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Building on the notion of normed category as suggested by Lawvere, we introduce notions

of Cauchy convergence and cocompleteness for such categories that differ from proposals in

previous works. Key to our approach is to treat them consequentially as categories enriched

in the monoidal-closed category of normed sets, i.e., of sets which come with a norm function.

Our notions lead to the anticipated outcomes for individual metric spaces or the additive

groups of normed vector spaces considered as small normed categories. But they quickly

become more challenging when we consider large categories, such as the categories of all

semi-normed or normed vector spaces and all linear maps as morphisms, not just because

norms of vectors need to be allowed to have value ∞ in order to guarantee the existence of

colimits of (sufficiently many) infinite sequences. These categories, along with categories of

generalized metric spaces, are the key example categories discussed in detail in this paper.

Working with a general commutative quantale V as a value recipient for norms, rather

than only with Lawvere’s quantale R+ of the extended real half-line, we observe that the

categorically atypical, and perhaps even irritating, structure gap between objects and mor-

phisms in the example categories is already present in the underlying normed category of

the enriching category of V-normed sets. To show that the normed category and, in fact,

all presheaf categories over it, are Cauchy cocomplete, we assume the quantale V to satisfy

a couple of light alternative extra properties which, however, are satisfied in all instances

of interest to us. Of utmost importance to the general theory is the fact that our notion

of Cauchy convergence is subsumed by the notion of weighted colimit of enriched category

theory. With this theory and, in particular, with results of Albert, Kelly and Schmitt, we

are able to prove that all V-normed categories have correct-size Cauchy cocompletions, for

V satisfying our light alternative assumptions.

We also show that our notions are suitable to prove a Banach Fixed Point Theorem for

contractive endofunctors of Cauchy cocomplete normed categories.
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1 Introduction

Considering the elements of a set X as the objects of the indiscrete category iX, all of whose

hom-sets are singletons, we may regard a (generalized) metric d : X ×X → [0,∞] as a function

that assigns to the only morphism from x to y a łnormž, d(x, y). Then the point (in)equality

and the triangle inequality

(1.i) 0 ≥ d(x, x) and d(x, y) + d(y, z) ≥ d(x, z)

tell us how this norm interacts with the structure of the category. For an arbitrary category

X, rather than iX, this leads to the notion of norm on X, as a function that assigns to every

morphism f : x→ y a value |f | ∈ [0,∞], such that

(1.ii) 0 ≥ |1x| and |f |+ |g| ≥ |g · f |
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hold for all morphisms g : y → z in X. Furthermore, we may increase the potential range

of examples and applications by allowing norms to take values in an arbitrary (commutative

and unital) quantale, i.e., in a complete lattice (V,≤) which, in addition, has a commutative

monoid structure (V,⊗, k), such that ⊗ distributes over arbitrary joins in each variable. We may

therefore consider V-normed categories X where (V,≤,⊗, k) will, amongst others, take on the

role of the Lawvere quantale R+ = ([0,∞],≥,+, 0), so that the conditions (1.ii) read in V as

(1.iii) k ≤ |1x| and |f | ⊗ |g| ≤ |g · f | .

Hence, we follow Lawvere’s [34] original concept of normed category, as a category enriched in

a certain symmetric monoidal-closed category, in this paper taken to be the category Set//V of

V-normed sets. Its objects are mere sets equipped with a V-valued function; morphisms are maps

which keep or increase the V-value of elements. The monoidal structure on Set//V is such that,

for the (always assumed to be small) hom-sets of a category X to be V-normed and to satisfy

the conditions (1.iii) amounts precisely to making X a category enriched in Set//V .

Of course, a norm with values in the terminal quantale 1 adds no structure to a category X, but

already a norm valued in the Boolean quantale 2 = ({⊤,⊥},⇒,∧,⊤) does. It is determined by

the class S of all morphisms f with |f | = ⊤ or, equivalently, ⊤ ⇒ |f |, satisfying the conditions

(1.iv) 1x ∈ S and f ∈ S ∧ g ∈ S =⇒ g · f ∈ S .

In other words, such 2-valued normed categories are just categories X that come equipped with

a distinguished wide subcategory S (i.e., a subcategory with the same class of objects as X).

While our principal interest concerns R+-normed categories and, to a lesser extent, 2-normed

categories, we occasional resort to other quantales, be it only to demonstrate that the general

theory of V-normed categories doesn’t rely on special properties that the Boolean quantale and

the Lawvere quantale may share, such as being integral (so that the ⊗-neutral element is the top

element), or being based on a completely distributive lattice. Readers interested in even greater

generality, so that V may be an arbitrary symmetric monoidal-closed category V rather than just

a quantale, may want to consult [8].

For V = R+ we normally suppress the reference to V . Many of the large, and sufficiently

interesting, normed categories have objects with some metric structure which, however, is hardly,

or not at all, respected by the morphisms. But the metric structure of the objects may then be

used to specify classes of well-behaved morphisms. For instance, let X be the (large) category

NVec∞ whose objects are all normed real vector spaces in the usual sense, except that we allow

norms to assume the value ∞ (see further below for some justiőcation), along with a natural

adjustment of the real arithmetic for this value, and whose morphisms are all linear maps (i.e.,

the linear ∞-Lipschitz maps). From a standard categorical perspective, forming this category

appears to be highly questionable since it makes two objects X and Y isomorphic as soon as they

are algebraically isomorphic, regardless of their norms. (In fact, with a choice of a basis for every

space granted, X becomes equivalent to the category of all real vector spaces and their linear

maps.) Nevertheless, X has a raison d’ être when regarded as a normed category, as it may allow us

to investigate morphisms of interest within the same category, such as the (uniformly) continuous
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maps, or the maps with a given Lipschitz value ≥ 1. Indeed, for a linear map f : X → Y , with

|| · || denoting the given norms of vectors in X and Y , writing log◦ α := max{0, logα} when α > 0,

under a natural extension of the real arithmetic to ∞ one simply considers

(1.v) |f | = sup
x∈X

log◦
||fx||

||x||
,

so that |f | becomes minimal in [0,∞] with respect to the natural order and the property that

e|f |||x|| ≥ ||fx||

holds for all x ∈ X. This makes e|f | the Lipschitz value L(f) of the map f whenever L(f) ≥ 1,

so that the condition |f | < ∞ characterizes f as bounded (or, equivalently, as (uniformly)

continuous), while |f | = 0 describes it as non-expanding, or 1-Lipschitz.

Just as for metric spaces, the concept of Cauchy convergence should be fundamental in the study

of normed categories. But what is it? And once deőned, what does completeness mean? Do

there exist completions, and are there protagonistic normed categories in this context, like the

presheaf categories in the completion theory of ordinary categories? In this paper we try to give

answers to these questions and test them in examples. Taking seriously the enriched categorical

perspective that is already present in [34, 8, 35], our answers differ from those presented in other

papers, such as [33, 38, 27].

For any quantale V , seeing the study of V-normed categories as embedded into enriched category

theory, we must pay close attention to the enriching symmetric monoidal-closed category Set//V

of V-normed sets and V-normed maps f : A → B (satisfying |a| ≤ |fa| for all a ∈ A), with

the tensor product making the cartesian product V-normed in the obvious way. Despite its

simplicity, Set//V has as an unexpected feature: the internal hom of objects A and B is given by

all mappings A → B, not just by the (Set//V)-morphisms A → B. Hence, when one considers

Set//V as a V-normed category, i.e. as a (Set//V)-enriched category, we obtain a category that

has the same objects as Set//V , but whose morphisms are mere mappings, without any constraint

vis-à-vis the norms of their domain or codomain. To avoid confusion, we use a different name for

this category: Set||V ; its V-norm gives a measure to which extent a mapping of V-normed sets

may (fail to) be V-normed. It contains the ordinary category Set//V as a non-full subcategory.

In Kelly’s [28] notation for the underlying ordinary category of an enriched category, one has

Set//V = (Set||V)◦ .

As the recipient category for the presheaves over any given V-normed category X, the V-normed

category Set||V is key to the study of any kind of completions of X.

For this reason, in Sections 2-4 we take time to present the fundamentals of V-normed category

theory in detail. Alongside many examples of such small and large categories, in Theorem 3.3

we summarize the properties of the category Cat//V of all small V-normed categories and V-

normed functors most important to us: it is symmetric monoidal closed [28, 37], as well as

topological [1, 25] over Set//V , which gives the recipe for the construction of limits and colimits

of V-normed categories. That Cat//V is also locally presentable [17, 3] is shown in an appendix

(Section 13). Other than Set||V , we introduce at the general V-level the V-normed categories
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V-Lip and V-Dist, both having as their objects small V-categories, i.e., Lawvere metric spaces

when V = R+, whilst their morphisms are respectively arbitrary maps and V-distributors. The

former category facilitates the study of norms for categories of metric spaces and of normed

vector spaces, and the norm of the latter category naturally leads to non-symmetrized Hausdorff

metrics (as considered in [34] and studied in [4, 42]).

In Sections 5 and 6, introducing the key notions of Cauchy sequence and of normed convergence of

a sequence in a V-normed category, we tighten the corresponding deőnitions as proposed by Kubiś

[33] in the context of V = R+, in such a way that, unlike in Kubiś’s work, normed colimits become

unique and conform with the enriched setting. Our categorical notion of Cauchy cocompleteness1,

őts with classical completeness concepts for some key small normed categories:

• A classical metric space X is complete if, and only if, the normed category iX, with the

only morphism in a hom-set normed by the metric, is Cauchy cocomplete (Corollary 6.4);

• a classical normed vector space is Banach if, and only if, its additive group, considered as

a one-object category with the given vector norm, is Cauchy cocomplete (Theorem 6.8).

We consider the key examples of large normed categories in Sections 7 and 8 and show:

• The category Met∞ of all Lawvere metric spaces (with the generalized metric satisfying

just (1.i)) and arbitrary maps as morphisms is Cauchy cocomplete (Corollary 7.5);

• and so are the categories NVec∞ and SNVec∞ of generalized normed vector spaces (vectors

may have norm ∞) and of semi-normed vector spaces (non-zero vectors may have norm

0), both with arbitrary linear operators normed by (1.v) (Theorem 8.4 and Corollary 8.9).

For the Met∞ result, employing the methods used in Flagg’s pioneering work [15, 16] and, more

recently, in [23], we establish more generally the Cauchy cocompleteness of the V-normed category

V-Lip, under additional conditions on the quantale V (Theorem 7.1). Expanding on previous work

(see in particular [33, 39]), we are then led naturally to proving the claims regarding őrst SNVec∞

and then NVec∞. There are good reasons for allowing inőnite vector norms, as well as zero norms

for non-zero vectors. They arise already in elementary contexts when studying inőnite sequences

of operators, no matter how good the initial data may be. Indeed, regarding non-separation,

consider the sequence

(1.vi) R = R1
// R 1

2

// R 1
3

// ... // colimn R 1
n
,

where Rc is the 1-dimensional vector space of real numbers normed by ||1|| = c with a constant

c > 0. Its connecting identity maps are strictly contractive, and it has a rather natural normed

colimit (in our sense) in the category SNVec∞, namely R0 where we now permit c = 0, whereas the

normed colimit in NVec∞ is the null space. If we turn around the above sequence while inverting

also the norms (to still have łnicež contractive operators), we obtain the inverse sequence

R = R1 R2
oo R3

oo ...oo limn Rn .oo

1The term, or its dual, is not to be confused with Cauchy completeness in the sense of idempotent completeness.

