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Abstract. In this paper we study the categories C
op

∗ and (Cop

∗ )T of T-models in C
op

∗

for an arbitrary algebraic theory T, when C is a topos or the category CHaus of compact
Hausdorff spaces. It is well-known that, when C is a topos, Cop

∗ is semi-abelian. We
show that CHausop

∗
is semi-abelian, as well as (CHausop

∗
)T, and that, when C is a topos

having locales of subobjects, (Cop

∗ )T is also semi-abelian. In addition, we prove the
representability of actions in CHausop

∗
.

Introduction

It is well-known that, given a topos E , the dual Eop

∗
of the category of pointed objects of

E is semi-abelian (see [5]). We first prove that an analogous result holds in the context of
compact Hausdorff spaces: the dual CHausop

∗
of the category of pointed compact Hausdorff

spaces is semi-abelian. The Bourn-Janelidze characterization of semi-abelian algebraic
theories (see [10]), and its generalization by Gran-Rosický (see [14]), indicate at once that
adding arbitrarily operations (other than constants) and axioms to such a theory, one
keeps a semi-abelian theory. This is what suggested us to investigate what occurs when
adding arbitrary operations and axioms to Eop

∗
or CHausop

∗
, that is, when considering the

categories (Eop

∗
)T and (CHausop

∗
)T of models of an arbitrary algebraic theory T in Eop

∗
or

CHausop
∗
. And the answer is: all categories (CHausop

∗
)T are semi-abelian. And, except

for the existence of binary coproducts, the categories (Eop

∗
)T satisfy all the other axioms

for being semi-abelian, thus are homological (see [5]) and exact. And binary coproducts
exist, thus (Eop

∗
)T is semi-abelian, as soon as, in the topos E , the subobjects of every object

constitute a locale. This is the case when E is a Grothendieck topos, but also when E is
a topos of sheaves or presheaves of finite sets on a finite site.

In a semi-abelian category, one has the notion of an object G acting on an object X,
in terms of algebras for some monad. Actions on X are representable when the functor
mapping G to the set of G-actions on X is representable. This recaptures a well-known
property of the category of groups, where the actions on a group X are represented by
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the group Aut(X) of automorphisms of X. The representability of actions in a semi-
abelian category is a strong property which does not hold in general. Given a topos E ,
the representability of actions in Eop

∗
has been studied in [7]; we prove that it holds in

CHausop
∗
.

1. Semi-abelianess versus duality

Convention

Through this paper, E will always denote a topos and CHaus, the category
of compact Hausdorff spaces. T will denote a Lawvere algebraic theory. We
write E∗ and CHaus∗ for the categories of pointed objects of E and CHaus: the
categories of pairs (A, a) where A is an object and a : 1 qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A is a “base point”,
that is, a morphism from the terminal object 1 to A; the morphisms of E∗ and
CHaus∗ respect the base points. We write further Eop

∗
and CHausop

∗
for the duals

of the categories E∗ and CHaus∗, and (Eop

∗
)T, (CHausop

∗
)T for the categories of

T-models in Eop

∗
and CHausop

∗
. We write 1 for the zero object of E∗, CHaus∗,

Eop

∗
, and CHausop

∗
, corresponding thus to the terminal object of E or CHaus.

We denote by + the coproduct in E∗ and CHaus∗, which is thus the pushout
under 1 in E and CHaus. We keep the notation ⨿ for the coproduct in E and
CHaus.

We shall most often develop the proofs in E∗ and CHaus∗, instead of Eop

∗
and

CHausop
∗
, working thus with T-coalgebras in E∗ and CHaus∗: contravariant func-

tors from T to E∗ or CHaus∗, transforming finite products in finite coproducts.
We write TE∗,

TCHaus∗ for these categories of coalgebras; they are thus the
duals of (Eop

∗
)T and (CHausop

∗
)T.

To avoid any confusion, let us make clear that the dual of the category of pointed
objects of a category C with a terminal object 1 is by no means the category of pointed
objects of Cop. For example, the category of pointed objects in the dual of Set is the
terminal category, reduced to the (dual object) of the empty set.

Let us first recall some definitions (see [5]), in the special context where we shall need
them.

1.1. Definition. A finitely complete Barr-regular category with a zero object is

• homological when given a commutative diagram

K qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

k
A qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

s

p
P ps = idP k = ker p

u

qq
qq
qq
qq
qq
qq
qq
qq
qq

qq
qq
qq
qq
qq
qq
qq
qq
qq

v

qq
qq
qq
qq
qq
qq
qq
qq
qq

qq
qq
qq
qq
qq
qq
qq
qq
qq

w

qq
qq
qq
qq
qq
qq
qq
qq
qq

qq
qq
qq
qq
qq
qq
qq
qq
qq

L qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

l
B qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

r

q
Q qr = idQ l = ker q
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if u and w are isomorphisms, so is v;

• semi-abelian when it is homological, Barr-exact and admits binary coproducts;

• such categories are arithmetical (also called congruence distributive) when their
lattices of equivalence relations are distributive.

