min(v, ϵ)∂νv,

and so,
∫

B2r∩{0<v≤ϵ}

|Dv|2 + v∆v = −ϵ
∫

B2r∩{v>ϵ}

∆v +

∫

∂B2r

min(v, ϵ)∂νv. (5.7)

By direct computations, we readily obtain

Dv(x) = g(x)D

(

1

β(x)

)

+
1

β(x)
u(x)

1
β(x)

−1
Du(x)

and

∆v(x) = A(x) +B(x) +
δ(x) γ(x)

β(x)
u(x)

− 1
β(x) ,

where g(x) = v(x) ln(u(x)), with

A(x) = g(x)∆

(

1

β(x)

)

+D

(

1

β(x)

)

·Dg(x)

+u(x)
1

β(x)
−1
D

(

1

β(x)

)

·Du(x),



28 D.J. ARAÚJO, A. SOBRAL, E. V. TEIXEIRA, AND J.M. URBANO

and

B(x) =
1

β(x)
D
(

u
1

β(x)
−1
)

·Du(x).

Let us first bound (5.7) from below. To do so, we estimate

|Dv|2 + v∆v = g(x)2
∣

∣

∣

∣

D

(

1

β(x)

)∣

∣

∣

∣

2

+
1

β(x)2
u(x)

2
(

1
β(x)

−1
)

|Du|2

+2
1

β(x)
g(x)D

(

1

β(x)

)

·Du(x)

+(A(x) +B(x))u(x)
1

β(x) +
δ(x) γ(x)

β(x)

≥ B(x)u(x)
1

β(x) +
1

β(x)2
u(x)

2
(

1
β(x)

−1
)

|Du|2

+2
1

β(x)
g(x)D

(

1

β(x)

)

·Du(x)

+A(x)u(x)
1

β(x) +
δ0 γ⋆(0, 1)

2
.

By Lemma 4.1, we have

B(x)u(x)
1

β(x) +
1

β(x)2
u(x)

2
(

1
β(x)

−1
)

|Du|2

≥ 1

β(x)
u

2
β(x)

−1
ln(u(x))D

(

1

β(x)

)

·Du(x)

≥ −u(x)
1

β(x) ln(u(x))|Dγ(x)|
≥ −u

1
2β(x) |Dγ(x)|,

which implies

|Dv|2 + v∆v ≥ −Cu
1

2β(x) |Dγ(x)|

+2
1

β(x)
g(x)D

(

1

β(x)

)

·Du(x)

+A(x)u(x)
1

β(x) +
δ0 γ⋆(0, 1)

2
,

for some universal constant C. Using Lemma 4.1 once more, we can show

that
∣

∣

∣

∣

2
1

β(x)
g(x)D

(

1

β(x)

)

·Du(x)
∣

∣

∣

∣

≤ C1u(x)
1

β(x) |Dγ(x)|

and

|A(x)| ≤ C1(|Dγ(x)|+ |D2γ(x)|+ |Dγ(x)|| ln(u(x))|),
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for some universal constant C1, and so

|Dv|2 + v∆v ≥ −C2u
1

2β(x) |Dγ(x)| − C1u
1

β(x)
(

|Dγ(x)|+ |D2γ(x)|
)

+
δ0 γ⋆(0, 1)

2
,

for a universal constant C2. We can now estimate the left-hand side of (5.7)

as

∫

B2r∩{0<v≤ϵ}

|Dv|2 + v∆v ≥ −C2∥Dγ∥∞ϵ1/2|B2r ∩ {0 < v ≤ ϵ}|

−C1ϵ(∥Dγ∥L1(B2r) + ∥D2γ∥L1(B2r))

+
δ0 γ⋆(0, 1)

2
|B2r ∩ {0 < v ≤ ϵ}|

≥ δ0 γ⋆(0, 1)

4
|B2r ∩ {0 < v ≤ ϵ}| − C3ϵ,

for ϵ small enough and depending only on universal constants. By Lemma

4.1, there exists a constant C4 > 0 such that |Dv| ≤ C4, and so (5.7) implies

δ0 γ⋆(0, 1)

4
|B2r ∩ {0 < v ≤ ϵ}| − C2ϵ ≤ −ϵ

∫

B2r∩{v>ϵ}

∆v + C4ϵ,

and so

δ0 γ⋆(0, 1)

4

|B2r ∩ {0 < v ≤ ϵ}|
ϵ

≤ C2 + C4 −
∫

B2r∩{v>ϵ}

∆v.

