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Abstract

We delve into the concept of categories with products that distribute over coproducts, which we
call doubly-infinitary distributive categories. We show various instances of doubly-infinitary distributive
categories aiming for a comparative analysis with established notions such as extensivity, infinitary dis-
tributivity, and cartesian closedness. Our exploration reveals that this condition represents a substantial
extension beyond the classical understanding of infinitary distributive categories. Our main theorem
establishes that free doubly-infinitary distributive categories are cartesian closed. We end the paper with
remarks on non-canonical isomorphisms, open questions and future work.

A common question in category theory is how limits and colimits interact with each other. One of the
most benign kinds of interaction is that of a (pseudo)distributive law ; for instance, finitary and infinitary
distributive categories [10], and completely distributive categories [37].

Explicitly, if C is a category with finite products and finite coproducts, C is called finitary distributive
if the canonical comparison (0.2) induced by the universal property of the coproducts is invertible for any
triple (A,B,C) of objects in C; in other words, C is finitary distributive if, for any object A, the functor

A×− : C → C (0.1)

preserves finite coproducts. In the presence of arbitrary coproducts, we can require even more; namely, a
category is infinitary distributive if, for any object A and any family {Bi}i∈I of objects, the canonical com-
parison (0.3) is invertible, which, again, is equivalent to saying that (0.1) is a coproduct-preserving functor
for any A.

(A×B) ⊔ (A× C)
∼=
−→ A× (B ⊔ C) (0.2)

⊔

i∈I

(A×Bi)
∼=
−→ A×

(

⊔

i∈I

Bi

)

(0.3)

From the perspective of two-dimensional monad theory, both notions can be realized as pseudoalgebras of
suitable composites of free completion pseudomonads, arising from canonical (pseudo)distributive laws. By
making use of this approach, a much stronger distributivity condition has been considered in [37]; namely,
completely distributive categories, that is to say, categories with the distributivity property of arbitrary
(small) limits over colimits.

In the present work, we explore the realm of categories with products and coproducts, featuring a dis-
tributive law between them, which we term doubly-infinitary distributive categories. This notion serves as
an intermediary between infinitary distributive categories and completely distributive ones.

Naturally, this conceptualization emerges from the canonical pseudodistributive law between the respec-
tive free completion pseudomonads (under products and under coproducts); namely, this pseudodistributive
law extends the usual (pseudo)distributive law between their finite counterparts, and is the restriction of
that considered by [37].

Since we are in the context of pseudodistributive laws involving Kock-Zöberlein pseudomonads, the defi-
nition of the corresponding pseudodoalgebra can be given as a category with two different properties, along
with the invertibility of a canonical morphism, e.g. [35, 46, 30]. Specifically in our case, considering a cate-
gory C with coproducts and products, C is doubly-infinitary distributive whenever the canonical morphism
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(3.1) is invertible for any family of objects (Cij)(j,i)∈J×Ij
of C. To articulate this concept more concisely,

where Fam(C) denotes the free coproduct completion of C (as defined in Section 1), C is doubly-infinitary
distributive when the coproduct functor

⊔

: Fam(C) → C, (0.4)

which realizes C as coproduct-complete category (pseudoalgebra of the free coproduct completion pseu-
domonad), preserves products.

We show various instances of doubly-infinitary distributive categories aiming for a comparative anal-
ysis with established notions such as extensivity, infinitary distributivity, and cartesian closedness. Our
exploration reveals that this condition represents a substantial extension beyond the classical understand-
ing of infinitary distributive categories. In particular, we show that cartesian closedness does not imply
doubly-infinitary distributivity. Moreover, there are non-extensive categories that are doubly-infinitary dis-
tributive. Furthermore, despite being infinitary (l)extensive, we find that the category of topological spaces
fails to meet the criteria for being doubly-infinitary distributive. As explained in Section 5, this obser-
vation prompts further inquiry into the conditions under which categories of generalized multicategories
exhibit doubly-infinitary distributiveness, especially in the context of enriched categorical structures and
(T,V)-categories.

Finally, we show that there are doubly-infinitary distributive categories that are not cartesian closed, such
as the category of locally connected topological spaces. In this direction, our most surprising observation,
underpinning our future work on the denotational semantics of program transformations, is that, besides
having many other interesting properties like extensivity, free doubly-infinitary distributive categories are
cartesian closed.

Structure, literature and background In Section 1, we revisit the definition of free (co)product com-
pletion. For the interested reader, we point out that there is an extensive literature on the free (co)product
completion Fam(C) on a category C, as evidenced by works such as [8, 3, 31], and [40, Section 8.5].

Theorem 2.3, established in Section 2, is the main result of the present paper. It pertains to a funda-
mentally elementary concept. For any category C, we establish that

Dist(C)
def
= Fam(Fam(Cop)op),

whose explicit description we give therein, is cartesian closed, that is to say, we establish the cartesian
closedness of the free coproduct completion of the free product completion of any category C.

Furthermore, in Section 3, we recall that we get a composite pseudomonad structure for Dist(−), stem-
ming from a pseudodistributive law between the pseudomonads of free product completion and free coproduct
completion. We, then, consider the 2-category of Dist(−)-pseudoalgebras and pseudomorphisms, whose ob-
jects we call doubly-infinitary distributive categories. This is the reason why Dist(C) = Fam(Fam(Cop)op)
earns the designation of the free doubly-infinitary distributive category on C.

In this discourse, a familiarity with two-dimensional monad theory is assumed. Interested readers are di-
rected to [6, 26, 28, 30] for foundational concepts and definitions surrounding biadjunctions, pseudomonads,
pseudoalgebras, as well as some of the results referenced. Lastly, for an in-depth understanding of pseu-
dodistributive laws, we recommend consulting Marmolejo’s seminal work [34, 35, 36]. Additionally, works
such as [24, 33, 12, 30] delve into lax idempotent 2-monads and pseudomonads, providing valuable insights
to the present work.

