
GENERATING AFFINE POLYNOMIALS NONNEGATIVE ON REGIONS OF THE

FORM a1 ≤ a2 ≤ · · · ≤ an ≤ 1.
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Abstract : Given a multilinear polynomial q =
∑

I⊆[n] cI
∏

i∈I ai ∈ R[a1, ..., an], let
T (q) be the family of its terms and let deg t be the degree of a term t. The polynomial q̃ =
∑

t∈T (q)((1−an+1)(b+deg t)+a−b)t ∈ R[a1, ..., an, an+1], is then affine as well. It is shown
that under broad conditions for reals a and b, if q ≥ 0 whenever a1 ≤ a2 ≤ · · · ≤ an ≤ 1,
then q̃ ≥ 0 whenever a1 ≤ a2 ≤ · · · ≤ an ≤ an+1 ≤ 1. This result implies potentially a
step in a proof that the coefficient polynomials of positive degree of the power series in t
of pobabilistically weighted harmonic means of the quantities (1 − x1t), ..., (1 − xkt) are
nonpositive whenever x1, ..., xk are nonnegative.
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1. INTRODUCTION AND MOTIVATION

The author’ s preprints [K1] and [K2] dealt among other things with the problem of strengthening results
of F. Holland [H] concerning coefficient inequalities for the power series in t of the weighted harmonic mean of
quantities (1−x1t), ..., (1−xkt); namely (

∑n
i=1 pi(1−xit)

−1)−1, where p1, ..., pk are nonnegative reals of sum 1. The
question has connections with the nonnegative inverse eigenvalue problem: to characterize the possible spectra of
nonnegative real matrices. Holland proved that if the pi are all equal to 1/k, then for l ≥ 1 the coefficient of tl is a
polynomial ql(x1, ..., xk) which is nonpositive whenever xi ≥ 0 for i = 1, ..., k. In [K1], [K2] we provided evidence
for two stronger facts: firstly it does not seem to be necessary to assume all the pi are equal; and secondly if say
(we assume without loss of generality) 0 ≤ x1 ≤ x2 ≤ · · · ≤ xn and we write xi = h1 + · · · + hi, for i = 1, ..., n
then the polynomial ql transformed by this substitution into a polynomial in the hs will have only non-positive
coefficients.

In the course of our work we came up with a sequence of polynomials in various variables the first few of which
we indicated - up to unessential modifications - as being the following ones.

q0 = 1
q1 = 2− 2a1
q2 = 6− 8a1 − 4a2 + 6a1a2
q3 = 24− 40a1 − 20a2 + 36a1a2 − 12a3 + 24a1a3 + 12a2a3 − 24a1a2a3

...

These polynomials occurred as a consequence of a certain complicated reduction process. We conjectured at the
time that there should be an easier way to produce these polynomials, but we were unable to concretize it. We also
conjectured that the polynomial qn is nonnegative on the region ∆n = {(a1, a2, ..., an) : a1 ≤ a2 ≤ · · · ≤ an ≤ 1},
that is, that qn|∆n ≥ 0. It was shown that this would yield a strengthening of Holland’s main result. We were
able to prove nonnegativity for the first few inequalities but for lack of an easy definition we could not hope
to prove qn|∆n ≥ 0 for all n. But some time ago we finally found a precise conjecture to easily produce these
polynomials. Given any polynomial q in various variables written in standard form as a linear combination of
monomials, define T (q) = {terms of polynomial q}. For example T (q2) = {6,−8a1,−4a2, 6a1a2}. For t ∈ T (q), let
deg t := degree of t; for example deg(6a1a2) = 2. The mentioned reduction process seems to deliver the following
inductively defined sequence of polynomials:

q0 = 1.

qn+1 =
∑

t∈T (qn)

(2 + n+ deg t) · t−
∑

t∈T (qn)

(2 + deg t) · t · an+1 =
∑

t∈T (qn)

((1− an+1)(2 + deg t) + n)t

We do not prove this conjecture here but rather we prove a result from which the second conjecture, namely that
indeed we have for all n ∈ Z≥1 that qn|∆n ≥ 0 is a very special case. We managed to prove our special polynomial
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inequalities only after we arrived after a number of failed tentatives at the general viewpoint which we present
here. While it seems easy to show, by a method we explain in the next paragraph, that for each individual qn
there holds qn|∆n ≥ 0, it seems to be a good deal harder to show that this method works for the totality of all
the qn. This is done here.

If q = q(a1, a2, ..., an) is any real polynomial in n variables a1, ..., an which we wish to prove is nonnegative on
∆n, then there is a good chance to show this by expressing it in certain other variables; namely we introduce
h1 = 1−an, h2 = an−an−1, · · · , hn = a2−a1 from which it follows that aj = 1−h1−h2−· · ·−hn−j+1. Then any
monomial (i.e. any product of variables) of q is a certain product of some of the factors in

∏n
i=0(1−h1−h2−· · ·−hi).