The proof will then be complete as long as this remaining integral is uni-

formly bounded in ϵ > 0. Recalling the expression for ∆v, we have

−∆v ≤ |A(x)|+B(x) +
δ(x) γ(x)

β(x)
u(x)

− 1
β(x)

≤ C1(|Dγ(x)|+ |D2γ(x)|+ |Dγ(x)|| ln(u(x))|)

+u(x)−
γ(x)
2

(

1

2
ln(u(x))Dγ(x) ·Du(x) + γ(x)

2

1

u(x)
|Du(x)|2

)

−δ(x) γ(x)
β(x)

u(x)
− 1

β(x)

≤ C5(|Dγ(x)|+ |D2γ(x)|) + C6|Dγ(x)|| ln(u(x))|+ C7u(x)
−

γ(x)
2

≤ C5(|Dγ(x)|+ |D2γ(x)|) + C8|Dγ|∞u(x)−
γ(x)
2 ,
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where we used Lemma 5.1 and the fact that | ln(u(x))| can be bounded above

by u(x)−
γ(x)
2 . This implies that

∫

B2r∩{v>ϵ}

∆v ≤ C5(∥Dγ∥L1 + ∥D2γ∥L1) + C8|Dγ|∞ +

∫

B2r∩{v>ϵ}

u(x)−
γ(x)
2 ,

from which the conclusion of the theorem follows in view of Lemma 5.2. □

6. Monotonicity formula and classification of blow-ups

In this section, we obtain a monotonicity formula valid for local minimiz-

ers of the energy-functional (2.3). Given z0 ∈ B1, let

γ := γ(z0) and β :=
2

2− γ
.

Now, for a Lipschitz function v and z0 ∈ F (v), define

Wv,z0(r) := r−(n+2(β−1))

∫

Br(z0)

1

2
|Dv|2 + δ(x)vγ(x)χ{v>0}

−βr−((n−1)+2β)

∫

∂Br(z0)

v2

−
∫ r

0
βt−(n+βγ+1)

∫

Bt(z0)

(γ(x)− γ)δ(x)vγ(x)χ{v>0}

−
∫ r

0
t−(n+βγ+1)

∫

Bt(z0)

(Dγ(x) · (x− z0)) δ(x)v
γ(x) ln(v)χ{v>0}

−
∫ r

0
t−(n+βγ+1)

∫

Bt(z0)

(Dδ(x) · (x− z0))v
γ(x)χ{v>0}. (6.1)

For our formula to hold, we will further need to assume that, for some

0 < r0 < 1,

t→ t−n

∫

Bt(z0)
|Dδ(x)|dx ∈ L1(0, r0) (6.2)

and

t→ t−n ln t

∫

Bt(z0)
|Dγ(x)|dx ∈ L1(0, r0). (6.3)

We remark that sufficient conditions for these to hold are |Dδ| ∈ Lq(B1)

and |Dγ| ∈ Lq(B1), for q > n. Indeed, we readily have

t−n ln t

∫

Bt(z0)
|Dγ(x)|dx ≤ C(n, q)∥Dγ∥Lq(Br0 (z0))

t
−n

q ln t,
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and
∫ r0

0
t
−n

q ln t dt <∞ ⇐= q > n.

Remark 6.1. If we assume γ ∈W 1,q, for q > n, then γ is Hölder continuous

and therefore condition (4.1) is automatically satisfied. We also point out

that these integrability conditions are important to assure thatWu,z0(r) <∞,

for every 0 < r and z0 ∈ F (u) such that Br(z0) ⋐ B1, for u a local minimizer

of (2.3).

We are now ready to state and prove the monotonicity formula for local

minimizers of our oscillatory exponent functional.

Theorem 6.1. Let u be a local minimizer of (2.3) and assume (6.2) and

(6.3) are in force. If z0 ∈ F (u), then

d

dr
Wu,z0(r) ≥ 0.

Proof. Without loss of generality, we consider z0 = 0. Let

W u(r) = r−(n+2(β−1))

∫

Br

1

2
|Du|2 + δ(x)uγ(x)χ{u>0}

−βr−((n−1)+2β)

∫

∂Br

u2,

and define

ur(x) :=
u(rx)

rβ
and γr(x) := γ(rx).