To see how the self-dual notion of idempotent completeness őts with our term, see the appended Section 14.
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Its normed limit (dual to normed colimit) is R∞, i.e. now c = ∞, in both SNVec∞ and NVec∞.

In Section 9 we present the key element of our study of V-normed categories, understood to

be enriched in the monoidal-closed category Set//V , and prove that its presheaf categories are

Cauchy cocomplete, under a couple of alternative mild conditions on the quantale V . (Theorem

9.3). As indicated above, these are the functor categories [X, Set||V] of V-normed functors of a

small V-normed category X into the V-normed category Set||V associated with Set//V . As shown

in the appended Section 15, the two alternative conditions on V are logically independent, but

we are actually not aware of any quantale for which Set||V fails to be Cauchy cocomplete.

Then, in Sections 10 and 11, we exhibit our normed colimits as weighted colimits in the sense

of enriched category theory, and invoke the machinery developed by Albert, Kelly and Schmitt

[5, 30] to show the existence of a Cauchy cocompletion of X belonging to the same universe as the

given V-normed category X. Unlike these results, it is easy to see that our notions lead to known

concepts and outcomes, for instance when applied to individual (Lawvere) metric spaces seen as

small normed categories; see in particular [10, 43, 26, 24]. We leave to future work the question

whether the methods used in these and other papers may be generalized to produce a more direct

construction of the Cauchy cocompletion of a normed category than the one presented here.

Finally, following a claim by Kubiś [33], in Section 12 we present an easily established Banach

Fixed Point Theorem for a contractive endofunctor of a Cauchy cocomplete normed category

which replicates the classical theorem in the case of a complete metric space, considered as a

small normed category.

Normed categories are often called weighted (see [18, 14, 39]). We avoid this change of the

original terminology, mostly to be able to distinguish between our notion of normed colimit and

the established notion of weighted colimit of enriched category theory when we prove (in Section

10) the non-trivial fact that the former notion is subsumed by the latter. Also, we refrain from

imposing any further a priori conditions on the notion (as done in [33, 27]) but discuss these as

special add-on properties of Lawvere’s fundamental notion. For the treatment of norms in the

special environment of triangulated categories, we refer to [38].

Acknowledgements: We are indebted to the anonymous referee for many valuable suggestions

which led us to a substantial revision and improvement of an earlier version of this paper. We

thank Javier Gutiérrez-García for his assistance in őnding a quantale that helps distinguishing the

alternative conditions used in Section 9; see Section 15 for details. We also thank Paolo Perrone

for providing access to the paper [8], as well as Marino Gran who made possible our joint stay

at Louvain-la-Neuve prior to CT 2023 in June 2023. Following the third-named author’s talks

given in April/May of 2022, joint work on this paper was initiated at that occasion, with some

key results presented by the second-named author in a talk given in October 2023.

2 V-normed sets

Throughout this paper V = (V,≤,⊗, k) is a unital and commutative quantale, that is: (V,≤) is

a complete lattice and (V,⊗, k) is a commutative monoid with neutral element k, such that, for
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all v ∈ V , the map − ⊗ v : V → V preserves arbitrary suprema: (
∨
i∈I ui) ⊗ v =

∨
i∈I(ui ⊗ v);

in particular, ⊥ ⊗ v = ⊥ for the bottom element ⊥ of V . Hence, − ⊗ v has a right adjoint,

[v,−] : V → V , for every v ∈ V , making V a (small and thin) symmetric monoidal-closed

category, with its internal hom characterized by

u ≤ [v, w] ⇐⇒ u⊗ v ≤ w

for all u, v, w ∈ V . The standard quantales considered in this paper are the Boolean quantale,

2 = {⊥,⊤} with ⊗ = ∧ and k = ⊤, and the Lawvere quantale, R+ = ([0,∞],≥,+, 0), ordered

by the natural ≥-order of the extended real half-line. In R+, the internal hom is computed as

[v, w] = max{0, w − v}, [v,∞] = ∞, [∞, w] = [∞,∞] = 0 for all v, w < ∞, and in 2 it is given

by the implication: [v, w] = (v ⇒ w).

Definition 2.1. A V-normed set is a set A that comes with a function |-|A : A → V , and a

V-normed map (A, |-|A) → (B, |-|B) is a mapping f : A → B satisfying |a|A ≤ |fa|B for all

a ∈ A:

A
f

//

|-|A

≤

��

B

|-|B��

V

Henceforth, we usually drop the subscripts. This deőnes the category Set//V .

This category is simply the formal coproduct completion FamV of the category (V,≤). Applying

the Fam-construction to the unique functor V → 1 of V to the terminal quantale one obtains

the forgetful functor Set//V → Set, which is topological [1]; that is: given a family of any size of

mappings fi : A → Bi (i ∈ I) with a őxed set A and all Bi V-normed, then there is an łinitialž

V-norm on A, namely

(2.i) |a| =
∧
i∈I

|fia|.

Equivalently: given any family of mappings gi : Ai → B (i ∈ I) from V-normed sets Ai to a

given set B, then there is a łőnalž V-norm on B that is described by

(2.ii) |b| =
∨
i∈I

∨
a∈g−1

i b

|a|.

Consequently, Set//V is complete and cocomplete. Moreover, the forgetful functor has a left

adjoint, putting on every set the discrete V-norm with constant value ⊥, as well as a right adjoint,

putting on every set the indiscrete V-norm with constant value ⊤. In particular, Set//V → Set

is represented by the discrete singleton V-normed set E⊥, i.e., by {∗} with | ∗ | = ⊥.

More importantly, one has:

Proposition 2.2. The category Set//V is symmetric monoidal closed.
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Proof. For V-normed sets A and B, their tensor product A⊗B is carried by the cartesian product

A × B, normed by |(a, b)| = |a| ⊗ |b| in V , and the tensor-neutral set Ek is the set {∗} normed

by |∗| = k.

To determine the internal hom-object, denoted by [A,B], we őrst observe that its elements are

equivalently described by the V-normed maps E⊥ → [A,B], which must correspond to the V-

normed maps E⊥ ⊗ A → B. But these correspond precisely to arbitrary Set-maps A → B,

since E⊥ ⊗ A puts just the discrete structure on the set A. Consequently, [A,B] has carrier set

Set(A,B), i.e., the set of all mappings φ : A→ B, with their norm deőned by

(2.iii) |φ| =
∧
a∈A

[|a|, |φa|].

This turns out to be the largest structure (in the order induced pointwise by V) making the

evaluation map [A,B]⊗A→ B V-normed; i.e., |φ| is maximal with the property

|φ| ⊗ |a| ≤ |φa|

for all a ∈ A.

Remarks 2.3. (1) We note that, for φ ∈ [A,B], one has k ≤ |φ| precisely when |a| ≤ |φa| for all

a ∈ A, that is, when φ : A → B is a V-normed map. Hence, |φ| is to be seen as the extent to

which the arbitrary map φ may (fail to) be a morphism of Set//V .

(2) When we consider the lattice V as a small thin category, the functor 1 → Set of the terminal

category 1 pointing to the terminal object {∗} of Set łliftsž to the functor i : V → Set//V , which

assigns to every v ∈ V the set Ev = {∗}, normed by |∗| = v. It has a left adjoint, s, which assigns

to every object A its łsumž, or łsupremumž sA =
∨
a∈A |a|, also regarded as its łoptimal valuež

[39]. In the commutative diagram

(2.iv) V

��

i // Set//V

forget
��

s
⊤

gg

1 // Set
⊤

gg

all arrows are monoidal homomorphisms; they, except possibly s, preserve also the internal homs.

(3) As a left adjoint, the functor s preserves all colimits, and it also preserves products if (and

only if) the lattice V is completely distributive.

(4) Other than the forgetful functor Set//V → Set as in (2.iv), one may, for every v ∈ V,

consider more generally the functor Pv : Set//V → Set which assigns to a V-normed set A the

set {a ∈ A | v ≤ |a|}. It has a left adjoint which puts the V-norm with constant value v onto

every set, and it is represented by the V-normed set Ev as deőned in (2). The set of objects

{Ev | v ∈ V} distinguishes itself as being a strong generator of the category Set//V . Indeed,

for any V-normed set B, the family of all morphisms Ev → B with some v ∈ V is not only

jointly epic, but in fact strongly so, since B carries the őnal structure (as described by (2.ii))

with respect to this family. The importance of the strong generator lies in the fact that it makes

the cocomplete category actually locally presentable [17]: see Section 13.
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3 V-normed categories

Definition 3.1. A V-normed category X is a (Set//V)-enriched category. This means that X is

an ordinary category with (small) V-normed hom-sets such that, for all objects x, y, z, the maps

Ek → X(x, x), ∗ 7→ 1x, and X(x, y)⊗ X(y, z) → X(x, z), (f, g) 7→ g · f,

are V-normed; equivalently, all morphisms f : x→ y and g : y → z satisfy the conditions (1.iii).

A functor F : X → Y is V-normed if it makes its hom maps X(x, y) → Y(Fx, Fy) V-normed;

that is, if |f | ≤ |Ff | holds for all morphisms f in X. We use respectively the abbreviations

Cat//V = (Set//V)-Cat and CAT//V = (Set//V)-CAT

for the emerging category of all small V-normed categories with their V-normed functors and its

(higher-universe) counterpart of all V-normed categories. In case V = R+ we normally suppress

the preőx V .

Facts 3.2. (1) Considering the monoid (V,⊗, k) as a one-object 2-category with its 2-cells given

by the order of V , we may describe a V-normed category X equivalently as a 2-category with

only identical 2-cells, equipped with a lax functor |-| : X → V . A V-normed functor F : X → Y

is then a (lax but, in fact, necessarily strict) 2-functor producing the lax-commutative diagram

X
F //

|-|X

≤

��

Y

|-|Y��

V

(2) The (monoidal) functors of diagram (2.iv) induce the diagram

(3.i) V-Cat

forget
��

i // Cat//V

forget
��

s
⊤ii

Set
indiscrete // Cat

⊤

ob

ii

of change-of-base functors. Here an object of V-Cat is (as in [34] and [25]) a set X which, for all

x, y ∈ X, comes with a value X(x, y) ∈ V, satisfying the laws

(3.ii) k ≤ X(x, x) and X(x, y)⊗X(y, z) ≤ X(x, z).

The functor i describes the V-category X equivalently as an indiscrete category X = iX with

obX = X, putting the V-norm |x→ y| = X(x, y) on the only morphism in X(x, y). The functor

s takes an arbitrary small V-normed category X to the V-category sX = obX with

(3.iii) (sX)(x, y) =
∨

{|f | | f ∈ X(x, y)}.

(3) The norm-forgetting functor Cat//V → Cat must be carefully distinguished from the functor

(−)◦ : Cat//V → Cat

9



which sends a small V-normed category X to the category X◦, deőned (as in enriched category

theory [28]) to have the same objects as X, but the morphisms of which are only those morphisms

f : x → y in X with k ≤ |f | (since these are equivalently described by the (Set//V)-morphisms

Ek → X(x, y)). Extending the terminology of [33] from R+ to arbitrary V , we call the morphisms

of X◦ the k-morphisms of X, and we say that the (ordinary and generally non-full) subcategory

X◦ of X is the category of k-morphisms in X. An isomorphism f in X◦ is called a k-isomorphism

of X; i.e., f is an isomorphism in X such that both, f and f−1, are k-morphisms.