By substituting such products for the monomials and expanding we get q as a polynomial in the hi. We shall
call this polynomial the h-form of q while the original form in which q is written is its a-form. It is evident that
the coefficient of a monomial hj = h(j1,...,jn) := hj11 hj22 · · ·hjnn in the h-form of q is a linear combination of the
coefficients of q in the a-form. Evidently (a1, a2, ..., an) ∈ ∆n if and only if h1, h2, ..., hn are all nonnegative. It
follows that the nonnegativity of the referred linear combinations of the coefficients of q that occur writing q in
h-form is a sufficient condition for having q|∆n ≥ 0.

In this vein, we present here a perhaps significant first result for the special class of affine - also called multilinear -
polynomials which are those for which for each i ∈ [n] = {1, 2, ..., n} the function a 7→ q(a1, ..., ai−1, a, ai+1, ..., an)
is affine; i.e. constant plus linear. Equivalently q is a polynomial in which the exponents of the ai are all only 0
or 1.

Theorem. Let n ∈ Z≥0 and a, b ∈ R, and consider the affine polynomials

q =
∑

I⊆[n]

cI
∏

i∈I

ai and q̃ =
∑

t∈T (q)

(a+ deg t) · t−
∑

t∈T (q)

(b+ deg t) · t · an+1 =
∑

t∈T (q)

((1− an+1)(b+ deg t) + a− b)t.

Provided a− b−n ≥ 0 and b ≥ 0, then the coefficients of the h-form of q̃ are nonnegative linear combinations of at

most two of the coefficients of the h-form of q. Consequently, if the h-form of q has only nonnegative coefficients,

then the h-form of q̃ has only nonnegative coefficients, and hence q̃|∆n+1
≥ 0.

To see that this theorem indeed implies for the above sequence qn that qn|∆n ≥ 0, choose b = 2 and make a
dependent on n, putting a = 2 + n. Then beginning with q = q0 = 1 = c∅, the theorem applied with n = 0 yields
as q̃0 the polynomial q1; now applying it with q = q1 and n = 1, we get q̃1 = q2, etc. The claim follows as q0 ≥ 0.

We convene to see sets I ⊆ [n] as lists of increasing integers; and if n is small simply as strings. So e.g. c{2,4,1,5}
will usually be written c1245.

To make other aspects of the theorem more palpable we present some more examples, still remaining near the
original sequence (qi)i≥0. If a generic n-variable affine q is given as in the left hand side of the theorem we let q̃
be produced by the choice b = 2 and a = 2 + n.

Examples. In the case n = 0, q = c∅ and q̃ = 2c∅ − 2c∅a1 = 2c∅h1 and the claim of the theorem is obvious. If
n = 1 then the a-form and the h-form of q and q̃ are given by

q = c∅ + c1a1 = (c∅ + c1)− c1h1, and

q̃ = 3c∅ − 2c∅a2 + 4c1a1 − 3c1a1a2 = (c∅ + c1) + 2(c∅ + c1)h1 − 3c1h
2
1 − c1h2 − 3c1h1h2,

respectively. So also in this case we see that if the h-form of q has only nonnegative coefficients (i.e. if c∅ + c1 ≥ 0
and −c1 ≥ 0) , then the h-form of q̃ will have only nonnegative coefficients. If n = 2 then the a-form and the
h-form of q are

q = c∅ + c1a1 + c2a2 + c12a1a2 = (c∅ + c1 + c2 + c12) + (−c1 − c2 − 2c12)h1 + c12h
2
1 + (−c1 − c12)h2 + c12h1h2.

The a-form and the h-form of q̃ are

q̃ = 4c∅ + 5c1a1 + 5c2a2 + 6c12a1a2 − 2c∅a3 − 3c1a1a3 − 3c2a2a3 − 4c12a1a2a3
= (2c∅ + 2c1 + 2c12 + 2c2) + (2c∅ + c1 + c2)h1 + (−3c1 − 6c12 − 3c2)h

2
1 + 4c12h

3
1 + (−2c1 − 4c12 − 2c2)h2

+(−3c1 − 4c12 − 3c2)h1h2 + (8c12)h
2
1h2 + (2c12)h

2
2 + (4c12)h1h

2
2 + (−2c1 − 2c12)h3

+(−3c1 − 2c12)h1h3 + 4c12h
2
1h3 + 2c12h2h3 + 4c12h1h2h3.

Again the coefficients of the hj of q̃ are nonnegative linear combinations of two of the coefficients of the h-form of
q. For example,

(coefficient of h1h2 in q̃) = −3c1 − 3c2 − 4c12 = 3·( coefficient of h1 in q) + 2·(coefficient of h21 in q)

We shall sometimes call a polynomial q̃ defined on the base of q (and a selection of a, b) a successor of q. It is
quite likely that analogues of the theorems hold for further modifications or generalizations of the successor rule.
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Striving for greater naturality and simplicity it is natural to ask: Given an affine polynomial q which satisfies
q|∆n ≥ 0, will then a sucessor q̃ of typically satisfy q̃|∆n+1 ≥ 0 ? We will show in Section 6 that the response
to this question is in general ‘no’ even in the particular case that q is a polynomial of two variables and q̃ the
polynomial just shown. We will characterize completely when a polynomial q = c∅ + c1x + c2y + c12xy satisfies
q|∆2

≥ 0 and from there produce a counterexample.