By scaling,

W u(r) =

∫

B1

1

2
|Dur|2 + δ(rx) rβ(γr(x)−γ)uγr(x)r χ{ur>0} − β

∫

∂B1

u2r ,

where we used that, by definition of the parameter β, we have

2(β − 1) = βγ.

Differentiating W u with respect to r leads to

d

dr
W u(r) =

∫

B1

Dur ·D
(

d

dr
ur

)

+
d

dr

(

δ(rx) rβ(γr(x)−γ)uγr(x)r

)

χ{ur>0}

−β
∫

∂B1

2ur
d

dr
ur.

Integrating by parts, we obtain

d

dr
W u(r) = (A) + (B) + (C) + (D) + (E),
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for

(A) :=

∫

B1

−∆ur ·
d

dr
ur,

(B) := 2

∫

∂B1

(∂νur − βur)
d

dr
ur,

(C) :=

∫

B1

d

dr

(

rβ(γr(x)−γ)
)

δ(rx)uγr(x)r χ{ur>0},

(D) :=

∫

B1

rβ(γr(x)−γ)δ(rx)
d

dr

(

uγr(x)r

)

χ{ur>0},

(E) :=

∫

B1

(Dδ(rx) · x) rβ(γr(x)−γ)uγrr χ{ur>0}.

In order to simplify the notation, we write γr = γr(x) and notice that

(D) =

∫

B1

rβ(γr−γ)δ(rx)

(

γru
γr−1
r

d

dr
ur + uγrr ln(ur)

d

dr
γr

)

χ{ur>0}

= (D.1) + (D.2).

Since u is a minimizer to (2.3), it follows that (D.1) + (A) = 0, and so

d

dr
W u(r) = (B) + (C) + (D.2) + (E).

By direct computations, it follows that

d

dr
ur(x) = r−β

(

Du(rx) · x− βrβ−1ur(x)
)

.

Since ν is the normal vector at ∂B1, we obtain

∂νur(x) = r1−β∂νu(rx) = r1−βDu(rx) · x,
which implies that

d

dr
ur =

1

r
(∂νur − βur) .

Hence,

(B) =
2

r

∫

∂B1

|∂νur − βur|2.

Moreover,

(C) =

∫

B1

β(γr − γ)rβ(γr−γ)−1δ(rx)uγrr χ{ur>0}

+

∫

B1

rβ(γr−γ)β ln(r)δ(rx)uγrr

(

d

dr
γr

)

χ{ur>0},

and

(D.2) =

∫

B1

rβ(γr−γ)δ(rx)uγrr (ln(u(rx))− β ln(r))

(

d

dr
γr

)

χ{ur>0}.
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Therefore,

(C) + (D.2) = r−(n+βγ+1)

∫

Br

β(γ(x)− γ)δ(x)uγ(x)χ{u>0}

+r−(n+βγ+1)

∫

Br

δ(x) ln(u)uγ(x)(Dγ(x) · x)χ{u>0}.

This implies that

d

dr
W u(r) =

2

r

∫

∂B1

|∂νur − βur|2

+r−(n+βγ+1)

∫

Br

β(γ(x)− γ)δ(x)uγ(x)χ{u>0}

+r−(n+βγ+1)

∫

Br

δ(x) ln(u)uγ(x)(Dγ(x) · x)χ{u>0}

+r−(n+βγ+1)

∫

Br

(Dδ(x) · x)uγ(x)χ{u>0}.

Now, recalling the definition of Wu,0(r), we have

d

dr
Wu,0(r) =

d

dr
W u(r)− r−(n+βγ+1)

∫

Br

β(γ(x)− γ)δ(x)uγ(x)χ{u>0}

−r−(n+βγ+1)

∫

Br

δ(x) ln(u)uγ(x)(Dγ(x) · x)χ{u>0}

−r−(n+βγ+1)

∫

Br

(Dδ(x) · x)uγ(x)χ{u>0},

which implies, by our previous computations, that

d

dr
Wu,0(r) =

2

r

∫

∂B1

|∂νur − βur|2 ≥ 0.

□

As a consequence of the monotonicity formula, we obtain the homogeneity

of blow-ups.

