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Abstract. We study a granular model for congested crowd motion and
pedestrian flow. Our approach is based on an approximation through a
Hele-Shaw type equation involving a degenerate operator of p-Laplacian
type and a linear drift, for which we prove existence and uniqueness using
nonlinear semigroup methods and the doubling variables technique. Our
main result shows that, as p → ∞, the weak solutions of the p−problem
converge to a solution of the congested crowd motion problem.

1. Introduction

Macroscopic models for pedestrian flow, in which the crowd behaves like a

moving fluid, were first introduced in [6] and later explored in [19, 20]. The

space-time dynamics of the crowd is governed by a flow velocity vector field

V according to the transport equation

@tu+r · (u V ) = f. (1.1)

Here, u = u(t, x) is the density of individuals at time t � 0 and position

x 2 R
2, which needs to accurately describe an admissible global distribution

of the population, and f is a given source.

The vector field V takes into account the overall behaviour of the crowd

(for example, the goal of reaching an exit or the avoidance of some danger)

but neglects the local behaviour of pedestrians (who may, for example, be

in a hurry, adapt their speed or try to avoid the crowd). To deal with local

effects and following the predicting-correcting algorithms introduced in [25],

we consider a new vector field W that will, in particular, consider congestion

effects, thus obtaining the master equation

@tu+r · (W + u V ) = f. (1.2)
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The vector field W = W (rv) will be driven by the gradient of a potential

v � 0 such that

v(u� 1) = 0, (1.3)

which is then a kind of Lagrange multiplier associated with the two-sided

constraint 0  u  1. We will express this by requiring

u 2 Sign+(v),

where Sign+ denotes the maximal monotone graph given by

Sign+(r) :=

8
<
:

1 if r > 0

[0, 1] if r = 0

0 if r < 0.

The linear case, corresponding to the choice

W (rv) = �rv, (1.4)

leads to the equation

@tu�∆v +r · (u V ) = f,

which is relatively well-understood (see [24]). Here, we explore the nonlinear

case

W (rv) = � |rv|p�2rv, 2 < p < 1, (1.5)

leading to the degenerate PDE

@tu�∆pv +r · (u V ) = f, (1.6)

and study the asymptotic limit problem obtained by taking p ! 1.

In the linear case p = 2, congestion is modelled through linear diffusion

and Brownian motion, and the crowd behaves like a Newtonian fluid. For

p > 2, the crowd behaves like a non-Newtonian shear thickening or dilatant

fluid, with the viscosity depending on the shear stress.

As we let p approach infinity, we aim to capture a granular type of be-

haviour exhibited by the crowd, mirroring the well-established behaviour

of sandpiles. Formally, the limiting problem aims to patch the transport

equation with

W = �mrv, |rv|  1, m(|rv|� 1) = 0, (1.7)

where v is an unknown potential connected to the distance to the exit, sup-

ported in the congested region [u = 1], i.e., satisfying (1.3). The parameter

m is a Lagrange multiplier associated with the constraint |rv|  1, which

could be connected to the random movements of the individuals in the con-

gested region (see [18] and [22]). For a geometrical interpretation of m in

terms of the boundary curvature and the normal distance to the cut locus

of the domain Ω, see also [9, 10, 11].



A GRANULAR MODEL FOR CROWD MOTION AND PEDESTRIAN FLOW 3

Connecting the dynamics of a pedestrian moving towards a fixed target

to that of sandpile particles moving towards the exit of a table is a plausible

scenario introduced and studied numerically in [16]. In this model, the pile’s

height is linked to a potential value so that higher potential areas have more

particles (think of crowded zones). The self-organization of particles in a

sandpile is a captivating natural phenomenon that has directly or indirectly

inspired numerous physical models. Unlike the growth of a sandpile, where

a source and gravity govern the dynamics, the movement in crowd motion

is determined by the instantaneous movements of particles driven by the

spontaneous velocity field V . Additionally, the approach could be formally

grounded at the microscopic level by employing the stochastic sandpile model

introduced by Evans and Rezakhanlou (see [18] and [22]).

Imagine a grid of cubes (see Figure 1) representing pedestrians trying to

reach an exit. Like a person, each cube can only move downhill (to a lower

cube) randomly until it gets stuck. This creates a flow of pedestrian-cubes

similar to sand in a sandpile. Using an appropriate scaling of time and

space, one would guess the resulting continuous dynamics follows a sandpile

macroscopic flow to remedy the congestion. People (cubes) move downhill

(following the gradient) but only when it is favourable (think of a passage

leading to the exit around a congested zone with a staircase offering sequen-

tial available positions). This movement is described by a flow equation,

where the flow is controlled by the potential’s gradient. Indeed, in their pio-

neering work [18] (see also [22]), Evans and Rezakhanlou study the case of a

sandpile when the congestion constraint and the transport term are absent,

i.e., for v = u and V = 0. They prove that the rescaled pile’s height con-

verges to the solution of a nonlinear sandpile dynamics governed by a flux Φ

derived from a potential z, as expressed by

Φ = �mrz,

where z, linked to the sandpile’s height, satisfies the gradient constraint

|rz|  1,

closely mirroring the discrete constraint on the cubes at the microscopic

level. Additionally, m � 0 is an unknown parameter subject to the condition

m(|rz|� 1) = 0, which reflects the fact that particle movement towards the

exit occurs only under favourable circumstances delineated by the gradient of

z. Hence, one can formally map the random cube movement to the behaviour

of pedestrians in the congested regime, as depicted in the formal illustration

of Figure 1.
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Figure 1. Toy pedestrian-cubes model

We conclude that (1.5) and (1.7) provide two variants of macroscopic
crowd motion models with hard congestion, aligning with the class of mod-
els introduced by Maury and collaborators (cf. [25, 26, 27]). Unlike the
linear scenario (1.4), which represents the homogeneous random movement
of pedestrians around the congested zone, these variants enable the natural
handling (at the macroscopic level) of pedestrian movement, allowing them
to occupy empty adjacent sites in the congested area towards the exit when
possible, or to come to a halt if necessary.

