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Śılvia Barbeiro1, Rafael Henriques1 and José Luis Santos1
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Abstract. In this work we investigate a mathematical model to recon-
struct the mechanical properties of an elastic medium, for the optical
coherence elastography imaging modality. To this end, we start by con-
sidering a mathematical model for the mechanical deformation based on
time-harmonic equations of linear elasticity. The mathematical model
for solving this direct problem is the computational basis to address the
inverse problem which consists of determining the set of parameters that
characterize the mechanical properties of the medium knowing the dis-
placement field for a given excitation. We formulate the inverse problem
as PDE-constrained optimization problem, where the objective function
measures the discrepancy between observations and predictions. We pro-
pose a derivative free trust-region method to solve this inverse problem
and we report several computational results which illustrate its behavior
in terms of accuracy and efficiency.

Keywords: derivative free trust-region method, inverse problem, linear
elasticity, mechanical properties reconstruction

1 Linear elasticity model

Let us consider an isotropic elastic material in the configuration space Ω ⊆ R
3,

where Ω is a polyhedron with boundary ∂Ω. The aim is to characterize the field
of induced displacements, u (x, t) with x ∈ Ω and t ∈ R

+
0 .

Let us consider a sinusoidal excitation. The displacement has a time-harmonic
form given by [7],

u (x, t) = ℜ
(

u (x) eiωt
)

, (1)

where ℜ is the real part of a complex and ω is the angular frequency of the sinu-
soidal excitation. For time-harmonic elastic propagation, the elastic displacement
field u satisfies the Lamé equation

µ∇2u+ (λ+ µ)∇(∇ · u) + ω2ρu+ f = 0 in Ω (2)

where ρ is the material density, f is a given distribution of body forces and the
Lamé constants µ and λ are given, respectively, by

µ =
E

2 (1 + ν)
and λ =

νE

(1 + ν) (1− 2ν)
,

D
M

U
C

 P
re

pr
in

t 2
4-

13
, 0

8 
M

ar
 2

02
4

[v1] Fri, 08 Mar 2024

https://www.mat.uc.pt/preprints/eng_2024.html


2 S. Barbeiro, R. Henriques, J.L.Santos

being E is the Young’s Modulus and ν is the Poisson’s ratio.
Let Γ1 and Γ2 be two open subsets of ∂Ω such that ∂Ω = Γ 1∪Γ 2, Γ1∩Γ2 = ∅

and meas(Γ2) > 0. We impose the traction boundary condition on Γ1

σ(u)η = g on Γ1, (3)

where η is the unit outer normal direction. The stress tensor is given by

σ(u) = 2µε(u) + λtr(ε(u))I

where ε is the strain tensor

ε(u) =
1

2
(∇u+ (∇u)⊺) .

Here I is the 3×3 identity matrix and tr(ε(u)) is the trace of ε(u). It is assumed
that the medium is fixed on some non-empty open set Γ2, where we impose
displacement boundary condition

u = 0 on Γ2. (4)

To solve this direct problem, we consider the classic finite element method
(FEM) which consists of using degree one piecewise polynomials in the approx-
imation. For the case of a nearly incompressible materials, i.e. with Poisson’s
ratio ν close to 0.5, the performance of a classical FEM scheme can deteriorate
due to the locking as ν → 0.5 [1]. Here we are assuming that we are dealing with
media for which the range of values of the Poisson’s ratio leads to locking-free
FEM solutions. As an example of application, we can mention the aortic elastog-
raphy [2]. For general materials, some numerical methods have been proposed
in the literature, in particular some variations of mixed finite element methods.

To derive the finite element method, we need to consider the weak form of the
mathematical model. Let V =

{

v ∈ H
1 (Ω) : v|Γ2

= 0
}

. The weak formulation
of (2)–(4) reads: find u ∈ V such that

a(u,v) = l(v), ∀v ∈ V, (5)

where

a(u,v) =

∫

Ω

2µε(u) : ε(v) + λ(∇ · u)(∇ · v)− ω2ρu · v dx (6)

and

l(v) =

∫

Γ1

g · v ds+

∫

Ω

f · v dx.