The diagram condition in the definition of a homological category is – in the pointed
case – the so-called protomodularity axiom, due to D. Bourn (see [9]). D. Bourn and G.
Janelidze characterized those Lawvere algebraic theories T whose category of models in
Set is protomodular (see [10]). M. Gran and J. Rosický generalized this characterization
to the case of multi-sorted infinite theories (see [14]). In particular, every theory with a
single constant and containing a group operation is semi-abelian. Homological categories
(see [5]) satisfy the basic lemmas of homological algebra: the five lemma, the nine lemma,
the snake lemma, and so on. Let us recall that the notion of abelian category is self-dual:
it turns out that a semi-abelian category is abelian as soon as its dual is semi-abelian
as well (see [5]). All this somehow justifies the terminology. The arithmetical axiom is
certainly less popular, but will play an important role in Section 4.

Let us now focus our attention on some “non-algebraic” examples of semi-abelian
categories.

1.2. Theorem. The dual Eop

∗
of the category of pointed objects of an elementary topos E

is semi-abelian and arithmetical

Proof. The semi-abelianess is proved in [5], Example 5.1.8.
Lattices of equivalence relations in the exact category Eop

∗
correspond to lattices of

regular epimorphisms in Eop

∗
, thus to lattices of regular – that is all – subobjects in E∗;

these inherit distributivity from E . □

1.3. Theorem. The dual CHausop
∗

of the category of pointed compact Hausdorff spaces is
semi-abelian and arithmetical.

Proof. First of all, let us recall that CHausop is an exact category, because it is monadic
over Set. Indeed, it is shown in [13], Example 5.15.3, and [20], Theorem 1.7, that the
functor

CHausop qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq Set, X 7→ C
(

X, [0, 1]
)

is monadic.
The functor CHaus∗ qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq CHaus creates limits, coequalizers of arbitrary families of par-
allel morphisms, and pushouts. An arbitrary coproduct in CHaus∗ is obtained by com-
puting the corresponding coproduct in CHaus, and, next, the generalized coequalizer
identifying all the base points. In particular, CHaus∗ is complete and cocomplete, thus
CHausop

∗
as well.

Let us now prove that CHausop
∗

is regular. We work in the dual category CHaus∗.
In CHaus, the monomorphisms are the closed embeddings. A (regular) monomorphism
f : (X, x0) qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq (Y, y0) in CHaus∗ is a monomorphism in CHaus, thus a closed embedding.
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Conversely if f is a closed embedding, it is the kernel in CHaus∗ of the quotient of (Y, y0) by
the closed equivalence relation (X×X)∪∆Y . To form the (regular epi-mono) factorization
of a morphism g : (B, b0) qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq (A, a0) in CHausop
∗
, one considers the image factorization in

CHaus∗

(A, a0) qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

g
(B, b0)

❅
❅
❅
❅
❅qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

e
�
�
�
��

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

m

(

g(A), g(a0)
)

where g(A) is equipped with the final topology for e, or equivalently, since the spaces
involved are compact Hausdorff, the initial topology for m. We still have to prove that
the pushout of a (regular) monomorphism in CHaus∗ remains a (regular) monomorphism.
But, as already observed, pushouts in CHaus∗ are computed as in CHaus, that is as
pullbacks in CHausop. And since CHausop is exact, the pullback of a regular epimorphism
is a regular epimorphism.

We prove next that CHausop
∗

is exact. Again we work in CHaus∗. Consider a co-
equivalence relation r0, r1 : (X, x0) qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq (Y, y0) in CHaus∗. We know that every equivalence
relation in CHausop is effective, because the category is exact. Thus, in CHaus (r0, r1) is
the cokernel pair of its equalizer k : K qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq X. Since r0, r1 preserve the base point, x0 ∈ K
and (r0, r1) is then the cokernel pair of its equalizer k in CHaus∗.

To prove that CHausop
∗

is semi-abelian, it remains to check the protomodularity (ho-
mological) axiom of Definition 1. The given diagram yields a corresponding diagram in
Setop

∗
, because the forgetful functor CHaus∗ qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq Set∗ preserves cokernels. But Set
op

∗
is semi-

abelian by Theorem 1.2, thus v is an isomorphism in Setop
∗
, that is, a bijection B qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A
in Set∗. So v is a continuous bijection in CHaus∗, hence it is also a closed map, thus a
homeomorphism.

Let us finally check the arithmetical property. We must prove that the lattice of
equivalence relations on an object (X, x0) ∈ CHausop

∗
is distributive. But, since CHausop

∗

is exact, this reduces to proving that the lattice of regular quotients of (X, x0) in CHausop
∗

is distributive. This is further equivalent to the lattice of regular subobjects of (X, x0)
in CHaus∗ being distributive. But, as already observed above, the (regular) subobjects in
CHaus∗ are the closed embeddings. And since set theoretical finite unions and finite in-
tersections of closed embeddings in compact Hausdorff spaces are still closed embeddings,
the lattice of subobjects of (X, x0) in CHaus∗ is isomorphic to a sublattice of the lattice
of subobjects of (X, x0) in Set∗, and is therefore distributive. □

Gelfand duality expresses the duality between CHaus and the category of commutative
unital C∗-algebras (see [1]). In [14], it is proved that the category of commutative non-
unital C

∗-algebras is semi-abelian. To avoid any ambiguity, let us observe that this
category is not equivalent to CHausop

∗
. The initial commutative unital C∗algebra is the

algebra C of complex numbers. The semi-abelian category CHausop
∗

is thus equivalent to
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the category of pairs (A,φ), where A is a commutative unital C∗-algebra and φ : A qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq C

is a character of A, or thus, equivalently, a maximal ideal of A (see [1]).