Definition 6.1 (Blow-up). Given a point z0 ∈ F (u), we say that u0 is a

blow-up of u at z0 if the family {ur}r>0, defined by

ur(x) :=
u(z0 + rx)

rβ(z0)
, with β(z0) :=

2

2− γ(z0)
,

converges, through a subsequence, to u0, when r → 0.

We say u0 is β(z0)-homogeneous if

u0(λx) = λβ(z0)u0(x), ∀λ > 0, ∀x ∈ R
n.

Unlike in the constant case γ(x) ≡ γ0, the homogeneity property of blow-

ups will vary depending on the free boundary point we are considering. This

is the object of the following result.
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Corollary 6.1. Let u be a local minimizer of (2.3) and assume (6.2) and

(6.3) are in force. If u0 is a blow-up of u at a point z0 ∈ F (u) ∩B1/2, then

u0 is β(z0)-homogeneous.

Proof. Without loss of generality, we assume z0 = 0. Recall

β :=
2

2− γ
where γ := γ(0).

In order to ease the notation, for each j ∈ N, we will write γj instead of

γ(λjx), and define

W j
v (r) := r−(n+2(β−1))

∫

Br

1

2
|Dv|2 + λ

β(γj−γ)
j vγjδ(λjx)χ{v>0}

− βr−((n−1)+2β)

∫

∂Br

v2

−
∫ r

0
βt−(n+βγ+1)

∫

Bt

(γj − γ)λ
β(γj−γ)
j δ(λjx)v

γjχ{v>0}

−
∫ r

0
t−(n+βγ+1)

∫

Bt

(Dγ(λjx) · x)λβ(γj−γ)+1
j δ(λjx)v

γj ln(λβj v)χ{v>0}

−
∫ r

0
t−(n+βγ+1)

∫

Bt

(Dδ(λjx) · x)λβ(γj−γ)+1
j vγjχ{v>0}

and

W∞
v (r) := r−(n+2(β−1))

∫

Br

1

2
|Dv|2+δ(0)vγ(0)χ{v>0}−βr−((n−1)+2β)

∫

∂Br

v2.

We now show that

W∞
u0
(r) = lim

j→∞
W j

uj
(r) as long as lim

j→∞
λ
β(γj−γ)
j → 1.

Indeed,

W j
uj
(r) = r−(n+2(β−1))

∫

Br

1

2
|Duj |2 + λ

β(γj−γ)
j δ(λjx)u

γj
j χ{uj>0}

−βr−((n−1)+2β)

∫

∂Br

u2j

−
∫ r

0
βt−(n+βγ+1)

∫

Bt

(γj − γ)λ
β(γj−γ)
j δ(λjx)u

γj
j χ{uj>0}

−
∫ r

0
t−(n+βγ+1)

∫

Bt

(Dγ(λjx) · x)λβ(γj−γ)+1
j δ(λjx)u

γj
j ln(u(λjx))χ{uj>0}

−
∫ r

0
t−(n+βγ+1)

∫

Bt

(Dδ(λjx) · x)λβ(γj−γ)+1
j u

γj
j χ{uj>0}
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and scaling back to u, we obtain

W j
uj
(r) = (λjr)

−(n+2(β−1))

∫

Bλjr

1

2
|Du|2 + δ(x)uγ(x)χ{u>0}

−β(λjr)−((n−1)+2β)

∫

∂Bλjr

u2

−
∫ r

0
βt−(n+βγ+1)λ

−(n+βγ)
j

∫

Bλjt

(γ(x)− γ)δ(x)uγ(x)χ{u>0}

−
∫ r

0
t−(n+βγ+1)λ

−(n+βγ)
j

∫

Bλjt

(Dγ(x) · x) δ(x)uγ(x) ln (u(x))χ{u>0}

−
∫ r

0
t−(n+βγ+1)λ

−(n+βγ)
j

∫

Bλjt

(Dδ(x) · x)uγ(x)χ{u>0}.

Changing variables in the last three integrals, we reach

W j
uj
(r) = (λjr)

−(n+2(β−1))

∫

Bλjr

1

2
|Du|2 + δ(x)uγ(x)χ{u>0}

−β(λjr)−((n−1)+2β)

∫

∂Bλjr

u2

−
∫ λjr

0
βt−(n+βγ+1)

∫

Bt

(γ(x)− γ)δ(x)uγ(x)χ{u>0}

−
∫ λjr

0
t−(n+βγ+1)

∫

Bt

(Dγ(x) · x) δ(x)uγ(x) ln(u)χ{u>0}

−
∫ λjr

0
t−(n+βγ+1)

∫

Bt

(Dδ(x) · x)uγ(x)χ{u>0},

and so

W j
uj
(r) =Wu(λjr).