Let us consider a partition of Ω into M tetrahedra Kj , j ∈ {1, ...,M} so that

Ω =
M
⋃

j=1

Kj and int (Ki) ∩ int (Kj) = ∅, ∀ i, j ∈ {1, ...,M} , i ̸= j. (7)

The resulting subdivision (or mesh) is denoted by Ωh where h represents the
diameter of the partition. To each tetrahedron there are associated four vertices
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that can be either in the interior or on the border of Ω. For any pair of open
tetrahedra in the partition Ki and Kj , i ̸= j, Ki ∩ Kj is either empty, or a
common vertex, side or face of Ki and Kj .

Let us consider the finite dimensional subspace Vh ⊂ V of continuous func-
tions which are linear on each tetrahedron. Assuming that N is the total number
of vertices in Ωh then dimVh = 3N . The finite element formulation of the prob-
lem (5) can be written as: find uh ∈ Vh such that

a(uh,vh) = l(vh), ∀vh ∈ Vh. (8)

Let Vh = span {φ11, ..., φN1, φ12, ..., φN2, φ13, ..., φN3} , where φji, i = {1, 2, 3},
j = {1, ..., N}, are the linearly independent basis functions, φji(x

j) = 1, φji(x
k) =

0 (k ̸= j), and the support of φji consists in all tetrahedra that share xj

as a vertex. In this way, each component of the approximate solution uh =
(u1h, u2h, u3h) ∈ Vh can be written as a linear combination of the basis functions
φji with

uih(x) =

N
∑

j=1

Ujiφji (x) , i = 1, 2, 3, (9)

where Uji, i = {1, 2, 3} , j = {1, ..., N} are the coefficients that we want to
calculate. Problem (8) is then equivalent to a linear system in the form

AU = F, (10)

where U = [U11, ..., UN1, U12, ..., UN2, U13, ..., UN3]
⊺
, A is a 3N × 3N matrix

which depends on the parameters µ and λ, and F a vector of dimension 3N . A
is a non-singular matrix so (10) has a unique solution.

2 Inverse problem

In this section we will analyze the inverse problem, which can be described by
the following minimization program:

min
µ, λ

∥U − Uobs∥
2
L

2

h
(Ω)

s.t. AU = F
µ ∈ [µ1, µ2]
λ ∈ [λ1, λ2]

,

which can be rewritten as

min
µ, λ

∥

∥A−1F − Uobs

∥

∥

2

L
2

h
(Ω)

s.t. µ ∈ [µ1, µ2]
λ ∈ [λ1, λ2]

, (11)

where A and F define the linear system to solve the direct problem (10) and
Uobs is the vector that contains the information of the given data on the vertices
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of the mesh. Here we use the discrete L2
h-norm, defined for any 3N × 1 vector y,

as

∥y∥2L2

h
(Ω) =

∑

K∈Ωh

∥y∥2L2

h
(K),

with

∥y∥2L2

h
(K) =

|K|

4

4
∑

i=1

2
∑

j=0

y2t(ri)+jN ,

where |K| denotes the volume of the tetrahedronK with vertices ri, i ∈ {1, . . . , 4}.
The function t is defined by

t : R3 → {1, ..., N}
ri 7→ t(ri),

where t(ri) is the index that corresponds to vertex of ri in the global numbering.
We are assuming that the range of values for µ and λ set in (11) are com-

patible with the biological structures.
For convenience, in what follows, we denote the objective function by l(µ, λ),

that is,

l(µ, λ) =
∥

∥A−1F − Uobs

∥

∥

2

L
2

h
(Ω)

. (12)

3 Derivative free trust-region method

The configuration of the function l seems to be well approximate, locally, by
a quadratic function. This fact, motivated us to apply a variation version of
the trust region method presented in [15] where a quadratic model is used to
approximate the objective function.

Usually trust region method is based on Taylor’s series expansion of l around
(µk, λk) [10]. To avoid the computation of the derivatives of l, we consider the
least squares method to get the quadratic model which approximates l(µ, λ)
using a set

Pk = {(µi,k, λi,k) : i ∈ {1, ..., nk}}

with nk ≥ 9 random points where the function l is known. Let us consider that
these nk points belong to the set Ik = [µinf,k, µsup,k]× [λinf,k, λsup,k] and that,
each of the nine sub-sets, which correspond to each of the cells in a uniform 3×3
grid in the set Ik:

Ii,j,k = [µinf,k + (i− 1)sk, µinf,k + isk]× [λinf,k + (j − 1)rk, λinf,k + jrk] ,
(13)

i, j = 1, 2, 3, where sk = 1
3 (µsup,k − µinf,k), rk = 1

3 (λsup,k − λinf,k). We impose
that each sub-sets contains at least one point to make sure that the points are
not too close to each other and to have representative points around all the trust
region. Moreover, we assume that (µk, λk) belongs to the central sub-set, that
is, (µk, λk) ∈ I2,2,k.
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With these nk points, we want to derive the k-th quadratic model lk, that
can be written in the form

lk(µ, λ) = a1 + a2µ+ a3λ+ a4µ
2 + a5λ

2 + a6µλ, k ∈ Z
+
0 , (14)

for some ai ∈ R, i ∈ {1, ..., 6}. The coefficients ai, i ∈ {1, ..., 6}, are determined
in way to minimize the function

Lk(a1, ..., a6) =

nk
∑

i=1

(l(µi,k, λi,k)− lk(µi,k, λi,k))
2
.

The necessary condition to obtain the solution is

∂Lk

∂ai
(a1, ..., a6) = 0, i ∈ {1, ..., 6} (15)

and the solution a∗ = (a∗1, . . . , a
∗

6) of this system exists and it is unique [6].
It now remains to characterize the minimizer of lk through the trust region.

Let (µ0, λ0) be the initial point and ∆0 > 0 the initial trust region radius. So
the initial trust-region is defined by the set I0 such that (µ0, λ0) ∈ I2,2,0 and for
the other sub-sets a random point is generated. After defining the set P0 with
these points, we are able to calculate l0. For the iteration k let us consider the
points of Pk to obtain the k-th approximation lk by the least squares method.
To achieve the minimizer, we will obtain the solution of the next sub-problem

min
(µ,λ)∈R2

lk(µ, λ)

s.t. ∥(µ, λ)− (µk, λk)∥∞ ≤ ∆k.
(16)

The solution (µk+1, λk+1) will be the minimizer of lk in the square centered in
(µk, λk) and radius ∆k. The critical point is the solution of ∇lk(µ, λ) = 0, that
is,

[

2a∗4 a∗6
a∗6 2a∗5

] [

µ
λ

]

= −

[

a∗2
a∗3

]

(17)

where a∗i , i ∈ {2, · · · , 6} are the solution of (15). We note that the matrix of
the system (17) is the hessian, ∇2lk(µ, λ), of the quadratic model (14). The
correspondent eigenvalues are given by

a∗4 + a∗5 ±
√

(a∗4 − a∗5)
2 + (a∗6)

2.

So this values are both positive when 4a∗4a
∗

5 − (a∗6)
2 > 0 and a∗4 > 0.

If the hessian is positive definite and the solution obtained by resolution of
(17) is in the trust region, the solution of (17) is the minimizer of (16). If one of
this conditions is not satisfied the minimizer will be determined on the boundary.

Let (µ∗

k, λ
∗

k) denote the minimizer of (16) in the iteration k. To accept this
minimizer, we analyze the ratio

ρk =
l(µk, λk)− l(µ∗

k, λ
∗

k)

lk(µk, λk)− lk(µ∗

k, λ
∗

k)
(18)
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and we compare it with the value γ ∈ ]0, 1[ initially fixed, where γ is a parameter
of the trust-region method that defines whether the iteration is successful. If
ρk ≥ γ, the objective function is well fitted by the quadratic model and we accept
the (µ∗

k, λ
∗

k) as the new approximation ((µk+1, λk+1) = (µ∗

k, λ
∗

k)) , ∆k+1 = ∆k;
otherwise, the trust region is too large and the fit between the function and
the model is not satisfatory. In this case, we keep the previous approximation
((µk+1, λk+1) = (µk, λk)) and reduce the trust region radius (∆k+1 = ∆k/2).

To update Pk+1 and Ik+1, regardless of whether the iteration is successful or
not, the new trust region Ik+1 is the square centered on (µk+1, λk+1) with radius
∆k+1 so (µk+1, λk+1) ∈ I2,2,k+1. Additionally, we keep the points Pk ∩ Ik+1 in
the corresponding sub-set. Finally, we generate a random point on each sub-set
Ii,j,k+1 that remains empty. Pk+1 is the set with the new nk+1 points obtained by
this process and a new quadratic model is obtained by the least squares method.
We would like to emphasize that only the admissible portion of each sub-set is
considered in Ik.

This procedure is repeated until the relative error between two consecutive
iterations is less than 10−5 on both parameters. Algorithm 1 presents the sketch
of this procedure which is a variation of the derivative free trust-region method
presented in [15].