2. Adding algebraic structures

We arrive at the point at the origin of this paper: what occurs when adding operations
and axioms to Eop

∗
and CHausop

∗
? Let us first recall a standard result, borrowed from [3].

2.1. Theorem. Let C be an exact category and T an algebraic theory. The category CT of
T-models in C is exact. The forgetful functor U : CT

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq C preserves limits and coequalizers
of kernel pairs, thus in particular regular epimorphisms; it also reflects isomorphisms. □

2.2. Corollary. Let C be a semi-abelian category and T an algebraic theory. The cat-
egory CT of T-models in C is homological and exact. And, when C is arithmetical, so is
CT.

Proof. Since C has a zero object, all constants of the theory T in a T-algebra A are
realized by the zero morphism 1 qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A in C. And, of course, 1 becomes the zero object
of CT.

To prove the protomodularity of CT, consider the diagram in Definition 1.1; we must
prove that v is an isomorphism. Since the forgetful functor CT

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq C preserves kernels and
reflects isomorphisms, this follows at once from the protomodularity of C.

The statement concerning the arithmetical axiom follows from Example 2.9.5 in [5],
because the forgetful functor CT

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq C preserves pullbacks and reflects isomorphisms. □

By Theorems 1.2, 1.3 and 2.1, Corollary 2.2 applies in particular to all categories (Eop

∗
)T

and (CHausop
∗
)T. To have the semi-abelianess of these categories, it remains to prove the

existence of binary coproducts in (Eop

∗
)T and (CHausop

∗
)T, that is, the existence of binary

products in TE∗ and TCHaus∗. The existence of products of coalgebras is a quite involved
problem (see [15]). To support the intuition, let us first give an explicit description of
binary products of coalgebras in TSet∗.

Notation. Given an n-ary operation α in an algebraic theory T, we shall write α̃ for the
1-ary operation

α̃ : T 1 ∆
qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq T n α
qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq T 1

where ∆ is the diagonal.

Given a T-coalgebra A, the operation α̃A on A is thus the composite

A αA
qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A+ · · ·+ A ∇A
qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A

where ∇A is the codiagonal. Thus roughly speaking, α̃A takes the same values as αA but
forgets in which component of the coproduct.

2.3. Proposition. Let T be an algebraic theory. The category TSet∗ has binary products.
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Proof. Let A and B be two T-coalgebras in Set∗. We shall write A⊗B for the product
of these coalgebras in TSet∗ and keep the notation A× B for their product as objects of
Set∗.

Given an operation α of arity n, we shall say that an element of the coalgebra A
admits i as an α-rank when it is mapped by αA in the i-th copy of A in the coproduct

αA : A qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A+ · · ·+ A.

An element can admit several ranks: this occurs precisely when it is mapped on the base
point of the coproduct; in that case, it admits all possible α-ranks.

We define A ⊗ B to be the set of those pairs (a, b) ∈ A × B, such that, for every
operation β, the elements a and b have a common β-rank. Notice in particular that all
pairs (a, ⋆) and (⋆, b) belong to A⊗B, since the base point ⋆ admits all ranks. We must
now provide A⊗ B with the structure of a T-coalgebra.

Given an operation γ of arity n, we must thus define

γA⊗B : A⊗ B qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq (A⊗ B) + · · ·+ (A⊗ B).

Given an element (a, b) ∈ A⊗B, we have by definition that the elements a and b have a
common γ-rank i; we define

γA⊗B(a, b) =
(

γ̃A(a), γ̃B(b)
)

in the i-th component of the right hand coproduct. In the case where the common γ-rank
is not unique, both a and b have thus a multiple γ-rank: this occurs, as we have seen,
when they are mapped on the base point by γA and γB. In that case, the choice of the
index i does not matter.

Of course we must verify that
(

γA(a), γB(b)
)

lies in A⊗B. That is, given an arbitrary
operation β, we must prove that γ̃A(a) and γ̃B(b) have the same β-rank. This is indeed the
case because γ̃ ◦β is an operation in T and, by definition of A⊗B, a and b have the same
α-rank for each operation α. (Since we are working with coalgebras, thus contravariant
functors, one has indeed (β ◦ γ̃)A = βA ◦ γ̃A.)

It remains to observe that the T-axioms are satisfied, that is, given a commutative
diagram in T, the corresponding composites of co-operations on A⊗B yield the expected
commutativity. This is the case since by definition of the T-algebra structure of A ⊗ B,
these axioms are satisfied in each component.

Next, by definition of A⊗ B, the projections

pA : A⊗ B qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A, pA(a, b) = a, pB : A⊗ B qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq B, pB(a, b) = b

are trivially morphisms of T-coalgebras.
We must still prove the universal property of the product A ⊗ B. Consider thus a

T-coalgebra C and two morphisms f : C qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A, g : C qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq B of T-coalgebras. By definition
of a morphism of T-coalgebras, when an element x ∈ C admits i as a β-rank (unique
or not), then f(x) and g(x) also admit i as a β-rank and the pair

(

f(x), g(x)
)

lies in
A ⊗ B. Therefore the unique factorization f : C qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A × B through the product in Set∗
factors further through A⊗B; it follows at once that this factorization is a morphism of
T-coalgebras, since so are f and g. □
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Of course as a corollary we get at once:

2.4. Corollary. Given an algebraic theory T, the category (Setop
∗
)T is semi-abelian.

Proof. By Propositions 2.2 and 2.3. □

Let us now use the construction in Proposition 2.3 to handle the case of compact
Hausdorff spaces. But first, let us point out some basic facts about CHaus∗.