In sections 2,3,4,5,6 we do the following. In Section 2 we recall notions like colex total order, prove a particular
property of it, and also need one particular combinatorial interpretation of the Catalan numbers Cn. We introduce
in Section 3 for an affine polynomial q a matrix, we call hc-table, that gives us an attractive form to see the
coefficients of q in h-form as a linear combination of its coefficients cI in a-form. These matrices are of size
Cn+1 × 2n. We will see that the tables of generic affine polynomials in n and n + 1 variables are closely related.
In Section 4 we express the coefficients of the a-form of q̃ as defined in the theorem by means of the coefficients
of the a-form of q. The main result, enounced in above theorem, is proved in Section 5. Section 6 considers a
2-variable example q. We look into the question as to how far our linear inequality conditions on the coefficients
cI I ⊆ [2] for q approach the complete set of necessary and sufficient conditions in order that q|∆2 ≥ 0. We also
present the mentioned counterexample. and the mentioned counterexample, as said, in Section 6. What concerns
references to lemmas etc., we simply write Lemma i for the lemma in Section i; and similarly of course procede
with propositions, theorems, and corollaries.

2. SOME NOTATION AND PREPARATORY LEMMAS

For a subset I of [n] = {1, 2, ..., n}, and sets I in general, |I| will denote the cardinality of I; while for j =
(j1, ..., jn) ∈ Z

n, we define its 1-norm |j| = |j1|+ · · ·+ |jn|. e1 will be the first standard vector (1, 0, 0, ..., 0) of size
implied by the context.

We present next some concepts that skimmed over will further the smooth reading of what follows.

a. We first recall the colex total orders on the familiy of subsets of integers in [n] and on the family of integer
n-uples. Given I, J ⊆ [n], assume them written as lists in which the integers in I, J increase. For I 6= J, we write
I < J if, for some l, the rightmost l integers of I and J are equal (l = 0 admitted) but the l+1-st integer counted
from the right in I is either nonexistent or is smaller than the l + 1-st integer of J. Thus we have e.g. for the
case n = 4, that ∅ < 1 < 2 < 12 < 3 < 13 < 23 < 123 < 4 < 14 < 24 < 124 < 34 < 134 < 234 < 1234. For
n-uples i = (i1, i2, ..., in) and j = (j1, j2, ..., jn) we similarly define i < j if, for some l, the rightmost l integers of
i and j are equal (l = 0 admitted) but the l + 1-st integer counted from the right in i is smaller than the l + 1-st
integer of j. Here is a system of inequalities for the set of 3-uples in J3 (defined below) that helps interiorizing
the idea; we will suppress here and in other places parentheses and commas for n-uples with small integer entries:
000 < 100 < 200 < 300 < 010 < 110 < 210 < 020 < 120 < 001 < 101 < 201 < 011 < 111.

Lemma. Consider
Jn = {(j1, j2, ..., jn) ∈ Z

n
≥0 : t+ jt + jt+1 + · · · jn ≤ n+ 1, t = 1, 2, ..., n+ 1}

and assume Jn equipped with the colex order. Then the colex predecessor j′ ∈ Jn of a nonzero element j ∈ Jn of
form j = (0, j2, j3, ..., jn) is an element of 1-norm n: |j′| = n.

Proof. Let j 6= 0 be in Jn. There exists then an i ∈ {2, 3, ..., n} such that ji ≥ 1 and the predecessor of j

is of the form j′ = (j′1, ..., j
′
i−1, ji − 1, ji+1, ..., jn). Assume |j′| ≤ n− 1. Then l = n − |j′| ≥ 1 and for j′′ =

(j′1 + l, j′2, ..., j
′
i−1, ji − 1, ji+1, ..., jn) we have evidently |j′′| = |j′| + l = n, j′′ ∈ Jn, and from the definition of the

colex order it is direct that j′ < j′′ < j. This means j′ is not the predecessor of j, contradicting the hypothesis. �

Note the imbedding Jn ∋ (j1, ..., jn) 7→ (j1, ..., jn, 0) ∈ Jn+1. We can thus usually see Jn as a subset of Jn+1.

b. The following fact is known.

Proposition. A monomial xl11 x
l2
2 · · ·xlnn occurs in the expansion of the product x1(x1+x2)(x1+x2+x3) · · · (x1+

x2 + · · ·+ xn) if and only if l1, l2, ..., ln are nonnegative integers satisfying l1 + l2 + · · ·+ lt ≥ t for t = 1, ..., n, with
equality if t = n. Furthermore the number of distinct such monomials is the Catalan number Cn = 1

n+1

(

2n
n

)

.

