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Abstract. We examine a semi-linear variant of the bi-Laplacian equa-

tion in the superlinear, subquadratic setting and obtain C
2,σ-regularity

estimates, depending on the growth regime of the nonlinearity. Our

strategy is to render this fourth-order problem as a system of two Pois-

son equations and explore the interplay between the integrability and

smoothness available for each equation taken isolated.
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1. Introduction

We examine the regularity of weak solutions to the semi-linear bi-Laplacian

equation

∆2u = f(x, u,Du) in Ω, (1)

where Ω ⊂ R
d is a bounded smooth domain, ∆2u := ∆(∆u) denotes the

bi-Laplacian operator, and the nonlinearity f : Ω × R × R
d → R satis-

fies a polynomial growth condition. Our findings report on C2,σ-regularity

estimates for the solutions to (1), depending on the growth regime of the

nonlinearity.

Elliptic equations driven by operators of higher order play an important

role across disciplines in pure mathematics and find relevant applications in

various realms of life and social sciences. We mention differential geometry,

calculus of variations, free boundary problems, the mechanics of deformable

media (mainly in the mathematical theory of elasticity), and the dynamics

of slow viscous fluids; see the monograph [17] and the references therein.

From the perspective of partial differential equations (PDE), the study of

bi-Laplacian equations has covered a plethora of topics. These include the
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existence of solutions, fundamental properties (such as the validity of the

maximum principle and the positivity of the Green’s function), and regular-

ity estimates. We notice the existence of relevant literature examining those

properties in connection with the geometry of the domain. Of particular

interest is the fact that merely Lipschitz-regular domains entail further dif-

ficulties for the analysis. In this connection, we refer the reader to [16] and

the extensive list of references therein.

Regarding regularity estimates, the study of the bi-Laplacian operator

has been pursued in several contexts. In the realm of obstacle problems, it

appears as the operator governing a variational inequality. More precisely,

given a function ϕ : Ω → R, let u ∈ W 2,2(Ω) be such that

∆2u ≥ 0 in Ω, (2)

with u ≥ ϕ, and

∆2u · (u− ϕ) = 0, in Ω. (3)

In [9], the author proves that weak solutions to this problem are in W 2,∞(Ω).

The analysis of the free boundary associated with (2)-(3) is the subject of

[2]. In that paper, the authors establish the local boundedness of the Hessian

and verify that ∆2u is a non-negative measure with finite mass. In addition,

they examine the planar case, showing that solutions are C2-regular and that

the free boundary is contained in a continuously differentiable curve.

The bi-Laplacian operator has also been studied in [3] in the context of

the two-phase free boundary obstacle problem














∆2u = 0 in B+
1

u = g on (∂B1)
+

∂xd+1
u = 0 on B′

1

∂xd+1
∆u = λ−(u

−)p−1 − λ+(u
+)p−1 on B′

1,

(4)

where p > 1, λ− and λ+ are positive constants, g ∈ W 2,q(B+
1 ) for q :=

max(2, p), and the sets B+
1 and B′

1 are defined as

B+
1 :=

{

(x, xd+1) ∈ B1 ⊂ R
d × R |xd+1 > 0

}

and

B′

1 := B1 ∩ {xd+1 = 0} .

The authors prove that both u and ∆u are locally bounded. They also

establish regularity estimates in Hölder spaces of the type Cp+1,γ , for every

γ ∈ (0, 1), and show their findings are optimal in the case of p ∈ N. They also
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consider an Almgren’s type frequency formula and a Monneau monotonicity

formula and perform a thorough analysis of the singular set associated with

(4). If B1 is replaced with R
d, it is worth noticing the formulation in (4) can

be regarded as a Dirichlet-to-Neumann extension, in the spirit of Caffarelli

and Silvestre, for the operator

(−∆)3/2 u = λ−(u
−)p−1 − λ+(u

+)p−1 in R
d,

with u → 0 as |x| → ∞.

Interior regularity estimates for the pure equation ∆2u = f prescribed in

a domain Ω have also been pursued in the literature. Of particular interest

is the analysis of polyharmonic equations of the form

(−∆)m u = f in Ω,

where 2 ≤ d ≤ 2m + 1 and f ∈ C∞

c (Ω). In [16], the authors prove that

solutions to this problem satisfy

Dm−
d
2
+ 1

2u ∈ L∞(Ω) if d = 2k + 1,

and

Dm−
d
2u ∈ L∞(Ω) if d = 2k,

with k ∈ N. In the concrete case of (1), were f = f(x) a smooth function, the

analysis would lead to u ∈ L∞(Ω) for dimensions d = 4, 5, and Du ∈ L∞(Ω)

for dimensions d = 2, 3.