Caution: An isomorphism in the ordinary category X may not belong to X◦, and even if it does,

it may not be an isomorphism in X◦: for a (non-symmetric) two-point metric space X = {a, b}

with X(a, b) = 1 and all other distances 0, just consider X = iX, as formed in Examples 3.4(2).

(4) Being of the form W-Cat for some symmetric monoidal-closed category W , all four categories

of diagram (3.i) are again symmetric monoidal closed (if not cartesian closed). In particular,

recall that the tensor product of X and Y in V-Cat is carried by the cartesian product and

structured by

(3.iv) (X ⊗ Y )((x, y), (x′, y′)) = X(x, x′)⊗ Y (y, y′),

and that their internal hom, [X,Y ], is carried by the hom-set V-Cat(X,Y ) and structured by

(3.v) [X,Y ](f, g) =
∧
x∈X

Y (fx, gx).

Of course, E = {∗} with E(∗, ∗) = k is the monoidal unit in V-Cat (see [25] for details).

We deőne the tensor product X ⊗ Y of the V-normed categories X and Y to be carried by the

ordinary category X× Y, structured by

(3.vi) |(f, f ′)| = |f | ⊗ |f ′|.

One then routinely shows that their internal hom [X,Y] is given by the V-normed functors X → Y

and all natural transformations between them, normed by

(3.vii) |α| =
∧

x∈obX

|αx|.

The terminal category E in Cat with obE = E = {∗} becomes the monoidal unit when one puts

|1∗| = k (but note that it is terminal in Cat//V only if k = ⊤). Clearly, the functors i and s

preserve the monoidal structure, and i preserves even the closed structure.

We also observe that the forgetful functor Cat//V → Cat is, like V-Cat → Set, topological; that

is: for any (arbitrarily large) family Fi : X → Yi (i ∈ I) of functors of a őxed category X to

V-normed categories, there is the łinitialž V-normed structure on X, given by

(3.viii) |f | =
∧
i∈I

|Fif |.

Let us summarize the main points of these observations, as follows:
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Theorem 3.3. The 2-category Cat//V of (small) V-normed categories, V-normed functors and

their natural transformations is symmetric monoidal closed and topological over Cat. In partic-

ular, Cat//V is complete and cocomplete, and the forgetful functor Cat//V → Cat has both, a

right and a left adjoint. The restriction to small V-normed categories whose carrier is indiscrete

reproduces the corresponding statements for the category V-Cat and its forgetful functor to Set.

Here is a őrst list of easy examples; others follow in Sections 4–9.

Examples 3.4. (V = 1, 2,R+) (1) A 1-normed category (for the terminal quantale 1) is just an

ordinary category, and for V = 1 diagram (3.i) ŕattens to s ⊣ i : 1-Cat = Set −→ Cat = Cat//1.

For the Boolean quantale V = 2 = ({⊤,⊥},⇒,∧,⊤), diagram (3.i) takes the form

Ord

forget
��

i // Cat//2

forget
��

s
⊤hh

Set
indiscrete // Cat

⊤

ob

hh

Here Ord = 2-Cat is the category of preordered sets and monotone maps. Objects in Cat//2 may

be described as small categories X which come with a distinguished class S of morphisms that

is closed under composition and contains all identity morphisms; see (1.iv). Necessarily then, as

a category, S = X◦ as deőned in Facts 3.2(3). Morphisms in Cat//2 are functors preserving the

distinguished morphisms.

(2) For the Lawvere quantale V = R+ = ([0,∞],≥,+, 0), in a normed category X, we normally

write the norm conditions (1.ii) with the natural ≤:

|1x| = 0 and |g · f | ≤ |f |+ |g|

for all f : x→ y and g : y → z. A normed functor F : X → Y must be non-expanding: |Ff | ≤ |f |

for all morphisms f in X. Every Lawvere metric space X = (X, d) (deőned to satisfy just (1.i))

gives equivalently, via Facts 3.2(2) and (3.ii), a small indiscrete normed category when we write

X(x, y) for d(x, y); likewise for non-expanding maps.This describes the full reŕective embedding

i : Met1 := R+-Cat −→ NCat1 := Cat//R+,

with the subscript 1 indicating the Lipschitz constant deőning the morphisms. Its left adjoint s

provides the set X of all objects of a small normed category X with the (Lawvere) metric2

X(x, y) = inf{|f | | f ∈ X(x, y)}.

(3) (Lawvere [34]) The subsets of a (Lawvere) metric space X are the objects of the small normed

category HX whose morphisms φ : A→ B are arbitrary Set-maps, normed (as in (2.iii))) by

(3.ix) |φ| = sup
x∈A

X(x, φx).

2Our use of inf and sup refers to the standard order of the reals; they become
∨

and
∧

in the quantale R+.
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The reŕector s ⊢ i provides the powerset of X with the non-symmetrized Hausdorff metric

(3.x) d(A,B) = inf
φ:A→B

sup
x∈A

X(x, φx) = sup
x∈A

inf
y∈B

X(x, y),

where the validation of the second equality (presenting the metric in its more usual form) requires

the Axiom of Choice. Whereas the assignment X 7−→ HX is not functorial, with Choice the

assignment X 7−→ s(HX) does extend to a functor Met1 → Met1, as we show more generally in

Corollary 4.6.

(4) (See also [33, 39].) Here is a norm that measures the degree to which an arbitrary map-

ping between metric spaces fails to be 1-Lipschitz (i.e., fails to be non-expanding). Just form

the (somewhat strange) category Met∞ whose objects are Lawvere metric spaces, and whose

morphisms φ : X → Y are mere Set-maps, normed by

(3.xi) |φ| = sup
x,x′∈X

log◦
Y (φx, φx′)

X(x, x′)
,

where we have used the abbreviation log◦ α = max{0, logα} for α ∈ [0,∞] and extended the

real arithmetic to [0,∞], the details of which are given in Examples 7.3(2) and before Corollary

7.5. If X is a metric space in the classical sense, then this extension may be largely avoided since

|φ| = log◦ L(φ), where

(3.xii) L(φ) = sup {
Y (φx, φx′)

X(x, x′)
| x, x′ ∈ X, X(x, x′) ̸= 0}

is the Lipschitz value of φ in [0,∞]. Since the 0-morphisms in the normed category Met∞, i.e.,

the morphisms φ with |φ| = 0, are precisely the 1-Lipschitz maps, we have (Met∞)◦ = Met1 .

If X and Y are the underlying metric spaces of normed vector spaces and φ is linear, then

(with ||-|| denoting the given norms of the vector spaces), (3.xi) reads equivalently as (1.v):

|φ| = supx ̸=0 log◦( ||φx||||x|| ) . Hence, for φ 1-Lipschitz, e|φ| = ||φ|| is the usual operator norm of φ.

The underlying lattices of the quantales V = 1, 2,R+ are all linearly ordered and, in particular,

completely distributive. These quantales are also integral, i.e., the quantalic unit is the top

element. Examples of some interest with quantales not enjoying at least one of these properties

follow.

Examples 3.5. (Other quantales) (1) For any commutative monoid (M,+, 0) one has the free

quantale (PM,⊆,+, {0}) over the monoid M , with the powerset of M structured by A + B =

{a + b | a ∈ A, b ∈ B} for all A,B ⊆ M . The lattice PM is still completely distributive, but

the quantale, unless M is trivial, drastically fails to be integral since the tensor-neutral element

{0} is actually an atom. A PM -normed category X may be described as a category X equipped

with a family (Sα)α∈M of classes of morphisms satisfying Id(X) ⊆ S0 and Sβ · Sα ⊆ Sα+β for all

α, β ∈ M . Only the class S0 is secured to be a subcategory of X and, in fact, takes on the role

of X◦ (see Facts 3.2(3)). A PM -normed functor must preserve the distinguished classes at each

level α ∈M . We note that the trivial monoid {0} returns the case V = 2 of Examples 3.4(1).
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(2) Let the commutative monoid (M,+, 0) be cancellative (so that + is injective in each variable)

and be ordered discretely. Then, forming its MacNeille completion M⊤
⊥ , by adding to it a bottom

and a top element, one obtains a non-integral quantale by letting the tensor coincide with +

within M and putting ⊤ ⊗ α = ⊤ for all α ̸= ⊥ (see [20]). If M has at least 3 elements,

the lattice M⊤
⊥ fails to be distributive. The structure of an M⊤

⊥ -normed category X whose norm

function doesn’t attain the values ⊥ or ⊤ is given by a functor X →M to the one-object category

M . Via its őbres, it may, as in (1), be described equivalently by a family (Sα)α∈M satisfying

the additional condition that its non-empty members form a partition of the entire morphism

class of X. For example, for a directed graph G = (E, V ) that comes with an arbitrary (weight)

function w : E → N (of the edges to the additive non-negative integers), the free category of

őnite paths in G carries a unique N⊤
⊥-norm that coincides with w on paths of length 1.

(3) For every topological space X one has the complete Boolean algebra RO(X) of regular open

sets in X, giving the integral quantale (RO(X),⊆,∩, X). For X Hausdorff without isolated

points, RO(X) is atomless, and if X is even metrizable and separable, one has RO(X) ∼= RO(R),

which is known to fail complete distributivity ([22]). Following the slogan łopen sets are semi-

decidable propertiesž ([41]), for certain spaces X one may consider a RO(X)-valued norm on a

category as providing every morphism with a range of łprogramsž executing the morphism. A

suitable such space may be given by the set P of all finite partial functions p : N → N, ordered

(as relations on the set N) by reverse inclusion and topologized by its down-closed sets as opens.

Again the lattice RO(P ) fails to be completely distributive; see [31, p. 214].

4 The V-normed categories Set||V , V-Lip, and V-Dist

In this section, for every quantale V , we present three large V-normed categories. For the

őrst one, we note that every symmetric monoidal-closed category W becomes a W-enriched

category with the same objects, qua its internal hom; see, for example, [11]. Exploiting this fact

for W = Set//V we obtain a V-normed category whose objects are V-normed sets, but whose

morphisms A → B are given by the internal hom-objects [A,B] of Set//V , i.e., by all Set-maps

A → B. As emphasized already in the Introduction, the emerging normed category must be

carefully distinguished from the category Set//V . As it plays an important role in what follows,

it deserves a separate notation, Set||V, not to be confused with its (generally non-full) subcategory

Set//V . For clarity, with the proof of Proposition 2.2 and the norm (2.iii), we summarize these

points, as follows.

Proposition 4.1. The category Set||V of V-normed sets with arbitrary mappings as morphisms

becomes a V-normed category with |A
φ
−→ B| =

∧
a∈A[|a|, |φa|]. In the notation and terminology

of Facts 3.2(3), the ordinary category Set//V is precisely the category of k-morphisms of the

V-normed category Set||V; that is: (Set||V)◦ = Set//V.

Remarks 4.2. (1) As an ordinary category, Set||V is equivalent to the category Set. The separate

notation is justiőable only because Set||V is regarded as a V-normed category.
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(2) The monoid (V,⊗, k) may be regarded as a one-object V-normed category, with an identical

norm function. As the monoid acts on itself, we obtain a functor

λ : V −→ Set||V, u 7−→ (λu : V → V, v 7→ u⊗ v),

where V , as a domain and codomain of the (left-)translation λu, is regarded just as an identically

V-normed set. The functor λ is V-normed, actually norm-preserving: |λu| =
∧
v∈V [v, u⊗ v] = u.