2.5. Lemma. In the category CHaus∗, finite unions of subobjects are computed as in Set∗;
they are effective and universal.

Proof. The monomorphisms in CHaus∗ are the closed embeddings. Since a finite union of
closed subsets is closed, finite unions of subobjects are computed as in Set∗. In particular
they are universal, i.e. stable under pullbacks, since this is the case in Set∗.

A finite union of subobjects Ai ⊆ A in CHaus∗ is effective when given morphisms
fi : Ai

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq B, such that fi and fj coincide on Ai ∩ Aj, then there is a unique extension
f : ∪i∈I Ai

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq B. This property holds trivially in Set∗ and it remains to check the
continuity of f . If C ⊆ B is closed, each f−1

i (C) is closed in the closed subset Ai, thus is
closed in A. And f−1(C) is closed as the finite union of these closed subsets. □

2.6. Lemma. A finite coproduct A1 + · · · + An in CHaus∗ is computed as in Set∗; in
particular each Ai is a subobject of the coproduct which is itself the union of these Ai’s.

Proof. The coproduct in CHaus∗ is obtained by computing the corresponding coproduct
in CHaus and identifying all the base points.

p : A1 ⨿ . . .⨿ An
qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A1 + · · ·+ An.

A finite coproduct of compact Hausdorff spaces is just their set theoretical and topological
disjoint union. The equivalence relation defining A1+ · · ·+An is the union of the diagonal
of A1⨿ . . .⨿An and the finitely many pairs of base points. Since the spaces are Hausdorff,
this is a closed equivalence relation, as a finite union of closed subsets. Then p is a
closed continuous map whose domain is normal and Hausdorff, and therefore its image is
Hausdorff (see [12], Theorem 15.4). It is compact as well as image of a compact space. □

2.7. Proposition. Let T be an algebraic theory. The category TCHaus∗ has binary prod-
ucts.

Proof. We use the notation of the proof of Proposition 2.3. We have now A,B ∈
TCHaus∗, their product A ⊗ B in TSet∗ and their product A × B in CHaus∗. Let us first
prove that A⊗ B is closed in A× B, thus is compact Hausdorff.

Given an operation β of rank n on the T-coalgebra A, let us write Aβ
i ⊆ A for the

subset of elements of β-rank i, which is thus the inverse image of the i-th component of
the coproduct along βA.
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Aβ
i

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A
qq
qq
qq
qq
qq
qq
qq
qq
qq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qq
qq
qq
qq
qq
qq
qq
qq
qq

si

A qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

βA
A+ · · ·+ A

It is therefore a subobject of A in CHaus∗ (see Lemma 2.6).
The same argument can be developed on B, yielding the closed subset Bβ

i ⊆ B of
elements of β-rank i. The product Aβ

i ×Bβ
i is thus the set of those pairs (a, b) having the

same fixed β-rank i. Therefore,

(A,B)β = (Aβ
1
× Bβ

1
) ∪ · · · ∪ (Aβ

n × Bβ
n)

is the set of those pairs (a, b) having a common β-rank. This is again a closed subset of
A×B, as a finite union of closed rectangles. The product A⊗B is the intersection of all
these closed subsets (A,B)β, for all operations β: it is thus a closed subset of the compact
Hausdorff space A× B, thus it is itself compact Hausdorff.

Let us verify that the co-operations of A⊗ B are continuous. Given a T-operation γ
of arity n, by definition of γA⊗B we have a commutative diagram

+n(A⊗ B) qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq +n(A× B) qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

s (+nA)× (+nB)

γA⊗B

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

γA × γB

A⊗ B qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A× B

in Set∗, with s being sAi ×sBi on the i-th copy of A×B in its domain. All the plain arrows
are continuous and the horizontal ones are injective, thus are closed embeddings, since
all spaces are compact Hausdorff. Therefore γA⊗B is the restriction on subspaces of the
continuous mapping γA × γB and is therefore continuous.

Of course the projections of the product A⊗B in TCHaus∗ are continuous, since they
are the restrictions of the projections of the product A× B in CHaus∗

The conclusion is now easy. Given f : C qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A and g : C qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq B in TCHaus∗, the unique
continuous factorization (f, g) : C qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A×B through the product in CHaus∗ takes values
in A⊗B, which is provided with the induced topology. Thus the factorization in TCHaus∗
is continuous. □

One should observe that Proposition 2.7 does not generalize as such to the case of an
infinite product, because the rectangles Aβ

i × Bβ
i above would then have to be replaced

by infinite products of closed subsets, which are not closed in general. Of course, in the
situation of Proposition 2.3, this objection disappears and the given construction can be
extended as such to the case of an arbitrary product in TSet∗.
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2.8. Theorem. Given an algebraic theory T, the category (CHausop
∗
)T is semi-abelian.

Proof. By Propositions 2.2 and 2.7. □

The constructions developed in the proof of Propositions 2.3 and 2.7 apply also to the
case of toposes. First an easy observation.

2.9. Lemma. Let E be a topos. Given a coproduct A ∼= A1 + · · · + An in E∗, A is the
effective universal union of the various Ai, while Ai ∩ Aj

∼= 1 when i ̸= j.