Therefore

W∞
u0
(r) = lim

j→∞
W j

uj
(r) = lim

j→∞
Wu(λjr) =Wu(0

+),

where the last inequality is guaranteed by the monotonicity of the functional

at the minimizer u. We conclude that W∞
u0

is constant. We note that u0 is

a minimizer to the functional
∫

BR

1

2
|Dv|2 + δ(0)vγ(0)χ{v>0}, (6.4)

for every R > 0, and thus entitled to the regularity results from [3]. In

particular, it follows, from [3, Lemma 7.1], that u0 is β(0)-homogeneous. □
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Remark 6.2. To assure the existence of blow-ups, one needs to guarantee

that the family (ur)r>0, defined as

ur(x) =
u(z0 + rx)

rβ(z0)
for β(z0) =

2

2− γ(z0)
,

is locally bounded in C1,β(z0)−1. Indeed, by Theorem 4.1, there exists a

constant C ′ > 1 such that

∥ur∥L∞(B1) ≤ C ′.

Moreover, by applying Theorem 2.1 to u over Br(z0), we obtain

oscBr(z0)|Du| :=
(

sup
Br(z0)

|Du|
)

−
(

inf
Br(z0)

|Du|
)

≤ Cr
γ∗(z0,2r)

2−γ∗(z0,2r) .

Proceeding as at the end of the proof of Theorem 4.1, we use condition (4.1)

to obtain

Cr
γ∗(z0,2r)

2−γ∗(z0,2r) ≤ Cr
γ(z0)

2−γ(z0) ,

which implies

oscBr(z0) ≤ Cr
γ(z0)

2−γ(z0) .

As a consequence, the family {ur}r>0 is locally bounded in C1,β(z0)−1.

Given the above, blow-up limits of minimizers of the variable singularity

functional (2.3) are global minimizers of an energy-functional with constant

singularity, namely γ(z0). Corollary 6.1 further yields that blow-ups are

β(z0)-homogeneous.

The pivotal insight here is that the blow-up limits of minimizers of the

variable singularity functional are entitled to the same theoretical framework

applicable to the constant coefficient case. In particular, in dimension n = 2,

blow-up profiles are thoroughly classified due to [3, Theorem 8.2]. More

precisely, if u0 is the blow-up of u at z0 ∈ F (u), for u a local minimizer of

(2.3) and 0 < γ(z0) < 1, then u0 verifies

β(z0)√
2
u0(x)

1
β(z0) = δ(z0)((x− x0) · ν)+ for x ∈ R

n,

for some ν ∈ ∂B1.

Classifying minimal cones in lower dimensions is crucial, chiefly because of

Federer’s dimension reduction argument that we will utilize in our upcoming

session.
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7. Free boundary regularity

In this final section, we investigate the regularity of the free boundary.

For models with constant exponent γ, differentiability of the free boundary

was obtained in [3], following the developments of [2]. Although it may

seem plausible, the task of amending the arguments from [2, 3] to the case

of oscillatory exponents – the object of study of this paper – proved quite

intricate. More recently, similar free boundary regularity estimates have

been obtained via a linearization argument in [8] (see also [7]). Here, we

will adopt the latter strategy, i.e., and proceed through an approximation

technique, where the tangent models are the ones with constant γ.

More precisely, given a point z0 ∈ F (u) ∩B1/2, let us define

c0(z0) =

[

(α(z0)− 1)α(z0)

γ(z0)δ(z0)

] 1
γ(z0)−2

and

w = c
− 1

α
0 u1/α,

for α := α(z0) = 2/(2−γ(z0)). We note that since the equation holds within

the set where u is positive, we have

δ(x) γ(x)uγ(x)−1 = c0αw
α−2

[

w∆w + (α− 1)|Dw|2
]

,

and so

w∆w = δ(x)
γ(x)

α
c
γ(x)−2
0 wα(γ(x)−1)+2−α − (α− 1)|Dw|2.