In generalization of Example 3.4(4), next we consider another category in which morphisms

are not required to respect the structure of the objects: the objects of the category V-Lip are

small V-categories (see Facts 3.2(2)), with arbitrary maps as morphisms (so that, as an ordinary

category, V-Lip is actually equivalent to Set again, as in Remarks 4.2(1)). Their V-norm measures

to which extent they may fail to be V-functors, as follows.

Proposition 4.3. When we define the Lipschitz V-norm of a mapping φ : X → Y between small

V-categories by letting |φ| be maximal with |φ| ⊗X(x, x′) ≤ Y (φxφx′) for all x, x′ ∈ X, so that:

(4.i) |φ| =
∧

x,x′∈X

[X(x, x′), Y (φx, φx′)],

then we obtain the V-normed category V-Lip with (V-Lip)◦ = V-Cat.

Furthermore, the forgetful functor V-Lip −→ Set||V, X 7−→ X × X, defined to remember just

that every V-category X comes with a function X ×X → V, is not only V-normed but actually

norm-preserving. Restricting it to k-morphisms gives a faithful functor V-Cat −→ Set//V.

Proof. For arbitrary maps φ : X → Y and ψ : Y → Z of V-categories X,Y and Z, utilizing the

fact that V with its internal hom [-,-] is a V-category, we obtain

|φ| ⊗ |ψ| = (
∧

x,x′∈X

[X(x, x′), Y (φx, φx′)])⊗ (
∧

y,y′∈Y

[Y (y, y′), Z(ψy, ψy′)])

≤
∧

x,x′∈X

[X(x, x′), Y (φx, φx′)]⊗ [Y (φx, φx′), Z(ψφx, ψφx′)]

≤
∧

x,x′∈X

[X(x, x′), Z(ψφx, ψφx′)] = |ψ · φ| .

Since trivially k ≤ |idX |, this makes V-Lip V-normed. The other statements are even easier to

verify.

We will apply the Proposition in Section 7 in order to obtain results for categories of generalized

metric spaces.

There is another well-known way of weakening the notion of V-functor. Recall that a V-distributor

ρ : X −◦−→ Y (also V-(bi)module or -profunctor) of V-categories X and Y is given by a V-functor

ρ : Xop ⊗ Y → V, i.e., by a function ρ satisfying

X(x′, x)⊗ ρ(x, y)⊗ Y (y, y′) ≤ ρ(x′, y′)
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for all x, x′ ∈ X and y, y′ ∈ Y . Its composite with σ : Y −◦−→ Z is deőned by

(σ · ρ)(x, z) =
∨
y∈Y

ρ(x, y)⊗ σ(y, z).

With the identity V-distributor 1∗X on X given by the structure of X, one obtains the category

V-Dist, together with the identity-on-objects functors

V-Cat
−∗ // V-Dist (V-Cat)op ,

−∗
oo

deőned by f∗(x, y) = Y (fx, y) and f∗(y, x) = Y (y, fx) for every V-functor f : X → Y and all

x ∈ X, y ∈ Y . With the order of V-distributors induced pointwise by the order of V , we can

regard V-Dist as a 2-category, with 2-cells given by order. One then has f∗ ⊣ f
∗, i.e., 1∗X ≤ f∗ ·f∗

and f∗ · f
∗ ≤ 1∗Y .

Proposition 4.4. Setting the Hausdorff norm of a V-distributor ρ : X −◦−→ Y of V-categories as

(4.ii) |ρ| =
∧
x∈X

∨
y∈Y

ρ(x, y)

one makes V-Dist a V-normed category such that every V-functor f , represented as a V-distributor

f∗ or f∗, becomes a k-morphism. The function |-| is monotone, thus making the functor |-| :

V-Dist −→ V of Facts 3.2(1) a lax 2-functor.

Proof. Given ρ and σ : Y −◦−→ Z one has

|ρ| ⊗ |σ| = (
∧
x∈X

∨
y∈Y

ρ(x, y))⊗ (
∧
y′∈Y

∨
z∈Z

σ(y′, z))

≤
∧
x

∨
y

(ρ(x, y)⊗
∨
z

σ(y, z))

=
∧
x

∨
z

∨
y

ρ(x, y)⊗ σ(y, z)

=
∧
x

∨
z

(σ · ρ)(x, z) = |σ · ρ| .

Since one also has k ≤
∧
xX(x, x) = |1∗X |, this proves the principal assertion of the Proposition.

The additional claim may also be veriőed easily.

Remark 4.5. Alternatively, for a V-distributor ρ : X −◦−→ Y one may set (see [34] and (3.x))

||ρ|| =
∨

φ:X→Y

∧
x∈X

ρ(x, φx)

to make the category V-Dist V-normed; here the join runs over all mappings φ : X → Y . The

choice-free proof of this claim proceeds similarly to the proof for |ρ|. But with the Axiom of

Choice, if the complete lattice V is completely distributive, one has in fact ||ρ|| = |ρ| for all ρ.
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For every V-distributor ρ : X −◦−→ Y and all subsets A ⊆ X, B ⊆ Y , denoting their inclusion

maps to X and Y by iA and iB, respectively, we deőne

(4.iii) (Hρ)(A,B) := |i∗B · ρ · (iA)∗| =
∧
x∈A

∨
y∈B

ρ(x, y)

and use the abbreviation HX = H1∗X . Applying the norm rules of Proposition 4.4 we now show

how one easily concludes (some essential parts of) [4, Theorem 3] on the Hausdorff monad on

V-Cat (identiőed in [42] as describing its Eilenberg-Moore algebras as the conically cocomplete

V-categories), and on the lax extension of that monad to V-Dist:

Corollary 4.6. The function HX makes the powerset of every V-category X a V-category, de-

noted again by HX, such that Hρ : HX −◦−→ HY becomes a V-distributor for every V-distributor

ρ : X −◦−→ Y . This defines a V-normed lax 2-functor H, so that |ρ| ≤ |Hρ|, and it restricts

to a (strict) endofunctor of V-Cat that lifts the powerset functor of Set, so that one has the

commutative diagram

(4.iv) V-Cat

H
��

−∗ // V-Dist

H
��

(V-Cat)op

Hop

��

−∗
oo

V-Cat
−∗ // V-Dist (V-Cat)op

−∗
oo

Proof. For V-distributors ρ : X −◦−→ Y, σ : Y −◦−→ Z and all subsets A ⊆ Y and C ⊆ Z, we have

(Hσ · Hρ)(A,C) =
∨
B⊆Y

Hρ(A,B)⊗Hσ(B,C)

=
∨
B⊆Y

|i∗C · σ · (iB)∗| ⊗ |i∗B · ρ · (iA)∗|

≤
∨
B⊆Y

|i∗C · σ · (iB)∗ ⊗ i∗B · ρ · (iA)∗|

≤ |i∗C · σ · 1∗Y · ρ · (iA)∗|

= H(σ · ρ)(A,C)

and k ≤ |1∗A| ≤ |i∗A · (iA)∗| = HX(A,A). For ρ = σ = 1∗X , this shows that HX is a V-category.

Choosing alternately only one of the V-distributors to be identical will show that Hρ is a V-

distributor, while the general case conőrms that H is a lax 2-functor of V-Dist. It is V-normed

since

Hρ(A,B) = |i∗B · ρ · (iA)∗| ≥ |i∗B| ⊗ |ρ| ⊗ |(iA)∗| ≥ k⊗ |ρ| ⊗ k = |ρ| .

For a V-functor f : X → Y also Hf : HX → HY with (Hf)(A) = f(A) is a V-functor since

HX(A,A′) = |(iA′)∗ · (iA)∗| ≤ |(iA′)∗ · f∗ · f∗ · (iA)∗| = |(if(A′))
∗ · (if(A))∗| = HY (f(A′), f(A)) .

Finally, the left part of (4.iv) commutes since

(Hf∗)(A,B) = |i∗B · f∗ · (iA)∗| = |i∗B · (if(A))∗| = HY (f(A), B) = (Hf)∗(A,B) ,

and the commutativity of the right part follows by duality.
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Remarks 4.7. (1) For V = R+, with Choice and HX as in Examples 3.4(3), one has HX = s(HX).

(2) For further investigations on the functor H and various restrictions thereof we refer the reader

to [23]. The question to which extent completeness properties of the object X get transferred to

HX, without the symmetrization of the structure and/or some restriction on the subsets of X

to be considered, such as the (in some sense) compact subsets, remains open.

5 Normed convergence and symmetry

In order to introduce the concept of normed convergence in a V-normed category, we őnd it

useful to remind ourselves how sequential colimits are formed in Set//V . The following easily

checked statement is an immediate consequence of Set//V being topological over Set; see (2.ii).

Proposition 5.1. The colimit of a sequence A0 → A1 → A2 . . . in Set//V is formed by providing

the colimit A of the underlying sequence in Set with the least norm that makes the colimit cocone

(AN
κN // A)N∈N live in Set//V; that is, for all c ∈ A one has

|c| =
∨

{|a| | a ∈
⋃
N∈N

κ−1
N c} .

We note that, clearly, for every N0 ∈ N one has |c| =
∨
n≥N0

∨
a∈κ−1

n c |a|, so that we can also

write |c| =
∧
N∈N

∨
n≥N

∨
a∈κ−1

n c |a|. In this form the formula will reappear in Section 9 where

we investigate normed colimits of sequences in Set||V , not necessarily in Set//V .

Definition 5.2. Let s : N → X be a sequence3 in a V-normed category X, written as

s = (xm
sm,n

// xn)m≤n∈N .

An object x together with a cocone γ = (xn
γn

// x)n∈N is a normed colimit of s in X if

(C1) γ : s→ ∆x is a colimit cocone in the ordinary category X, and

(C2) for all objects y in X, the canonical Set-bijections4

Nat(s|N ,∆y)
κN // X(x, y), (f · γn)n≥N f✤

κ−1
Noo (N ∈ N)

form a colimit cocone in Set//V , where s|N is the restriction of s to ↑N = {N,N + 1, . . . }

and Nat(s|N ,∆y) = [↑N,X](s|N ,∆y) (N ∈ N) is considered as a sequence in Set//V , with

all connecting maps given by restriction.

3Here the ordered set N is treated as a category, discretely V-normed with constant value ⊥ for all non-identical

arrows, so that the sequence s becomes a V-normed functor N → X.
4Note that a colimit x of s in the ordinary category X is also a colimit of every restricted sequence s|N .
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It is important to note that the cocone γ may generally not be replaced by an isomorphic replica

in the ordinary category X. In fact, it may happen that all cocones over a given sequence s

satisfy (C1), but only one of them satisőes also (C2); see Example 6.6.

Keeping the notation of this deőnition, let us őrst analyze the meaning of (C2):

Proposition 5.3. Condition (C2) says equivalently that, for all morphisms f in X with domain

x, one must have

(5.i) |f | =
∨
N∈N

∧
n≥N

|f · γn| .

The ≤-part of this equality is satisfied if, and only if, k ≤
∨
N∈N

∧
n≥N |γn| .