Proof. As in every category with a zero object, the canonical inclusions of a coproduct
admit a retraction, thus are monomorphisms. The coproduct in E∗ is the pushout under
1 in E , from which the union condition and its universality follow, because colimits are
universal in E (see [18]). Effectiveness holds because unions are effective in a topos (see
[4]). Now Ai + Aj is the pushout of these objects under 1 in E ; this pushout square is
also a pullback (see [18]), proving that Ai ∩Aj = 1 as subobjects of Ai +Aj. This is also
the case as subobjects of A1 + · · ·+An, because the canonical inclusion of Ai +Aj in this
coproduct is a monomorphism. □

2.10. Proposition. Let T be an algebraic theory and E a topos admitting intersections
of arbitrary families of subobjects. Then the category TE∗ has binary products.

Proof. Using the notation of the proof of Proposition 2.7, we consider two coalgebras
A and B in E∗. Given an operation β, we write Aβ

i for the inverse image along βA of the
i-th component of +nA, and analogously for Bβ

i . By Lemma 2.9, A is the effective union
of the various Aβ

i ’s, while two distinct of these have as intersection the inverse image of 1
along βA, that is, the kernel of βA. Analogously for B.

We consider next the subobject

(A,B)β = (Aβ
1
× Bβ

1
) ∪ · · · ∪ (Aβ

n × Bβ
n) ⊆ A× B

and we define A⊗B to be the intersection of all these subobjects (A,B)β, for all operations
β.

Observe now that, given an arbitrary operation γ, the morphism γ̃A × γ̃B factors
through A⊗ B

A× B qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

γ̃A × γ̃B
A× B

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

A⊗ B ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ ♣ qqqqqqq
qq
qq
qq
qq
qq
q

qqqqqqqqqqqqqqqqqq A⊗ B
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By definition of A⊗ B as an intersection, we must prove that, for every n-ary operation
β, γ̃A × γ̃B maps A⊗ B in (A,B)β. Considering the composite

A
γ̃A

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A
βA

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A+ · · ·+ A

and pulling back the i-th component of the coproduct along it, we conclude that γ̃A maps
Aγ̃β

i in Aβ
i . An analogous result holds for B and thus, γ̃A × γ̃B maps (A,B)γ̃β in (A,B)β.

We obtain so the expected morphism

A⊗ B qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq (A,B)γ̃β
γ̃A × γ̃B

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq (A,B)β.

Let us now define the T-coalgebra structure on A⊗B. With the notation above, given
the n-ary operation γ

A⊗ B ⊆ (Aγ
1
× Bγ

1
) ∪ · · · ∪ (Aγ

n × Bγ
n)

thus
A⊗ B =

(

(A⊗ B) ∩ (Aγ
1
× Bγ

1
)
)

∪ · · · ∪
(

(A⊗ B) ∩ (Aγ
n × Bγ

n)
)

This union is effective as every finite union in a topos. Therefore to define

γA⊗B : A⊗ B qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq (A⊗ B) + · · ·+ (A⊗ B)

it suffices to define it coherently on each piece (A⊗B) ∩ (Aγ
i ×Bγ

i ) of the union. This is
the composite

(A⊗ B) ∩ (Aγ
i × Bγ

i ) qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A⊗ B
γ̃A × γ̃B

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A⊗ B si
qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq (A⊗ B) + · · ·+ (A⊗ B)

since we know already that γ̃A × γ̃B restricts on A⊗B. It remains to observe that these
definitions coincide on the intersection of two pieces. But such an intersection has the
form

(A⊗ B) ∩ (KerγA × KerγB)

and, on this intersection, we have in both cases the zero morphism. This concludes the
definition of γA⊗B. All axioms are satisfied since they are on both components.

It remains to prove the universal property. Just by definition, given an operation β
and still with the notations as above, a morphism of coalgebras f : C qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A maps the
corresponding subobject Cβ

i in Aβ
i . Therefore, given another morphism g : C qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq B, the
factorization (f, g) : C qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A × B through the product maps Cβ
i in Aβ

i × Bβ
i . Since C is

the union of the subobjects Cβ
i , (f, g) maps C in

(A,B)β = (Aβ
1
× Bβ

1
) ∪ · · · ∪ (Aβ

n × Bβ
n).

This shows that (f, g) factors through A ⊗ B, the intersection of all these subobjects
(A,B)β. Thus A⊗ B is the product of A and B in TE∗. □

In a topos, the lattices of subobjects are Heyting algebras. To be locales, they have
to be complete, that is, to admit arbitrary unions or, equivalently, arbitrary intersections
(see [17]). The assumption on E in Proposition 2.10 is thus requiring that the lattices of
subobjects are locales.
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2.11. Theorem. Let T be an algebraic theory and E a topos having locales of subobjects.
Then the category (Eop

∗
)T is semi-abelian.

Proof. By Propositions 2.2 and 2.10. □

2.12. Corollary. Let E be a Grothendieck topos and T an algebraic theory. The cate-
gory (Eop

∗
)T is semi-abelian.

Proof. By Theorem 2.11.
In the case of a Grothendieck topos, an alternative existence proof could have been

given. A Grothendieck topos is locally presentable and, as a consequence, E∗ is locally
presentable as well (see [2]). It follows that the category TE∗ of T-coalgebras in E∗ is itself
locally presentable (see Theorem 17 in [21]), thus complete. □

2.13. Corollary. Let T be an algebraic theory. When E is the topos of sheaves or
presheaves of finite sets on a finite site (E , T ), the category (Eop

∗
)T is semi-abelian.

