
Interpolation on the space of orthonormal frames

via recursive endpoint quasi-geodesics

Lúıs Machado

Department of Mathematics

University of Trás-os-Montes e Alto Douro, Portugal

and

Institute of Systems and Robotics

University of Coimbra, Portugal

lmiguel@utad.pt

Fátima Silva Leite

Institute of Systems and Robotics

University of Coimbra, Portugal

and

Department of Mathematics

University of Coimbra, Portugal

fleite@mat.uc.pt

Abstract

The de Casteljau algorithm on Riemannian manifolds is adjusted in

order to solve two-point boundary value problems that give rise to gener-

alized cubic polynomials on Stiefel manifolds given in closed form. This

adjusted approach is based on the recursive use of quasi-geodesics, which

are special curves with constant geodesic curvature. Two types of inter-

polation problems are formulated, related, and solved explicitly.

Keywords: Interpolation, Stiefel manifolds, quasi-geodesics, adjusted de Castel-
jau algorithm, adjusted geometric cubic polynomials.

1 Introduction

Geodesics are the simplest curves on a Riemannian manifold, generalizing
straight lines in Euclidean spaces, and being the shortest paths between two
points. However, there are cases where it might be difficult to find geodesics
precisely, specially those that solve two point boundary problems.

A manifold that illustrates these difficulties is the Stiefel manifold consisting
of all orthonormal k-frames in n-dimensional Euclidean space, where k ≤ n.

1

D
M

U
C

 P
re

pr
in

t 2
4-

17
, 1

6 
M

ar
 2

02
4

[v1] Sat, 16 Mar 2024

https://www.mat.uc.pt/preprints/eng_2024.html


As far as we know, no explicit solutions for a geodesic that joins two points
on the Stiefel manifold is known, except for some particular cases. This gap
is a drawback when one wants to solve smooth interpolation problems on this
manifold using a geometric method that generalizes the de Casteljau algorithm
for Euclidean spaces, see [5] and [8] for the classical description and [13], [4] and
[14] for its generalization to curved spaces. This method, based on recursive
geodesic interpolation, is computationally very efficient in cases when endpoint
geodesic formulas are known explicitly.

Surprisingly enough, there are certain curves that may not be true geodesics
but can more easily solve a two point boundary problem, making them particu-
larly useful in various contexts where exact geodesics might be hard to define or
compute. Such curves have been named quasi-geodesics and used successfully
in [12] to generate quadratic splines on the Stiefel manifold. In [12], the Rie-
mannian metric used was the so called canonical metric. The nice properties of
those curves explained the success of the results, but also raised the following
natural question: are quasi-geodesics with respect to the canonical metric true
geodesics with respect to another metric on Stiefel manifolds? Partial answers
to this question were given in [11] and [9]. In [11] quasi-geodesics are proved to
coincide with projections of sub-Riemannian geodesics on a certain Lie group
that acts transitively on the Stiefel manifold. The Lie group was considered
equipped with the trace metric. In general such curves are not geodesics with
respect to the submersion metric induced by the action. In [9] a one-parameter
family of metrics (the α metrics) on Stiefel manifolds was studied in detail and
the quasi-geodesics also appeared as solutions of a variational problem asso-
ciated to the limit case when α → 0.

Stiefel manifolds are important in theoretical and applied mathematics, as
well as in interdisciplinary fields such as pattern recognition and quantum in-
formation theory. Solving interpolation problems on that manifold is crucial in
all areas of application since it allows to construct new data from a discrete set
of known data points.

The organization of this paper is the following. After the Introduction we
review in Section 2 the main concepts related to Stiefel manifolds, in particular
we present the quasi-geodesics that will be used in the main part of the paper.
The generalized de Casteljau algorithm on manifolds, as well as the adjusted
version of this algorithm, are described in Section 3. The formulation of the
interpolation problems appear in Subsection 3.4, where also the main results,
concentrated in Theorem 7 and Theorem 14, are stated and proved using several
auxiliary lemmas. A list of references is also included.

2 The Stiefel manifold

For the sake of completeness, we start this section with basic definitions about
Stiefel manifolds and then recall important properties of quasi-geodesics that
have been introduced in [12] and will play a major role in the section dealing
with interpolation.

2



2.1 Background & notations

The Stiefel manifold of orthonormal k-frames in R
n has the following matrix

representation:
Stn,k = {S ∈ R

n×k | S⊤S = Ik}. (1)

There is a strong relationship between the Stiefel manifold Stn,k and the
Grassmann manifold Grn,k consisting of all k-dimensional subspaces of Rn. If
one considers the matrix representation in terms of projection matrices, that
is, Grn,k = {P ∈ R

n×n | P = P⊤, P 2 = P, rank(P ) = k}, if S ∈ Stn,k, then
P = SS⊤ ∈ Grn,k. This relationship will be explored later on.

In what follows, s(n) denotes the set of n × n symmetric matrices, so(n)
denotes the set of n × n skew-symmetric matrices, and for P ∈ Grn,k, soP (n)
is used to denote the vector subspace of so(n) defined by

soP (n) = {X ∈ so(n) | XP + PX = X}.

This vector space is related to the tangent space ofGrn,k at the point P . Indeed,

TPGrn,k = {[X,P ] | X ∈ soP (n)} ⊂ s(n),

where [., .] denotes the commutator of matrices.

The tangent space to the Stiefel manifold at a point S ∈ Stn,k is given by

TSStn,k = {V ∈ R
n×k | V ⊤S + S⊤V = 0}, (2)

but another useful representation of the tangent space is the following, which
already appeared in [12, Proposition 5].

Proposition 1. Let S ∈ Stn,k and P := SS⊤ ∈ Grn,k. Then,

TSStn,k = {XS + SΩ | X ∈ soP (n), Ω ∈ so(k)}. (3)

Moreover, if V = XS + SΩ ∈ TSStn,k, then

X = V S⊤ − SV ⊤ + 2SV ⊤SS⊤, Ω = S⊤V. (4)

We consider the Stiefel manifold equipped with the canonical metric defined
in [6] by

〈V1, V2〉 = tr
(
V ⊤

1 (In − 1
2SS

⊤)V2

)
, V1, V2 ∈ TSStn,k. (5)

Also in [6] one can find the following second order differential equation, which
is the geodesic equation with respect to the above metric.