Concerning the semi-linear formulation of the bi-Laplacian equation, we

mention the developments reported in [4]. In that paper, the authors produce

regularity estimates for the weak solutions to

∆2u+ a(x)u = g(x, u) in R
d. (5)

They work under natural assumptions on the functions a = a(x) and g =

g(x, u), including polynomial growth conditions on g, and prove that so-

lutions to (5) are in W 4,2(Rd) ∩ W 2,s(Rd) for every 1 ≤ s ≤ ∞. Their

arguments rely on asymptotic properties of the fundamental solution asso-

ciated with the operator ∆2 + k2, for k ∈ N. Apparently, these methods fall

short in addressing the dependence on the gradient Du, not covering the case

of (1). To the best of our knowledge, the analysis of semi-linear bi-Laplacian

equations with explicit dependence on Du has hitherto not been addressed

in the literature.
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Our reasoning in this note relies on a reduction argument. Namely, we

write the fourth-order PDE as a system of two second-order equations. This

strategy is inspired by ideas introduced in the works [6, 7] of Evans. The

gist of those papers is to design new PDE methods to address the Mather

minimization principle in dynamics, as well as the weak KAM theory. The

analysis starts with an approximating functional of the form

Ik[vk] :=

∫

Td

ekH(P+Dvk,x)dx,

where P ∈ R
d is given, vk ∈ C1(Td), and k ∈ N. The Euler-Lagrange

equation associated with Ik is

div
(

ekH(P+Dvk,x)DpH(P +Dvk, x)
)

= 0 in T
d. (6)

Now, consider the Hamiltonian H
k
= H

k
(P ) given by

H
k
(P ) :=

1

k
ln

(
∫

Td

ekH(P+Dvk,x)dx

)

.

By defining uk := P · x+ vk and

σk(x) :=
ekH(P+Dvk,x)

∫

Td

ekH(P+Dvk,x)dx

the Euler-Lagrange equation in (6) becomes the system
{

e
k
(

H(Duk,x)−H
k
(P )

)

= σk in T
d

div (σkDpH(Du, x)) = 0 in T
d.

(7)

That is, the Euler-Lagrange equation associated with Ik turns into the cou-

pling of a generalized eikonal equation, whose unknown is uk, and a transport

equation for σk. The rationale then is to take the limit k → ∞ and recover

information on the effective Hamiltonian H, as well as on the trajectories of

the Hamiltonian system
{

ẋ = DpH(p, x)
ṗ = −DxH(p, x).

We refer the reader to [8, 14, 15] for a discussion on the Mather problem

and weak KAM theory. A similar approach involving second-order equations

appears in [11], where the authors examine a stochastic variant of the Evans-

Aronsson problem, unveiling new properties of the model. For completeness,

we mention the theory of mean-field games as an instance where the coupling

of two distinct equations has been examined from the viewpoint of regularity
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theory; see [13, 12]. For a related strategy in the context of semi-linear elliptic

equations, see [1].

Our approach stems from this class of ideas as we write the single equation

in (1) as a coupling. Indeed, the integrability available for D2u in the class

of weak solutions allows us to define a function m ∈ Lq(Ω) as m := ∆u.

The definition of weak solution to (1) then implies that m is a very weak

solution to the Poisson equation ∆m = f . As a consequence, we render the

bi-Laplacian equation as the system






∆u = m in Ω,

∆m = f(x, u,Du) in Ω.
(8)

The unknown for (8) is a pair (u,m) in a suitable functional space, where u

is a strong solution for the first equation in the system, while m satisfies the

second one in the very weak sense (we make these matters precise further on

in the note).

In this context, the regularity of the solutions to (1) benefits from the

interplay between the regularity estimates available at the level of the equa-

tions taken on their own. An Lq−regularity theory for very weak solutions

builds upon standard Sobolev embeddings to produce improved integrability

for m in Lebesgue spaces. In turn, the integrability of m affects the regularity

of u. Indeed, we prove that very weak solutions to

∆m = f(x, u,Du) in Ω

are in W 2,s
loc (Ω), for some s ∈ (d/2, d]. Hence, u solves a Poisson equation

with right-hand side in C
0,2−d/s
loc (Ω). This fact unlocks a Schauder regularity

theory for the solutions to (1).

The remainder of this note is split into two sections, one detailing pre-

liminary definitions and useful facts and the other encompassing our main

result.

2. Notions of solution and auxiliary results

Because our strategy is to render the bi-Laplacian equation as a system,

we rely on three different notions of solutions. Namely, weak distributional

solutions, very weak solutions, and Ld−strong solutions. Requiring u to be in

W 2,q(Ω), for values of q ∈ (d/2, d] depending on the growth regime satisfied

by f , allows us, in particular, to switch between these different notions of
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solution seamlessly. We start by defining a weak solution for the bi-Laplacian

equation in a distributional sense.