In Section 4, we discuss examples of doubly-infinitary distributive categories. We compare them with
established notions, such as extensiveness, cartesian closedness and distributivity. See, for instance, [10, 8],
and [40, Section 7] for these notions.

Finally, we make some final remarks in Section 5. We establish one open problem on the doubly-infinitary
dristributivity of categories of categorical structures, especially in the context of generalized multicate-
gories [13, 14, 40]. We also establish the result on non-canonical isomorphisms for the case of doubly-infinitary
distributive categories, which follows directly from the framework introduced in [30].
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Related work We note that Von Glehn considered a similar notion of distributivity for Π- and Σ-types
in fibrations over a locally cartesian closed category B, e.g. [45]. We focus on the specific case of fibrations
of the form Fam(C) → Set, in which case Π- and Σ-types reduce to products and coproducts in C (see [44,
Theorem 3.5.2] or [43, Theorem 12]).
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This research was supported through the programme “Oberwolfach Leibniz Fellows” by the Mathema-

tisches Forschungsinstitut Oberwolfach in 2022. It was also partially supported by the CMUC, Centre for
Mathematics of the University of Coimbra - UIDB/00324/2020, funded by the Portuguese Government
through FCT/MCTES.

1 Free completion under coproducts

We recall the basic definition of the category Fam(C) for each category C. This construction has been
extensively considered in the literature. We refer, for instance, to [10, 8, 3, 31, 39, 40] for further properties.

Given a category C, recall that its image by the Yoneda embedding defines a strictly indexed category
Fam(C) : Setop → Cat, where Fam(C) = Cat(−, C) is the Cat-enriched hom-functor from sets considered
as discrete categories. We can equivalently consider the corresponding (split) fibred category Fam(C) =
ΣSetFam(C) obtained by taking the Grothendieck construction [19]. Concretely, Fam(C) has objects that

consist of a pair of a set I and an I-indexed family [Ci | i ∈ I] of objects Ci of C, i.e. ob (Fam(C))
def
=

ΣI∈ob (Set)ob (C)
I . The homset sets are

Fam(C)([Ci | i ∈ I], [C ′
j | j ∈ J ])

def
= Πi∈IΣj∈JC(Ci, C

′
j),

with identity id[Ci|i∈I]
def
= λi : I.⟨i, idCi

⟩ and composition

f ◦ g
def
= λi : I.let ⟨i′, g′⟩ = g(i) in let ⟨i′′, f ′⟩ = f(i′) in ⟨i′′, f ′ ◦ g′⟩.

Universal property of the Fam(−)-construction It is well-known that Fam(C) is the free coproduct-
completion of C. In fact, Fam(−) forms a lax-idempotent pseudomonad (also known as a Kock-Zöberlein
pseudomonad) on Cat, where the unit

(C
f
−→ C ′) 7→ ([C | ∗ ∈ 1]

λ .⟨∗,f⟩
−−−−−→ [C ′ | ∗ ∈ 1])

takes the singleton family and the multiplication

([[Cij | i ∈ Ij ] | j ∈ J ]
f
−→ [[C ′

i′j′ | i
′ ∈ I ′j′ ] | j

′ ∈ J ′]) 7→

([Cij | ⟨j, i⟩ ∈ Σj∈JIj ]
λ⟨j,i⟩.let ⟨j′,g⟩=f(j) in let ⟨i′,h⟩=g(i) in ⟨⟨j′,i′⟩,h⟩
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ [C ′

i′j′ | ⟨j
′, i′⟩ ∈ Σj′∈J ′I ′j′ ])

takes the disjoint union of a family of families. Briefly, to see that this indeed is a lax-idempotent pseu-
domonad, observe that the biadjunction

CoProdCat ⊥(ϵ, η) Cat

G

F

satisfies the Kock-Zöberlein condition for biadjuntions, namelyGϵ ⊣ ηG is a (pseudo)lali adjunction, meaning
that the coherence isomorphism (Gϵ) (ηG) ∼= id is the counit of the adjunction Gϵ ⊣ ηG (see, for instance, [26,
Definition 2.5] for the biadjunctions, and [12, Theorem 3.15] for Kock-Zöberlein conditions for 2-adjunctions).
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The corresponding 2-category of pseudoalgebras and pseudomorphisms CoProdCat consists precisely of
coproduct-complete categories, coproduct-preserving functors, and natural transformations [23, 24]. Using
the isomorphism of 2-categories op : Catco → Cat, we obtain a colax idempotent pseudomonad op◦Fam(−)◦
op that has the 2-category ProdCat of product-complete categories as its category of pseudoalgebras. As a
notational convention, we denote the objects of Fam(Cop)op as ⟨Ci | i ∈ I⟩ to emphasize their interpretation
as a free product of a family of objects in C.

2 The category Dist(C)

In this section, we define the free doubly-infinitary distributive category Dist(C) on a category C, and prove
our main result on its cartesian closedness; namely Theorem 2.3. We define

Dist(C)
def
= Fam(Fam(Cop)op),

i.e. Dist(C) is the free coproduct completion of the free product completion of C. We formalize the fact this
is indeed the free doubly-infinitary distributive category in Section 3.

Clearly, Dist(C) is a category with coproducts, being a free coproduct completion. Surprisingly, it also
has products and exponentials. To see that, it can help to give an explicit description of Dist(C).

Explicit description of the Dist(−)-construction We have the following concrete description ofDist(C).
Objects are families of families of objects Cji of C:

[⟨Cji | i ∈ Ij⟩ | j ∈ J ]

for some set J and sets Ij (for j ∈ J). Morphisms

[⟨Cji | i ∈ Ij⟩ | j ∈ J ] → [⟨C ′
j′i′ | i

′ ∈ I ′j′⟩ | j
′ ∈ J ′]

are precisely elements of the set

Πj∈JΣj′∈J ′Πi′∈I′
j′
Σi∈IjC(Cji, C

′
j′i′).