γ̈ + γ̇γ̇⊤γ + γ
(
(γ⊤γ̇)2 + γ̇⊤γ̇

)
= 0. (6)

The geometric de Casteljau algorithm to generate polynomials on Rieman-
nian manifolds is based on successive geodesic interpolation and requires that

3



explicit formulas for the geodesic that joins two points is available. However,
as far as we know, such formulas do not exist. As an attempt to overcome
this problem, the authors of [12] used quasi-geodesics, instead of geodesics, to
successfully modify the de Casteljau algorithm to generate quadratic polyno-
mials and splines on Stiefel, equipped with the metric (5). The success of that
alternative approach resulted from the fact that it was possible to define quasi-
geodesics that join two given points, in terms of those points only. These curves
are associated to a particular retraction. Retractions on a Riemannian manifold
are generalizations of the exponencial map.

2.2 Retractions and quasi-geodesics on Stiefel manifolds

Definition 2. A retraction R on the Stiefel manifold Stn,k is a smooth mapping
from the tangent bundle TStn,k to Stn,k that, when restricted to each tangent
space at a point S ∈ Stn,k (restriction denoted by RS), satisfies the following
properties:

(i) RS(0) = S;

(ii) dRS(0) = id,

where dRS(0) stands for the tangent map of RS at 0 ∈ TSStn,k.

If V ∈ TSStn,k, one can define a smooth curve βV : t 7→ RS(tV ) associated

to the retraction R. The curve βV which satisfies βV (0) = S and β̇V (0) = V is
called a quasi-geodesic. Next, we define a particular retraction and correspond-
ing quasi-geodesics on the Stiefel manifold, and list some of their interesting
properties. Proofs and more details can be found in [12]. In what follows, eA

denotes the exponential of a matrix A and log is used for the principal matrix
logarithm.

Proposition 3. Let S, X and Ω be as in the Proposition 1. Then, the mapping
R : TStn,k → Stn,k whose restriction to TSStn,k is defined by RS(V ) = eXSeΩ

is a retraction on the Stiefel manifold. Moreover, the curve β : [0, 1] → Stn,k,
t 7→ etXSetΩ is a quasi-geodesic in Stn,k that satisfies

1. β(0) = S;

2. β̇(t) = etX(XS + SΩ)etΩ;

3. β̈(t) = etX(X2S + 2XSΩ+ SΩ2)etΩ.

In the next proposition the initial velocity of a quasi-geodesic is explicitly
written in terms of the given endpoints S0 and S1. We use the notation Dtβ̇ for
the covariant acceleration along the curve β and κ for the geodesic curvature.

Proposition 4. Let S0 and S1 be two distinct points in Stn,k so that, for
i = 0, 1, Pi = SiS

⊤

i ∈ Grn,k. Then, if

X =
1

2
log

(
(I − 2S1S

⊤

1 )(I − 2S0S
⊤

0 )
)

and Ω = log
(
S⊤

0 e−XS1

)
, (7)

4



the quasi-geodesic β : [0, 1] 7→ Stn,k defined by

β(t) = etXS0e
tΩ, (8)

has the following properties:

1. β(0) = S0;

2. β(1) = S1;

3. ‖β̇(t)‖2 = −tr(S⊤
0 X2S0 +

1
2Ω

2) (constant speed);

4. Dtβ̇(t) = Xβ(t)Ω;

5. ‖Dtβ̇(t)‖
2 = tr(Ω2S⊤

0 X2S0) (constant norm of covariant acceleration);

6. κ = −

√

tr(Ω2S⊤
0 X2S0)

tr(S⊤
0 X2S0 +Ω2/2)

(constant geodesic curvature).

Remark 5. Note that the matrices X and Ω in (7) are only well defined if
the logarithm exists. This is always guaranteed if the points S0 and S1 are
sufficiently close.

The quasi-geodesic defined above is a true geodesic w.r.t. the metric (5) only
if X = 0 or Ω = 0. In particular, these 2 situations occur when k = 1 and when
k = n. Since Stn,1 = Sn and Stn,n = On, for the sphere and for the orthogonal
group these quasi-geodesics are geodesics.

3 The de Casteljau Algorithm on Riemannian

Manifolds

A well-known recursive procedure to generate polynomial curves in Euclidean
spaces is the classical de Casteljau algorithm which was introduced, indepen-
dently, by de Casteljau [5] and Bézier [2]. The algorithm is a simple and powerful
tool widely used in the field of Computer Aided Geometric Design (CAGD), and
is based on successive linear interpolations, cf. [7] for a modern treatise.

A generalization of that algorithm to Riemannian manifolds appeared first in
[13], and the basic idea was replacing linear interpolation by geodesic interpola-
tion. The resulting curves are also called polynomial curves as they are natural
extensions to Riemannian manifolds of Euclidean polynomials. In Euclidean
spaces, the most important are the cubic polynomials, due to their optimal
properties, as they minimize acceleration. Generating polynomial curves and
polynomial splines on manifolds was motivated by problems related to path
planning of certain mechanical systems, such as spacecraft and underwater ve-
hicles, whose configuration spaces are non-Euclidean manifolds. The rotation
group, which plays an important role in this context, inspired further develop-
ments such as the work in [4] that will be used here. But first we briefly describe
the de Casteljau Algorithm to generate cubic polynomials on Riemannian man-
ifolds, assuming that they are geodesically complete.

5



3.1 Generating cubic polynomials

A cubic polynomial is a smooth curve that satisfies a two-point boundary value
problem (initial and final points and velocities are prescribed), but may be
generated from four distinct points x0, x1, x2, x3 in M , the first and last being
respectively the initial and final point of the curve and the other two are auxiliary
points for the geometric algorithm, but are related to the prescribed velocities.
Without loss of generality, we parameterize the curves over the interval [0, 1].

The next algorithm describes all steps of this construction, which is briefly
described for instance in [10] and illustrated in Figure 1.

3.2 Generalized de Casteljau Algorithm

Given four distinct points x0, x1, x2 and x3 in M :

Step 1. Construct three geodesic arcs, β1(t, xi, xi+1), i = 0, 1, 2, joining
xi to xi+1. In the illustration below, these arcs are represented by the
black dotted lines.

Step 2. For every t ∈ [0, 1], construct two geodesic arcs

β2(s, xi, xi+1, xi+2) = β1(s, β1(t, xi, xi+1), β1(t, xi+1, xi+2))

for i = 0, 1, joining β1(t, xi, xi+1) to β1(t, xi+1, xi+2). In the illustration
below, these arcs are represented by the blue dotted lines.

Step 3. For every t ∈ [0, 1], construct the geodesic arc

β3(s, x0, x1, x2, x3) = β1(s, β2(t, x0, x1, x2), β2(t, x1, x2, x3)),

joining β2(t, x0, x1, x2) to β2(t, x1, x2, x3). In the illustration below, this
arc is represented by the green dotted line. The dark red dot represents
the point in β3(s, x0, x1, x2, x3) corresponding to s = t.