Definition 1 (Local weak solution of the bi-Laplacian equation). A function

u ∈ W 2,2
loc (Ω) is a local weak solution to (1) if

∫

Ω
∆u∆ϕdx =

∫

Ω
f(x, u,Du)ϕdx,

for every ϕ ∈ C∞

c (Ω).

Concerning Poisson’s equation

∆w = g in Ω, (9)

we will explore two notions of solution, those of very weak and Lq−strong

solution. For completeness, we recall these notions in what follows.

Definition 2 (Very weak solution of the Poisson equation). Let g ∈ L1
loc(Ω).

A function w ∈ L1
loc(Ω) is a very weak solution to (9) if

∫

Ω
w∆ϕdx =

∫

Ω
g ϕ dx,

for every ϕ ∈ C∞

c (Ω).

Definition 3 (Lq−strong solution of the Poisson equation). Let g ∈ Lq(Ω)

for q > 1. We say that w ∈ W 2,q(Ω) is an Lq−strong solution to (9) if

∆w(x) = g(x), a.e. x ∈ Ω.

We proceed by defining a notion of solution to the system in (8), relating

(1) with the latter.

Definition 4. The pair (u,m) ∈ W 2,q(Ω)×Lq(Ω) is a solution to (8) if u is

an Lq−strong solution to the first equation in (8) whereas m is a very weak

solution to the second equation in (8).

Next, we recall a result on the regularity of very weak solutions to the

Poisson equation.

Proposition 1 (Sobolev regularity for very weak solutions). Fix 1 < s < ∞.

Let w ∈ L1
loc(Ω) be a very weak solution to (9), with g ∈ Ls

loc(Ω). Then Dw ∈

W 1,s
loc (Ω). If w ∈ Ls

loc(Ω), then w ∈ W 2,s
loc (Ω). Moreover, for Ω′′ ⋐ Ω′ ⋐ Ω,

there exists C > 0 such that

‖w‖W 2,s(Ω′′) ≤ C
(

‖w‖Ls(Ω) + ‖g‖Ls(Ω)

)

. (10)
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Proof. To verify that w ∈ W 2,s
loc (Ω), we resort to [5, Theorem 3]. Once we

have w ∈ W 2,s
loc (Ω), w becomes a strong solution to ∆w = g in Ω′. Standard

results in elliptic regularity theory (see, for instance, [10, Theorem 9.11])

yield (10). �

We conclude this section by verifying that a weak solution to (1) yields a

pair (u,m) in a suitable functional space, solving (8).

Lemma 1. Let u ∈ W 2,q(Ω) be a local weak solution to (1), with q ≥ 2.

Then, there exists m ∈ Lq(Ω) such that (u,m) is a solution to (8) according

to Definition 4.

Proof. It is clear that if u ∈ W 2,q(Ω), ∆u ∈ Lq(Ω). Set m := ∆u and notice

that m ∈ Lq(Ω) is defined almost everywhere in Ω. In addition, the weak

formulation of (1) implies
∫

Ω
m∆ϕdx =

∫

Ω
∆u∆ϕdx =

∫

Ω
f(x, u,Du)ϕdx,

for every ϕ ∈ C∞

c (Ω). Hence, m is a very weak solution to

∆m = f(x, u,Du) in Ω,

and the proof is complete. �

3. Improved regularity in Hölder spaces

In this section, we state and prove the main result in this note. For

ease of presentation, we set Ω ≡ B1, where B1 stands for the unit ball in

R
d; standard covering arguments ensure this reduction entails no further

restrictions on the problem.

Theorem 1. Let 2 ≤ q ≤ d and u ∈ W 2,q(B1) be a local weak solution to

∆2u = f(x, u,Du) in B1.

Assume the nonlinearity satisfies the growth condition

|f(x, r, p)| ≤ h(x) + C
(

|r|α + |p|β
)

, (11)

for h ∈ Ld(B1) and fixed constants C > 0 and

α, β ∈ [1, 2). (12)

Suppose further that

max (α, β)
d

2
< q ≤ d. (13)
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Then u ∈ C2,σ
loc (B1) for

σ := 2−
dmax(α, β)

q
∈ (0, 1).

Moreover, there exists C > 0 such that

‖u‖C2,σ(B7/8)
≤ C

(

‖h‖Ld(B1)
+ ‖u‖

max(α,β)
W 2,q(B1)

)

.