The plan of the paper is the following: in Section 2, we gather some
notation and the assumptions and state the main results; in Section 3, fol-
lowing [24], we establish the uniqueness of non-negative weak solutions for
the p�problem using the ideas of DiPerna-Lions on renormalization, and
Kruzhkov’s doubling and de-doubling techniques; in Section 4, we prove the
existence of a weak solution by employing nonlinear semigroup methods,
building upon the L

1
�contraction results from the previous section; finally,

Section 5 provides the proof of the convergence of solutions of the p�problem
to the congested crowd motion problem, as the parameter p approaches in-
finity; the appendix contains the proofs of some technical results used in
Section 3.

2. Assumptions and main results

We assume that ⌦ ⇢ RN is a bounded open set, with a regular boundary,
split into @⌦ = �D [ �N , such that �D \ �N = ; and

L
N�1(�D) > 0.

For T > 0, we denote

Q := (0, T )⇥ ⌦; ⌃D := (0, T )⇥ �D; ⌃N := (0, T )⇥ �N .
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Given a source f , a velocity vector field V and an initial datum u0, we

consider the problem of finding (u, v) such that

8
>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

@u

@t
�r ·

⇣
|rv|p�2rv � u V

⌘
= f

u 2 Sign+(v)

9
>>=
>>;

in Q

v = 0 on ΣD

⇣
|rv|p�2rv � u V

⌘
· ⌫ = 0 on ΣN

u(0) = u0 in Ω,

(2.1)

where p > 2 and ⌫ is the outward unitary normal to @Ω.

Throughout the paper, we assume

V 2
h
W 1,p0(Ω)

iN
, r · V 2 L1(Ω), (2.2)

and

V · ⌫ � 0 on ΓD and V · ⌫ = 0 on ΓN , (2.3)

in the sense that

lim inf
h!0

1

h

Z

{x2Ω : d(x,@Ω)<h}
⇠ V (x) · ⌫(⇡(x)) dx � 0, (2.4)

for all 0  ⇠ 2 Lp(Ω). Here, d(., @Ω) is the Euclidean distance to the

boundary of Ω and ⇡(x) denotes the projection of x onto the boundary @Ω.

Our first result concerns the existence and uniqueness of a weak solution

to (2.1). We denote

W 1,p
D (Ω) :=

�
w 2 W 1,p(Ω) : w = 0 on ΓD

 
.

Theorem 2.1. For any 0  f 2 Lp0(Q) and u0 2 L1(Ω) such that

0  u0  1, a.e. in Ω,

the problem (2.1) has a unique solution (u, v), in the sense that

(u, v) 2 C
�
[0, T ), L1(Ω)

�
\ L1(Q)⇥ Lp

⇣
0, T ;W 1,p

D (Ω)
⌘
,

u 2 Sign+(v), a.e. in Q, u(0) = u0 and

�

ZZ

Q
u ⇠ @t +

ZZ

Q

⇣
|rv|p�2rv � u V

⌘
·r⇠  

=

ZZ

Q
f ⇠  +

Z

Ω

u0  (0) ⇠,
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for any  2 D ([0, T )) and ⇠ 2 W 1,p
D (Ω).

We next analyze the behaviour of the evolution problem (2.1) as the expo-

nent p approaches infinity. Since the pioneering work [3] (see also [29]), this

limit represents a fundamental shift in the dynamics, revealing a critical con-

nection between the long-term behaviour of the original p�Laplacian equa-

tion and the dynamics of grains in sandpile models (see also [14, 15, 17, 28]).

Indeed, letting p ! 1 in the original equation

@z

@t
�r ·

⇣
|rz|p�2rz

⌘
= f in Q,

we obtain the limiting problem given by

@z

@t
�r · (mrz) = f, |rz|  1 in Q, (2.5)

where m � 0 is an unknown parameter that depends on the solution itself

through the condition

m(|rz|� 1) = 0 in Q.

So, formally, the limiting problem of (2.1), as p ! 1, may be given by

8
>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

@u

@t
�r · (mrv � u V ) = f

u 2 Sign+(v), |rv|  1

m � 0, m(|rv|� 1) = 0

9
>>>>>>=
>>>>>>;

in Q

v = 0 on ΣD

(mrv � u V ) · ⌫ = 0 on ΣN

u(0) = u0 in Ω.

(2.6)

However, while m is typically a Radon measure in similar settings (see, for

instance, [7] for the case of (2.5)), the gradient of v requires a specialized

approach called the tangential gradient (see [7] for details). To avoid this

complexity, which we plan to explore further in future works, we will instead

leverage an equivalent formulation based on the variational description of

the solution (see also [21, 23, 12] for details regarding this equivalence in the

context of (2.5)). Our focus will be on the characterization of the limit of

the solutions to (2.1) using the variational formulation contained in the next
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theorem. In particular, testing the equation against v � ⇠, with 0  ⇠ 2

W 1,1
D (Ω) and |r⇠|  1, one sees formally that

Z

Ω

mrv ·r(v � ⇠) � 0.

Theorem 2.2. Under the assumptions of Theorem 2.1, let (up, vp) be the

solution of (2.1). For subsequences that we relabel for convenience, we have

up * u in L1(Q)� weak-⇤;

vp * v in Lq
�
0, T ;W 1,q(Ω)

�
� weak,

as p ! 1, where (u, v) is a variational solution of the problem (2.6) in the

sense that (u, v) 2 L1(Q)⇥ Lq
⇣
0, T ;W 1,q

D (Ω)
⌘
, for any 1  q < 1,

0  u  1, |rv|  1, u 2 Sign+(v), a.e. in Q,

and
ZZ

Q
u ⇠  0(t)�

Z

Ω

u0 ⇠  (0)�

ZZ

Q
uV ·r (v � ⇠) 

ZZ

Q
f (v � ⇠) , (2.7)

for any 0   2 D ([0, T )) and 0  ⇠ 2 W 1,1
D (Ω) such that |r⇠|  1.