Proof. Trivially, with the given cocone γ satisfying (C1), the natural Set-bijections κN (N ∈ N)

form a colimit cocone in Set. For them to form a colimit cocone in Set//V equivalently means

by Proposition 5.1 that

|f | =
∨

{|β| | β = ∆f · γ|N : s|N → ∆y, N ∈ N}

holds for all f : x → y in X. This, by the norm formula (3.vii) for natural transformations

(Proposition 3.3), amounts to the claimed formula for |f |. The second statement of Proposition

5.3 follows from the following more general lemma.

Lemma 5.4. For any cocone α : s → ∆x over a sequence s in a V-normed category X, the

following are equivalent:

(i) k ≤
∨
N∈N

∧
n≥N |αn| ;

(ii) |1x| ≤
∨
N∈N

∧
n≥N |αn| ;

(iii) |f | ≤
∨
N∈N

∧
n≥N |f · αn|, for every morphism f : x→ y in X .

Proof. Trivially, one has (iii)=⇒(ii)=⇒(i). For (i)=⇒(iii), we note

|f | = |f | ⊗ k ≤ |f | ⊗
∨
N∈N

∧
n≥N

|αn| ≤
∨
N∈N

∧
n≥N

|f | ⊗ |αn| ≤
∨
N∈N

∧
n≥N

|f · αn|.

Next we conőrm that only any inőnite tail of a sequence matters for normed convergence:

Corollary 5.5. Let γ : s → ∆x be a cocone over the sequence s in the V-normed category X,

and let K ∈ N. Then γ makes x a normed colimit of s if, and only if, the truncated cocone

γ|K = (γn)n≥K makes x a normed colimit of the truncated sequence s|K .
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Proof. The truncation at K gives, for every object y, a bijection Nat(s,∆y) −→ Nat(s|K ,∆y),

whence γ is an ordinary colimit cocone precisely when γ|K is one. Furthermore, given f : x→ y

in X, with Φ(N) :=
∧
n≥N |f · γn| one has

∨
N∈NΦ(N) =

∨
N≥K Φ(N), where ≤ holds since Φ is

monotonely increasing, and where ≥ holds trivially. Consequently, (C1) and (C2) hold for γ if,

and only if, they hold for γ|K .

Extending the terminology used for morphisms in Facts 3.2(3), we call a cocone α : s→ ∆x over

a sequence s = (xn)n∈N in a normed category X a k-cocone if it satisőes condition (i) of Lemma

5.4. We conclude from Proposition 5.3:

Corollary 5.6. An object x with a cocone γ : s → ∆x is a normed colimit of a sequence s in a

V-normed category X if, and only if, γ is a colimit cocone in the ordinary category X such that

(C2a) k ≤
∨
N∈N

∧
n≥N |γn|, i.e., γ is a k-cocone;

(C2b) |f | ≥
∨
N∈N

∧
n≥N |f · γn|, for every morphism f : x→ y in X.

Corollary 5.7. A normed colimit of a sequence in a V-normed category X is uniquely determined

up to a k-isomorphism, i.e., up to an isomorphism in the category X◦ of k-morphisms of X.

Proof. If γ : s → ∆x and δ : s → ∆y are both colimit cocones representing x and y as normed

colimits of s, respectively, then the canonical morphism f : x→ y is not only an isomorphism in

X, but also satisőes

|f | =
∨
N∈N

∧
n≥N

|f · γn| =
∨
N∈N

∧
n≥N

|δn| ≥ k ,

and likewise |f−1| ≥ k. Hence, f is an isomorphism in X◦.

Here is a sufficient, but not necessary, condition on the V-normed category X (which will be

discussed further in Facts 5.9) to make condition (C2b) of Corollary 5.6 redundant, as follows.

Proposition 5.8. Let X be a V-normed category satisfying the condition

(S) |f · h| ⊗ |h| ≤ |f | for all composable morphisms h and f .

Then an object x with a cocone γ : s→ ∆x is a normed colimit of a sequence s in X if, and only

if, (C1) γ is a colimit cocone in the ordinary category X, and (C2a) γ is a k-cocone.

Proof. First we note that, in (S), the morphism h may be replaced equivalently by any cocone

α : D → ∆x, for some diagram D : I → X with I ̸= ∅, so that (S) then reads as |∆f ·α|⊗|α| ≤ |f |.

Indeed, for all i ∈ I, using (S) and I ̸= ∅, one has

|∆f · α| ⊗ |α| =
∧
i∈I

|f · αi| ⊗
∧
i∈I

|αi| ≤
∧
i∈I

|f · αi| ⊗ |αi| ≤
∧
i∈I

|f | = |f | .
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Having (C2a) and this extended version of (S), we can now show (C2b) of Corollary 5.6, as

follows, utilizing also the fact that the occurring joins are directed:

∨
N∈N

∧
n≥N

|f · γn| ≤ (
∨
N∈N

∧
n≥N

|f · γn|)⊗ (
∨
N∈N

∧
n≥N

|γn|)

≤
∨
N∈N

(
∧
n≥N

|f · γn| ⊗
∧
n≥N

|γn|)

≤
∨
N∈N

∧
n≥N

|f · γn| ⊗ |γn| ≤ |f | .

Facts 5.9. (1) Condition (S) is a (strong) symmetry condition on the normed category X. Indeed,

if X = iX is given by a V-category X as in Facts 3.2(2), then (S) means equivalently that X is

symmetric, i.e., that X(x, y) = X(y, x) holds for all x, y ∈ X. We call an arbitrary V-normed

category X satisfying (S) forward symmetric. The condition generally fails in Set||V , even for

V = R+ = ([0,∞],≥,+, 0). Indeed, considering N as an identically R+-normed set, then for the

endomaps f and h which keep 0 őxed while hn = n − 1 and fn = n + 1 for all n > 0, one has

|f | = 1 but |f · h|+ |h| = 0.

(2) The dualization of (S) reads as

(Sop) |g · f | ⊗ |g| ≤ |f | for all composable morphisms f and g;

we call X backwards symmetric in this case. Indeed for X = iX as in (1), condition (Sop) again

amounts to the V-category X being symmetric, and again, it generally fails in Set||V . However,

for arbitrary X, conditions (S) and (Sop) are far from being equivalent (as already the example

in (3) shows). But, as noted for V = R+ in [33, Lemma 2.2], each of the two conditions implies

the inverse of an isomorphism f in the ordinary category X to have the same norm as f ; for

example, with (Sop) one has

|f | ≥ |f−1 · f | ⊗ |f−1| ≥ k⊗ |f−1| = |f−1|,

and likewise for |f−1| ≥ |f |. In particular, if (S) or (Sop) holds, a morphism in X◦ that is an

isomorphism in the ordinary category X is also an isomorphism in X◦.

(3) For V = R+, in addition to our conditions on a normed category, Kubiś [33] includes condition

(Sop) as part of his deőnition of normed category, and then deőnes the normed convergence of s

to x by requiring only conditions (C1) and (C2a), in their R+-versions. This, however, does not

make the colimit unique up to a 0-isomorphism (here 0 = k).

Indeed, the following simple witness appears already in [33]. Consider the category given by the

preordered set N∪{a, b} obtained from the natural numbers by adding new distinct elements a, b,

and extend the natural order by n ≤ a ≤ b and n ≤ b ≤ a for all n ∈ N; it gets (Kubiś-)normed

when we put |x → y| = 0 whenever x /∈ {a, b}, and |a → b| = |b → a| = ∞. Hence, a and b are

ordinary colimits of the sequence (n), both satisfying (C1) and (C2a), and the ambient category

satisőes (Sop). However, (S) is violated – not even (C2b) holds, which is why a and b fail to be

0-isomorphic. (If one modiőes this example by declaring the norms of morphisms n → b to be
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1, rather than 0, one still has a normed category satisfying (Sop), but now the ordinary colimit

b no longer satisőes (C2a) whilst a still does.)

(4) A V-normed monoid is simply a monoid (A, ·, 1) which, considered as a one-object category,

is V-normed; that is: A comes with a function |-| : A → V satisfying k ≤ |1| and |a| ⊗ |b| ≤ |ab|

for all a, b ∈ A. In case V = R+, such normed monoids are often called semi-normed [9], but here

we will omit the preőx. Every left-invariant Lawvere metric on a monoid A makes A a normed

monoid [33]. In fact, even for general V , if a monoid A carries a V-category structure such that,

for all a, b, c ∈ a, one has A(ca, cb) = A(a, b), then |a| := A(1, a) makes A a V-normed monoid.

Indeed, trivially one has k ≤ |1| and

|a| ⊗ |b| = X(1, a)⊗X(1, b) = X(1, a)⊗X(a, ab) ≤ X(1, ab) = |ab| .

Conversely, if the V-normed monoid A is, algebraically, a group, then the norm makes A a

left-invariant V-category, via

A(a, b) := |a−1b| ,

and this actually results into a one-one correspondence between V-norms and left invariant V-

category structures on the given group A.

(5) Further to the case that the V-normed monoid (A, ·, 1) considered in (4) is actually a group,

let us call A a V-normed group if the additional condition |a−1| = |a| holds for all a ∈ A. (For

V = R+, this gives the standard notion of normed group as used in [9].) The induced V-category

structure of a V-normed group A is symmetric, so that A(a, b) = A(b, a) holds for all a, b ∈ A.

Conversely, if the induced V-category structure of A is symmetric, then, as a one-object V-normed

category, A is forward symmetric, i.e.,

(S) |ab| ⊗ |b| = A(1, ab)⊗A(1, b) = A(1, ab)⊗A(ab, a) ≤ A(1, a) = |a|

holds. Moreover, as follows already from (2), condition (S) implies |a−1| = |a| for all a ∈ A and

thus makes A a V-normed group. Consequently, for a V-normed monoid A that, algebraically, is

a group, the following conditions are equivalent:

(i) A is a V-normed group;

(ii) the induced V-category structure of A is symmetric;

(iii) the one-object V-normed category A is forward symmetric.

Caution: A group A that is a one-object V-normed category, must not be confused with the

(generally) multi-object V-normed category iA as considered in (1). In the latter category,

conditions (S) and (Sop) are equivalent, unlike in the former category, unless A is Abelian.

(6) For V = 2 where, as in Examples 3.4(1), the norm of a V-normed category X is given by a

morphism class S satisfying (1.iv), conditions (S) and (Sop) amount to the cancellation conditions

(S) f · h ∈ S & h ∈ S =⇒ f ∈ S (Sop) g · f ∈ S & g ∈ S =⇒ f ∈ S .

They typically hold for classes of epimorphisms and classes of monomorphisms in X, respectively.
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6 Cauchy cocompleteness

We now extend (the key) Deőnition 5.2 in the expected way:

Definition 6.1. For a V-normed category X, we say that

• a sequence s = (xm
sm,n

// xn)m≤n∈N in X is Cauchy if k ≤
∨
N∈N

∧
n≥m≥N |sm,n|, and

• X is Cauchy (norm-)cocomplete if every Cauchy sequence in X has a normed colimit in X.

Remark 6.2. The notions of Deőnitions 5.2 and 6.1 dualize in an obvious way. Indeed, for a V-

normed category X, the dual category Xop of the ordinary category X becomes V-normed when

giving every morphism the same norm as in X. Now, having an inverse sequence s : Nop → X,

given by morphisms sm,n : xn → xm in X for all m ≤ n ∈ N, the inverse sequence is said to be

Cauchy in X if the sequence sop : N → Xop is Cauchy in Xop. Furthermore, an object x with a

cone λ : ∆x→ s is a V-normed limit of s in X if x with λop : sop → ∆x is a normed colimit of sop.