The curve [0, 1] ∋ t 7→ β3(t) := β3(t, x0, x1, x2, x3) obtained with this algo-
rithm is called geometric cubic polynomial inM , and in Figure 1 it is represented
by the red curve. Observe that this curve joins the points x0 (at t = 0) and
x3 (at t = 1), but does not pass through the other two points x1 and x2. The
latter are called control points, since they influence the shape of the curve. We
also note that the whole geometric construction lives in M .

Remark 6. There are some relationships between the velocity boundary condi-
tions of the final curve β3 and velocities of the curves obtained in step 1.:

β̇3(0) = 3β̇1(t, x0, x1)|t=0

β̇3(1) = 3β̇1(t, x2, x3)|t=1.
(9)

These relationships are particularly important to generate a cubic polynomial
that satisfies certain Hermite conditions (initial and final points and velocities
are prescribed), since the control points x1, x2 can be obtained from that data.

6



Figure 1: Illustration of the algorithm. Geometric cubic polynomial in red.

3.3 Adjusted de Casteljau Algorithm

The de Casteljau algorithm described in Subsection 3.2 can be modified in
several ways. Here, for the obvious reasons, we simply replace geodesics by
quasi-geodesics and name the corresponding procedure adjusted de Casteljau
algorithm. In spite of this modification, we still call the resulting curves geo-
metric cubic polynomials.

3.4 Solving a 2-point boundary problem on the Stiefel

manifold, using the adjusted de Casteljau algorithm

Since no explicit formulas for the endpoint geodesics on Stiefel manifolds are
known, the implementation of the de Casteljau algorithm is not possible. How-
ever, we will show next that the adjusted algorithm produces a curve that sat-
isfies a 2-point boundary problem. We note that quasi-geodesics have already
been used to generate quadratic spline curves in Stiefel manifolds in [12], how-
ever the generation of cubics requires further developments that will be done
here in detail.

To be consistent with the first part of these notes, points in the Stiefel
manifold will be denoted by Si.

Problem 1. Find a smooth curve γ : [0, 1] → Stn,k satisfying the following
boundary conditions:

γ(0) = S0, γ(1) = S3, γ̇(0) = V0, γ̇(1) = V3, (10)

where S0, S3 are given points in Stn,k, and V0 ∈ TS0
Stn,k and V3 ∈ TS3

Stn,k
are given tangent vectors.

The adjusted de Casteljau algorithm will be used to generate a curve that
solves this problem. So, we first need to find the control points S1, S2 from the
given data. S1 is the end point of the quasi-geodesic that starts at the point S0

with initial velocity equal to 1
3V0. This quasi-geodesic is given by

β1(t, S0, S1) = etX0S0e
tΩ0 , (11)

7



where, according to (4) in Proposition 1 and Remark 6,

X0 =
1

3

(
V0S

⊤

0 − S0V
⊤

0 + 2S0V
⊤

0 S0S
⊤

0

)
, Ω0 =

1

3
S⊤

0 V0. (12)

So, S1 = eX0S0e
Ω0 defines the first control point.

The second control point S2 is the end point of the quasi-geodesic that starts
at the point S3 with initial velocity equal to − 1

3V3. This quasi-geodesic is given
by

β1(t, S3, S2) = etX2S3e
tΩ2 , (13)

where, according to (4) in Proposition 1 and Remark 6,

X2 = −
1

3

(
V3S

⊤

3 − S3V
⊤

3 + 2S3V
⊤

3 S3S
⊤

3

)
, Ω2 = −

1

3
S⊤

3 V3. (14)

So, S2 = eX2S3e
Ω2 defines the second control point.

We can now proceed with the three steps of the de Casteljau algorithm.

Step 1. Construct three quasi-geodesics, defined by

β1(t, S0, S1) = etX0S0e
tΩ0

β1(t, S1, S2) = etX1S1e
tΩ1

β1(t, S2, S3) = e−tX2S2e
−tΩ2 ,

(15)

where X0,Ω0, X2,Ω2 are given in (12) and (14), and X1,Ω1 are, according to
Proposition 4, defined by

X1 =
1

2
log

(
(I − 2S2S

⊤

2 )(I − 2S1S
⊤

1 )
)
, Ω1 = log

(
S⊤

1 e−X1S2

)
. (16)

Step 2. Construct two quasi-geodesic arcs

β2(s, S0, S1, S2) = esX3(t)β1(t, S0, S1)e
sΩ3(t) = esX3(t)etX0S0e

tΩ0esΩ3(t),

β2(s, S1, S2, S3) = esX4(t)β1(t, S1, S2)e
sΩ4(t) = esX4(t)etX1S1e

tΩ1esΩ4(t),

where, according to Proposition 4 and formulas (15),

X3(t) =
1
2 log

(
(I − 2etX1S1S

⊤
1 e−tX1)(I − 2etX0S0S

⊤
0 e−tX0)

)
,

Ω3(t) = log
(
e−tΩ0S⊤

0 e−tX0e−X3(t)etX1S1e
tΩ1

)
,

X4(t) =
1
2 log

(
(I − 2e−tX2S2S

⊤
2 etX2)(I − 2etX1S1S

⊤
1 e−tX1)

)
,

Ω4(t) = log
(
e−tΩ1S⊤

1 e−tX1e−X4(t)e−tX2S2e
−tΩ2

)
.

8



Step 3. Construct the quasi-geodesic arc

β3(s, S0, S1, S2, S3) = esX5(t)β2(t, S0, S1, S2)e
sΩ5(t)

= esX5(t)etX3(t)etX0S0e
tΩ0etΩ3(t)esΩ5(t),

where, according to Proposition 4 and formulas above

X5(t) =
1

2
log

(
(I − 2etX4(t)etX1S1S

⊤

1 e−tX1e−tX4(t))

(I − 2etX3(t)etX0S0S
⊤

0 e−tX0e−tX3(t))
)
,

Ω5(t) = log
(
e−tΩ3(t)e−tΩ0S⊤

0 e−tX0e−tX3(t)e−X5(t)etX4(t)etX1S1e
tΩ1etΩ4(t)

)
.

Theorem 7. Let X5 and Ω5 be given by the last two formulas. Then, the
geometric cubic polynomial γ : [0, 1] → Stn,k defined by

γ(t) = etX5(t)β2(t, S0, S1, S2)e
tΩ5(t)

= etX5(t)etX3(t)etX0S0e
tΩ0etΩ3(t)etΩ5(t),

(17)

solves Problem 1.

In order to prove Theorem 7, it is required some additional results that are
established in the following lemmas.