Proof. We start by choosing

s :=
q

max (α, β)
,

noting that, due to (12) and (13), we have s ∈ (d/2, q]. Moreover, for

B9/10 ⋐ B1 it follows from (11) that

‖f (·, u,Du)‖Ls(B9/10)
≤ C

(

‖h‖Ls(B9/10)
+ ‖u‖αLαs(B9/10)

+ ‖Du‖β
Lβs(B9/10)

)

≤ C
(

‖h‖Ld(B1)
+ ‖u‖

max(α,β)
W 2,q(B1)

)

,

which is finite since u ∈ W 2,q(B1). The constant C here depends on q and

the ingredients in (11). By Lemma 1, there exists m ∈ Lq(B1) such that m

is a very weak solution to

∆m = f(x, u,Du) in B1.

Due to Proposition 1, we conclude Dm ∈ W 1,s
loc (B99/100). But, since d/2 <

s ≤ q, we also have m ∈ Ls(B1) and therefore m ∈ W 2,s
loc (B99/100). In

addition, there exists C > 0 such that

‖m‖W 2,s(B9/10)
≤ C

(

‖h‖Ld(B1)
+ ‖m‖Ls(B1)

+ ‖u‖
max(α,β)
W 2,q(B1)

)

≤ C
(

‖h‖Ld(B1)
+ ‖u‖W 2,q(B1)

+ ‖u‖
max(α,β)
W 2,q(B1)

)

,

where the second inequality follows from the fact that

‖m‖Ls(B9/10)
= ‖∆u‖Ls(B9/10)

≤ ‖u‖W 2,q(B1)
,

Because of Gagliardo-Nirenberg-Sobolev’s embedding theorem, we obtain

m ∈ C0,σ(B8/9), with

σ := 2−
dmax(α, β)

q
.

Since u is an Lq−strong solution to ∆u = m, we have u ∈ C2,σ(B8/9) (see

[10, Thm. 9.19]). Also, by Schauder’s theory, there exists a positive constant
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C = C(d, α, β, q), such that

‖u‖C2,σ(B7/8)
≤ C

(

‖u‖L∞(B8/9)
+ ‖m‖C0,σ(B8/9)

)

.

To complete the proof, we notice that

‖m‖C0,σ(B8/9)
≤ C ‖m‖W 2,s(B8/9)

≤ C ‖f(·, u,Du)‖Ls(B9/10)

≤ C
(

‖h‖Ld(B1)
+ ‖u‖

max(α,β)
W 2,q(B1)

)

,

and the estimate in the theorem follows. �

Remark 1. A fundamental question arises in the context of assumption

(13): one must ensure that

max (α, β)
d

2
< d,

so the range for q is nonempty. The above inequality is indeed satisfied due

precisely to (12).

The explicit description of the modulus of continuity is appealing, as it

provides asymptotic information. As q → d and the growth conditions for

f approach the linear regime, the exponent σ → 1, yielding asymptotic

estimates for (1) in C2,1. We also notice the explicit gains of regularity

stemming from (1). Indeed, we start with a function u ∈ W 2,q(Ω) and the

equation yields u ∈ C2,σ
loc (Ω), with estimates.

We conclude this note with a corollary to Theorem 1 yielding smoothness

of the solutions to (1) in the case α = β = 1, under the assumption that

h ∈ C∞(Ω).

Corollary 1 (C∞-regularity estimates). Let u ∈ W 2,q(B1) be a weak solu-

tion to (1), with q ≥ 2 satisfying (13). Suppose (11) is in force, with

f(x, r, p) := h(x) + a(x)r + c(x) · p,

where h, a ∈ C∞(B1) and c ∈ C∞(B1,R
d). Suppose further there exists

C > 0 such that

‖h‖C∞(B1)
+ ‖a‖C∞(B1)

+ ‖c‖C∞(B1,Rd) ≤ C.
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Then u ∈ C∞

loc(B1). Moreover, for every k ∈ N and every multi-index α with

|α| = k, we have

sup
B7/6

|Dαu| ≤ C
(

1 + ‖u‖W 2,q(B1)

)

.

Proof. Fix a direction i ∈ {1, . . . , d} and define

v :=
∂u

∂xi
.

Clearly, v solves

∆2v = g(x) + a(x)v(x) + c(x) ·Dv,

with g given by

g(x) :=
∂

∂xi
h(x) +

∂

∂xi
a(x)u(x) +

∂

∂xi
c(x) ·Du(x).

One easily notices that

|g(x) + a(x)v(x) + c(x) ·Dv| ≤ C
(

1 + ‖u‖W 2,q(B1)
+ |v(x)|+ |Dv(x)|

)

.

Hence, Theorem 1 implies v ∈ C2,σ
loc (B1). Because the direction i is arbi-

trary, we conclude u ∈ C3,σ
loc (B1). An induction argument on the order of

differentiation completes the proof. �
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