Proof. Every object of E has only finitely many subobjects, thus every intersection
reduces to a finite one. □

Notice the difference with the case of T-algebras in E . The category of finite groups is
not semi-abelian, because it does not have binary coproducts: the coproduct of two finite
groups is generally not finite.

Let us conclude this section with a comment. When T is an algebraic theory, the
category of T-models in Set is monadic with finite rank over Set. When C is monadic
over Set, and the corresponding monad has a rank, the category CT of T-models in C is
monadic over Set (see [11]) for the tensor product of the two monads; thus, in particular,
it is complete and cocomplete. But a topos, even a Grothendieck one, is generally not
monadic over Set; and the monad corresponding to CHausop

∗
does not have a rank.

3. More on limits and colimits

In Section 2, we focused our attention on the existence of binary coproducts in (Eop

∗
)T and

(CHausop
∗
)T. Let us investigate further limits and colimits in these categories and observe

that additional properties hold, compared with the classical case of SetT. But first of all,
in the most general case:

3.1. Proposition. Let C be a (finitely) complete category and T an algebraic theory.
The forgetful functor U : TC∗ qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq C∗ creates (finite) limits.

Proof. This is essentially contained in Theorem 2.1, but, in view of future use, let us be
explicit. Limits in (Cop

∗
)T are computed as in Cop

∗
, that is, colimits in TC∗ are computed as

in C∗. A T-coalgebra in C∗ is given by an object A of C and, for each n-ary operation α
in T, a morphism

αA : A qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq +n A;
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these data must make commutative the diagrams expressing the axioms of T. When
having a diagram (Ai)i∈I of T-coalgebras and a colimit A = colimi∈IAi in C∗, A becomes
itself a T-coalgebra when considering, for each n-ary operation α

αA : A ∼= colimAi
colimαAi

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq colim (+nAi) ∼= +n(colimAi),

just by commutativity of colimits between themselves. □

Let us now handle the case of colimits in (Eop

∗
)T and (CHausop

∗
)T, that is, limits of T-

coalgebras. The case of coproducts (products of coalgebras) has already been treated in
Section 2. As far as coequalizers are concerned, Theorem 2.1 tells us only that, in the con-
ditions of Proposition 3.1, the forgetful functor U : (Cop

∗
)T qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq Cop

∗
preserves coequalizers

of kernel pairs. In our cases of interest, let us extend this result to arbitrary coequalizers.

3.2. Proposition. Let E be a topos and T an algebraic theory. The forgetful functor
(Eop

∗
)T qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq Eop

∗
creates coequalizers.

Proof. We work in the dual categories. We consider two morphisms f, g : A qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq B of T-
coalgebras in E∗ and their equalizer k : K qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A as morphisms of E∗. We shall prove that
the T-coalgebra structure of A restricts uniquely on K and yields the expected equalizer
in TE∗. Given an n-ary operation β of the theory T, we have thus the situation

K qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

k
A qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

f

g
B

∇K

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

∇A

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

∇B

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

+nK qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

+nk
+nA qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

+nf

+ng
+nB

βK

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

βA

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

βB

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

K qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

k
A qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

f

g
B

By Lemma 2.9, pulling back the coproduct +nA along βA allows writing A as an
effective union A = Aβ

1
∪ . . . ∪ Aβ

n of subobjects, with the intersection of two distinct
pieces being the inverse image of 1, that is, the kernel of βA. This allows writing

K = (K ∩ Aβ
1
) ∪ . . . ∪ (K ∩ Aβ

n).

By commutativity of the diagram,

K ∩ Aβ
i

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq Aβ
i

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A
βA

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq +n A ∇A
qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A

is equalized by f and g, proving that βA maps K ∩ Aβ
i in K. Since Aβ

i is mapped by βA

in the i-th component A of +nA, we conclude that βA maps K ∩ Aβ
i in the subobject K

of the i-th component of +nA. And since K is the union of the various K ∩Ki and the
intersection of two of these is the kernel of βA, this yields, by effectiveness of the union,
the expected factorization βK . □
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3.3. Corollary. Let E be a topos and T an algebraic theory. The forgetful functor
U : (Eop

∗
)T qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq Eop

∗
preserves and reflects short exact sequences.

Proof. By Propositions 3.1 and 3.2, we know that U creates kernels and cokernels, thus
preserves and reflects short exact sequences. □

Let us now handle the case of compact Hausdorff algebras.

3.4. Proposition. Let T be an algebraic theory. The forgetful functor

(CHausop
∗
)T qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq CHausop∗

creates coequalizers.

Proof. In view of Lemmas 2.5 and 2.6, the proof of Proposition 3.2 carries at once over
to the case of compact Hausdorff spaces. □

3.5. Corollary. Let T be an algebraic theory. The forgetful functor

U : (CHausop
∗
)T qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq CHausop∗

preserves and reflects short exact sequences.

Proof. The proof of Corollary 3.3 applies as such. □

3.6. Corollary. Given an algebraic theory T, the forgetful functor

U : (CHausop
∗
)T qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq (Setop∗ )T

creates finite colimits.