These facts can be found as being two of the more than 210 different characterizations of Catalan numbers in [S1];
see there problems 6.19 (y5) and (s5); they can certainly also be found in [S2]. �

Corollary. hl11 h
l2
2 · · ·h

ln−1

n−1 occurs in the expansion of the product (1−h1)(1−h1−h2) · · · (1−h1−h2−· · ·−hn−1)
if and only if (l1, l2, ..., ln−1) ∈ Jn−1. There exist Cn distinct monomials in the expansion of the product.

3



Proof. The product arises from x1(x1 + x2)(x1 + x2 + x3) · · · (x1 + x2 + · · ·+ xn) by means of the substitutions
(

x1 x2 x3 . . . xn
1 −h1 −h2 . . . −hn−1

)

. So if xl11 x
l2
2 · · ·xlnn occurs in the expansion of the product x1(x1 + x2)(x1 + x2 +

x3) · · · (x1 + x2 + · · · + xn), then hl21 · · ·hlnn−1 will occur in the expansion of
∏n−1

j=1 (1 −
∑j

i=1 hj). If conversely

hl21 · · ·hlnn−1 occurs in the expansion of the latter product then it is clear that l2+ · · ·+ ln ≤ n; then homogenization

via multiplication with xl11 with l1 = n−l2−· · ·−ln yielding xl11 h
l2
1 · · ·hlnn−1 and back substitution of the h1, ..., hn−1

to x2, ..., xn will yield a monomial occurring in
n
∏

i=1

i
∑

j=1
xj . Now we know by the proposition before that occurrence

of xl11 x
l2
2 · · ·xlnn is the case if l1+ l2+ · · ·+ lt ≥ t for t = 1, ..., n−1 and l1+ l2+ · · ·+ ln = n. Substituting l1 via this

equality in the inequalities we get the inequalities n− lt+1 − · · · − ln ≥ t, or t+ lt+1 + · · ·+ ln ≤ n for t = 1, ..., n
as necessary and sufficient conditions for occurrence of hl21 · · ·hlnn−1. The inequalities claimed follow by replacing
variables named l2, ..., ln by l1, ..., ln−1, respectively. The claimed number of monomials follows from the present
proof and the previous proposition. �

3. TRANSITION FROM a-FORM TO h-FORM

In this section, given a generic affine polynomial in a-form q =
∑

I⊆[n] cI
∏

i∈I ai, we shall define a matrix Q so
that after arranging in increasing colex order the monomials that occur in its h-form into a column vector h and
similarly arranging the coefficients cI we get that hTQc is the h-form of q. Also, if q̇ =

∑

I⊆[n+1] cI
∏

i∈I ai, and

Q̇ the matrix associated to q̇, we give a 3-step rule for constructing Q̇ from Q. It is useful to note for clarity that
this section is completely independent from the definitions of a, b, q̃ of Section 1; that n is considered fixed; and
to keep in mind that q is tied to n and q̇ to n+ 1. This notation is chosen to emphasize that only two successive
polynomials are envolved here.

Since the h-form of q occurs by substituting aj by aj = 1− h1 − · · · − hn+1−j , for j = 1, ..., n, and expanding, the
monomials occurring in the h-form of q are of the form hj with j ∈ Jn, where as we know

Jn = { n-uples (j1, j2, ..., jn) of exponents occuring in the expansion of
∏n

l=0(1− h1 − h2 − · · · − hl) }
= {(j1, j2, ..., jn) ∈ Z

n
≥0 : t+ jt + jt+1 + · · · jn ≤ n+ 1, t = 1, 2, ..., n+ 1},

and |Jn| = Cn+1.

c0 c1 c2 c12
1 1 1 1 1
h1 −1 −1 −2
h21 1
h2 −1 −1

h1h2 1

The h-form of a polynomial q gives rise to its hc-table. This is a table whose columns
are indexed by the cI with the I ⊆ [n] in colex order, increasing from left to right,
and whose rows are indexed with the monomials hj occurring in the h-form of the
polynomial also in colex order so that the exponents j increase towards the bottom.
The entry at the intersection of row indexed by hj with column indexed by cI is the
numerical coefficient with which the product cIh

j occurs in the h-form. The inner,
numerical part of the hc-table of q is the Cn+1×2n matrix Q referred before. Shown
is the hc-table of q for the case n = 2; look at the respective example in Section 1.

How to construct the hc-table of q̇ from the hc-table of q ? We have

q̇ =
∑

I∈[n+1]

cI
∏

i∈I
ai

=
∑

I⊆[n]

cI
∏

i∈I
ai +

∑

I⊆[n]

cI⊎{n+1}

∏

i∈I
aian+1

= q + (1− h1)
∑

I⊆[n]

cI⊎{n+1}

∏

i∈I
ai.