The identity on [⟨Cji | i ∈ Ij⟩ | j ∈ J ] is

λj : J.⟨j, λi : Ij .⟨i, idCji
⟩⟩,

where we use the identities from C. Composition h′ ◦ h is

λj : J.let ⟨j′, f⟩ = h(j) in let ⟨j′′, f ′⟩ = h′(j′) in

⟨j′′, λi′′ : I ′′j′′ .let ⟨i′, c′⟩ = f ′(i′′) in let ⟨i, c⟩ = f(i) in ⟨i, c′ ◦ c⟩⟩

where we use the composition from C.

Properties of Dist(C) Then, obviously, we have coproducts.

Lemma 2.1. Coproducts exist in Dist(C) and are computed as

⊔

k∈K

[⟨Ckji | i ∈ Ikj⟩ | j ∈ Jk]
def
= [⟨Ckji | i ∈ Ikj⟩ | k ∈ K, j ∈ Jk].

Proof. Dist(C) has coproducts by virtue of being of the form Fam(D) of a free coproduct completion, for
D = Fam(Cop)op.

We can also form products.
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Lemma 2.2. Products exist in Dist(C) and are computed as

l

k∈K

[⟨Ckji | i ∈ Ikj⟩ | j ∈ Jk]
def
= [⟨Ckf(k)i | k ∈ K, i ∈ Ikf(k)⟩ | f ∈ Πk∈KJk].

Proof. It is well-known that Fam(D) has products if D does, given by
d

k∈K [Dkj | j ∈ Jk] = [
d

k∈K Dkf(k) |
f ∈ Πk∈KJk]. See, for example, [18]. Now, in D = Fam(Cop)op, products are straightforward, being a free
product completion:

d
k∈K⟨Ckf(k)i | i ∈ Ikf(k)⟩ = ⟨Ckf(k)i | k ∈ K, i ∈ Ikf(k)⟩.

Surprisingly, we even have exponentials, via a Dialectica interpretation-like formula [17].

Theorem 2.3. Exponentials exist in Dist(C) and are computed as

[⟨Cji | i ∈ Ij⟩ | j ∈ J ] ⇒ [⟨C ′
j′i′ | i

′ ∈ I ′j⟩ | j
′ ∈ J ′]

def
=

[⟨C ′
j′i′ | j ∈ J, ⟨j′, g⟩ = f(j), i′ ∈ I ′j′ , g(i

′) = ⟨⊥,⊥⟩⟩ |

f ∈ Πj∈JΣj′∈J ′Πi′∈I′
j′
Σi∈Ij⊔{⊥}C(Cji, C

′
j′i′) if i ̸= ⊥ else {⊥}],

where we slightly abuse notation and leave coproduct coprojections into Ij ⊔ {⊥} implicit to aid legibility.

Proof. We demonstrate the natural isomorphism of homsets establishing the exponential adjunction:

Dist(C)([⟨Cj0i00 | i0 ∈ Ij00⟩ | j0 ∈ J0]× [⟨Cj1i11 | i1 ∈ Ij11⟩ | j1 ∈ J1],

[⟨C ′
j′i′ | i

′ ∈ I ′j′⟩ | j
′ ∈ J ′]) = { Lemma 2.2 }

Dist(C)([⟨Cjkikk | ⟨k, ik⟩ ∈ Σk∈{0,1}Ijkk⟩ | ⟨j0, j1⟩ ∈ J0 × J1],

[⟨C ′
j′i′ | i

′ ∈ I ′j′⟩ | j
′ ∈ J ′]) = { def. homsets Dist(C) }

Π⟨j0,j1⟩∈J0×J1
Σj′∈J ′Πi′∈I′

j′
Σ⟨k,ik⟩∈(Σk∈{0,1}Ijkk)C(Cjkikk, C

′
j′i′)

∼= { currying }

Πj0∈J0
Πj1∈J1

Σj′∈J ′Πi′∈I′
j′
Σ⟨k,ik⟩∈(Σk∈{0,1}Ijkk)C(Cjkikk, C

′
j′i′)

∼= { assoc. Σ-type }

Πj0∈J0
Πj1∈J1

Σj′∈J ′Πi′∈I′
j′

(

Σi1∈Ij11
C(Cj1i11, C

′
j′i′)

)

⊔
(

Σi0∈Ij00
C(Cj0i00, C

′
j′i′)

)

∼= { (∗) }

Πj0∈J0Πj1∈J1Σj′∈J ′Σ
h:Πi′∈I′

j′

(

Σi1∈Ij11
C(Cj1i11,C

′
j′i′

)
)

⊔{⟨⊥,⊥⟩}

Πi′∈{i′∈I′
j′
|h(i′)=⟨⊥,⊥⟩}

(

Σi0∈Ij00
C(Cj0i00, C

′
j′i′)

)

∼= { (∗∗) }

Πj0∈J0Πj1∈J1Σj′∈J′Σh:Πi′∈I′
j′
Σi1∈Ij11⊔{⊥}C(Cj1i11,C

′
j′i′

) if i1 ̸=⊥ else {⊥}

Πi′∈{i′∈I′
j′
|h(i′)=⟨⊥,⊥⟩}Σi0∈Ij00

C(Cj0i00, C
′
j′i′)

∼= { assoc. Σ-type }

Πj0∈J0
Πj1∈J1

Σ⟨j′,h⟩∈Σj′∈J′Πi′∈I′
j′
Σi1∈Ij11⊔{⊥}C(Cj1i11,C

′
j′i′

) if i1 ̸=⊥ else {⊥}

Πi′∈{i′∈I′
j′
|h(i′)=⟨⊥,⊥⟩}Σi0∈Ij00C(Cj0i00, C

′
j′i′)