To close this section, we introduce some further notations to be used in

the paper. Define, for each h > 0,

⇠h(x) :=
1

h
min {h, d(x, @Ω)} and ⌫h(x) = �r⇠h(x), (2.8)

for x 2 Ω. The function ⇠h 2 H1
0 (Ω) is regular (as smooth as the boundary)

and concave, 0  ⇠h  1 and, for any x 2 Ω such that d(x, @Ω) < h,

⌫h(x) = �
1

h
rd(x, @Ω).

In particular, for such x, we have h⌫h(x) = ⌫(⇡(x)).

We denote

rp�1w := |rw|p�2rw

and let Sign0 be the real discontinuous function defined in R by

Sign0(r) =

8
<
:

1 if r > 0

0 if r = 0

�1 if r < 0.
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3. L1�contraction

In this section, we focus first on the uniqueness and L1�comparison prin-

ciple for weak solutions. Following the approach developed in [24], we need

a Kato’s inequality, whose proof uses, in an essential way, the fact that weak

solutions are also renormalised solutions à la DiPerna-Lions. This is the

object of the following result.

Proposition 3.1 (Renormalised formulation). If (u, v) is a weak solution

of (2.1), then

@t�(u)�∆pv + V ·r�(u) + ur · V �0(u)  f �0(u) in D0(Q),

for any � 2 C1(IR) such that �0  1 and �0(1) = 1.

We postpone the proof of this proposition to the appendix.

Proposition 3.2 (Kato’s inequality). If (u1, v1) and (u2, v2) are two weak

solutions of (2.1) associated with f1, f2 2 L1(Q), then there exists  2

L1(Q) such that  2 Sign+(u1 � u2), a.e. in Q, and

@t |u1 � u2|�∆p(v1 + v2) +r · (|u1 � u2| V )

 (f1 � f2) in D0(Q). (3.1)

Proof. First, we see that if (u, v) is a weak solution of (2.1), then

@t |u� k|�∆pv +r · (|u� k| V ) + k r · V Sign1(u� k)

 f Sign1(u� k) in D0(Q), (3.2)

for any k  1, where

Sign1(r) =

⇢
1 if r � 0

�1 if r < 0.

Indeed, it is enough to take in Proposition 3.1

�✏(r) = fH"(r + "� k), r 2 R,

where

fH"(r) =

8
<
:

r � "/2 if r > "

r2/2" if |r|  "

�r � "/2 if r < �",

and let "! 0. Notice that, since k  1, we have �0✏(1) = fH"

0

(1 + "� k) = 1

and

�0"(u) = fH"

0

(u+ "� k) ! Sign1(u� k), as "! 0.

The proof is now based on the doubling and de-doubling variables tech-

nique. Let us briefly revisit the arguments for the reader’s convenience. Since
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u2(s, y)  1, we use the fact that (u1, v1) satisfies (3.2) with k = u2(s, y), to

get

d

dt

Z

Ω

|u1(t, x)� u2(s, y)| ⇣(x, y) dx

+

Z

Ω

�
rp�1

x v1(t, x)� |u1(t, x)� u2(s, y)|V (x)
�
·rx⇣(x, y) dx

+

Z

Ω

u2(s, y) (rx · V ) Sign1 (u1(t, x)� u2(s, y)) ⇣(x, y) dx



Z

Ω

f1(t, x) Sign1 (u1(t, x)� u2(s, y)) ⇣(x, y) dx,

where
d

dt
is taken in D0(0, T ). Note that

Z

Ω

rp�1
y v2(s, y) ·rx⇣ dx = 0,

so that

d

dt

Z

Ω

|u1(t, x)� u2(s, y)| ⇣ dx

+

Z

Ω

�
rp�1

x v1(t, x) +rp�1
y v2(t, x)

�
·rx⇣ dx

�

Z

Ω

|u1(t, x)� u2(s, y)|V (x) ·rx⇣ dx

+

Z

Ω

u2(s, y) (rx · V ) Sign1 (u1(t, x)� u2(s, y)) ⇣ dx



Z

Ω

f1(t, x) Sign1 (u1(t, x)� u2(s, y)) ⇣ dx.

Denoting

u(t, s, x, y) := u1(t, x)�u2(s, y) and p(t, s, x, y) := v1(t, x)+v2(s, y),

and integrating with respect to y, we obtain

d

dt

Z

Ω

Z

Ω

|u(t, s, x, y)| ⇣ dxdy

+

Z

Ω

Z

Ω

�
rp�1

x v1(t, x) +rp�1
y v2(t, x)

�
·rx⇣ dxdy

�

Z

Ω

Z

Ω

|u(t, s, x, y)|V (x) ·rx⇣ dxdy

+

Z

Ω

Z

Ω

u2(s, y) (rx · V ) Sign1 (u(t, s, x, y)) ⇣ dxdy



Z

Ω

Z

Ω

f1(t, x) Sign1 (u(t, s, x, y)) ⇣ dxdy.
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On the other hand, using the fact that (u2, v2) satisfies (3.2) with k =

u1(t, x), we have

d

ds

Z

Ω

|u(t, s, x, y)| ⇣(x, y) dy

+

Z

Ω

�
rp�1

y v2(s, y)� |u(t, s, x, y)|V (y)
�
·ry⇣(x, y) dy

�

Z

Ω

u1(t, x) (ry · V ) Sign1(u(t, s, x, y)) ⇣(x, y) dy

 �

Z

Ω

f2(s, y) Sign1(u(t, s, x, y)) ⇣(x, y) dy,

where, again,
d

ds
is taken in D0(0, T ). Working in the same way, we get

d

ds

Z

Ω

Z

Ω

|u(t, s, x, y)| ⇣ dxdy

+

Z

Ω

Z

Ω

�
rp�1

x v1(t, x) +rp�1
y v2(t, x)

�
·ry⇣ dxdy

�

Z

Ω

Z

Ω

|u(t, s, x, y)|V (y) ·ry⇣ dxdy

�

Z

Ω

Z

Ω

u1(t, x) (ry · V ) Sign1 (u(t, s, x, y)) ⇣ dxdy

 �

Z

Ω

Z

Ω

f2(s, y) Sign1 (u(t, s, x, y)) ⇣ dxdy.