The last step follows because in the h-form of q̇, we have h1 = 1− an+1. To get to the hc-table of q̇ we first have
to obtain the h-form of q as a subpolynomial of q̇. Because of a1 ≤ a2 ≤ · · · ≤ an ≤ an+1 ≤ 1

we have to replace an by 1 − h1 − h2, an−1 by 1 − h1 − h2 − h3, . . . , a1 by 1 − h1 − h2 − · · · − hn −

hn+1. This corresponds to the substitution

(

1 h1 h2 · · · hn−1 hn
1 h1 + h2 h3 · · · hn hn+1

)

in the original h-form of q. If

q =
∑

j∈Jn

κj1,j2,...,jnh
j1
1 hj22 · · ·h

jn−1

n−1 h
jn
n , then, what we shall call the extended q , is

∑

j∈Jn

κj1,j2,...,jn(h1 +

h2)
j1hj23 · · ·h

jn−1

n hjnn+1 =
∑

j∈Jn

∑

ν≥0 κj1,j2,...,jn
(

j1
ν

)

hν1h
j1−ν
2 hj23 · · ·h

jn−1
n hjnn+1. As distinct pairs (j1, ν) here cause

the j1 + 1 distinct n + 1-uples (ν, j1 − ν, j2, ..., jn) , ν = 0, 1, ..., j1, the coefficient of hν1h
j1−ν
2 hj23 · · ·h

jn−1

n hjnn+1 is
(

j1
ν

)

κj1j2···jn . The coefficient κj1j2···jn of hj11 hj22 · · ·h
jn−1

n−1 h
jn
n is of course a linear combination of certain cI , I ⊆ [n],
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as indicated by the hc-table of q. The full procedure to come from the hc-table of q to that of q̇ is thus as follows.

a. Prepare an empty table by writing the possible monomials of q̇ in h-form in right order in a column
to be the leftmost and the cI in right order in a row to be the uppermost. b. Note that the hc-table for q̇
will have twice the breadth of the hc-table of q. So we can speak of a left and a right part of equal breadths.
Write the coefficients of cIh

J of extended q into the left part of the the hc-table-to-be for q̇ putting blanks or
zeros for monomials that do not occur in extended q in h-form. c. The second part of the formula for q̇ is
(1− h1)

∑

I⊆[n]

cI⊎{n+1}

∏

i∈I
ai. The sum alone would have an easily recognized hc-table: It would be simply the left

part of the current table shifted to the right. It is now not hard to see that the multiplication with 1−h1 leads to
the following rule: The row indexed hj11 hj22 · · ·h

jn+1

n+1 of the table of q̇ is obtained from the now filled-in left part as
follows: If j1 = 0 copy the left half-row of q̇ into the right halfrow. If j1 ≥ 1, subtract from the left half-row with
index hj11 hj22 · · ·h

jn+1

n+1 the left half-row with index hj1−1
1 hj22 · · ·h

jn+1

n+1 and write the result into the right half-row.

The row indexed hj1−1
1 hj22 · · ·h

jn+1

n+1 is according to our ordering of rows precisely the row preceding the one indexed

hj11 hj22 · · ·h
jn+1

n+1 . In other words we have the ‘formula’

(right half-row) = (left half-row)− (left half-row of predecessor),

where, if j1 = 0, then the ‘left half-row of predecessor’ has to be interpreted as half-row of 0s (blanks). By Lemma
2 in fact this happens automatically for if j1 = 0 then the predecessor of row hj in the hc-table for q̇ is indexed
by a monomial whose exponent has norm n + 1 and therefore hj does not occur in the h-form of q since this
polynomial has degree n.

Example.

c0 c1 c2 c12
1 1 1 1 1
h1 −1 −1 −2
h21 1
h2 −1 −1

h1h2 1

c0 c1 c2 c12 c3 c13 c23 c123
1 1 1 1 1 1 1 1 1
h1 −1 −1 −2 −1 −2 −2 −3
h21 1 1 1 3
h31 −1
h2 −1 −1 −2 −1 −1 −2

h1h2 2 1 1 4
h21h2 −2
h22 1 1

h1h
2
2 −1

h3 −1 −1 −1 −1
h1h3 1 1 2
h21h3 −1
h2h3 1 1

h1h2h3 −1

hc-table of q hc-table of q̇

Consider the case n = 2 and the example of passing from the hc-table of q (at the left) to the hc-table of q̇ (at
the right). In the sense of above explanation, the monomial h21h

0
2 ‘creates’ the terms

(

2
0

)

h21,
(

2
1

)

h1h2,
(

2
2

)

h22; the

line for h3 is created from h2 = h01h
1
2, and h1h2 = h11h

1
2 originates

(

1
0

)

h01h2h3 = h2h3 and
(

1
1

)

h11h
0
2h3 = h1h3.

From this finally the right hand side of that table is produced by the above formula for computing right half
rows. As an example the left and the right half-rows indexed by h2 = h01h

1
2h

0
3 in the table for q̇ are equal

(to (0,−1,−1,−2)), while the right half-row of h1h2 is the left half-row of h1h2 minus the left half-row of h2:
(0, 1, 1, 4) = (0, 0, 0, 2)− (0,−1,−1,−2).

We will need in Section 5 the following lemma.

Lemma. Let n ≥ 1, I ⊆ [n], and j = (j1, j2, ..., jn) ∈ Jn. Also let rI(j) be the coefficient with which cIh
j occurs

in the h-form of q or, equivalently, the entry in adress (hj, cI) of the hc-table of q. Then
a. j1rI(j) + (|I|+ 1− |j|)rI(j− e1) = 0.
b. |I|rI(j− e1) = (|j| − 1)rI(j− e1)− j1rI(j).