Lemma 8. The generalized cubic polynomial in Stn,k defined in (17) by

γ(t) = etX5(t)etX3(t)etX0S0e
tΩ0etΩ3(t)etΩ5(t),

satisfies the following boundary conditions

γ(0) = S0, γ(1) = S3.

Proof. It is immediate to see that γ(0) = S0. In order to show that γ(1) = S3,
one needs to compute X3(1), Ω3(1), X4(1) and Ω4(1).

X3(1) =
1

2
log

(
(I − 2eX1S1S

⊤

1 e−X1)(I − 2eX0S0S
⊤

0 e−X0)
)

=
1

2
log

((
I − 2(eX1S1e

Ω1)(eX1S1e
Ω1)⊤

)(
I − 2(eX0S0e

Ω0)(eX0S0e
Ω0)⊤

))

=
1

2
log

(
(I − 2S2S

⊤

2 )(I − 2S1S
⊤

1 )
)

Ω3(1) = log
(
e−Ω0S⊤

0 e−X0e−X3(1)eX1S1e
Ω1

)

= log
(
(eX0S0e

Ω0)⊤e−X3(1)S2

)

= log
(
S⊤

1 e−X3(1)S2

)
.

(18)

9



Proceeding in an analogous way, by noticing that S3 = e−X2S2e
−Ω2 , one may

compute

X4(1) =
1

2
log

(
(I − 2e−X2S2S

⊤

2 eX2)(I − 2eX1S1S
⊤

1 e−X1)
)

=
1

2
log

((
I − 2e−X2S2e

−Ω2
(
e−X2S2e

−Ω2
)⊤)

(
I − 2

(
eX1S1e

Ω1
)(
eX1S1e

Ω1
)⊤))

=
1

2
log

(
(I − 2S3S

⊤

3 )(I − 2S2S
⊤

2 )
)

Ω4(1) = log
(
e−Ω1S⊤

1 e−X1e−X4(1)e−X2S2e
−Ω2

)

= log
(
S⊤

2 e−X4(1)S3

)
.

(19)

According to the expressions derived for X3(1) and Ω3(1), notice that the quasi-
geodesic parametrized in the interval [0, 1] by α(s) = esX3(1)S1e

sΩ3(1) satisfies
α(0) = S1 and α(1) = S2. Therefore,

γ(1) = eX5(1)eX3(1)eX0S0e
Ω0eΩ3(1)eΩ5(1)

= eX5(1)eX3(1)S1e
Ω3(1)eΩ5(1)

= eX5(1)S2e
Ω5(1).

It remains to prove that eX5(1)S2e
Ω5(1) = S3. But,

X5(1) =
1

2
log

((
I − 2eX4(1)eX1S1S

⊤

1 e−X1e−X4(1)
)

(
I − 2eX3(1)eX0S0S

⊤

0 e−X0e−X3(1)
))

=
1

2
log

((
I − 2eX4(1)S2S

⊤

2 e−X4(1)
)(
I − 2eX3(1)S1S

⊤

1 e−X3(1)
))

=
1

2
log

((
I − 2S3S

⊤

3

)(
I − 2S2S

⊤

2

))

Ω5(1) = log
(
e−Ω3(1)e−Ω0S⊤

0 e−X0e−X3(1)e−X5(1)eX4(1)eX1S1e
Ω1eΩ4(1)

)

= log
((
eX3(1)S1e

Ω3(1)
)⊤

e−X5(1)S3

)

= log
(
S⊤

2 e−X5(1)S3

)

(20)

It is immediate that eX5(1)S2e
Ω5(1) = S3, since eX5(1)S2e

Ω5(1) represents the
endpoint of the quasi-geodesic joining S2 to S3. So, γ(1) = S3.

The next result is essential to compute the derivative of γ at t = 1.

Lemma 9. For the generalized cubic polynomial defined in (17), one can write

γ(t) = e(t−1)X5(t)e(t−1)X4(t)e(1−t)X2S3e
(1−t)Ω2e(t−1)Ω4(t)e(t−1)Ω5(t). (21)

10



Proof. To show that the two expressions for the generalized cubic polynomial γ
coincide, it suffices to rewrite each one of the curves obtained in the de Casteljau
algorithm in an equivalent way. The three quasi-geodesics obtained in Step 1
can be rewritten as

β1(t, S0, S1) = etX0S0e
tΩ0

= etX0e−X0eX0S0e
Ω0e−Ω0etΩ0

= e(t−1)X0S1e
(t−1)Ω0

β1(t, S1, S2) = etX1S1e
tΩ1

= etX1e−X1eX1S1e
Ω1e−Ω1etΩ1

= e(t−1)X1S2e
(t−1)Ω1

β1(t, S2, S3) = e−tX2S2e
−tΩ2

= e−tX2eX2e−X2S2e
−Ω2eΩ2e−tΩ2

= e(1−t)X2S3e
(1−t)Ω2

The two quasi-geodesic arcs obtained in Step 2 can be rewritten as

β2(s, S0, S1, S2) = esX3(t)β1(t, S0, S1)e
sΩ3(t)

= esX3(t)e−X3(t)β1(t, S1, S2)e
−Ω3(t)esΩ3(t)

= e(s−1)X3(t)β1(t, S1, S2)e
(s−1)Ω3(t)

β2(s, S1, S2, S3) = esX4(t)β1(t, S1, S2)e
sΩ4(t)

= esX4(t)e−X4(t)β1(t, S3, S2)e
−Ω4(t)esΩ4(t)

= e(s−1)X4(t)β1(t, S2, S3)e
(s−1)Ω4(t)

Finally, the curve β3 can be reparametrized by

β3(s, S0, S1, S2, S3) = esX5(t)β2(t, S0, S1, S2)e
sΩ5(t)

= esX5(t)e−X5(t)β2(t, S1, S2, S3)e
−Ω5(t)esΩ5(t)

= e(s−1)X5(t)β2(t, S1, S2, S3)e
(s−1)Ω5(t).

The result follows by using the equivalent reparametrizations for the quasi-
geodesic arcs derived below.

The next goal is to show that γ̇(0) = V0 and γ̇(1) = V1. For this task, it is
necessary to use the derivative of a matrix exponential (Sattinger and Weaver
[15]). Notice that if t 7→ A(t) is a differentiable matrix function, then

deA(t)

dt
=

eu − 1

u

∣
∣
∣
u=adA(t)

(
Ȧ(t)

)
eA(t), (22)

11



where ad is the adjoint operator defined by adX(Y ) = XY − Y X and
eu − 1

u
denotes the sum of the power series

∑+∞

m=0
um

(m+1)! . Moreover, if t 7→ Y (t) is a

differentiable matrix function such that log Y (t) is defined for all t, then

d(log Y (t))

dt
=

u

eu − 1

∣
∣
∣
u=adlog Y (t)

(
Ẏ (t)Y −1(t)

)
, (23)

where
u

eu − 1
= 1− u

2 +
∑+∞

m=1
β2m

(2m)!u
2m and β2m are the Bernoulli numbers.