This means that λ is a limit cone in the ordinary category X such that |f | =
∨
N∈N

∧
n≥N |λn ·f |,

for all morphisms f : y → x in X.

In what follows we collect some initial facts and illustrate the meaning of Cauchy cocompleteness

for the key quantales. For a brief comparison of this notion with the common notion of idempotent

completeness for ordinary categories (and V-enriched categories [12]), see Section 14.

Facts 6.3. (1) For V = R+, the condition for a sequence s to be Cauchy in the R+-normed

category X reads as infN∈N supn≥m≥N |sm,n| = 0, and for the ordinary colimit x with colimit

cocone γ in X to be a normed colimit means that

(6.i) inf
N∈N

sup
n≥N

|γn| = 0 and |f | ≤ inf
N∈N

sup
n≥N

|f · γn|

for every morphism f : x→ y in X (see Corollary 5.6).

In case X = iX is induced by a (Lawvere) metric space X, the sequence s = (xn) is Cauchy if,

and only if, infN∈N supn≥m≥N X(xm, xn) = 0, so that s must be forward Cauchy in the sense of

[10]; furthermore, x is a normed colimit of s if, and only if, X(x, y) = infN∈N supn≥N X(xn, y)

for all y ∈ X, which means that x is a forward limit of s in the language of [10]. (Note that

here the ordinary colimit condition for x comes for free since iX is a groupoid.) The notions

of backward Cauchy sequence and backward limit in X come about by dualization according to

Remark 6.2, i.e., by interchanging the arguments of X(-,-).

Of course, if X is symmetric, there is no need to distinguish between forward and backward, and

one obtains the standard notions of Cauchy sequence and sequential convergence in X.

(2) It is important to note that the existence of a normed colimit for a sequence s does not

necessitate s to be Cauchy, even when V = R+. For example, considering the ordered set N∪{∞}

of natural numbers with an added maximum as a category, normed by |m → n| = n −m and

|n→ ∞| = 0 for all m ≤ n in N, we obtain a normed category (satisfying (S), but not (Sop)) such
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that ∞ is a normed colimit of the sequence s = (n)n∈N, although s badly fails to be Cauchy; in

fact, here infN∈N supn≥m≥N |sm,n| = ∞. However, in the presence of (Sop), see Remarks 7.2(1).

(3) For V = 1 we have Cat//V ∼= Cat, and every sequence in a category X is Cauchy, and X is

Cauchy cocomplete if, and only if, X has colimits of sequences.

For V = 2, a V-normed category X is an ordinary category equipped with a wide subcategory S

(Examples 3.4(1)). A sequence s in X is Cauchy if, and only if, eventually all of its connecting

maps lie in S; and X is Cauchy cocomplete if, and only if, every Cauchy sequence s has a colimit

x with a colimit cocone (γn)n lying eventually in S, such that any morphism f : x → y belongs

to S as soon as eventually all morphisms f ·γn do so. In simpliőed form, this equivalently means

that the colimit of any sequence s with all connecting morphisms in S exists in X and has a tail

s|N = (sm,n)n≥m≥N (with some N ∈ N) which is actually a colimit in the subcategory X◦ = S.

For a wide array of such situations, especially in the dual situation, we refer to the literature,

such as [6].

With Corollary 5.5 and Proposition 5.8 one easily concludes from Facts 5.9(1),(6) and 6.3(1)(3):

Corollary 6.4. (1) For a classical metric space X, the normed category iX is Cauchy cocomplete

if, and only if, X is complete in the ordinary sense.

(2) If the ordinary category X has colimits of sequences lying in a wide subcategory S that satis-

fies Condition (S), then the 2-normed category (X,S) is Cauchy cocomplete if, and only if, the

category S (as a category in its own right) has colimits of sequences.

Remarks 6.5. (1) Condition (S) is an essential hypothesis in (2) of the Corollary and may not be

replaced by (Sop). Even when a sequence in S has a colimit in X with all colimit injections in S,

it may not be a colimit in S. In fact, this may happen in unsuspected circumstances, for instance

for the class S of subspace embeddings in the category of topological spaces that satisőes (Sop):

see [2, Example 3.5].

(2) The statements of Facts 6.3(3) and the Corollary may be easily generalized to the case

V = PM with a commutative monoid (M,+, 0) as in Examples 3.5(1).

For further illustration of Cauchy cocompleteness, let us particularly look at (small) one-object

V-normed categories, i.e., at a V-normed monoid (A, ·, 1) as in Facts 5.9(4),(5), for a general

quantale V . A sequence s in such a category is simply a sequence (an)n of elements in A, and

a cocone α over s is given by elements αn ∈ A satisfying αn+1an = αn for all n ∈ N. If A is a

group, the cocone is already determined by α0, since necessarily αn = α0(an−1...a1a0)
−1 (where

the product of an empty string of elements is 1). Since every morphism in the category A is an

isomorphism, any cocone γ over s presents the only object ∗ in A trivially as an ordinary colimit
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of s: the only factorizing morphism induced by any other cocone α is simply α0 · γ
−1
0 :

∗

α0·γ
−1
0

��

∗
a0 //

α0 22

γ0
,,

∗
a1 // ∗......∗

an−1
// ∗

γn

88

αn

&&
∗

If the group A is actually a V-normed group, so that A enjoys the symmetry condition (S) (as

shown in Facts 5.9(5)), for γ to present ∗ as a normed colimit, by Proposition 5.8 it is necessary

and sufficient that γ be a k-cocone, i.e.,

(6.ii) k ≤
∨
N∈N

∧
n≥N

|γ0(an−1....a0)
−1|.

Example 6.6. With V = R+ consider the multiplicative group Q>0 of the positive rationals,

which becomes a normed group when one sets

|r| :=
∑
p

max{np,−np} whenever r =
∏
p

pnp with np ∈ Z,

where p runs through the set of prime numbers (and the products and sums are only nominally

inőnite). Note that |r| = 0 only if r = 1. For a Cauchy sequence s = (an) in Q>0 we have

infN supn≥m≥N |an−1...am| = 0. Since the norms are always integer valued, this means that,

beginning from some N ∈ N, the sequence becomes constantly 1. For the cocone γ with γ0 :=

aN−1...a0 we then have γn = 1 for all n ≥ N , so that infN supn≥N |γn| = 0, i.e., (6.ii) holds and

γ exhibits ∗ as a normed colimit of s in Q>0. This shows that Q>0 is Cauchy cocomplete.

The fact that all convergent sequences in Q>0 become constant (with value 1) is due to the

discreteness of the integers in [0,∞] and, hence, quite atypical. In what follows we consider

a (classical) normed vector space V (so that ||a|| < ∞ for all a ∈ V ). Then the vector norm

makes its additive group normed, i.e. a one-object normed category, with vector addition as

composition.

Lemma 6.7. Let s = (an)n∈N be any sequence in V . Then:

(1) For s to be Cauchy in the normed group (V,+) means equivalently that the series
∑

n an

satisfies the Cauchy criterion: ∀ε > 0 ∃N ∀n ≥ m ≥ N : ||
∑n−1

i=m ai|| ≤ ε.

(2) For s to be convergent in (V,+) means equivalently that the series
∑

n an converges in V in

the standard sense (i.e., with respect to the metric induced by its norm).

Proof. (1) The Cauchy criterion translates to infn supn≥m≥N ||sm,n|| = 0, i.e., to s being Cauchy.

(2) The convergence of the series means the existence of a vector γ0 satisfying the condition

infN supn≥N ||γ0−
∑n−1

i=0 an|| = 0, and since any cocone over s is determined by its őrst component,

this equivalently means that a cocone γ satisfying the őrst equality of (6.i) exists.
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Theorem 6.8. The following are equivalent for a (classical) normed vector space V :

(i) The additive normed group of V is Cauchy cocomplete (as a one-object normed category).

(ii) Every series in V satisfying the Cauchy criterion converges in V .

(iii) V is a Banach space.

Proof. The equivalence (i) ⇐⇒ (ii) follows from Lemma 6.7. For the equivalence (ii) ⇐⇒ (iii)

one uses the well-known fact that a normed vector space V is complete if and only if every

absolutely convergent series in V converges in V ([40, Proposition 3.1.2]), along with the trivial

fact that an absolutely convergent series satisőes the Cauchy criterion.

7 Change of base for normed categories, metric spaces

Our next goal is to show that the category Met∞ of all Lawvere metric spaces, with arbitrary

maps between them as morphisms and normed as in Example 3.4(4), is Cauchy cocomplete. We

will do so in three steps, by őrst giving conditions on our quantale (V,≤,⊗, k) guaranteeing that

the normed category V-Lip of all small V-categories with arbitrary maps as deőned in Proposition

4.3 is Cauchy cocomplete. With the beneőt of the methods explored in [15, 16], the proof extends

standard łepsilonž arguments of analysis to a fairly general quantalic context. Then we will brieŕy

discuss how Cauchy cocompleteness for V-normed categories fares under changing the łbasež V ,

before applying our őndings to the adjunction

(7.i) e ⊣ log◦ : R× = ([0,∞],≥, ·, 1) −→ R+ = ([0,∞],≥,+, 0)

with the multiplicative version R× of the extended real half-line; see Examples 7.3(2). This then

gives the Cauchy cocompleteness of Met∞.

Recall that for u, v ∈ V one says that u is totally below v, written as u ≪ v, if v ≤
∨
W with

W ⊆ V can hold only if u ≤ w for some w ∈W . We say that v is approximated from totally below

if v =
∨ ⇛

v, where

⇛

v = {u ∈ V | u ≪ v}. Recall that the complete lattice V is constructively

completely distributive [45, 25] if every element in V is approximated from totally below. In the

presence of Choice this property is equivalent to complete distributivity in the standard sense.

Theorem 7.1. Let the tensor-neutral element k be approximated from totally below in V, so that

k =
∨ ⇛

k. Then the V-normed category V-Lip is Cauchy cocomplete.

Proof. For a given Cauchy sequence s = ( Xm
sm,n

// Xn )m≤n in V-Lip, we form its (ordinary)

colimit X in the category Set with colimit cocone γ = ( Xn
γn

// X )n∈N and now want to deőne

a V-category structure on X by

(7.ii) X(x, y) :=
∧
N∈N

Φx,y(N), with Φx,y(N) :=
∨

{Xn(x
′, y′) | n ≥ N, x′ ∈ γ−1

n x, y′ ∈ γ−1
n y}
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for all x, y ∈ X. Since Φx,y is monotonely decreasing in N , we actually have for every K ∈ N

(7.iii) X(x, y) =
∧
N≥K

Φx,y(N).

Trivially, k ≤ X(x, x). In order to establish the inequality X(x, y)⊗X(y, z) ≤ X(x, z) in X, we

consider any ε, η ≪ k ∈ V . The Cauchyness of s gives us some K ∈ N with ε, η ≤ |sm,n| for all

n ≥ m ≥ K. Then

ε⊗ η ⊗X(x, y)⊗X(y, z) = (ε⊗
∧
N≥K

Φx,y(N))⊗ (η ⊗
∧

M≥K

Φy,z(M))

≤
∧
N≥K

∨
n≥N
m≥N

∨
x′∈γ−1

n x

y′∈γ−1
n y

∨
y′′∈γ−1

m y

z′∈γ−1
m z

ε⊗Xn(x
′, y′)⊗ η ⊗Xm(y

′′, z′).