Proof. a. cIh
j is born from expanding cI

∏

i∈I(1−h1−· · ·−hn−i+j) which is a polynomial of degree |I| and so we
see that |I| < |j| implies rI(j) = 0. So for such I and j the claim is trivial and we assume henceforth that |j| ≤ |I|.
The proof is now by induction on the smallest k for which I ⊆ [k]. If k = 0, then I = ∅ and only j = (0, . . . 0) is
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possible. Then j1 = 0 and so r∅(j− e1) = 0. (If an n-uple j has negative entries we always have rI(j) = 0, simply
because then cIh

j cannot occur in the h-form of q. ) Again the claim follows. Assume now k < n and that for this
k the claim is proved. A subset of [n] which does not fit into [k] but fits into [k+1] is of the form I ⊎{k+1} with
I ⊆ [k]. We have rI⊎{k+1}(j) = rI(j)− rI(j− e1). Since |I ⊎ {k + 1}| = |I|+ 1 and, when j1 ≥ 1, |j− e1| = |j| − 1,
we get that the left hand side of the zero relation to prove equals

j1(rI(j)− rI(j− e1)) + (|I|+ 2− |j|)(rI(j− e1)− rI(j− 2e1))
= j1rI(j) + (|I|+ 1− |j|)rI(j− e1) + 1 rI(j− e1)− j1rI(j− e1)− (|I|+ 2− |j|)rI(j− 2e1)
= j1rI(j) + (|I|+ 1− |j|)rI(j− e1)− ((j1 − 1)rI(j− e1) + (|I|+ 2− |j|)rI(j− 2e1))
= 0− 0 = 0,

where in the last steps we used the induction hypothesis.

b. Follows by rewriting the zero relation just proved. �

4. COEFFICIENTS

Again we fix an n and write q for qn and q̃ for its successor as defined in the Theorem 1. It is easy to see that q̃ is
again an affine polynomial having variable an+1 in addition to those of q. It is, so to say, a q̇ in which the cI are
specialized in a certain manner. More precisely we have

q =
∑

I⊆[n]

cI
∏

i∈I

ai and q̃ =
∑

I⊆[n+1]

c̃I
∏

i∈I

ai,

where the c̃I are dependent on the cI as follows.

Lemma. Let I ⊆ [n+ 1]. Then

c̃I =

{

(a+ |I|)cI if n+ 1 6∈ I
−(b− 1 + |I|)cI\{n+1} if n+ 1 ∈ I.

Proof. We look at the formula defining the successor q̃ of q, namely

q̃ =
∑

t∈T (q)

(a+ deg t) · t−
∑

t∈T (q)

(b+ deg t) · t · an+1,

and make a case distinction for I.

Case: n + 1 6∈ I. Then the term c̃I
∏

i∈I ai = (a + deg t) · t for some term t ∈ T (q). Now this t = cI′
∏

i∈I′ ai for
some I ′ and comparison implies I ′ = I. Clearly deg t = |I| and the claim follows for this case.

Case: n + 1 ∈ I. Then c̃I
∏

i∈I ai = −(b + deg t) · t · an+1 again for some t ∈ T (q). Writing I = J ⊎ {n + 1} and
t = cI′

∏

i∈I′ ai the equation transforms into c̃I
∏

i∈J ai an+1 = −(b+deg t)cI′
∏

i∈I′ ai an+1 from where we extract
I ′ = J and then c̃I = −(b+ |J |)cJ = −(b− 1 + |I|)cI\{n+1}. �

5. PROOF OF THE THEOREM

We can now give the proof of the Theorem announced in Section 1. So choose any j ∈ Jn+1, that is, choose any
monomial hj that occurs in the h-form of q̇ and for that matter in the h-form of q̃. By the rI(j) we shall mean
here the entries in the hc-table of q̃. Note that c̃I⊎{n+1} = −(b − 1 + |I ⊎ {n + 1}|)cI = −(b + |I|)cI , and that

rI⊎{n+1}(j) = rI(j) − rI(j − e1); also if j 6∈ Z
n
≥0, convene to put rI(j) = 0. Therefore the coefficient of hj in q̃ is

given by

(∗∗)
∑

I⊆[n+1]

c̃IrI(j) =
∑

I⊆[n]

c̃IrI(j) +
∑

I⊆[n]

c̃I⊎{n+1}rI⊎{n+1}(j)

=
∑

I⊆[n]

(a+ |I|)cIrI(j)−
∑

I⊆[n]

(b+ |I|)cI(rI(j)− rI(j− e1))

=
∑

I⊆[n]

(a− b)cIrI(j) +
∑

I⊆[n]

(b+ |I|)cIrI(j− e1)

=
∑

I⊆[n]

((a− b)rI(j) + (b+ |I|)rI(j− e1))cI .