Since

α(γ(x)− 1) + 2− α = α(γ(x)− γ(z0)),

we can rewrite the equation as

∆w =
h(x,w,Dw)

w
, (7.1)

where h : B1 × R
+ × R

n → R is defined as

h(x, s, ξ) = δ(x)
γ(x)

α
c
γ(x)−2
0 sα(γ(x)−γ(z0)) − (α− 1)|ξ|2.

The crucial insight here is that given appropriate continuity conditions

on γ(x), we can achieve a uniform approximation of the classical Alt-Philips

problem. To put it differently, the oscillatory exponent model will be uni-

formly close to the classical Alt-Philips functional. Since minimizers of the

latter have smooth free boundaries, one should be able to infer the free

boundary regularity of the former via compactness methods. To put this

strategy into practice, though, we must first introduce and discuss some

necessary tools.
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We first remark that defining wr as

wr(x) =
w(z0 + rx)

r
, (7.2)

direct calculations yield

∆wr =
hr(x,wr, Dwr)

wr
,

where

hr(y, s, ξ) = δ(z0 + rx)
γ(z0 + rx)

α
c
γ(z0+rx)−2
0 (rs)α(γ(z0+rx)−γ(z0))

−(α− 1)|ξ|2.
We can now pass to the limit as r → 0, and in view of the choice of c0, we

reach

hr(y, s, ξ) → h(z0, ξ),

where h(z0, ξ) is given by

h(x0, ξ) = (α(z0)− 1)(1− |ξ|2).
The second key remark is that if the exponent function γ(x) is assumed

to be Hölder continuous, say, of order µ ∈ (0, 1), then for a fixed s > 0,

the above convergence does not depend on the free boundary point, z0 ∈
F (u) ∩B1/2. Indeed, we can estimate

|α(z0)(γ(z0 + rx)− γ(z0)) ln(rs)| ≤ Crµ|(ln(r) + ln(s)|
≤ C([γ]C0,µ , | ln(s)|)r µ

2 ,

which implies that

lim
r→0

(rs)α(z0)(γ(z0+rx)−γ(z0)) = 1,

uniformly in z0 ∈ F (u) ∩B1/2. Arguing similarly, one also obtains that

lim
r→0

δ(z0 + rx)
γ(z0 + rx)

α
c
γ(z0+rx)−2
0 = α(z0)− 1,

uniformly in z0 ∈ F (u) ∩ B1/2. Here, we only need the uniform continuity

of the ingredients involved.

The insights above are critical to ensure the linearized problem is uni-

formly close to the one with constant exponent as treated in [8]. To be

more precise, we borrow the following improvement of flatness result, [8,

Proposition 6.1], available for the constant exponent case.

Lemma 7.1. Let w be a viscosity solution to

∆w =
h(z0, Dw)

w
in {w > 0}, (7.3)
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with 0 ∈ F vis(w) and z0 ∈ B1/2. There exist ϵ0, η > 0 such that if ϵ ≤ ϵ0
and

(xn − ϵ)+ ≤ w ≤ (xn + ϵ)+ in B1,

then
(

x · ν − ϵ

2
η
)

+
≤ w ≤

(

x · ν + ϵ

2
η
)

+
in Bη,

with |ν| = 1 and |ν − en| ≤ Cϵ, for C > 0 universal.

It’s important to note that in [8], and thus in Lemma 7.1, being a free

boundary point conveys additional information. This is encoded in the free

boundary condition held in the viscosity sense, as defined in [8, Definition

1.1]. We display the precise definition below for the readers’ convenience.

Definition 7.1. We say that x0 ∈ F vis(w) in the viscosity sense if x0 ∈
F (w), and if ψ ∈ C2 is such that ψ+ touches w from below (resp., from

above) at x0, with |Dψ(x0)| ≠ 0, then

|Dψ(x0)| ≤ 1 (resp., |Dψ(x0)| ≥ 1).

Next, we will argue that, as the solutions we address in this paper arise

from a variational problem, we can still employ the flatness improvement

technique outlined in Lemma 7.1. The rationale behind this is explained in

the sequel.

Let u be a minimizer to the functional (2.3) and z0 ∈ F (u). The distorted

solution w, as defined before, solves (7.1). By optimal regularity, Theorem

4.1, Lipschitz rescalings of w defined as in (7.2) converge to a viscosity

solution to (7.3), say w. The rescalings are related to a sequence of the form

ur(x) =
u(z0 + rx)

rα
, for α =

2

2− γ(z0)
,

which is a minimizer to a scaled functional that converges to the one with

constant γ(x) ≡ γ(z0). Thus, we get

w = c
− 1

α
0 u

1
α ,

for a minimizer u of the functional with constant exponent.