Keeping the data occurring in the last row of joins őxed, from γny
′ = γmy

′′ and the construction

of X as a directed colimit in Set one őnds ℓ ≥ n,m with sn,ℓy
′ = sm,ℓy

′′, which gives with (4.i)

ε⊗Xn(x
′, y′)⊗ η ⊗Xm(y

′′, z′) ≤ |sn,ℓ| ⊗Xn(x
′, y′)⊗ |sm,ℓ| ⊗Xm(y

′′, z′)

≤ Xℓ(sn,ℓ(x
′), sn,ℓ(y

′))⊗Xℓ(sm,ℓ(y
′′), sm,ℓ(z

′))

≤ Xℓ(sn,ℓ(x
′), sm,ℓ(z

′))

≤ Φx,z(N).

Combining the two displayed calculations we obtain őrst

ε⊗ η ⊗X(x, y)⊗X(y, z) ≤
∧
N≥K

Φx,z(N) = X(x, z)

and then with k =
∨ ⇛

k the desired inequality

X(x, y)⊗X(y, z) = (
∨
ε≪k

ε⊗X(x, y))⊗ (
∨
η≪k

η ⊗X(y, z)) ≤ X(x, z).

Having (C1) we must show that Conditions (C2a) and (C2b) of Corollary 5.6 are satisőed.

(C2a) For every K ∈ N and all x, x′ ∈ XK , since |sK,n| ≤ [XK(x, x′), Xn(sK,nx, sK,nx
′)] for all

n ≥ K, one has

XK(x, x′)⊗
∧
n≥K

|sK,n| ≤ XK(x, x′)⊗
∧
m≥K

∨
n≥m

|sK,n|

≤
∧
m≥K

∨
n≥m

XK(x, x′)⊗ |sK,n|

≤
∧
m≥K

∨
n≥m

Xn(sK,nx, sK,nx
′)

≤
∧
m≥K

ΦγKx,γKx′(m) = X(γKx, γKx
′),

where in the last two steps we have used sK,nx ∈ γ−1
n (γKx) and sK,nx

′ ∈ γ−1
n (γKx

′) and (7.iii).

We obtain
∧
n≥K |sK,n| ≤

∧
x,x′∈XK

[XK(x, x′), X(γKx, γkx
′)] = |γK | and, since s is Cauchy,

conclude

k ≤
∨
N

∧
K≥N

∧
n≥K

|sK,n| ≤
∨
N

∧
K≥N

|γK |.
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(C2b) For any mapping f : X → Y of V-categories, to obtain
∨
K

∧
n≥K |f · γn| ≤ |f | we need

to show (
∧
n≥K |f · γn|)⊗X(x, y) ≤ Y (fx, fy), for all K ∈ N and x, y ∈ X. Indeed, we have:

(
∧
n≥K

|f · γn|)⊗ (
∧
N≥K

Φx,y(N)) ≤
∧
N≥K

((
∧
n≥K

|f · γn|)⊗ (
∨
m≥N

∨
x′∈γ−1

m x

y′∈γ−1
m y

Xm(x
′, y′))

≤
∧
N≥K

∨
m≥N

∨
x′∈γ−1

m x

y′∈γ−1
m y

((
∧
n≥K

|f · γn|)⊗Xm(x
′, y′))

≤
∧
N≥K

∨
m≥N

∨
x′∈γ−1

m x

y′∈γ−1
m y

(
∧
n≥K

|f · γn| ⊗Xm(x
′, y′))

≤
∧
N≥K

∨
m≥N

∨
x′∈γ−1

m x

y′∈γ−1
m y

(|f · γm| ⊗Xm(x
′, y′))

≤
∧
N≥K

∨
m≥N

∨
x′∈γ−1

m x

y′∈γ−1
m y

Y (fγm(x
′), fγm(y

′)) = Y (fx, fy) .

Remarks 7.2. (1) Similarly as in the above proof one shows that, if the quantale V satisfies

k =
∨ ⇛

k, and if (Sop) of Facts 5.9(2) holds, a sequence s with a normed colimit cocone γ must

be Cauchy. Indeed, since (Sop) implies |γm| ⊗ |γn| ≤ |sm,n| whenever m ≤ n, all ε, η ≪ k give

some N with ε⊗ η ≤ |sm,n| for all n ≥ m ≥ N , and the Cauchy condition follows.

(2) There is an alternative way of showing conditions (C2a) and (C2b) in the proof of Theorem

7.1, by relying on the Cauchy cocompleteness of Set||V as shown in Theorem 9.3. Indeed, using

the norm-preserving functor D : V-Lip −→ Set||V, X 7−→ X × X of Proposition 4.3, one

proceeds as follows: given a Cauchy sequence s in V-Lip, one takes the normed colimit of the

Cauchy sequence Ds in Set||V ; its normed colimit is of the form Dγ, with the cocone γ formed as

in the őrst part of the above proof, and it satisőes (C2a) and (C2b); by the norm-preservation,

γ itself must satisfy (C2a) and (C2b).

Examples 7.3. (1) The quantales 2 and R+ satisfy (like any other quantale with a completely

distributive lattice) the hypothesis of Theorem 7.1. Therefore, the 2-normed category 2-Lip of

preordered sets and arbitrary maps is Cauchy-cocomplete, and likewise for R+-Lip. But note

that, unlike in Met∞ of Examples 3.4(4), the norm in R+-Lip of any mapping φ : X → Y of

Lawvere metric spaces is given by |φ| = supx,x′∈X(Y (φx, φx′)−X(x, x′)).

(2) The quantale R× = ([0,∞],≥, ·, 1) is deőned so that the exponential function e : R+ → R×,

extended by e∞ = ∞, becomes a homomorphism of quantales, i.e., a homomorphism of monoids

which preserves inőma (with respect to the natural order ≤ of [0,∞]). The monotonicity of the

multiplication on [0,∞] in each variable necessitates α · ∞ = ∞ for α > 0, and the preservation

of inőma then forces the equality 0 · ∞ = ∞ . Since it extends the usual fractions in case

α, β /∈ {0,∞}, we denote the internal hom [β, α] in R× by α
β for all α, β ∈ [0,∞]. Hence, its

value is given by adjunction, so that α
β = inf{γ ∈ [0,∞] | α ≤ β · γ}; in particular: 0

0 = 0, α
0 =
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∞ (α > 0), α
∞ = ∞

∞ = 0. The quantale R× satisőes the hypothesis of Theorem 7.1. Hence, the

category R×-Lip, in which the norm of an arbitrary map φ : X → Y is given by its Lipschitz

value L(φ) = supx,x′∈X
Y (φx,φx′)
X(x,x′) (as in (3.xii), arising from the general formula (4.i)), is Cauchy

cocomplete.

Recall that a monotone map φ : V → W to a quantale (W,≤,⊠, n) is a lax homomorphism of

quantales if n ≤ φk and φv ⊠ φv′ ≤ φ(v ⊗ v′) for all v, v′ ∈ V. Such lax homomorphism induces

the change-of-base functor

(7.iv) Bφ : CAT//V −→ CAT//W, (X, |-|) 7−→ (X, |-|φ),

which regards a V-normed category X as a W-normed category via |f |φ := φ(|f |) for all mor-

phisms f in X, and which makes V-normed functors become W-normed.

Furthermore, if we also have a lax homomorphism ψ : W → V which, as a monotone map, is right

adjoint to φ, then φ is actually strict and we have the induced adjunction Bφ ⊣ Bψ. Indeed,

a V-normed functor F : X → BψY may be considered equivalently as a W-normed functor

F : BφX → Y, since the adjunction φ ⊣ ψ facilitates, for all morphism f in X, the equivalence

|f | ≤ |Ff |ψ ⇐⇒ |f |φ ≤ |Ff | .

Proposition 7.4. Let φ ⊣ ψ : W → V be adjoint lax homomorphisms of quantales, with ψ

preserving joins of monotone sequences in W. Then, if the W-normed category Y is Cauchy

cocomplete, so is the V-normed category BψY.

Proof. Let s = (sm,n)m≤n be a Cauchy sequence in BψY. So, with |-| denoting the norm in the

given W-normed category Y, we have k ≤
∨
N

∧
n≥m≥N |sn,m|ψ and, since the left adjoint φ

preserves joins, obtain

n = φk =
∨
N

φ(
∧

n≥m≥N

ψ(|sm,n|)) ≤
∨
N

∧
n≥m≥N

φψ(|sm,n|) ≤
∨
N

∧
n≥m≥N

|sm,n| .

Hence, s is Cauchy in Y and, hence, has a normed colimit x in Y, with colimit cocone γ. We

claim that x is also a normed colimit of s in BψY. Indeed, this is an immediate consequence of

the assumed preservation of joins of monotone sequences in W and the preservation of all meets

by the right adjoint ψ since, for all morphisms f : x→ y in Y, from |f | =
∨
N

∧
n≥N |f · γn| one

obtains |f |ψ =
∨
N

∧
n≥N |f · γn|ψ.

The inf-preserving map e : [0,∞] → [0,∞] of Examples 7.3(2) has an adjoint, log◦ as in (7.i),

whose values are given by the equivalence (log◦ α ≤ β ⇐⇒ α ≤ eβ) for all α, β ∈ [0,∞];

in particular, log◦ 0 = 0, log◦ α = max{0, logα} (0 < α < ∞), log◦∞ = ∞. The mapping

log◦ : R× → R+ is only a lax homomorphism of quantales, since the easily established inequality

log◦(α · β) ≤ log◦ α+ log◦ β is generally strict.

Let us now specialize the adjunction φ ⊣ ψ of Proposition to e ⊣ log◦ : R× → R+. Since both

functions are lax homomorphisms of quantales, with log◦ : [0,∞] → [0,∞] preserving inőma,

and since R×-Lip is Cauchy cocomplete (Example 7.3(2)), the same is true by Proposition 7.4

for the normed category Blog◦(R×-Lip) = Met∞ of Examples 3.4(4). Hence, we proved:
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Corollary 7.5. The normed category Met∞ is Cauchy cocomplete.

8 The principal examples: semi-normed and normed vector spaces

When a norm function ||-|| on a (real, say) vector spaceX satisőes the standard axioms for a norm,

except that non-zero vectors are allowed to have norm 0, one usually calls X semi-normed. Here,

just like for the metric of a Lawvere metric space, we initially abandon not only the separation

condition, but also the őniteness condition for norms. This then necessitates the extension of the

real multiplication to ∞, so that we can maintain the norm axiom for scalar multiples of vectors

with norm ∞. This leads us naturally to considering the quantale R× of Examples 7.3(2) and

the adjunction e ⊣ log◦ of (7.i), so that we can then establish the Cauchy cocompleteness of the

normed category of semi-normed vector spaces using the corresponding result for metric spaces

(Corollary 7.5).

The ordinary categories of semi-normed and of normed vector spaces are deőned as follows:

Definition 8.1. A semi-norm on a (real) vector space X is a function ||-|| : X → [0,∞] satisfying

(N0) ||0|| = 0,

(N1) ||ax|| = |a|||x||,

(N2) ||x+ y|| ≤ ||x||+ ||y||,

for all x, y ∈ X and a ∈ R, a ̸= 0.5 The thus deőned semi-normed vector spaces are the

objects of the category SNVec∞ whose morphisms are arbitrary linear maps. It contains the

full subcategory NVec∞ of normed vector spaces; its objects X satisfy, for all x ∈ X, also the

separation condition

(N3) ||x|| = 0 =⇒ x = 0.