Adding both inequalities, we obtain
✓

d

dt
+

d

ds

◆Z

Ω

Z

Ω

|u(t, s, x, y)| ⇣ dxdy (3.3)

+

Z

Ω

Z

Ω

�
rp�1

x v1(t, x) +rp�1
y v2(t, x)

�
· (rx +ry) ⇣ dxdy

�

Z

Ω

Z

Ω

|u(t, s, x, y)| (V (x) ·rx⇣ + V (y) ·ry⇣) dxdy

+

Z

Ω

Z

Ω

(u2(s, y) (rx · V )� u1(t, x) (ry · V )) Sign1 (u(t, s, x, y)) ⇣ dxdy



Z

Ω

Z

Ω

(f1(t, x)� f2(s, y)) Sign1 (u(t, s, x, y)) ⇣ dxdy,

where
d

dt
+

d

ds
is taken in D0 ((0, T )⇥ (0, T )).

We can now de-double the variables t and s, as well as x and y, by taking

as usual the sequences of test functions

 "(t, s) =  

✓
t+ s

2

◆
⇢"

✓
t� s

2

◆
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and

⇣�(x, y) = ⇠

✓
x+ y

2

◆
��

✓
x� y

2

◆
,

for any t, s 2 (0, T ) and x, y 2 Ω. Here,  , ⇣ 2 D(Ω), and ⇢", �� are sequences

of standard mollifiers in R and R
N , respectively. Observe that

✓
d

dt
+

d

ds

◆
 "(t, s) = ⇢"

✓
t� s

2

◆
 0

✓
t+ s

2

◆

and

(rx +ry) ⇣�(x, y) = ��

✓
x� y

2

◆
r⇠

✓
x+ y

2

◆
.

Moreover, for any h 2 L1
�
(0, T )2 ⇥ Ω

2
�

and Φ 2 L1
�
(0, T )2 ⇥ Ω

2
�N

, we

have

lim
�!0

lim
"!0

Z T

0

Z T

0

Z

Ω

Z

Ω

h(t, s, x, y) ⇣�(x, y) "(t, s) dsdtdxdy

=

Z T

0

Z

Ω

h(t, t, x, x) ⇠(x) (t) dtdx,

lim
�!0

lim
"!0

Z T

0

Z T

0

Z

Ω

Z

Ω

h(t, s, x, y) ⇣�(x, y)

✓
d

dt
+

d

ds

◆
 "(t, s) dsdtdxdy

=

Z T

0

Z

Ω

h(t, t, x, x) ⇠(x) 0(t) dtdx

and

lim
�!0

lim
"!0

Z T

0

Z T

0

Z

Ω

Z

Ω

Φ(t, s, x, y) · (rx +ry) ⇣�(x, y) "(t, s) dsdtdxdy

=

Z T

0

Z

Ω

Φ(t, t, x, x) ·r⇠(x) (t) dtdx.

Thus, replacing ⇣ in (3.3) by ⇣�, testing with  " and letting " ! 0 and

�! 0, we obtain (see, for instance, [24])

d

dt

Z

Ω

|u1 � u2| ⇠ dx+

Z

Ω

�
rp�1v1 +rp�1v2

�
·r⇠ dx

�

Z

Ω

|u1 � u2| (V ·r⇠ � (r · V ) ⇠) dx



Z

Ω

 (f1 � f2) ⇠ dx+

Z

Ω

|u1 � u2| (r · V ) ⇠ dx,
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where
d

dt
is taken in D0(0, T ). We conclude, as desired, that

d

dt

Z

Ω

|u1 � u2| ⇠ dx+

Z

Ω

rp�1 (v1 + v2) ·r⇠ dx

�

Z

Ω

|u1 � u2| V ·r⇠ dx



Z

Ω

 (f1 � f2) ⇠ dx, in D0(0, T ).

⇤

The idea behind the proof of the next theorem is to consider the sequence

of test functions ⇠h given by (2.8) in Kato’s inequality and let h ! 0, to get

the contraction inequality (3.4).

Theorem 3.1. If (u1, v1) and (u2, v2) are two weak solutions of (2.1) as-

sociated with f1, f2 2 L1(Q), respectively, then there exists  2 L1(Q) such

that  2 Sign+(u1 � u2), a.e. in Q, and

d

dt

Z

Ω

|u1 � u2| dx 

Z

Ω

 (f1 � f2) dx, in D0(0, T ). (3.4)

Proof. Observe that, for ⇠h given by (2.8), we have

d

dt

Z

Ω

|u1 � u2| dx�

Z

Ω

 (f1 � f2) dx

= lim
h!0

d

dt

Z

Ω

|u1 � u2| ⇠h dx�

Z

Ω

 (f1 � f2) ⇠h dx

| {z }
I(h)

.

Taking ⇠h as a test function in (3.1), we obtain

I(h)  �

Z

Ω

�
rp�1v1 +rp�1v2 � |u1 � u2|V

�
·r⇠h dx

 �

Z

Ω

�
rp�1v1 +rp�1v2

�
·r⇠h dx�

Z

Ω

|u1 � u2|V · ⌫h(x) dx.

On the other hand, thanks to (A.1), we see that, for each i = 1, 2, for any

0   2 D(0, T ), we have
Z T

0

Z

Ω

rp�1vi ·r⇠h  dtdx = �

Z T

0

Z

Ω

rp�1vi ·r (1� ⇠h) dtdx

�

Z T

0

Z

Ω

(r · V � fi) (1� ⇠h) Sign0(vi) dtdx.