What is left to show is that w satisfies the free boundary condition as

in Definition 7.1. However, as pointed out in [7], see also [9], this is a

consequence of a one-dimensional analysis. For a free boundary point x0 ∈
F (u), there holds

u(x0 + tν) ≈ c0t
α,

where t ≥ 0 small and ν is the unit normal pointing towards {u > 0}.
With this well understood, we proceed with the discussion of another

delicate issue in the program, namely the necessity to control the dependence

of the constant C, appearing in Lemma 7.1, as the free boundary point z0
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varies. The results in [8] guarantee that this dependence will be contingent

on the dimension and the C1−norm of h(z0, ξ) within a neighborhood of ∂B1.

Importantly, this norm remains uniformly bounded due to our assumptions

regarding the range of the function γ(x).

The discussions presented above bring us to the next crucial tool required

in the proof of the free boundary regularity.

Lemma 7.2. Let w be a solution to (7.1), 0 ∈ F (w) and r, ϵ > 0 be two

positive small parameters such that

(xn − ϵr)+ ≤ w ≤ (xn + ϵr)+ in Br.

Then, there exists η > 0 small enough such that

(x · ν − ηϵr)+ ≤ w ≤ (x · ν + ηϵr)+ in Bηr.

Proof. By considering wr(x) = r−1w(rx), the flatness assumption reads as

(xn − ϵ)+ ≤ wr ≤ (xn + ϵ)+ in B1.

We will prove that there exist ϵ0, η > 0 such that

(x · ν − ηϵ)+ ≤ wr ≤ (x · ν + ηϵ)+ in Bη,

for r > 0 small enough. By Theorem 4.1, it follows that wr is bounded and

Lipschitz continuous. Thus, wr → w, for some sequence r → 0. By Lemma

7.1, there exist ϵ0, η > 0 such that
(

x · ν − ϵ

2
η
)

+
≤ w ≤

(

x · ν + ϵ

2
η
)

+
in Bη.

Observe that since we can restrict to the set where w is positive, for r small

enough, we obtain

(x · ν − ϵη)+ ≤ wr ≤ (x · ν + ϵη)+ in Bη,

as desired. □

Notice that, by taking wη = η−1w(ηx), the conclusion of Lemma 7.2 says

that wη satisfies

(x · ν − ϵr)+ ≤ wη ≤ (x · ν + ϵr)+ in Br.

By further composing with an orthogonal linear transformation, Lemma 7.2

leads to the existence of ν ′ ∈ ∂B1 such that |ν ′ − ν| ≤ Cϵ/2 and

(x · ν ′ − ηϵr)+ ≤ wη ≤ (x · ν ′ + ηϵr)+ in Bηr.

Therefore,

(x · ν ′ − η2ϵr)+ ≤ w ≤ (x · ν ′ + η2ϵr)+ in Bη2r.

By induction, one gets a sequence (νk)k∈N ⊂ ∂B1 such that

|νk − νk−1| ≤ C2−kϵ
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and

(x · νk − ηkϵr)+ ≤ w ≤ (x · νk + ηkϵr)+ in Bηkr.

As a consequence, F (w) is C1,δ at 0.

We conclude by commenting on Federer’s classical dimension reduction

argument, [12], and how one can adapt it to the free boundary problem

investigated in this paper.

We start by arguing, as explored above, that when γ(x) is a continuous

function, blow-ups converge to minimizers of the functional with constant

exponent γ(z0). Now, at least in dimension n = 2, it is possible to classify

them using ODE techniques, see [3]. Hence, a successful implementation of

Federer’s reduction argument will imply that the singular part of the free

boundary, Sing(F (u)), satisfies

Hn−2+s(Sing(F (u))) = 0 for every s > 0.

This, in particular, will allow us to conclude the portion of the free boundary

to which Lemma 7.2 can be applied has total measure.

Here are the ingredients needed. Let z0 ∈ F (u) and define

ur(x) :=
u(z0 + rx)

rβ(z0)
, with β(z0) =

2

2− γ(z0)
.