Lemma 10. The derivative of the generalized cubic polynomial in Stn,k defined
by (17) satisfies the following boundary conditions

γ̇(0) = V0, γ̇(1) = V1.

Proof. To compute γ̇(0), we use the expression for γ given by (17). Notice first
that, according to (22),

d(etX5(t))

dt
=

eu − 1

u

∣
∣
∣
u=adtX5(t)

(
X5(t) + tẊ5(t)

)
etX5(t).

Evaluating the above in t = 0, one simply gets

d(etX5(t))

dt

∣
∣
∣
t=0

= X5(0).

So,

γ̇(0) =
d

dt

(
etX5(t)etX3(t)etX0S0e

tΩ0etΩ3(t)etΩ5(t)
)
∣
∣
∣
t=0

= X5(0)S0 +X3(0)S0 +X0S0 + S0Ω0 + S0Ω3(0) + S0Ω5(0)

= X5(0)S0 + S0Ω5(0) +X3(0)S0 + S0Ω3(0) +X0S0 + S0Ω0.

Now, according to (12), it is easy to check that X0S0 + S0Ω0 = 1
3V0. We claim

that
X5(0)S0 + S0Ω5(0) = X3(0)S0 + S0Ω3(0) = X0S0 + S0Ω0.

Indeed,

X5(0) = X3(0) =
1

2
log

(
(I − 2S1S

⊤

1 )(I − 2S0S
⊤

0 )
)

and

Ω3(0) = log
(
S⊤

0 e−X3(0)S1

)
= log

(
S⊤

0 e−X5(0)S1

)

= Ω5(0).

It remains to prove that X3(0) = X0 and Ω3(0) = Ω0. According to (11),
β1(t, S0, S1) is the quasi-geodesic satisfying β1(0, S0, S1) = S0 and β1(1, S0, S1) =
S1. So,

X0 =
1

2
log

(
(I − 2S1S

⊤

1 )(I − 2S0S
⊤

0 )
)

Ω0 = log
(
S⊤

0 e−X0S1

)
.

12



This enables to conclude that γ̇(0) = V0.
To compute γ̇(1), we use the expression for γ given by (21). According to

(22),

d(e(t−1)X5(t))

dt
=

eu − 1

u

∣
∣
∣
u=ad(t−1)X5(t)

(
X5(t) + (t− 1)Ẋ5(t)

)
e(t−1)X5(t).

Evaluating the above in t = 1, one simply gets

d(e(t−1)X5(t))

dt

∣
∣
∣
t=1

= X5(1).

Hence,

γ̇(1) =
d

dt

(
e(t−1)X5(t)e(t−1)X4(t)e(1−t)X2S3e

(1−t)Ω2e(t−1)Ω4(t)e(t−1)Ω5(t)
)
∣
∣
∣
t=1

= X5(1)S3 +X4(1)S3 −X2S3 − S3Ω2 + S3Ω4(1) + S3Ω5(1)

= X5(1)S3 + S3Ω5(1) +X4(1)S3 + S3Ω4(1)− (X2S3 + S3Ω2).

From (14), it is immediate to conclude that X2S3 + S3Ω2 = − 1
3V3. From (19)

and (20), we also conclude that

X5(1)S3 + S3Ω5(1) = X4(1)S3 + S3Ω4(1).

We claim that X5(1) = −X2 and Ω5(1) = −Ω2. To prove this fact, observe
that the curve β1(t, S3, S2) = etX2S3e

tΩ2 is the quasi-geodesic connecting S3

(at t = 0) to S2 (at t = 1). Therefore,

X2 =
1

2
log

(
(I − 2S2S

⊤

2 )(I − 2S3S
⊤

3 )
)

Ω2 = log(S⊤

3 e−X2S2).

Following (20),

X5(1) =
1
2 log

(
(I − 2S3S

⊤

3 )(I − 2S2S
⊤

2 ) = − 1
2 log

(
(I − 2S2S

⊤

2 )(I − 2S3S
⊤

3 )
)

= −X2,

Ω5(1) = log(S⊤

2 e−X5(1)S3) = log(S⊤

2 eX2S3) = − log(S⊤

3 e−X2S2) = −Ω2,

where the latter comes from the orthogonality of S⊤
2 eX2S3 [12, Theorem 7].

We can now conclude that γ̇(1) = V3, as required.

The goal now is to solve the following problem.

Problem 2. Find a smooth curve γ : [0, 1] → Stn,k satisfying the following
boundary conditions:

γ(0) = S0, γ(1) = S3, γ̇(0) = V0,
Dγ̇

dt
(0) = W0, (24)

where S0, S3 are given points in Stn,k, V0 ∈ TS0
Stn,k is the velocity of γ at

t = 0 and W0 ∈ TS0
Stn,k is the covariant acceleration of γ at t = 0.

13



The idea is to rewrite the control points S1 and S2 in terms of the given new
data. But, S1 is easily computed by using the fact that it is the endpoint of the
quasi geodesic β1(t, S0, S1). So,

S1 = e
1
3 (V0S

⊤

0 −S0V
⊤

0 +2S0V
⊤

0 S0S
⊤

0 )S0e
1
3S

⊤

0 V0 (25)

It remains to compute S2.

The covariant acceleration
Dγ̇

dt
is obtained by projecting γ̈ into the tangent

space of Stn,k which, according to [6], is given by

Dγ̇

dt
= (I − γγ⊤)γ̈ + γ Skew(γ⊤γ̈), (26)

where Skew(A) = A−A⊤

2 .
So, it is enough to compute γ̈. The next two lemmas give the values for

Ẋ3(0) and Ω̇3(0).

Lemma 11. Let X3 be defined by

X3(t) =
1

2
log

(
(I − 2etX1S1S

⊤

1 e−tX1)(I − 2etX0S0S
⊤

0 e−tX0)
)
.