∼= { (∗ ∗ ∗) }

Πj0∈J0Σf∈Πj1∈J1
Σj′∈J′Πi′∈I′

j′
Σi1∈Ij11⊔{⊥}C(Cj1i11,C

′
j′i′

) if i1 ̸=⊥ else {⊥}

Πj1∈J1,⟨j′,h⟩=f(j1)Πi′∈{i′∈I′
j′
|h(i′)=⟨⊥,⊥⟩}Σi0∈Ij00

C(Cj0i00, C
′
j′i′)

∼= { uncurrying }

Πj0∈J0Σf∈Πj1∈J1
Σj′∈J′Πi′∈I′

j′
Σi1∈Ij11⊔{⊥}C(Cj1i11,C

′
j′i′

) if i1 ̸=⊥ else {⊥}

Πj1∈J1,⟨j′,h⟩=f(j1),i′∈I′
j′
,h(i′)=⟨⊥,⊥⟩Σi0∈Ij00

C(Cj0i00, C
′
j′i′) = { def. homsets Dist(C) }

Dist(C)([⟨Cj0i00 | i0 ∈ Ij00⟩ | j0 ∈ J0],

[⟨C ′
j′i′ | j1 ∈ J1, ⟨j

′, h⟩ = f(j1), i
′ ∈ I ′j′ , h(i

′) = ⟨⊥,⊥⟩⟩ |

f ∈ Πj1∈J1
Σj′∈J′Πi′∈I′

j′
Σi1∈Ij11⊔{⊥}C(Cj1i11, C

′
j′i′) if i1 ̸= ⊥ else {⊥}]).

Here, by (un)currying we mean the natural isomorphism Π⟨a,b⟩∈Σa∈ABb
Cab

∼= Πa∈AΠb∈Ba
Cab, which holds

for Σ-types with a dependent elimination rule. (∗) is in many ways the crux of the proof: in Set, we
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can characterise maps into a coproduct as Πa∈ABa ⊔ Ca
∼= Σh∈Πa∈ABa⊔{⊥}Πa∈{a∈A|h(a)=⊥}Ca. (∗∗) is a

straightforward identity of coproducts in Set: (Σa∈ABa) ⊔ {⟨⊥,⊥⟩} ∼= Σa′∈A⊔{⊥}Ba′ if a′ ̸= ⊥ else {⊥}.
(∗ ∗ ∗) is the comprehension property of Σ-types with a dependent elimination rule: Πa∈AΣb∈Ba

Cab
∼=

Σf∈Πa∈ABa
Πa∈ACaf(a)

Remark 1 (Exponentials in Dist(C), inductively). Every object of Dist(C) is a coproduct of products of
objects in the image of C → Dist(C). This means that we can easily give an inductive definition of the
exponential as follows.

Denoting by ⊔ the coproduct in Dist(C), if (Ci)i∈J is a family of objects in Dist(C), A is in the image
of the inclusion Fam(Cop)op → Dist(C), and B is in the image of C → Dist(C):

• A ⇒ B =





⊔

i∈Dist(C)(A,B)

1



 ⊔B,

• A ⇒

(

⊔

i∈J

Ci

)

=
⊔

i∈J

(A ⇒ Ci).

It should be noted that the above is enough to define the exponential given the fact that A ⇒ − and − ⇒ A
preserve products.

This surprising result of cartesian closure might remind the reader of the well-known fact that a completely

distributive lattice is a complete Heyting algebra, by defining the exponential as a ⇒ b
def
=
∨

{a′ | a∧a′ ≤ b}.
However, as we will see, while free doubly-infinitary distributive categories are cartesian closed, other doubly-
infinitary distributive categories might not be. As only the only completely distributive lattices that are of
the form Dist(C) are trivial, our result really is qualitatively different. We do recover cartesian closure (and
even get a Grothendieck topos) from a distributive law for non-thin categories, however, if we have more
general (finite) limits and colimits that distribute over each other and have a set of generators [37].

3 Dist(−) as a pseudomonad

Herein, we briefly recall the fact that Dist(−) can be naturally endowed with a pseudomonad structure, com-
ing from a pseudodistributive law between the pseudomonads of free completion under products Fam(−op)op

and under coproducts Fam(−). We refer the reader to [36, 34, 35] for pseudodistributive laws and compatible
liftings.

Observe that we have functors C → Fam(Cop)op → Fam(Fam(Cop)op) given by the singleton families
(the units of the pseudomonads Fam(−op)op and Fam(−) on Cat). Now, as Dist(C) has both products
and coproducts, we obtain first an essentially unique coproduct preserving extension to a functor Fam(C) →
Fam(Fam(Cop)op) and then an essentially unique product preserving functor

Fam(Fam(C)op)op → Fam(Fam(Cop)op),

by the universal properties of the free coproduct and product completions.
We can give an explicit description of the resulting functor:

λC :Fam(Fam(C)op)op → Fam(Fam(Cop)op)

(⟨[Cij | i ∈ Ij ] | j ∈ J⟩
g
−→ ⟨[C ′

i′j′ | i
′ ∈ I ′j′ ] | j

′ ∈ J ′⟩) 7→

([⟨Cf(j)j | j ∈ J⟩ | f ∈ Πj∈JIj ]
h
−→ ([⟨C ′

f ′(j′)j′ | j
′ ∈ J ′⟩ | f ′ ∈ Πj′∈J ′I ′j′ ])

where

h = λf : Πj∈JIj .⟨λj
′ : J ′.let ⟨j, g′⟩ = g(j′) in π1(g

′(f(j))),
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λj′ : J ′.let ⟨j, g′⟩ = g(j′) in ⟨j, π2(g
′(f(j)))⟩⟩.