Letting h ! 0 and using the fact that ⇠h ! 1 in L1(Ω)�weak⇤, we deduce

that

lim inf
h!0

Z T

0

Z

Ω

rp�1vi ·r⇠h  dtdx � 0.
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Coming back to I(h), we get

lim
h!0

I(h)  � lim
h!0

Z

Ω

|u1 � u2|V · ⌫h(x) dx  0,

using assumption (2.4). Thus, we obtain (3.4).

⇤

An immediate consequence of Theorem 3.1 is the uniqueness of a solution

for (2.1).

Corollary 3.1. Under the assumptions of Theorem 2.1, the problem (2.1)

has at most one solution.

4. Existence for the evolution problem

The proof of the existence of a solution to (2.1) will be carried out in

the framework of nonlinear semigroup theory in L1(Ω). We consider the

stationary problem, related to the Euler implicit discretization scheme of

the evolution problem (2.1)

8
>>>>>>>>><
>>>>>>>>>:

u� �∆pv + �r · (u V ) = f

u 2 Sign+(v)

9
=
; in Ω

v = 0 on ΓD

�
rp�1v � u V

�
· ⌫ = 0 on ΓN ,

(4.1)

where f 2 L2(Ω) and � > 0 are given.

Definition 4.1. A couple (u, v) 2 L1(Ω) ⇥ W 1,p
D (Ω) is a weak solution of

(4.1) if u 2 Sign+(v), a.e. in Ω, and
Z

Ω

u⇠ dx+�

Z

Ω

rp�1v ·r⇠ dx��

Z

Ω

uV ·r⇠ dx =

Z

Ω

f ⇠ dx, 8 ⇠ 2 W 1,p
D (Ω).

As a consequence of Theorem 3.1, we can deduce the following result.

Corollary 4.1. If (u1, v1) and (u2, v2) are two solutions of (4.1) associated

with f1, f2 2 L1(Ω), respectively, then

|u1 � u2|1  |f1 � f2|1 .

Proof. This is a simple consequence of the fact that if the (independent of

t) couple (u, v) is a weak solution of (4.1), then it can be thought out as a

time-independent solution of the evolution problem (2.1) with f replaced by

f � u (which is also independent of t).

⇤
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We will consider in the sequel � = 1, the changes being obvious in the

general case � > 0. For " > 0, let

H"(r) =

8
<
:

1 if r > "

r/" if 0  r  "

0 if r < 0

and consider the regularized problem

8
>>>>>>>>><
>>>>>>>>>:

u" �∆pv" +r · (u" V ) = f

u" = H"(v")

9
=
; in Ω

v" = 0 on ΓD

�
rp�1v" � u" V

�
· ⌫ = 0 on ΓN .

(4.2)

Observe that, for any " > 0, |H"|  1, H" is Lipschitz continuous and it

satisfies

(I +H")
�1(r) �! (I + Sign+)�1(r), as "! 0, for any r 2 R,

i.e., H" converges to Sign+ in the sense of the resolvent, which is equivalent

to the convergence in the sense of the graph (cf. [8]).

The following result establishes the existence for the regularized problem

and, through a passage to the limit, the existence for (4.1).

Proposition 4.1. For any f 2 Lp0(Ω) and " > 0, problem (4.2) has a weak

solution (u", v"), in the sense that v" 2 W 1,p
D (Ω), u" = H"(v"), a.e. in Ω,

and
Z

Ω

u" ⇠ dx+

Z

Ω

rp�1v" ·r⇠ dx�

Z

Ω

u" V ·r⇠ dx

=

Z

Ω

f ⇠ dx, 8 ⇠ 2 W 1,p
D (Ω). (4.3)

Moreover, as "! 0, we have

H"(v") �! u in L1(Ω)� weak
?, (4.4)

v" �! v in W 1,p
D (Ω)� weak (4.5)

and (u, v) is the weak solution of (4.1).

Proof. The existence of a solution for (4.2) is standard, but for completeness

and the reader’s convenience, we reproduce the main arguments.
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Let us denote the topological dual space of W 1,p
D (Ω) by

h
W 1,p

D (Ω)
i?

and

the associated duality bracket by h·, ·i. Observe that the operator

A" : W 1,p
D (Ω) �!

h
W 1,p

D (Ω)
i?

,

defined, for ⇠ 2 W 1,p
D (Ω), by

hA"v, ⇠i =

Z

Ω

H"(v) ⇠ dx+

Z

Ω

rp�1v ·r⇠ dx�

Z

Ω

H"(v)V ·r⇠ dx,

is bounded and weakly continuous. Moreover, A" is coercive since, for any

u 2 W 1,p
D (Ω), we have

hA"v, vi =

Z

Ω

H"(v) v dx+

Z

Ω

|rv|p dx�

Z

Ω

H"(v)V ·rv dx,

�

Z

Ω

|rv|p dx�

Z

Ω

|V | |rv| dx

�
1

p0

Z

Ω

|rv|p dx�
1

p0

Z

Ω

|V |p
0

dx,

using Young’s inequality. Thus, for any f 2
h
W 1,p

D (Ω)
i?

� Lp0(Ω), the

problem A"v = f has a solution v" 2 W 1,p
D (Ω).

To pass to the limit as "! 0, we first note that
Z

Ω

|rv"|
p dx  C(N, p,Ω)

✓Z

Ω

|V |p
0

dx+

Z

Ω

|f |p
0

dx

◆
. (4.6)

Indeed, taking v" as a test function, we have
Z

Ω

u"v" dx+

Z

Ω

|rv"|
p dx =

Z

Ω

u" V ·rv" dx+

Z

Ω

fv" dx.

Using Young’s inequality and the fact that |u"| = |H"(v")|  1, we obtain
Z

Ω

u" V ·rv" dx 
1

p0

Z

Ω

|V |p
0

+
1

p

Z

Ω

|rv"|
p dx

and, by combining Poincaré’s with Young’s inequalities, also
Z

Ω

fv" dx 
C

p0

Z

Ω

|f |p
0

+
1

p

Z

Ω

|rv"|
p dx.

Using the fact that u"v" � 0, we deduce (4.6).