Then,

Ẋ3(0) =
2u

e2u − 1

∣
∣
∣
∣
u=adX0

(X1). (27)

Proof. According to (23),

Ẋ3(0) =
1

2

d

dt
log

(
(I − 2etX1S1S

⊤

1 e−tX1)(I − 2etX0S0S
⊤

0 e−tX0)
)
∣
∣
∣
∣
t=0

=
u

eu − 1

∣
∣
∣
∣
u=ad2X0

((

(S1S
⊤

1 X1 −X1S1S
⊤

1 )(I − 2S0S
⊤

0 )

+ (I − 2S1S
⊤

1 )(S0S
⊤

0 X0 −X0S0S
⊤

0 )
)

(I − 2S0S
⊤

0 )(I − 2S1S
⊤

1 )

)

=
u

eu − 1

∣
∣
∣
∣
u=ad2X0

(

(S1S
⊤

1 X1 −X1S1S
⊤

1 )(I − 2S1S
⊤

1 )

+ (I − 2S1S
⊤

1 )(S0S
⊤

0 X0 −X0S0S
⊤

0 )
)
(I − 2S0S

⊤

0 )(I − 2S1S
⊤

1 )
)

.

Notice that, since Xi ∈ soSiS
⊤

i

(n), i = 0, 1, then

(
SiS

⊤

i Xi −XiSiS
⊤

i

)(
I − 2SiS

⊤

i

)
= Xi,

and also
(I − 2S1S

⊤

1 )X0(I − 2S1S
⊤

1 ) = −X0.

Therefore,

Ẋ3(0) =
u

eu − 1

∣
∣
∣
∣
u=ad2X0

(
X1

)
,

and the result follows.

14



Lemma 12. For Ω3 given by

Ω3(t) = log
(
e−tΩ0S⊤

0 e−tX0e−X3(t)etX1S1e
tΩ1

)
,

we have

Ω̇3(0) =
u

1− e−u

∣
∣
∣
∣
u=adΩ0

(Ω1). (28)

Proof. Let’s begin by noticing that e−X0S1S
⊤
1 eX0 = S0S

⊤
0 . Thus,

Ω̇3(0) =
d

dt
log

(
e−tΩ0S⊤

0 e−tX0e−X3(t)etX1S1e
tΩ1

)
∣
∣
∣
∣
t=0

=
u

eu − 1

∣
∣
∣
∣
u=adΩ0

((

−
(
Ω0S

⊤

0 + S⊤

0 X0 + S⊤

0

eu − 1

u

∣
∣
∣
∣
u=ad−X0

(Ẋ3(0))
)
e−X0S1

+ S⊤

0 e−X0(X1S1 + S1Ω1)
)

S⊤

1 eX0S0

)

=
u

eu − 1

∣
∣
∣
∣
u=adΩ0

(

− S⊤

0

(

X0 +
1− e−u

u

∣
∣
∣
∣
u=adX0

(Ẋ3(0))
)

S0

+ S⊤

0 e−X0(X1S1 + S1Ω1)
)

S⊤

1 eX0S0

)

.

From [12, Proposition 3], it follows immediately that

S⊤

0

(

X0 +
1− e−u

u

∣
∣
∣
∣
u=adX0

(Ẋ3(0))
)

S0 = 0,

since X0 +
1− e−u

u

∣
∣
∣
∣
u=adX0

(Ẋ3(0)) ∈ soS0S
⊤

0
(n).

Let us now prove that Z0 = e−X0X1S1S
⊤
1 eX0 ∈ glS0S

⊤

0
(n). Indeed, using

S0S
⊤
0 e−X0 = e−X0S1S

⊤
1 , one can write

S0S
⊤

0 Z0 + Z0S0S
⊤

0 = S0S
⊤

0 e−X0X1S1S
⊤

1 eX0 + e−X0X1S1S
⊤

1 eX0S0S
⊤

0

= e−X0S1 S
⊤

1 X1S1
︸ ︷︷ ︸

=0

S⊤

1 eX0 + e−X0X1S1S
⊤

1 S1S
⊤

1 eX0

= e−X0X1S1S
⊤

1 eX0 = Z0.

This means that S⊤
0 e−X0X1S1S

⊤
1 eX0S0 = 0 and one gets

Ω̇3(0) =
u

eu − 1

∣
∣
∣
∣
u=adΩ0

(
S⊤

0 e−X0S1Ω1S
⊤

1 eX0S0

)
=

u

eu − 1

∣
∣
∣
∣
u=adΩ0

(
eΩ0Ω1e

−Ω0
)

=
u

eu − 1

∣
∣
∣
∣
u=adΩ0

(eadΩ0 (Ω1)) =
u

1− e−u

∣
∣
∣
∣
u=adΩ0

(Ω1).

15



Using similar computations and arguments, we can also conclude that

Ẋ5(0) = 2Ẋ3(0) and Ω̇5(0) = 2Ω̇3(0).

In order to compute γ̈, notice that, according to (22), if t 7→ X(t) is a
differentiable matrix valued function, one has

d(etX(t))

dt
=

eu − 1

u

∣
∣
∣
u=adtX(t)

(
X(t) + tẊ(t)

)
etX(t)

= X(t)etX(t) +
eu − 1

u

∣
∣
∣
u=adtX(t)

(
tẊ(t)

)
etX(t).

Therefore,
d(etX(t))

dt

∣
∣
∣
∣
t=0

= X(0),

and using eu−1
u

=
∑+∞

m=0
um

(m+1)! , one can write

eu − 1

u

∣
∣
∣
u=adtX(t)

(
tẊ(t)

)
= tẊ(t)+

t2

2
[X(t), Ẋ(t)]+

t3

6
[X(t), [X(t), Ẋ(t)]] + · · · .

It can be easily seen that

d2(etX(t))

dt2

∣
∣
∣
∣
t=0

= 2Ẋ(0) +X2(0).

Proposition 13. Given the curve γ, defined in (17) by

γ(t) = etX5(t)etX3(t)etX0S0e
tΩ0etΩ3(t)etΩ5(t),

then

γ̈(0) = 1
3X0V0Ω0 +

8
3 (X0V0 + V0Ω0) + 6

(
Ẋ3(0)S0 + S0Ω̇3(0)

)
, (29)

where Ẋ3(0) and Ω̇3(0) are given by (27) and (28), respectively.

Proof. Differentiating the curve γ with respect to t, one gets

γ̇(t) = etX5(t)etX3(t)etX0(X0S0 + S0Ω0)e
tΩ0etΩ3(t)etΩ5(t)

+
d(etX5(t))

dt
etX3(t)etX0S0e

tΩ0etΩ3(t)etΩ5(t)

+ etX5(t)
d(etX3(t))

dt
etX0S0e

tΩ0etΩ3(t)etΩ5(t)

+ etX5(t)etX3(t)etX0S0e
tΩ0

d(etΩ3(t))

dt
etΩ5(t)

+ etX5(t)etX3(t)etX0S0e
tΩ0etΩ3(t)

d(etΩ5(t))

dt
.