Using the relation |I|rI(j− e1) = (|j| − 1)rI(j− e1)− j1rI(j) found in Lemma 3b, (here for n+ 1 instead of n) we
find (a− b)rI(j) + (b+ |I|)rI(j− e1) = (a− b− j1)rI(j) + (b+ |j| − 1)rI(j− e1). Thus from the above,

∑

I⊆[n+1]

c̃IrI(j) = (a− b− j1)
∑

I⊆[n]

cIrI(j) + (b+ |j| − 1)
∑

I⊆[n]

rI(j− e1)cI .
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Now
∑

I⊆[n] cIrI(j) and
∑

I⊆[n] rI(j − e1)cI are the coefficients of hj and hj−e1 of polynomial q as defined in
Theorem 1. Also, as j ∈ Jn+1, clearly j1 ≤ n + 1. If j1 ≤ n, then from the hypotheses on a and b the we have
(a − b − j1) ≥ 0. Otherwise |j| > n and so rI(j) = 0 for the I ⊆ [n] occurring at the right hand side. Then the
first term vanishes. The only case that |j| = 0 is that j = 0. In that case by our definitions, rI(j− e1) = 0. Hence
the conditions b ≥ 0 and a − b − n ≥ 0 guarantee that the expression found for the coefficient of hj of q̃ is a
nonnegative linear combination of two of the coefficients of the h-form of q. Theorem 1 is proved. �

Examples. We use the set-up of Section 1, second example. We there have n = 2, a = 4, b = 2. and pass from
q = c∅+ c1a1+ c2a2+ c12a1a2 to a more complicated q̃. With the notation of the proof above, we have the formula

∑

I⊆[3]

c̃IrI(j) = (2− j1)
∑

I⊆[2]

cIrI(j) + (1 + |j|)
∑

I⊆[2]

rI(j− e1)cI .

Accordingly, we find e.g. that the coefficient of h1h2 = h110 in q̃ is found from observing j = 110; j − e1 =
010; |j| = 2. So the coefficient is 1

∑

I⊆[2] cIrI(110) + 3
∑

I⊆[2] rI(010)cI = 1 · 2c12 + 3(−c1 − c2 − 2c12) =

−3c1 − 3c2 − 4c12. Similarly we find (coefficient of h31 = h300) = −1 · 0 + 4 · c12 and (coefficient of
h21 = h200) = 0 · c12 + 3 · (−c1 − c2 − 2c12) = −3c1 − 3c2 − 6c12.

6. CONCLUDING REMARKS

Our linear inequalities give sufficient conditions on the coefficients cI of an affine polynomial q = q(a1, a2, ..., an) in
a-form in order that q|∆n ≥ 0. It is perhaps of interest to know how far away these conditions are from necessary
and sufficient conditions. Such questions can be answered in principle by quantifier elimination. The responses
given by computers, if obtainabble at all, cost even in relatively simple cases as much time as they are complicated.
But the case n = 2 can still be done and the response can be even explained.

The precise conditions in which q(x, y) = q2(x, y) = c0 + c1x + c2y + c12xy is nonnegative on ∆2 = {(x, y) : x ≤
y ≤ 1}. were found via quantifier elimination with Mathematica c© [W] by using successively the commands
xpr := ForAll[{x, y}, x <= y <= 1, c0 + c1 x + c2 y + c12 x y >= 0];

FullSimplify[Resolve[xpr, Reals]]

Proposition. A necessary and sufficient condition for the inequality q2|∆2 ≥ 0 to hold is that the following six
conditions hold true:
i. c12 ≥ 0, ii. c1 + c12 ≤ 0, iii. c0 + c1 + c2 + c12 ≥ 0, iv. c0 ≥ 0 or c1 < 0; v. c12 6= 0 or c1 + c2 ≤ 0.
vi. c12 ≤ 0 or c1 + c2 + 2c12 < 0 or 4c0c12 ≥ (c1 + c2)

2.

Proof. Necessity of i to vi for q2|∆2 ≥ 0. Assume q2|∆2 ≥ 0. Then q(x, x) = x2(c12+(c1+c2)/x+c∅/x
2) ≥ 0 makes

it clear that i holds, while q2(1, 1) ≥ 0 implies iii. Suppose next ¬ii (i.e. not ii). Then q(x, 1) = c∅+c2+x(c1+c12)
would become negative for negative x of large modulus. So ii holds. Suppose ¬iv. Then we would have c∅ < 0 and
hence q(0, 0) = c∅ < 0. So iv holds. Suppose ¬v. Then c12 = 0 and c1+c2 > 0. Then q(x, x) = c∅+x(c1+c2). This
would be negative for negative x of large modulus. So v holds. Finally assume ¬vi. Then c12 > 0& c1+c2+2c12 ≥
0&4c∅c12 < (c1 + c2)