Such a family converges, up to a subsequence, to some function u0 that is a

minimizer to the Alt-Philips functional with constant exponent γ(z0). The

first step is to establish the convergence of the singular sets of the family

{ur} as r → 0. This is a consequence of the sharp non-degeneracy, Theorem

2.2, and that the set of regular points is locally an open set because of our

Lemma 7.2. Next, as a consequence of optimal regularity estimates and

monotonicity formula, Corollary 6.1, blow-up limits of the family {ur}r are

homogeneous of degree β(z0). The final step of Federer’s routine is to prove a

dimension reduction result to the singular set of a global β(z0)-homogeneous

minimizer of the Alt-Philips functional with constant parameters. To do so,

one must prove a sort of translation invariance of global minimizers. This

part follows using similar arguments found in [9], and thus we omit it here.

The comprehensive discussion above leads to the regularity of the free

boundary, which can be briefly summarized in the following theorem. We

say a function belongs to W 1,n+
if it belongs to W 1,q, for some q > n.

Theorem 7.1. Let u be a local minimizer of (2.3) and assume

γ(x) ∈W 1,n+
.

Then, the free boundary F (u) is locally a C1,δ surface, up to a negligible

singular set of Hausdorff dimension less or equal to n− 2.
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Proof. With all the ingredients from the preceding discussion available, the

proof is standard, and we only highlight the main steps.

We start by decomposing the free boundary as the disjoint union of its

regular points and its singular points, that is,

F (u) = Reg(u) ∪ Sing(u).

The set Reg(u) stands for the points where blow-ups can be classified. More

precisely, z0 ∈ Reg(u), if for a sequence of radii rn converging to zero and a

unitary vector ν, there holds

urn(x) :=
u(z0 + rnx)

r
2

2−γ(z0)
n

−→ c0(x · ν)
2

2−γ(z0)

+ .

The set Sing(u) is simply the complement of Reg(u). That is

Sing(u) := F (u)\Reg(u).
The dimension reduction argument mentioned earlier assures that

Hn−2+s(Sing(u)) = 0,

for all s > 0. Thus, one can estimate the Hausdorff dimension of the singular

set as

dimH (Sing(u)) := inf{d : Hd(Sing(u)) = 0} ≤ n− 2 + s,

for every s > 0, and so

dimH (Sing(u)) ≤ n− 2.

In particular, we conclude that Sing(u) is a negligible set with respect to

the Hausdorff measure Hn−1, i.e.,

Hn−1 (F (u) \ Reg(u)) = 0.

Now, we show that Reg(u) is locally C1,δ, for some δ > 0 universal.

Consider z0 ∈ Reg(u) and let u0 be a blow-up limit of u at z0. In other

words, for a sequence r = o(1), and up to a change of coordinates, there

holds

ur(x) :=
u(z0 + rx)

r
2

2−γ(z0)

−→ c0(xn)
2

2−γ(z0)

+ ,

in the C
1,

γ(z0)
2−γ(z0)

loc (Rn) topology. By such a convergence, one deduces that

c0(xn − ϵ)
2

2−γ(z0)

+ ≤ ur(x) ≤ c0(xn + ϵ)
2

2−γ(z0)

+ in B1.

As a consequence, we obtain

(xn − ϵr)
2

2−γ(z0)

+ ≤ c−1
0 u(z0 + x) ≤ (xn + ϵr)

2
2−γ(z0)

+ in B1.
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Next, we define

w(x) := c
− 1

α(z0)

0 u(z0 + x)
1

α(z0) , for α(z0) = 2/(2− γ(z0)),

which is a function satisfying the assumptions of Lemma 7.2. Hence, scaling

back to u the thesis of Lemma 7.2 and repeating the process inductively,

keeping in mind the remarks previously noted, we conclude that F (u) is

C1,δ at z0.

By Hölder continuity of γ(x) and the computations made at the beginning

of the section, the proximity condition in Lemma 7.2 is uniform in z0 ∈
F (u) ∩ B1/2. By the boundedness assumption on γ(x), the constant C in

Lemma 7.1 is universally bounded, and therefore F (u) is locally in C1,δ,

with universal estimates. □

Acknowledgments. DJA supported by CNPq grant 427070/2016-3 and grant
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[1] E. Acerbi, G. Bouchitté and I. Fonseca, Relaxation of convex functionals: the gap
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