To parse this definition, it might be helpful to remember that

g ∈ Πj′∈J ′Σj∈JΠi∈IjΣi′∈I′
j′
C(Cij , C

′
i′j′)

and
h ∈ Πf∈Πj∈JIjΣf ′∈Πj′∈J′I′

j′
Πj′∈J ′Σj∈JC(Cf(j)j , C

′
f ′(j′)j′).

The morphisms λC are automatically pseudonatural in C, as they arise from the universal properties of
the free product and coproduct completions and the units of pseudomonads on Cat. In fact, by [45, Theorem
7.1] with B = Set, they define a pseudodistributive law [36, Definition 11.4]

λ : (op ◦ Fam(−) ◦ op) ◦ Fam(−) → Fam(−) ◦ (op ◦ Fam(−) ◦ op),

which is essentially unique (see [46, Remark 34/Corollary 49]). Therefore, Dist(−)
def
= Fam(−) ◦ (op ◦

Fam(−) ◦ op) is another pseudomonad on Cat and Fam(−) lifts to a lax idempotent pseudomonad on
ProdCat, the category of pseudoalgebras of Fam(−op)op (product-complete categories).

Dist(−)-pseudoalgebras Next, we consider the pseudoalgebras of Dist(−).

Definition 1 (Doubly-Infinitary Distributive Category). Let C be a category with products and coproducts.
Then, for each family of objects (Cij)(j,i)∈J×Ij

in C, we have a canonical morphism

[⟨ιf(j) ◦ πj | j ∈ J⟩ | f ∈ Πj∈JIj ] :





⊔

f :Πj∈JIj

l

j∈J

Cf(j)j



→





l

j∈J

⊔

i∈Ij

Cij



 . (3.1)

We say that C is doubly-infinitary distributive (i.e., that infinite products distribute over infinite coproducts
in C) if (3.1) is invertible for any family (Cij)(j,i)∈J×Ij

.

Remark 2 (Concise definition). As in the case of finitary/infinitary distributive categories, our definition
of doubly-infinitary distributive categories can similarly be articulated in terms of a functor that preserves
(co)products. As demonstrated in Lemma 3.1, this approach is directly derived from the pseudodistributive
law. Specifically, a category C is doubly-infinitary distributive if and only if C is product and coproduct
complete, and the coproduct functor

⊔

: Fam(C) → C (3.2)

preserves products.

Lemma 3.1. The 2-category DistCat of Dist(−)-pseudoalgebras consists precisely of the doubly-infinitary
distributive categories, product and coproduct preserving functors and natural transformations.

Proof. Dist(−)-pseudoalgebras are the same as Fam(−)-pseudoalgebras over ProdCat (for the canoni-
cal lifting of Fam(−) to ProdCat that comes from the pseudodistributive law), that is categories with
coproducts and products such that the coproducts are product-preserving functors in all their arguments.

In other words, a Dist(−)-pseudoalgebra is a triple (C, a, b) where a, b are, respectively, Fam(−) and
Fam(−op)op pseudoalgebra structures plus a coherence condition; namely, a is a pseudomorphism of product
complete categories between Fam(C) and C. That is to say, a Dist(−)-pseudoalgebra is a category with
coproducts and products, such that the coproduct functor (3.2) preserves products. By the construction of
products in Fam(C), we conclude that this condition is indeed equivalent to doubly-infinitary distributivity.

In particular,Dist(C), is the free doubly-infinitary distributive category on C. It has the universal property
that any functor C → D to a doubly-infinitary distributive category has an essentially unique extension to a
product and coproduct preserving functor Dist(C) → D.

7



Remark 3. In fact, an easy way to verify the existence of the distributive law λ is to observe that we have
two pseudomonadic biadjunctions

Cat ⊥(ϵ, η) ProdCat ⊥(ϵ′, η′) DistCat

Fam(−)

that gives a lifting (as defined in [34]) of the free completion under coproducts pseudomonad to ProdCat.

4 Examples

In this section, we present some examples of doubly-infinitary distributive categories, and some counterex-
amples, aiming for a comparison with some of the related and well-established notions. We start by recalling
that every doubly-infinitary distributive category is infinitary distributive. Moreover, every completely dis-
tributive (and, hence, every totally distributive) category is doubly-infinitary distributive.

4.1 The Fam example

We recall that Fam(C) is extensive for any category C. However, Fam(C) can lack products and, hence, it
might not be doubly-infinitary distributive We, however, have:

Example 1. Fam(C) is always doubly-infinitary distributive provided that the category C has products.
Indeed, Fam(−) lifts to a pseudomonad on ProdCat, whose pseudoalgebras are the doubly-infinitary dis-
tributive categories. Fam(C) is precisely the free Fam(−)-pseudoalgebra over the product-complete category
C.

4.2 The category of sets

As expected, the category Set is doubly-infinitary distributive. More precisely:

Example 2. The category Set = Fam(1) = Dist(0) of sets and functions is doubly-infinitary distributive.
As the free Dist(−)-algebra on 0, it is the initial object of the category of Dist(−)-pseudoalgebras. To be
explicit, the inverse to the canonical morphism is given by

d :





l

j∈J

⊔

i∈Ij

Cij



→





⊔

f :Πj∈JIj

l

j∈J

Cf(j)j





⟨ιij (cj) | j ∈ J⟩ 7→ ιλj.ij (⟨cj | j ∈ J⟩).

Example 3. Similarly, any category of presheaves [Dop,Set] is doubly-infinitary distributive, seeing that
both products and coproducts are computed pointwise (i.e., the evaluation functors create products and
coproducts).

Example 4. The category Fam(Setop) = Dist(1) is a free doubly-infinitary distributive category. This
category is commonly studied under the name of the category of polynomials or containers [1]. In particular,
Theorem 2.3 implies that the category of polynomials is cartesian closed, as was previously noted in [5].
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4.3 ProdCat is bicategorically semi-additive

In order to proceed with examples, we remark that the 2-category ProdCat has a natural enrichment
over the 2-category of symmetric monoidal categories, and has products. This shows that ProdCat is
bicategorically semi-additive (see, for instance, [25] for the notion of semi-additive category).