Now, it is clear that the sequences v" and u" = H"(v") are bounded,

respectively, in W 1,p
D (Ω) and in L1(Ω). Thus, there exists a subsequence

(that we denote again by v") such that (4.4) and (4.5) are fulfilled. In

particular, using a monotonicity argument (see, for instance, [8]), this implies

that u 2 Sign+(v), a.e. in Ω, and, letting " ! 0 in (4.3), we obtain that

(u, v) is a weak solution of (4.1).

⇤
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To prove the existence of a weak solution to (2.1), we fix f 2 Lp0(Q) and,

for an arbitrary 0 < "  "0 and n 2 N such that n" = T , we consider the

sequence (ui, vi) given by the "�Euler implicit scheme associated with (2.1),

namely
8
>>>>>>>>><
>>>>>>>>>:

ui+1 � "∆pvi+1 + "r · (ui+1V ) = ui + "fi

ui+1 2 Sign+(vi+1)

9
=
; in Ω

vi+1 = 0 on ΓD

�
rp�1vi+1 � ui+1 V

�
· ⌫ = 0 on ΓN .

(4.7)

where, for each i = 0, . . . , n� 1, fi is given by

fi =
1

"

Z (i+1)"

i"
f(s) ds, a.e. in Ω.

Now, for a given "�time discretization 0 = t0 < t1 < . . . < tn = T , satisfying

ti+1 � ti = ", we define the "�approximate solution by

u" :=

n�1X

i=0

ui �[ti,ti+1) and v" :=

n�1X

i=1

vi �[ti,ti+1).

Due to Proposition 4.1 and the general theory of evolution problems gov-

erned by accretive operators (see, for instance, [5, 4]), we define the operator

A in L1(Ω) by µ 2 A(z) if, and only if, µ, z 2 L1(Ω) and z is a solution of

the problem 8
>>>>>>>>><
>>>>>>>>>:

�∆pv +r · (z V ) = µ

z 2 Sign+(v)

9
=
; in Ω

v = 0 on ΓD

�
rp�1v � z V

�
· ⌫ = 0 on ΓN .

in the sense that z 2 L1(Ω) and there exists v 2 W 1,p
D (Ω) satisfying z 2

Sign+(v), a.e. in Ω, and
Z

Ω

rp�1v ·r⇠ dx�

Z

Ω

z V ·r⇠ dx =

Z

Ω

µ ⇠ dx, 8 ⇠ 2 W 1,p
D (Ω).

As a consequence of Corollary 4.1, we know that the operator A is accretive

in L1(Ω). Moreover, we have

D(A) = {u 2 L1(Ω) : |u|  1, a.e. in Ω} .
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It then follows from the general theory of nonlinear semigroups governed by

accretive operators (see, for instance, [4]) that, as "! 0,

u" �! u, in C
�
[0, T ), L1(Ω)

�
, (4.8)

and u is the so-called mild solution of the evolution problem
8
<
:

ut +Au 3 f in (0, T )

u(0) = u0.

(4.9)

To complete the proof of the existence for problem (2.1), we show that

the mild solution u is, in fact, the solution of (2.1). More precisely, we prove

the following result.

Theorem 4.1. For any non-negative f 2 Lp0(Q) and u0 2 L1(Ω), the

mild solution of (4.9) is a solution of (2.1), in the sense that there exists

v 2 Lp(0, T ;W 1,p
D (Ω) such that the couple (u, v) solves the problem (2.1) in

the sense of Theorem 2.1.

To this aim, we use the limit of the sequence v", given by the "�approxima-

te solution.

Lemma 4.1. We have, as "! 0,

v" �! v, in Lp
⇣
0, T ;W 1,p

D (Ω)
⌘
,

and (u, v) is a weak solution of (2.1).

Proof. Due to Proposition 4.1, the sequence (ui, vi) given by (4.7) is well

defined in L1(Ω)⇥W 1,p
D (Ω), and satisfies ui 2 Sign+(vi) and

Z

Ω

ui+1 ⇠ dx+ "

Z

Ω

rp�1vi+1 ·r⇠ dx� "

Z

Ω

ui+1 V ·r⇠ dx

= "

Z

Ω

fi ⇠ dx, 8 ⇠ 2 W 1,p
D (Ω). (4.10)

Taking vi+1 as a test function in (4.10), reasoning as in the proof of (4.6)

and using the fact that (ui+1 � ui) vi+1 � 0, we get
Z

Ω

|rvi|
p dx  C(N, p,Ω)

✓Z

Ω

|V |p
0

dx+

Z

Ω

|fi|
p0 dx

◆
.

Thus Z

Ω

|rv"|
p dx  C(N, p,Ω)

✓Z

Ω

|V |p
0

dx+

Z

Ω

|f"|
p0 dx

◆
,

where

f" =
n�1X

i=0

fi �[ti,ti+1), in Ω.
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This implies that v" is bounded in Lp
⇣
0, T ;W 1,p

D (Ω)
⌘

and that there exists

v 2 Lp
⇣
0, T ;W 1,p

D (Ω)
⌘

such that, taking a subsequence if necessary,

v" �! v, in Lp
⇣
0, T ;W 1,p

D (Ω)
⌘
� weak.

Combining this with (4.8), we deduce moreover that u 2 Sign+(v), a.e. in

Q. Now, as usual in nonlinear semigroup theory for evolution problems, we

consider

ũ" =

n�1X

i=0

(t� ti)ui+1 � (t� ti+1)ui
"

�[ti,ti+1),

which converges to u as well in C
�
[0, T );L1(Ω)

�
. For any test function

⇠ 2 W 1,p
D (Ω), we have

d

dt

Z

Ω

ũ" ⇠ dx+

Z

Ω

�
rp�1v" � u" V

�
·r⇠ dx =

Z

Ω

f" ⇠ dx, in D0([0, T )).

So, letting " ! 0 and using the convergence of (ũ", u", v", f") to (u, u, v, f),

we deduce that (u, v) is a weak solution of (2.1).