Proof. This follows at once from Proposition 3.4 and the construction of binary products
of coalgebras in the proof of Proposition 2.7. □

4. The representability of actions in CHausop∗

In a semi-abelian category one can define, in terms of algebras for a monad, the actions
of an object G on an object X: a notion which recaptures a very classical one in the case
of groups. In this paper, we shall use the following alternative characterization of actions:

4.1. Proposition. In a semi-abelian category C, the actions of an object G on an object
X are in natural bijection with the isomorphism classes of split short exact sequences with
kernel X

1 qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq X k
qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A
r

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

q
G qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq 1

where thus qr = idG.
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Proof. See [8]. □

Fixing X, we obtain a contravariant functor Split(−, X) : C qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq Set, mapping an object
G on the set of isomorphism classes of split exact sequences as in Proposition 4.1; this
functor acts by pullback on the split epimorphism part, and next by computing the
corresponding kernel.

1 qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq X ′ qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

k′

A′
qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

r′

q′
Q′

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq 1
♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣

♣
qq
qq
qq
qq
qq
qq
qq
qq
qq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qq
qq
qq
qq
qq
qq
qq
qq
qq

p.b.

qq
qq
qq
qq
qq
qq
qq
qq
qq

qq
qq
qq
qq
qq
qq
qq
qq
qq

1 qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq X qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

k
A qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

r

q
Q qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq 1

Let us recall that, in a semi-abelian category, every regular epimorphism is normal, thus
normal epimorphisms are stable under pullbacks (see [5]). And an obvious diagram chasing
shows that, indeed, X ′ ∼= X. One says that actions on X are representable when the
functor Split(−, X) is representable. Like every contravariant functor to Set, Split(−, X)
is representable precisely when its category of elements – the category of split short exact
sequences with kernel X – has a terminal object.

In the case of groups, it is well-known that the representing object is the group of
automorphisms of X. But the representability of actions in a semi-abelian category is a
strong property which does not hold in general.

Let us consider a clearly related problem: the representability of the contravariant
functor Ext(−, X) : C qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq Set, associating with an object G the set of equivalence classes
of short exact sequences

1 qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq X k
qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A
q

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq G qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq 1

with kernel X, and acting again by pullback and kernel. This turns out to be a different
problem from that involving Split(−, X): the representing objects – when both exist – are
generally different; see the proof of Theorem 4.4 for an example. But nevertheless:

4.2. Proposition. Let C be an arithmetical semi-abelian category and X an object of C.
The following conditions are equivalent:

• the functor Split(−, X) is representable;

• the functor Ext(−, X) is representable.

In these conditions, actions on X are thus representable.

Proof. See [6], Theorem 8.1. □

When working with Ext(−, X), we get at once the following criterion:
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4.3. Proposition. Let C be an arithmetical semi-abelian category and X ∈ C. The
following conditions are equivalent:

1. actions on X are representable;

2. in the category X/C, the full subcategory of normal monomorphisms with domain X
admits a terminal object.

Proof. Via the consideration of their cokernels, the category of normal monomorphisms
with domain X is equivalent to the category of short exact sequences with kernel X,
that is, to the category of elements of the contravariant functor Ext(−, X). And, as
every contravariant functor to Set, Ext(−, X) is representable if and only if its category
of elements admits a terminal object (see [19]). □

In the semi-abelian category Eop

∗
, with E a topos, the representability of actions has

been studied in [7], from which it follows that the result holds in particular for two
important classes of toposes: the Boolean toposes and the toposes of presheaves. Let us
prove that actions are representable in the semi-abelian category CHausop

∗
.

First a warning. By Proposition 3.3, a short exact sequence

1 qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq G qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq X qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq 1

in CHaus∗ is a short exact sequence in Set∗. In particular, as a pointed set, A ∼= G +X.
The example

1 qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

(

[0, 1], 0
)

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

(

[0, 2], 0
)

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

(

[1, 2], 1
)

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq 1

underlines a major difference when considering that situation in CHaus∗ or Set∗:
(

[0, 2], 0
)

is isomorphic to
(

[0, 1], 0
)

+
(

[1, 2], 1
)

in Set∗, but not in CHaus∗. Thus in general, we do
not have A ∼= G+X in CHaus∗. Nevertheless, this occurs in some particular cases.

4.4. Proposition. Let X be a pointed compact Hausdorff space. When the base point
of X is open, given a short exact sequence in CHaus∗

1 qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq G k
qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A
p

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq X qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq 1

one has A ∼= G+X in CHaus∗ and actions on X in CHausop
∗

are represented by X itself.

Proof. Since the base point ⋆ is open in X, p−1(⋆) = G is open in A, thus its complement
is closed. The union X ′ of this complement and the base point of A is thus closed in A and
so, is compact Hausdorff. But the continuous mapping p restricts as a bijection between
X ′ and X; the spaces being compact Hausdorff, this restriction is an homeomorphism.
This yields an inverse homeomorphism h : X qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq X ′ ⊆ A in CHaus∗ and thus a continuous
bijection – that is, again an homeomorphism – (k, h) : G+X qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq A in CHaus∗.
This proves that every short exact sequence in CHaus∗, with cokernel X, has the form

1 qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq G k
qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq G+X
(0, idX)

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq X qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq 1.
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The functor Ext(−, X) is thus the constant functor on the singleton, that is, is represented
by 1. Giving a short exact sequence with cokernelX in CHaus∗ reduces to giving the object
G.