Lemma 4.1. The 2-category ProdCat has a natural enrichment over the 2-category of symmetric monoidal
categories, and has products.

Proof. The product is given by the usual product of categories, while the monoidal structure on the hom-
categories is given by the pointwise product of functors.

As a consequence, ProdCat has bicategorical biproducts, meaning that bicategorical products and co-
products coincide up to equivalence (see, for instance, [41, 42] and [29, 3.8] for bilimits).

With this observation, we can proceed and construct new examples of doubly-infinitary distributive
categories. In particular, we have:

Example 5. The free doubly-infitary distributive category on two objects has the following description:

Dist(1 ⊔Cat 1) ≃ Fam(Fam((1 ⊔Cat 1)op)op) ≃ Fam(Fam(1op)op ⊔ProdCat Fam(1op)op)

≃ Fam(Fam(1op)op × Fam(1op)op) ≃ Fam(Setop × Setop),

where we use the facts that (1) op ◦ Fam(−) ◦ op : Cat → ProdCat is a left biadjoint so it preserves
bidimensional coproducts and (2) the bidimensional coproducts and products coincide in ProdCat.

4.4 Posets

There is an extensive literature on completely distributive lattice, e.g. [16]. We observe that a poset C is a
doubly-infinitary distributive category if and only if it is a completely distributive lattice.

If a poset is extensive, it is, in particular, a distributive lattice and a < b implies that a = a∧ b = ⊥, due
to disjointness of coproducts in an extensive category. Hence only the trivial poset is extensive.

This shows that doubly-infinitary distributive categories may fail to be extensive.

4.5 Categories of categorical structures

Consider the category Cat of small categories and functors. Observe that Cat ≃ Fam(ConCat) for the full
subcategory ConCat of connected categories (i.e., categories C such that the free groupoid on C is connected;
see, for instance, [27, 1.2]). Seeing that ConCat has products, Cat is doubly-infinitary distributive, by
Example 1. The same argument works to show that the category Pos of posets and ωCPO of ω-chain
cocomplete partial orders and ω-cocontinuous functors are doubly infinitary distributive.

4.6 Category of topological spaces

It is well-known that the category Top of topological spaces and continuous functions is infinitary distributive
in the usual sense: finite products distributive over (potentially infinite) coproducts. However, infinite
products in Top are not quite as well-behaved, making the doubly-infinitary distributive law fail, in general.

Indeed, to study the continuity of the distributor d, observe the following. Let U be an open subset of
⊔

f :Πj∈JIj

d
j∈J Cf(j)j . Then, by definition of the coproduct topology, U =

⊔

f :Πj∈JIj
Uf for open subsets

Uf ⊆
d

j∈J Cf(j)j . By definition of the product topology, Uf =
⋃

α∈Af

⋂

β∈Bfα
π−1
jfαβ

(Vfαβ), where Vfαβ is
an open subset of Cf(jfαβ)jfαβ

, Af is some potentially infinite set and Bfα is a finite set. Now,

d−1(U) = d−1(
⊔

f :Πj∈JIj

Uf )
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= d−1(
⊔

f :Πj∈JIj

⋃

α∈Af

⋂

β∈Bfα

π−1
jfαβ

(Vfαβ))

= [⟨ιf(j) ◦ πj | j ∈ J⟩ | f ∈ Πj∈JIj ](
⊔

f :Πj∈JIj

⋃

α∈Af

⋂

β∈Bfα

π−1
jfαβ

(Vfαβ))

=
⋃

f :Πj∈JIj

⟨ιf(j) ◦ πj | j ∈ J⟩(
⋃

α∈Af

⋂

β∈Bfα

π−1
jfαβ

(Vfαβ))

=
⋃

f :Πj∈JIj

⋃

α∈Af

⟨ιf(j) ◦ πj | j ∈ J⟩(
⋂

β∈Bfα

π−1
jfαβ

(Vfαβ))

=
⋃

f :Πj∈JIj

⋃

α∈Af

⋂

β∈Bfα

⟨ιf(j) ◦ πj | j ∈ J⟩(π−1
jfαβ

(Vfαβ)) (direct images under injections preserve ∩)

=
⋃

f :Πj∈JIj

⋃

α∈Af

⋂

β∈Bfα

⟨ιf(j) ◦ πj | j ∈ J⟩(
l

j∈J

{

Vfαβ if j = jfαβ
Cf(jfαβ)jfαβ

otherwise

}

)

=
⋃

f :Πj∈JIj

⋃

α∈Af

⋂

β∈Bfα

l

j∈J

{

ιf(jfαβ)(Vfαβ) if j = jfαβ
ιf(j)(Cf(j)j) otherwise

Meanwhile, the open sets of
d

j∈J

⊔

i∈Ij
Cij , by definition of the product and coproduct topologies, are the

sets of the form

⋃

k∈K

⋂

l∈L

π−1
jkl

ιikl
(Wkl) =

⋃

k∈K

⋂

l∈L

l

j∈J

{

ιikl
(Wkl) if j = jkl

⊔

i∈Ij
Cij otherwise

for some set K, finite set L and open subsets Wkl of Cikljkl
. This shows that the map d above is continuous

if J is finite. However, if J is infinite, taking Ij = {0, 1}, Cij = R, Aλ .0 = {∗} and Af = ∅ for all other f ,
Bfα = {∗}, and Vf∗∗ = R gives a counter-example to continuity. Indeed, then U = ιλ .0(

d
j∈J R) is an open

subset of
⊔

f∈J→{0,1}

d
j∈J R and d−1(U) =

d
j∈J ι0(R) ⊆

d
j∈J

⊔

i∈{0,1} R is not open.

We see that Top is infinitary distributive (actually lextensive), but not doubly-infinitary distributive.