Algorithm 1: Derivative free trust-region method

Initialization Choose (µ0, λ0) such that l(µ0, λ0) < ∞, ∆0 > 0 and the
constant γ ∈ ]0, 1[. Obtain I0 and consequently P0. Define k = 0.

repeat
Construct the model for lk(µ, λ) by the least squares method applied to
(15) with the points of Pk.

Obtain the critical point by solving problem (17).
if ∇2lk(µ, λ) is positive definite and satisfies the constrain of the
sub-problem (16) then

(µ∗

k, λ
∗

k) is the minimizer;
else

Obtain the minimizer (µ∗

k, λ
∗

k) over the boundary of the square
centered in (µk, λk) and radius ∆k.

Calculate ρk in (18).
if ρk ≥ γ then

∆k+1 = ∆k;
(µk+1, λk+1) = (µ∗

k, λ
∗

k);
else

∆k+1 = ∆k/2;
(µk+1, λk+1) = (µk, λk);

Update Ik+1, Pk+1 as described in this section.
k = k + 1;

until
|µk − µk−1|

µk−1

< 10−5 ∧
|λk − λk−1|

λk−1

< 10−5;
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4 Computational results

Let us consider the objective function defined by (12), which corresponds to

the following setting: Ω = [−2, 2]
3
with ∂Ω = Γ1 ∪ Γ2 where Γ1 is the face of

the cube contained in the plane z = −2; the mesh is a partition of Ω into 48
tetrahedrons; ρ = 1, w = 2π×106; the functions g and f are defined respectively
by gi = 5.86× 10−3 and fi = 0, i ∈ {1, 2, 3}.

To illustrate the performance of the proposed method we used fabricated
data obtained by simulating the direct problem. In particular, we considered
Uobs as the solution of (10) with E = 4.66 × 106 and ν = 0.45 [2]. In this way,
(µ, λ) = (1.6069×106, 1.4462×107) is the optimal solution of the inverse problem.
For the optimization problem we choose the set I = [0.9µ, 1.1µ] × [0.9λ, 1.1λ]
and we define ∆0 = 105 (∆0 < 0.1max{µ, λ} ) and γ = 0.1.

In the context of a real application, experimental data are affected by noise.
Here we performed experiments with noise free data as well as noisy data in
order to assess the sensitivity of our method to noise.

To check the robustness of the proposed method when considering noisy
data we consider gaussian noise R ∼ N (0, σ) where R is a random vector of
dimension 3N × 1 and σ is the standard deviation. So instead Uobs, we consider
as data Ūobs = (R + 13N×1)Uobs, where 13N×1 is a 3N × 1 vector with all
components equal to one and the i-th component of the vector Ūobs is given by
(R(i) + 1)Uobs(i), i ∈ {1, ..., 3N}.

We consider variations of σ in the set
{

0, 10−8, 10−7, 10−6, 10−5
}

and, for
each value of σ, we consider simulations with 30 random initial points.

Figure 1 presents the relative error averages
|µk − µk−1|

µk−1
and

|λk − λk−1|

λk−1

obtained from thirty simulations for each value of σ. As expected, increasing
the number of iterations has the effect of decreasing the relative error between
two consecutive iterations, allowing the approximations to converge close to the
optimal solution and satisfy the stop condition. As we can be seen in Figure 1,
the performance of Algorithm 1 is not significantly affected by the increase in
noise.

Now since we have the thirty approximations for each value of σ, we will show
in Figure 2 the evolution of the relative error average between the approximation
given by the method and the solution (µ, λ) = (1.6069 × 106, 1.4462 × 107).
As expected, both parameters show an increase in the average error with σ,
which can lead to large perturbations in the optimal solution. Although the
noise variation is not high, it generates higher relative errors comparing to the
case of no noise (σ = 0). In Figure 2 we can see that for σ ∈

{

10−6, 10−5
}

the
relative error in µ is very closed to 0.1. This situation happens because the level
of noise considered change the behaviour of the objective function where the
minimum in attained in the boundary of I. Note that in the boundary of the
domain I the approximations achieve relative error of the order 0.1.
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Fig. 1: Relative error average obtained from thirty simulations for the parameters
µ (left) and λ (right) considering different levels of noise.

Fig. 2: Relative error average obtained from thirty simulations for each value of
σ.
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