As a consequence, giving a split short exact sequence with cokernel X in CHaus∗

1 qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq G
r

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

k
G+X

(0, idX)
qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq X qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq 1.

reduces to giving the retraction r. But, as a retraction, r has the form (idG, f) for some
arbitrary morphism f : X qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq G; giving the split short exact sequence reduces thus to
giving f . Therefore Split(G,X) is isomorphic to CHaus∗(X,G), that is, to CHausop

∗
(G,X),

proving that Split(−, X) is represented by X. □

In the general case, we have the following existence theorem:

4.5. Theorem. Actions are representable in the semi-abelian category CHausop
∗
.

Proof. We shall apply Proposition 4.2 and prove that the category Norm(X) of normal
epimorphisms with codomain X in CHaus∗ has an initial object. To achieve this, we shall
prove that Norm(X) is stable in CHaus∗/X under limits, while the solution set condition
holds. The inclusion will then have a left adjoint, mapping the initial object 1 qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq X of
CHaus∗/X on an initial object of Norm(X).

Consider a family of normal epimorphisms (pi : Ai
qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq X)i∈I in CHaus∗. Their product
p : A qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq X in CHaus∗/X is their generalized pullback over X in CHaus; it is computed as
in Set and provided with the topology induced by the product topology on

∏

i∈I Ai. Let
us write Gi for the kernel of pi. Set theoretically, we have thus Ai

∼= Gi + X, with Gi

mapped by pi on the base point of X, while pi restricts as the identity on the component
X. This proves that the set A is simply

(
∏

i∈I Gi

)

+X, with p restricting as the constant
map on the base point on the term

∏

i∈I Gi, and the identity on X on the second term.
This is thus a normal epimorphism with kernel

∏

i∈I Gi in Set∗.
It remains to prove that the topology of X is the quotient one for p. But p : A qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq X is
a surjective continuous mapping and since the spaces are compact Hausdorff, this forces
X to have the quotient topology for p (see [12]).

Consider now p, q in Norm(X), two morphisms f , g from p to q and their equalizer k
in CHaus∗/X.

K qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

k
A qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

f

g
B

❅
❅
❅
❅
❅qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

pk
p

qq
qq
qq
qq
qq
qq
qq
qq
qq

qq
qq
qq
qq
qq
qq
qq
qq
qq

�
�

�
�

�qqqqqqqqqqqqqqqqqqqq
qq
qq
qq
qq
qq
qq
qq
qq

q

X

We must prove that pk is a normal epimorphism. Set theoretically, A ∼= G + X and
B ∼= H + X, while f , g, p, q, k restrict as the identity on the X components of these
sums. By commutativity of the diagram, f and g factor through the kernels of p and q,
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that is, map G in H. Thus K ∼= L + X, where L is the equalizer of f and g restricted
to G and H. Therefore pk maps L on the base point and restricts as the identity on X.
It is thus a normal epimorphism in Set∗. The same argument as in the case of products
allows to conclude that the quotient topology for pk is precisely the topology of X.

It remains to check the solution set condition. Thus, given a morphism p : A qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq X
in CHaus∗, we must find a family (qi : Bi

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq X)i∈I of normal epimorphisms in CHaus∗,
together with morphisms fi : p qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq qi in CHaus∗/X such that,

A qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

fi Bi

❅
❅
❅
❅
❅qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq

f
�

�
�

�
�qqqqqqqqqqqqqqqqqqqq
qq
qq
qq
qq
qq
qq
qq
qq

hi

❆
❆
❆
❆
❆
❆
❆
❆
❆
❆
❆qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqq
qqqqq
qqqqq
qqq

p B

✁
✁
✁

✁
✁
✁

✁
✁
✁

✁
✁qqqqqqqqqqqqqqqqqqqq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqq
qqqqq
qqqqq
qqq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qi

qq
qq
qq
qq
qq
qq
qq
qq
qq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qq
qq
qq
qq
qq
qq
qq
qq
qq

qq
qq
qq
qq
qq
qq
qq
qq
qq

q

X

given a normal epimorphism q : B qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq X and a morphism f : p qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq q in CHaus∗/X, f
factors through one of the fi’s, making the whole diagram commutative.

Set theoretically, B ∼= G + X ′, with G the kernel of q, while q maps X ′ bijectively
on X. Of course f factors through f(A), whose cardinality is less than the cardinality of
A. And f(A) is compact, thus closed, as image of a compact. But q : f(A) qq

qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq X has no
reason to be surjective, thus to be a normal epimorphism. So one would like to consider
instead f(A)∪X ′ . . . but this subset has no reason to be closed in B, thus to be compact
Hausdorff. Therefore we consider instead the closure B′ of f(A) ∪ X ′ in B, through
which f factors. This time, the restriction q : B′

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq X is surjective and therefore, since
the spaces are compact Hausdorff, keeps yielding a quotient topology, thus is a normal
epimorphism. Moreover the cardinality of B′ is bounded by the cardinality of all possible
(Cauchy) sequences of elements in f(A)∪X ′, that is, also by the cardinality of (A⨿X)N.
The solution set is thus given by all the normal epimorphisms qi : Bi

qq
qq
qq
qq
qq
qq
qq
qq
qq

qqqqqqqqqqqqqqqqqq X in CHaus∗,
where the cardinality of Bi is less than #(A⨿X)N. There is only (up to isomorphism) a
set of such sets Bi and, on each of them, there is only a set of possible (compact Hausdorff)
topologies. □
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