Remark 4 (Cantor space). The proof that the category of topological spaces is not doubly-infinitary dis-
tributive can be abridged by the fact that the Cantor space K is an infinite compact topological space, and,
hence, not discrete.

Specifically, K can be constructed as the infinite product
l

j∈N

⊔

i∈{0,1}

1 in the category Top of topological

spaces, where 1 represents the space with only one point. Since K is compact by Tychonoff’s theorem,
it cannot be homeomorphic to an infinite coproduct of non-trivial spaces. More explicitly, the canonical
morphism 3.1, in this case, is the morphism K → K between the underlying discrete topological space K and
K, which is evidently not invertible.

Remark 5 (Pointfree topology). Recall that a frame is poset (partially ordered set) that is infinitary
distributive when seen as a category. The study of topological features in the opposite category of the
category of frames is usually called pointfree topology, e.g. [38]. In this setting, the objects are called locales.

Analogously, we can conclude that, despite being (l)extensive, the category of locales Loc = Frm
op is not

doubly-infinitary distributive (see [38, Chapter 13] for connectedness in pointfree topology).

4.7 Cartesian closedness vs. doubly-infinitary distributivity

Herein, we establish the comparison between doubly-infinitary distributivity and cartesian closedness. We
start by observing the following result.

Theorem 4.2. Let C be infinitary distributive category. The category C is cartesian closed if and only if
Fam(C) is cartesian closed.
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Proof. It is well-known that, if C is cartesian closed, so is Fam(C) (we refer the reader to [3, 2] for instance).
Reciprocally, if Fam(C) is cartesian closed, we know that the canonical inclusion

C → Fam(C)

is fully faithful, and has the left adjoint given by the coproduct functor
⊔

(see (3.2)). By the definition of
infinitary distributive categories, we also know that

⊔

preserves finite products. Then, by [22, Proposition
4.3.1], C forms an exponential ideal in Fam(C). In particular, C is cartesian closed.

This shows that, whenever C is an example of (doubly-)infinitary distributive category that is not cartesian
closed, Fam(C) is another such an example.

Doubly-infinitary distributive categories are not necessarily cartesian closed We start by con-
sidering concrete examples of doubly-infinitary distributive category that are not cartesian closed.

Example 6. Recall that the usual category ωCPO of ω-cpos is not locally cartesian closed (see, for example,
[4, Proposition 4]). Therefore, there is some ω-cpo X (concretely, we can take X to be the extended natural
numbers N∞ with the linear order ≤), such that the slice category ωCPO/X is not cartesian closed. For
example, the internal hom ((N,=) →֒ (N∞,≤)) ⇒ (−) does not exist, for the inclusion of the natural numbers
with the discrete order into the extended natural numbers with the linear order. Meanwhile, products in
ωCPO/X are simply given by wide pullbacks in ωCPO, i.e. the wide pullback in Set over |X| equipped
with the product order. Coproducts in ωCPO/X are simply given by coproducts in ωCPO, i.e. disjoint
unions of sets and orders, with the required morphisms to X induced by the cotupling. Therefore, the
isomorphism l

j∈J

⊔

i∈Ij

Yij
∼=

⊔

f :Πj∈JIj

l

j∈J

Yf(j)j

restricts, if we write ⊓X and ⊔X for the product and coproduct in ωCPO/X, to one

l

j∈J

X
⊔

i∈Ij

X(yij : Yij → X) ∼=
⊔

f :Πj∈JIj

X
l

j∈J

X(yf(j)j : Yf(j)j → X),

showing that ωCPO/X is doubly-infinitary distributive.

Example 7. For another example of a doubly-infinitary distributive category that is not cartesian closed, ob-
serve that Fam(Top) is doubly-infinitary distributive, as a free coproduct completion of a product-complete
category. At the same time, Top is well-known not to be cartesian closed, as the product S × − with the
Sierpinski space S does not preserve the coequalizer of some parallel pair f, g : X → Y [7, Proposition 7.1.2].
Since Top is infinitary distributive, we conclude that Fam(Top) is not cartesian closed by Theorem 4.2

Example 8. Consider the category ConTop of locally connected connected topological spaces, and contin-
uous functions. Observe Fam(ConTop) is, up to equivalence, the category Fam(ConTop) ≃ LocConTop

of locally connected topological spaces and continuous functions (see, for instance, [8, Proposition 6.15]).
ConTop has products, given by the usual product topology. Therefore, LocConTop is doubly-infinitary
distributive, as an instance of Example 1. Again, LocConTop is not cartesian closed, by the same argument
as for Top.

We can generalize Example 8 and the examples of 4.5 by making use of the notion of connected objects
(see, for instance, [8, Definition 6.1.3]). An object C in a category C is connected if the hom-functor C (C,−)
preserves coproducts. We, then, define the full subcategory ConC of the connected objects in C. We get that:

Lemma 4.3. Let C be a category with coproducts such that ConC has products. If every object of C is a
coproduct of connected objects, then C is doubly-infinitary distributive.

Proof. By [8, Proposition 6.15], we conclude that C is equivalent to Fam(ConC). By Example 1, we conclude
that C is doubly-infinitary distributive, since ConC has products.

11



Cartesian closed categories are not necessarily doubly-infinitary distributive Since the functor
A × − is left adjoint in cartesian closed categories, it is well-known that cartesian closed categories are
infinitary distributive.

While the reasoning above cannot be extend to doubly-infinitary distributive categories, one might be
tempted to conjecture that cartesian closed categories are doubly-infinitary distributive. However, we demon-
strate the falsity of this conjecture through the presentation of the following examples.

Counter example 1. The category FinSet of finite sets and functions. It does not have infinite products
and coproducts, so is not doubly-infinitary distributive.