16



Knowing that X3(0) = X5(0) = X0 and Ω3(0) = Ω5(0) = Ω0, we can write

γ̈(0) = X0(X0S0 + S0Ω0)Ω0 + 4X0(X0S0 + S0Ω0) + 4(X0S0 + S0Ω0)Ω0+

+ 2X2
0S0 + 8X0S0Ω0 + 2S0Ω

2
0 + (2Ẋ5(0) +X2

0 )S0+

+ (2Ẋ3(0) +X2
0 )S0 + S0(2Ω̇5(0) + Ω2

0) + S0(2Ω̇3(0) + Ω2
0)

= X0(X0S0 + S0Ω0)Ω0 + 8X0(X0S0 + S0Ω0) + 8(X0S0 + S0Ω0)Ω0

+ 2(Ẋ5(0) + Ẋ3(0))S0 + 2S0(Ω̇5(0) + Ω̇3(0)).

Using X0S0 + S0Ω0 = 1
3V0, Ẋ5(0) = 2Ẋ3(0) and Ω̇5(0) = 2Ω̇3(0), we get the

result.

Theorem 14. The control points S1 and S2 used in the Casteljau algorithm
to generate the geometric cubic polynomial γ : [0, 1] → Stn,k satisfying the
boundary conditions (24) are given by

S1 = e
1
3 (V0S

⊤

0 −S0V
⊤

0 +2S0V
⊤

0 S0S
⊤

0 )S0e
1
3S

⊤

0 V0

S2 = eX1S1e
Ω1 ,

where

Ω1 =
1

6

1− e−u

u

∣
∣
∣
∣
u=adΩ0

(

S⊤

0 W0 +
1
27

(
(S⊤

0 V0)
3 + Skew(S⊤

0 V0V
⊤

0 V0)
))

,

X1 =
1

3

e2u − 1

2u

∣
∣
∣
∣
u=adX0

(

Skew(W0S
⊤

0 ) + S0W
⊤

0 S0S
⊤

0 − 1
27Skew

(
(V0S

⊤

0 )3
)

+ 1
27S0(S

⊤

0 V0)
3S⊤

0 − 16
9 Skew

(
(V0S

⊤

0 )2
))

.

Proof. Using the projection operator given by (26), we notice that

W0 = S0 Skew(S⊤

0 γ̈(0)) + (I − S0S
⊤

0 )γ̈(0).

One can observe by doing some straightforward computations that

S⊤

0 γ̈(0) = S⊤

0 X2
0S0Ω0 + 8(S⊤

0 X2
0S0 +Ω2

0) + 6Ω̇3(0).

So,

Skew(S⊤

0 γ̈(0)) = 1
2S

⊤

0 X2
0S0Ω0 +

1
2Ω0S

⊤

0 X2
0S0 + 6Ω̇3(0).

Using the condition S0S
⊤
0 X2

0S0 = X2
0S0, one gets

S0 Skew(S⊤

0 γ̈(0)) = 1
2X

2
0S0Ω0 +

1
2S0Ω0S

⊤

0 X2
0S0 + 6S0Ω̇3(0).

Moreover,

(I − S0S
⊤

0 )γ̈(0) = X0S0Ω
2
0 + 16X0S0Ω0 + 6Ẋ3(0)S0.

17



Hence,

W0 = 1
2X

2
0S0Ω0 +

1
2S0Ω0S

⊤

0 X2
0S0 + 6S0Ω̇3(0) +X0S0Ω

2
0 + 16X0S0Ω0

+ 6Ẋ3(0)S0.

Multiplying on the left the above equation by S⊤
0 , it follows

S⊤

0 W0 = 1
2

(
S⊤

0 X2
0S0Ω0 +Ω0S

⊤

0 X2
0S0

)
+ 6Ω̇3(0). (30)

Performing some computations with the expression of X0 and Ω0, we find that

X2
0 = 1

9

(
V0V

⊤

0 S0S
⊤

0 − V0V
⊤

0 − S0V
⊤

0 V0S
⊤

0 + S0S
⊤

0 V0V
⊤

0

)

S⊤

0 X2
0S0 = 1

9

(
S⊤

0 V0V
⊤

0 S0 − V ⊤

0 V0

)

S⊤

0 X2
0S0Ω0 = − 1

27

(
(S⊤

0 V0)
3 + V ⊤

0 V0S
⊤

0 V0

)

Ω0S
⊤

0 X2
0S0 = 1

27

(
(S⊤

0 V0)
3 + V ⊤

0 V0S
⊤

0 V0

)

By using the above into equation (30), one gets

S⊤

0 W0 = 1
27

(
1
2V

⊤

0 V0V
⊤

0 S0 −
1
2S

⊤

0 V0V
⊤

0 V0 − (S⊤

0 V0)
3
)
+ 6Ω̇3(0).

Using the expression for Ω̇3(0) given by (28), we obtain

Ω1 =
1

6

1− e−u

u

∣
∣
∣
∣
u=adΩ0

(

S⊤

0 W0 +
1
27

(
(S⊤

0 V0)
3 + Skew(S⊤

0 V0V
⊤

0 V0)
))

.

In order to compute X1, we start by computing W0S
⊤
0 −S0W

⊤
0 +2S0W

⊤
0 S0S

⊤
0 .

Observe that
W0S

⊤

0 − S0W
⊤

0 = 2Skew(W0S
⊤

0 ),

and since X2
0S0S

⊤
0 = S0S

⊤
0 X0, one gets

W0S
⊤

0 = 1
2X

2
0S0Ω0S

⊤

0 + 1
2S0Ω0S

⊤

0 X2
0S0S

⊤

0 + 6S0Ω̇3(0)S
⊤

0 +X0S0Ω
2
0S

⊤

0

+ 16X0S0Ω0S
⊤

0 + 6Ẋ3(0)S0S
⊤

0

= 1
2X

2
0S0Ω0S

⊤

0 +
1
2S0Ω0S

⊤

0 X2
0 + 6S0Ω̇3(0)S

⊤

0 +X0S0Ω
2
0S

⊤

0

+ 16X0S0Ω0S
⊤

0 + 6Ẋ3(0)S0S
⊤

0 .