2. The quadratic R ∋ x 7→ q(x, x) has discriminant ∆ = (c1 + c2)
2 − 4c∅c12 > 0 and assumes

its extreme value −∆
4c12

< 0 in the point − c1+c2
2c12

≤ 1 but this contradicts q|∆2 ≥ 0. Thus vi is also necessary.
Sufficiency of i to vi for q2|∆2 ≥ 0. We begin with the special case c12 = 0. In this case q(x, y) = c∅ + c1x+ c2y.
Then ii says c1 ≤ 0 and hence ∂xq(x, y) ≤ 0, and hence q(x, y) ≥ q(y, y) = c∅ + (c1 + c2)y. By v, now c1 + c2 ≤ 0
so ∂yq ≤ 0 and so q(y, y) ≥ q(1, 1) = c∅ + c1 + c2 ≥ 0, where the latter inequality follows from iii. So the case
c12 = 0 is done. Assume now c12 6= 0. Then condition i becomes c12 > 0, ii,iii,iv, are as before, v is automatically
satisfied and vi simplifies to c1 + c2 + 2c12 < 0 or 4c∅c12 ≥ (c1 + c2)

2. By i,ii then ∂xq = c1 + c12y ≤ 0; so
q(x, y) ≥ q(y, y) = c∅ + (c1 + c2)y + c12y

2. Now ∂yq(y, y) = (c1 + c2) + 2c12y. If the first inequality of modified
vi holds this is by i negative and we get q(y, y) ≥ q(1, 1) ≥ 0 by iii. If the first inequality in modified vi
does not hold then vi implies that c1 + c2 + 2c12 ≥ 0&4c∅c12 ≥ (c1 + c2)

2 holds. Then the discriminant for
q(y, y) = c∅ + (c1 + c2)y + c12y

2 is ∆ = (c1 + c2)
2 − 4c∅c12 ≤ 0 and the smallest value assumed by q(y, y) on R is

−∆
4c12

≥ 0 and it is assumed in − c1+c2
2c12

≤ 1. Hence again q(x, y) ≥ 0. �

l1 : c0 + c1 + c2 + c12 ≥ 0
l2 : −c1 − c2 − 2c12 ≥ 0
l3 : c12 ≥ 0
l4 : −c1 − c12 ≥ 0

vi’ : c12 ≤ 0 or c1 + c2 + 2c12 < 0.
vi” : c12 ≤ 0 or c1 + c2 + 2c12 ≤ 0.

The linear inequalities l1, l2, l3, l4 The conditions vi’ and vi”
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Consider the hc-table of q. It encodes linear inequalities shown above at the left called l1, l2, l3, l4 guaranteeing
that the coefficients of q in h-form are nonnegative and hence that q|∆2 ≥ 0. Also define the modifications vi’ and
vi” of item vi of the proposition, as shown at the right.

Lemma. A point (c0, c1, c2, c12) ∈ R
4 satisfies conditions i,ii,iii,iv,v, and vi” iff it satisfies the inequalities

l1, l2, l3, l4.

Proof. The inequalities i,ii,iii are respectively equivalent to the inequalities l3, l4, l1.

⇒: Suppose we have ¬l2 for a certain point (c0, c1, c2, c12) ∈ R
4 which satisfies all the hypotheses. Then there

holds c1 + c2 + 2c12 > 0. Now the hypothesis vi” forces c12 ≤ 0. Together with i we thus have c12 = 0 which by v
means c1 + c2 ≤ 0. But then c1 + c2 + c12 = c1 + c2 ≤ 0, a contradiction. So indeed l2 also holds.

⇐: We have to show that iv,v,vi” are satisfied. In fact doing the addition l1 + l2 + l3 we see c0 ≥ 0 and thus iv.
Doing l2 + 2l3 yields c1 + c2 ≤ 0, and thus v. Finally l2 yields c1 + c2 + 2c12 ≤ 0, hence vi” . �

We see that the linear conditions given by quantifier elimination are almost precisely identically to our linear
conditions. But note that even though vi” is an only minimally weaker condition than vi’, we cannot substitute
in the implication ‘⇐’ the condition vi” by vi’. To see this consider the point (c0, c1, c2, c12) = (2,−2, 0, 1). It
satisfies the hypotheses l1, l2, l3, l4 but does not satisfy vi’.

With Mathematica’ s FindInstance command one can now easily find an example of an affine polynomial
q(x, y) with q|∆2 ≥ 0 and a successor q̃ which does not satisfy q̃|∆3 ≥ 0. Put c∅ = 3533/2048, c1 = −1, c2 =
29/8, c12 = 1. These values of c∅, c1, c2, c12 satisfy all the six conditions of the proposition and hence give rise
to a polynomial q2 which satisfies q2|∆2 ≥ 0. In h-form q2 = 10957/2048 − (37h1)/8 + h21 + h1h2. Using the
example of Section 1 q̃ = 3533/512 − 5a1 + (145a2)/8 + 6a1a2 − (3533a3)/1024 + 3a1a3 − 87/8a2a3 − 4a1a2a3.
Its value in the point (a1, a2, a3) = (−(261/256),−1, 0) ∈ ∆3 is −5

512 < 0. This shows that in general we have
q2|∆2 ≥ 0✟✟⇒ q̃|∆3 ≥ 0, proving the claim concerning the question in Section 1. �
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