Counter example 2. More interestingly, there exist categories that have all products and coproducts, are
infinitary distributive and cartesian closed, but still fail to be doubly-infinitary distributive. Consider the
category Qbs of quasi-Borel spaces [20]. Qbs is the category of concrete sheaves over standard Borel spaces
with countable measurable covers, hence, as a Grothendieck quasi-topos, it is complete, cocomplete and
cartesian closed. It is of interest as a generalized setting for probability theory as it is a concrete category
that has a full, limit and countable coproduct preserving embedding of standard Borel spaces into it.

Concretely, a quasi-Borel space X consists of of a set |X| and a set MX of maps R → |X| such that
(1) MX contains all constant functions; (2) MX is closed under precomposition with measurable functions
R → R; (3) MX is closed under gluing along countable measurable partitions of R. Morphisms X → Y are
functions f : |X| → |Y | such that f ◦ g ∈ MY if g ∈ MX .

We have products
d

j∈J Xj given by |
d

j∈J Xj | =
d

j∈J |Xj | and Md
j∈J Xj

= {⟨fj | j ∈ J⟩ | fj ∈ MXj
}

and coproducts
⊔

j∈J Xj given by |
⊔

j∈J Xj | =
⊔

j∈J |Xj | and M⊔
j∈J Xj

= {λr.ιj(n(r))(fn(r)(r)) | n : R →

N measurable , j : N → J, ∀m ∈ N.fm ∈ MXj(m)
}. Observe that elements of M⊔

j∈J Xj
always factor over

countably many components of the coproduct. Countable coproducts are well-behaved in the sense that
M⊔

j∈J Xj
= {λr.ιj(r)(fj(r)(r)) | j : R → J measurable , fj ∈ MXj

} if J is countable.

The question is whether d :
(d

j∈J

⊔

i∈Ij
Cij

)

→
(

⊔

f :Πj∈JIj

d
j∈J Cf(j)j

)

is a morphism ofQbs. We need

to show that d◦g ∈ M⊔
f:Πj∈JIj

d
j∈J Cf(j)j

for all g ∈ Md
j∈J

⊔
i∈Ij

Cij
. This is clearly true iff {j ∈ J | #Ij < 2}

is finite. In particular, Qbs is infinitary distributive, but not doubly-infinitary distributive.

5 Final remarks and future work

We discussed the concept of doubly-infnintary distributive categories, which is a a notion that naturally
arises from a canonical pseudodistributive law between the free product completion pseudomonad and the
free coproduct completion pseudomonad. The most surprising result is that free doubly-infinitary distributive
category Dist(C) on a category C is cartesian closed.

We could also consider free completions under finite coproducts and products. This would amount to

replacing Fam(−) with FinFam(−), where FinFam(C)
def
= ΣFinSetFam(C). The distributive law

FinFam(FinFam(C)op)op → FinFam(FinFam(Cop)op)

then gives rise to the theory of distributive categories in the usual sense (i.e., categories with finite products
and coproducts that distribute), while the distributive law

FinFam(Fam(C)op)op → Fam(FinFam(Cop)op)

gives rise to the theory of infinitary distributive categories in the usual sense (i.e., categories with fi-
nite products and infinite coproducts that distribute. As a small variation on our results, we get that
FinDist(C) = FinFam((FinFam(Cop))op) is cartesian closed for any locally finite category C.

12



5.1 Further properties of Dist(C)

We remark that Dist(C) has many other interesting properties, including most notably extensivity. Many
of these properties are already in the literature, since they follow from the fact that Dist(C) = Fam(D) is
the free coproduct completion of D = Fam(Cop)op. We refer to [10, 8, 3, 31] for some of these properties.

5.2 Non-canonical isomorphisms

In Definition 1, doubly-infinitary distributive categories are defined in terms of a canonical morphism being
invertible. It is natural to ask, then, if finding a non-canonical isomorphism would suffice (this is Pisani’s
question for distributive categories, e.g. [25]).

The answer is yes. As this is easily framed in the setting of [30], it is easy to see that a category C is
doubly-infinitary distributive if it has products and coproducts and there is a(ny) natural isomorphism





⊔

f :Πj∈JIj

l

j∈J

Cf(j)j



→





l

j∈J

⊔

i∈Ij

Cij



 .

for each family of objects (Cij)(j,i)∈J×Ij
.

Finally, since a coproduct and product complete category is doubly-ifninitary distributive if and only if
the coproduct functor

⊔

: Fam(C) → C is product-preserving, we can achieve the non-canonical result stated
above by results on preservation of limits from naturality (non-canonical isomorphisms), see, for instance,
[30, 9].

5.3 Generalized categorical structures

It was recently established that the category of (T,V)-categories is extensive, see [11]. This shows that a
plethora of categories of topological categories and, more generally, (enriched) categorical structures share
the property of being extensive.

In exploring the realm of doubly-infinitary distributivity, we unveiled that both the category of locally
connected spaces and the category of (small) categories possess this property. However, notably, the category
of topological spaces does not share this trait. This observation leads us to pose the following open question:

Open question 1. It remains an open question: under which conditions on T and V does the category of
(T,V)-categories exhibit doubly-infinitary distributivity?

Remark 6. By 4.3, the obvious road map to solve the problem above would start with a characterization of
the categories (T,V)-Cat of (T,V)-categories that are free doubly-infinitary distributive on its category of
connected objects. Enlightened by [32, Corollary 4.7], this happens to be the case under suitable conditions,
for V thin and intersection-preserving T .

5.4 Gödel’s Dialectica interpretation

The exponential formula forDist(C) presented in this paper is a variation on Gödel’s Dialectica interpretation
(see [17] for the original reference and [21] for a categorical formulation), exponentials in categories of
polynomials/containers [5], and the Diller-Nahm formulas (see [15] for the original reference and [21] and
[31, Section 6.4] for categorical formulations). We plan to explain the precise relationship to these results in
a separate paper, in order not to distract from the simple nature of the results presented herein.
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