⇤

Proof of Theorem 4.1. The proof follows directly from Lemma 4.1

⇤

Proof of Theorem 2.1. The existence of a weak solution is directly established

by Theorem 4.1. Uniqueness is ensured by Theorem 3.1 and Corollary 3.1.

⇤

5. Asymptotic behaviour as p ! 1

This section contains the proof of Theorem 2.2, namely the study of the

limit as p ! 1 of the solution of (2.1). We start with appropriate a priori

estimates independent of p. We obviously have

kupkL1(Q)  1. (5.1)

Testing the equation with vp, we obtain
ZZ

Q
|rvp|

p 

ZZ

Q
(f �r · V ) vp


1

p0✏p0

ZZ

Q
|f �r · V |p

0

+
✏p

p

ZZ

Q
|vp|

p


1

p0✏p0

ZZ

Q
|f �r · V |p

0

+
Cp
p✏

p

p

ZZ

Q
|rvp|

p ,
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using Young’s and Poincaré’s inequalities. We now take

✏ =
⇣p
2

⌘1/p 1

Cp

to get
ZZ

Q
|rvp|

p  (p� 1)

✓
2Cp

p

◆p0 ZZ

Q
|f �r · V |p

0

.

Now, for any q � 1 and p � q, we have, by Hölder’s inequality,

ZZ

Q
|rvp|

q  |Q|
1� q

p

✓ZZ

Q
|rvp|

p

◆ q

p

 |Q|
1� q

p (p� 1)
q

p

✓
2Cp

p

◆ q
p�1 ✓ZZ

Q
|f �r · V |p

0

◆ q

p

.

Taking the limit as p ! 1, we obtain

lim
p!1

krvpk
q
q  |Q| , (5.2)

since Cp ! C (see [30, page 110]) and

kf �r · V k
q

p�1

p0 �! kf �r · V k01 = 1.

Using again Poincaré’s inequality, we conclude that (vp)p is bounded in

Lq
�
0, T ;W 1,q(Ω)

�
.

Proof of Theorem 2.2. From (5.1) and (5.2), we find a pair

(u, v) 2 L1(Q)⇥ Lq
�
0, T ;W 1,q(Ω)

�

such that, for subsequences (that we relabel for convenience),

up * u in L1(Q)� weak-⇤;

vp * v in Lq
�
0, T ;W 1,q(Ω)

�
� weak.

Moreover, we have

0  u  1

and

krvkq  |Q|1/q , 8q > 1,

so, taking q ! 1, we get

krvk
1

 1.



20 N. IGBIDA AND J.M. URBANO

Next, we show that @tup is uniformly bounded. Indeed,
ZZ

Q
up@t' = �

ZZ

Q
|rvp|

p�2rvp ·r'+

ZZ

Q
up V ·r'+

ZZ

Q
f'

 kr'k1

⇢ZZ

Q
|rvp|

p�1 +

ZZ

Q
|V |+ Ckfk1

�

 C kr'k1.

We can then apply [2, Proposition 1.4], to conclude that

u 2 Sign+(v).

We now take a function ⇠ 2 W 1,1
D (Ω), with |r⇠|  1, and test the equation

with vp � � ⇠, where 0 < � < 1 is an arbitrary constant, to get

h@tup, vp � �⇠i+

ZZ

Q
|rvp|

p�2rvp ·r(vp � �⇠)�

ZZ

Q
up V ·r (vp � �⇠)

=

ZZ

Q
f (vp � �⇠) .

Passing to the limits, as p ! 1 for fixed 0 < � < 1 firstly, and then � ! 1,

we obtain (2.7). To complete the proof, we justify rigorously the passage to

the limit in each term.

(1) for the first term, we have

lim
p!1

h@tup, vp � � ⇠i = lim
p!1

⇢
@t

Z up

0

�
Sign+

�
�1

0
(r)� � h@tup, ⇠i

�

= �� lim
p!1

h@tup, ⇠i

= �� lim
p!1

d

dt

Z

Ω

up⇠

* ��
d

dt

Z

Ω

u⇠,

in D0(0, T );

(2) concerning the second term, by monotonicity, we have

lim inf
p!1

ZZ

Q
|rvp|

p�2rvp ·r(vp � � ⇠)

� lim
p!1

�p�1

ZZ

Q
|r⇠|p�2r⇠ ·r(vp � � ⇠) = 0;
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(3) as for the third term,

lim
p!1

ZZ

Q
up V ·r (vp � � ⇠) = lim

p!1

ZZ

Q
up V ·rvp

�� lim
p!1

ZZ

Q
up V ·r⇠

= lim
p!1

ZZ

Q
V ·rvp

�� lim
p!1

ZZ

Q
up V ·r⇠

=

ZZ

Q
u V ·r(v � � ⇠),

since up 2 Sign+(vp) and u 2 Sign+(v);

(4) for the right-hand side, the passage to the limit is straightforward.

So, for any 0 < � < 1, we get

h@tu, v � �⇠i �

ZZ

Q
u V ·r (v � �⇠) 

ZZ

Q
f (v � �⇠) .

Letting at last � ! 1, we obtain the result.

⇤

Appendix A

We need two lemmas to prepare for the proof of Proposition 3.1.