Therefore,

2Skew(W0S
⊤

0 ) = X2
0S0Ω0S

⊤

0 + S0Ω0S
⊤

0 X2
0 + 12S0Ω̇3(0)S

⊤

0 +X0S0Ω
2
0S

⊤

0

+ S0Ω
2
0S

⊤

0 X0 + 16X0S0Ω0S
⊤

0 − 16S0Ω0S
⊤

0 X0

+ 6Ẋ3(0)S0S
⊤

0 + 6S0S
⊤

0 Ẋ3(0)

= X2
0S0Ω0S

⊤

0 + S0Ω0S
⊤

0 X2
0 + 12S0Ω̇3(0)S

⊤

0 +X0S0Ω
2
0S

⊤

0

+ S0Ω
2
0S

⊤

0 X0 + 16X0S0Ω0S
⊤

0 − 16S0Ω0S
⊤

0 X0 + 6Ẋ3(0),

18



and

2S0W
⊤

0 S0S
⊤

0 =
(

− S0Ω0S
⊤

0 X2
0−X2

0S0Ω0S
⊤

0 − 12S0Ω̇3(0)S
⊤

0

− 2S0Ω
2
0S

⊤

0 X0 + 32S0Ω0S
⊤

0 X0 − 12S0S
⊤

0 Ẋ3(0)
)

S0S
⊤

0

= −S0Ω0S
⊤

0 X2
0 −X2

0S0Ω0S
⊤

0 − 12S0Ω̇3(0)S
⊤

0 .

Consequently,

2Skew(W0S
⊤

0 ) + 2S0W
⊤

0 S0S
⊤

0 =

= X0S0Ω
2
0S

⊤

0 + S0Ω
2
0S

⊤

0 X0 + 16(X0S0Ω0S
⊤

0 − S0Ω0S
⊤

0 X0) + 6Ẋ3(0).

To proceed, notice that

X0S0Ω
2
0S

⊤

0 = 1
27

(
(V0S

⊤

0 )3 − S0(S
⊤

0 V0)
3S⊤

0

)

S0Ω
2
0S

⊤

0 X0 = − 1
27

(
(S0V

⊤

0 )3 + S0(S
⊤

0 V0)
3S⊤

0

)
.

so

X0S0Ω
2
0S

⊤

0 + S0Ω
2
0S

⊤

0 X0 = 2
27

(
Skew((V0S

⊤

0 )3)− S0(S
⊤

0 V0)
3S⊤

0

)
.

On the other hand, since

X0S0Ω0S
⊤

0 = 1
9

(
V0S

⊤

0 V0S
⊤

0 + S0V
⊤

0 S0S
⊤

0 V0S
⊤

0

)
,

then

X0S0Ω0S
⊤

0 − S0Ω
2
0S

⊤

0 X0 = 2
9Skew

(
(V0S

⊤

0 )2
)
.

Therefore,

2Skew(W0S
⊤

0 ) + 2S0W
⊤

0 S0S
⊤

0 =

= 2
27

(
Skew((V0S

⊤

0 )3)− S0(S
⊤

0 V0)
3S⊤

0

)
+ 32

9 Skew
(
(V0S

⊤

0 )2
)
+ 6Ẋ3(0).

Finally, using the expression for Ẋ3(0) given by (27), we conclude that

X1 =
1

3

e2u − 1

2u

∣
∣
∣
∣
u=adX0

(

Skew(W0S
⊤

0 ) + S0W
⊤

0 S0S
⊤

0 − 1
27Skew

(
(V0S

⊤

0 )3
)

+ 1
27S0(S

⊤

0 V0)
3S⊤

0 − 16
9 Skew

(
(V0S

⊤

0 )2
))

.

Remark 15. Using formula (17), one can evaluate points on the geometric
cubic polynomial at different values of the parameter t (only requires computing
exponentials of skew-symmetric matrices and logarithms of orthogonal matrices),
in order to compare the results with curves obtained using different approaches.

19



Nowadays, there are stable algorithms to compute matrix exponentials and log-
arithms. For instance, MatLab already uses them.

A similar strategy might be applied when the Stiefel manifold is equipped with
the Euclidean metric, taking into account the numerical methods, involving the
shooting method and path-straightening, to approximate endpoint geodesics, as
done in [3]. Also, it would be interesting to compare the curves obtained in
Theorem 7 with the approximate Riemannian cubic polynomials that result from
using geometric integrators and extended retractions in [1].

Acknowledgments

Work supported by Fundação para a Ciência e Tecnologia (FCT) under the
project UIDB/00048/2020 (https://doi.org/10.54499/UIDB/00048/2020).

References

[1] Maŕıa Barbero-Liñán and David Mart́ın de Diego. Retraction maps: A
seed of geometric integrators. Foundations of Computational Mathematics,
23(4):1335–1380, 2023.

[2] P. Bézier. The Mathematical Basis of the UNISURF CAD System. But-
terworths, London, 1986.

[3] D. Bryner. Endpoint geodesics on the Stiefel manifold embedded in Eu-
clidean space. SIAM J. Matrix Anal. Appl., 38(4):1139–1159, 2017.

[4] P. Crouch, G. Kun, and F. Silva Leite. The de Casteljau algorithm on Lie
groups and spheres. J. Dynam. Control Systems, 5(3):397–429, 1999.

[5] P. de Casteljau. Outillages Méthodes Calcul. Technical Report - André
Citroën Automobiles SA, 1959.

[6] Alan Edelman, Tomás A. Arias, and Steven T. Smith. The geometry of al-
gorithms with orthogonality constraints. SIAM Journal on Matrix Analysis
and Applications, 20(2):303–353, 1998.

[7] G. Farin and D. Hansford. The Essentials of CAGD. Taylor & Francis
Group, 2019.

[8] G.E. Farin. Curves and Surfaces for CAGD: A Practical Guide. Computer
graphics and geometric modeling. Elsevier Science, 2002.

[9] K. Hüper, I. Markina, and F. Silva Leite. A Lagrangian approach to
extremal curves on Stiefel manifolds. Journal of Geometric Mechanics,
13(1):55–72, 2021.

[10] K. Hüper and F. Silva Leite. Endpoint geodesic formulation on Grassman-
nians applied to interpolation problems. Mathematics, 11(3545), 2023.

20



[11] V. Jurdjevic, I. Markina, and F. Silva Leite. Extremal curves on Stiefel
and Grassmann manifolds. The Journal of Geometric Analysis, accepted,
put online June 2019.

[12] K.A. Krakowski, L. Machado, F. Silva Leite, and J. Batista. A modified
Casteljau algorithm to solve interpolation problems on Stiefel manifolds.
J. Computational Applied Mathematics, 311:84–99, 2017.

[13] F. Park and B. Ravani. Bézier Curves on Riemannian Manifolds and Lie
Groups with Kinematics Applications. ASME Journal of Mechanical De-
sign, 117:36–40, 1995.

[14] T. Popiel and L. Noakes. Bézier curves and C 2 interpolation in Riemannian
manifolds. Journal of Approximation Theory, 148(2):111–127, 2007.

[15] D. H. Sattinger and O. L. Weaver. Lie groups and algebras with applications
to physics, geometry and mechanics. Applied Mathematical Sciences (AMS,
volume 61). Springer New York, NY, 1986.

21