Lemma A1. If (u, v) is a weak solution of (2.1), then

�∆pv + (r · V � f) Sign0(v)  0 in D0
�
(0, T )⇥ Ω

�
. (A.1)

Proof. We extend v to R⇥Ω by 0, for any t 62 (0, T ), and, for any h > 0, we

consider

Φ
h(t, x) = ⇠(x) (t)

1

h

Z t+h

t
H"(v(s, x)) ds, for a.e. (t, x) 2 Q,

where  is extended, in turn, to R by 0, and H" is given in R by

H"(r) =

8
<
:

1 if r > "

r/" if |r|  "

�1 if r < ",

for " > 0. It is clear that Φh 2 W 1,p
⇣
0, T ;W 1,p

D (Ω)
⌘
\L1(Q) is an admissible

test function for the weak formulation, so that

�

ZZ

Q
u @tΦ

h +

ZZ

Q

�
rp�1v � V u

�
·rΦ

h =

ZZ

Q
f Φ

h. (A.2)
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Observe that
ZZ

Q
u @tΦ

h =

ZZ

Q
u @t 

1

h

Z t+h

t
H"(v((s)) ds

+

ZZ

Q
u(t)

H"(v(t+ h))�H"(v(t))

h
 (t) ⇠. (A.3)

Moreover, using the fact that, for a.e. t 2 (0, T ), 0  u(t)  1, H" � 0 and

H"(0) = 0, we have

u(t, x)H"(v(t, x)) = H"(v(t, x))

and

u(t, x)H"(v(t+ h, x))  H"(v(t+ h, x)), a.e. (t, x) 2 Q.

So, for h > 0 small enough, we have
ZZ

Q
u(t)

H"(v(t+ h))�H"(v(t))

h
 (t) ⇠



ZZ

Q

H"(v(t+ h))�H"(v(t))

h
 (t) ⇠



ZZ

Q

 (t� h)�  (t)

h
H"(v(t)) ⇠.

This implies that

lim sup
h!0

ZZ

Q
u(t)

H"(v(t+ h))�H"(v(t))

h
 (t) ⇠  �

ZZ

Q
@t H"(v(t)) ⇠,

so that, by letting h ! 0 in (A.3), we get

lim
h!0

ZZ

Q
u @tΦ

h  0.

Then, by letting h ! 0 in (A.2), we obtain
ZZ

Q

�
rp�1v � V u

�
·r (H"(v(t)) ⇠) 

ZZ

Q
f H"(v(t)) ⇠  . (A.4)

On the other hand, using again the fact that uH"(v) = H"(v), a.e. in Q, we

have ZZ

Q

�
rp�1v � V u

�
·r (H"(v(t)) ⇠) 

=

ZZ

Q
H"(v)r

p�1v ·r⇠  +

ZZ

Q
|rv|p (H")

0(v) ⇠  

�

ZZ

Q
V ·r (⇠H"(v)) 

�

ZZ

Q
H"(v)r

p�1v ·r⇠  +

ZZ

Q
r · V (⇠H"(v)) ,



A GRANULAR MODEL FOR CROWD MOTION AND PEDESTRIAN FLOW 23

using (2.3) and the fact that |rv|p (H")
0(v) � 0. Thanks to (A.4), this

impliesZZ

Q
rp�1v ·r⇠H"(v) ⇠  +

ZZ

Q
r · V ⇠H"(v) 

ZZ

Q
f H"(v(t)) ⇠.

Letting "! 0, we obtain (A.1).

⇤

We now state and prove the second lemma.

Lemma A2. Let u 2 L1
loc(Q), F 2 L1

loc(Q)N and J1 2 L1
loc(Q) be such that

@tu+ V ·ru�r · F = J1 in D0(Q), (A.5)

where V ·ru is taken in the sense V ·ru = r · (uV )� ur · V in D0(Q). If

�r · F  J2 in D0(Q), (A.6)

for some J2 2 L1
loc(Q), then

@t�(u) + V ·r�(u)�r · F  J1�
0(u) + J2(1� �0(u)) in D0(Q), (A.7)

for any � 2 C1(R) such that �0  1.

Proof. We set

Q" := {(t, x) 2 Q : d((t, x), @Q) > "} .

Moreover, for any z 2 L1
loc(Q), we denote by z" the usual regularization of z

by convolution given by

z" := z ? ⇢", in Q",

where ⇢" is the standard mollifying sequence in R⇥ R
N . We can show that

(A.5) and (A.6) imply, respectively,

@tu" + V ·ru" �r · F" = J1" + C" in Q" (A.8)

and

�r · F"  J2" in Q", (A.9)

where C" is the usual commutator given by

C" := V ·ru" � (V ·ru)".

Here (V ·ru)" needs to be understood in the sense

(V ·ru)" = (uV ) ?r⇢" � (ur · V ) ? ⇢", in Q".

Multiplying (A.8) by �0(u") and (A.9) by 1��0(u"), and adding the resulting

equations, we obtain

�0(u") @tu"+�
0(u")V ·ru"�r ·F"  C" �

0(u")+J1"�
0(u")+J2"(1��

0(u"))

and

@t�(u")+V ·r�(u")�r·F"  C" �
0(u")+J1"�

0(u")+J2"(1��
0(u")), (A.10)
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in Q". Since V 2 W 1,1
loc (Ω) and r · V 2 L1(Ω), it is well-known that taking

a subsequence if necessary, the commutator converges to 0 in L1
loc(Q), as

"! 0 (see, for instance, [1]). Thus, letting "! 0 in (A.10), we obtain (A.7).

⇤

We are now ready for the proof of Proposition 3.1.

Proof of Proposition 3.1. Due to Lemma A1, and using the fact that

r · V Sign0(v) = ur · V Sign0(v),

we see that (A.5) and (A.6) are fulfilled with

F := rp�1v, J1 := f � ur · V

and

J2 := (f � ur · V ) Sign0(v).

Applying Lemma A2, for any � 2 C1(R) such that �0  1, we deduce that

@t�(u)�∆pv + V ·r�(u) + (ur · V � f)�0(u)

+ (f � ur · V ) Sign0(v)(�
0(u)� 1)  0 in D0(Q).

Using again the fact that r · V Sign0(v) = ur · V Sign0(v) this implies that

@t�(u)�∆pv + V ·r�(u) + ur · V �0(u) + ur · V Sign0(v)(1� �0(u))

 f
�
Sign0(v)(1� �0(u)) + �0(u)

�
in D0(Q),

and then

@t�(u)�∆pv + V ·r�(u) + ur · V
�
�0(u)�[v=0] + Sign0(v)

�

 f
�
�0(u)�[v=0] + Sign0(v)

�
in D0(Q).

⇤
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