They fall short of being normed vector spaces in the classical sense only insofar as here vectors

are permitted to have inőnite norms.

Facts 8.2. (1) The additive group (X,+) underlying a semi-normed vector space is a normed

group (in the sense of Facts 5.9(5)) and, hence, becomes a Lawvere metric space in the standard

way, i.e., X(x, y) = ||x − y|| for all x, y ∈ X. This deőnes the ordinary forgetful functor U :

SNVec∞ −→ R×-Lip since there is no metrical constraint on the morphisms of these categories.

(2) The category R×-Lip is R×-normed via the Lipschitz value L(f) of an arbitrary map f :

X → Y (see Example 7.3(2)). If f happens to be a linear map of semi-normed vector spaces

5We exclude a = 0 since otherwise (N1) would contradict (N0), in light of 0 · ∞ = ∞ in the quantale R×; see

Examples 7.3(2).
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(so that f is an U -image), as a trivial instance of (3.viii) we can take L(f) as its R×-norm and

thereby make SNVec∞ R×-normed. The formula for L(f) then simpliőes to

(8.i) L(f) = sup
x,x′∈X

||fx− fx′||

||x− x′||
= sup

x∈X

||fx||

||x||
,

satisfying the inequalities (both generally proper)

L(idX) ≤ 1 and L(g · f) ≤ L(f)L(g) .

Hence, with this structure we obtain the R×-normed category SNVec×∞ and the norm-preserving

functor U : SNVec×∞ −→ R×-Lip. In global categorical terms, (8.i) puts the Cartesian (or initial)

structure as in (3.viii) on SNVec∞ with respect to the forgetful functor CAT//R× → CAT (where

we have extrapolated this trivial aspect of Theorem 3.3 from small to large categories).

(3) If we subject the R×-normed functor U to the change-of-base functor Blog◦ of Proposition 7.4,

where log◦ : R× → R+, then (without name change for U) we can regard U as an R+-normed

functor

U : SNVec∞ = Blog◦(SNVec
×
∞) −→ Blog◦(R×-Lip) = Met∞.

This means that, henceforth, we will always consider SNVec∞ as an R+-normed category, pro-

vided with its logarithmic norm given (as in (1.v)) by

(8.ii) |f : X → Y | = log◦ L(f) = sup
x∈X

log◦
||fx||

||x||
,

(with the second equality holding since log◦ preserves suprema with respect to the natural order

of [0,∞]), and that U stays to be norm-preserving .

We list some easily seen properties of the logarithmic norm of SNVec∞ before getting to its

Cauchy cocompleteness.

Lemma 8.3. Let f : X → Y be a linear map of semi-normed vector spaces. Then:

(1) If X contains a vector x0 with ||x0|| = 0 and ||fx0|| ̸= 0, then |f | = ∞.

(2) If ||x|| = 0 always implies ||fx|| = 0, then |f | = sup||x||=1 (log
◦ ||fx||) .

(3) For all x ∈ X one has ||fx|| ≤ e|f | ||x||, and |f | is minimal with that property.

(4) One has |f | = 0 if, and only if, ||fx|| ≤ ||x|| holds for all x ∈ X.

Proof. (1) From log◦ ||fx0||
||x0||

≤ |f | one obtains ∞ = ||fx0||
||x0||

≤ e|f | and, hence, |f | = ∞.

(2) Trivially t := sup||x||=1 (log
◦ ||fx||) ≤ |f |. For ł≥ž consider any x ∈ X. If ||x|| = 0, also

||fx|| = 0 by hypothesis, and log◦ ||fx||
||x|| = 0 ≤ t follows; likewise if ||x|| = ∞. In all other cases one

considers x1 :=
1
||x||x in a standard manner.

(3) L(f) is minimal with ||fx|| ≤ L(f)||x|| for all x ∈ X, so the őrst claim follows from L(f) ≤

elog
◦ L(f) = e|f |. If, for some α, ||fx||

||x|| ≤ eα for all x, then log◦ ||fx||
||x|| ≤ α for all x, i.e. |f | ≤ α.

(4) |f | = log◦ L(f) = 0 holds if, and only if, L(f) ≤ 1 or, equivalently, f is 1-Lipschitz.
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Theorem 8.4. With its logarithmic norm, SNVec∞ is a Cauchy-cocomplete normed category

whose 0-morphisms are precisely the 1-Lipschitz linear maps: (SNVec∞)◦ = SNVec1.

Proof. From Facts 8.2(3) we know that SNVec∞ is indeed a normed category, and its 0-morphisms

have been identiőed in Lemma 8.3(4). So the only remaining issue is its Cauchy cocompleteness.

We consider a Cauchy sequence s = ( Xm
sm,n

// Xn )m≤n in SNVec∞. Since the functor U :

SNVec∞ → Met∞ is norm-preserving (Facts 8.2(3)), s is also a Cauchy sequence in Met∞ and,

by Corollary 7.5, has a normed colimit, witnessed by a colimit cocone (γn : Xn → X). Since the

forgetful functor Met∞ → Set (trivially) preserves colimits and the forgetful functor Vec → Set

of the algebraic category of vector spaces creates directed colimits, the metric space X carries a

vector space structure that makes γ a colimit cocone in Vec.

By (7.ii) in the proof of Theorem 7.1, the metric structure of X is given by

X(x, y) = sup
N∈N

Φx,y(N) with Φx,y(N) = inf{Xn(x
′, y′) | n ≥ N, x′ ∈ γ−1

n x, y′ ∈ γ−1
n y},

with Φx,y is monotonely increasing in N . We claim that, since the metric on each Xn is induced

by the norm on Xn (Facts 8.2(1)) and therefore invariant under translation, the same is true for

the metric on X, i.e., X(x+ z, y+ z) = X(x, y) for all z ∈ X. Indeed, given z, since the colimit

maps γn are collectively epic, one has z = γK(z′) for some z′ ∈ XK . Then, for all n ≥ N ≥ K

and x′ ∈ γ−1
n x, y′ ∈ γ−1

n y one obtains Xn(x
′, y′) = Xn(x

′ + sK,nz
′, y′ + sK,nz

′) and thereby

X(x, y) = sup
N≥K

Φx,y(N) = sup
N≥K

Φx+z,y+z(N) = X(x+ z, y + z).

By Facts 5.9(4),(5), its translation-invariant metric makes the additive group of X normed when

we put ||x|| = X(x, 0). Hence, the conditions (N0) and (N2) for a semi-normed vector space

hold. Regarding condition (N1), i.e., ||ax|| = |a|||x|| for all real a ̸= 0 and x ∈ X, we note that

this equality is an immediate consequence of the equivalence (z ∈ γ−1
n (ax) ⇐⇒ w ∈ γ−1

n x)

whenever z = aw, and of the fact that the multiplication in [0,∞] by the positive real number

|a| preserves both, inőma and suprema.

It remains to be shown that X is a normed colimit of s in SNVec∞. But (C1) of Deőnition 5.2

holds trivially by construction of X as a colimit in Vec, and also (C2) in the form (5.i) holds in

SNVec∞ since it holds in Met∞, and since U : SNVec∞ → Met∞ is norm-preserving.

Remarks 8.5. The same argumentation as in the proof of Theorem 8.4 lets one conclude that also

SNVec×∞ of Facts 8.2(2) is Cauchy cocomplete: just replace Met∞ by R×-Lip. In fact, one may

argue that SNVec∞ inherits its Cauchy cocompleteness from SNVec×∞, just like Met∞ inherits

this property from R×-Lip.

(2) The full normed subcategory NVec∞ of SNVec∞ fails to be closed under the formation of

normed colimits of Cauchy sequences. Even for a Cauchy sequence s of (strictly contractive)

linear maps sm,n : Xm → Xn of normed vector spaces (with all norms őnite), the normed colimit

in SNVec∞ may fail to be a normed vector space. Indeed, consider the sequence (1.vi) of the

Introduction; that is: Xn := R normed by ||1||n = 1
n and sn,m = idR for all m ≤ n. The normed
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colimit of s in SNVec∞ may again be formed by identity maps, γn : Xn → X = R, with the norm

in X given by ||1|| = supN infn≥N ||1||n = 0, i.e., all norms in X are 0, so that the separation

condition (N3) fails to the largest extent possible.

(3) Almost all of the morphisms γn : Xn → X of a normed colimit cocone γ for a convergent

sequence in SNVec∞ have an important extra property beyond their linearity: ||γnz|| = 0 holds for

all z ∈ Xn with ||z|| = 0. Indeed, since infN supn≥N |γn| = 0 by (C2a), there is some N ∈ N with

|γn| ≤ 1 for all n ≥ N . Consequently, with Lemma 8.3(3) one obtains ||γnz|| ≤ e|γn|||z|| ≤ e||z|| = 0.

Definition 8.6. A linear map f : X → Y of semi-normed vector spaces is called a zero-to-zero

morphism if ||fx|| = 0 holds for all x ∈ X with ||x|| = 0. (We note that every bounded operator is a

zero-to-zero morphism.) We denote by SNVec00 the (non-full) subcategory of SNVec∞ containing

all semi-normed vector spaces and their zero-to-zero morphisms. The separation condition of its

domain makes a morphism in NVec∞, i.e., an arbitrary linear map of normed vector spaces,

automatically a zero-to-zero morphism. Therefore, NVec∞ is a full subcategory of SNVec00.

Corollary 8.7. With its norm inherited from SNVec∞, also SNVec00 is Cauchy cocomplete.

Proof. A Cauchy sequence s in SNVec00 has a normed colimit cocone γ in SNVec∞, with γn zero-

to-zero for all n ≥ N as in Remarks 8.5(3), but also for n < N since then γn = γN · sn,N .

Lemma 8.8. The normed category NVec∞ is reflective in the normed category SNVec00, as

(Set//R+)-enriched categories.

Proof. For X ∈ SNVec00 consider its subspace X0 := {x ∈ X | ||x|| = 0} and let p : X → X/X0

be the projection. Since ||x|| = ||y+(x−y)|| ≤ ||y||+ ||x−y|| one has (||x−y|| = 0=⇒||x|| = ||y||) for

all x, y ∈ X, so that ||px|| := ||x|| makes X/X0 a well-deőned object of NVec∞ and p a zero-to-zero

morphism – in fact, an isometry. Furthermore, for all Y ∈ NVec∞ we have the natural bijection

− · p : NVec∞(X/X0, Y ) → SNVec00(X,Y ),

whose surjectivity is guaranteed by our restriction to zero-to-zero morphisms (as opposed to all

linear maps of semi-normed vector spaces). In fact, this bijection is a (Set//V)-isomorphism

since, for every linear map f : X/X0 → Y , one has

|f | = sup
z∈X/X0

(log◦
||fz||

||z||
) = sup

x∈X
(log◦

||f(px)||

||px||
) = sup

x∈X
(log◦

||f(px)||

||x||
) = |f · p| .

Corollary 8.9. The normed category NVec∞ is Cauchy cocomplete.

Proof. For a Cauchy sequence s in NVec∞ we have a normed colimit in SNVec00 with cocone

γ : s → ∆X. We apply the reŕector to X to obtain the colimit cocone (p · γn : Xn → X/X0)n

in the ordinary category NVec∞. As one easily checks (or formally derives with Proposition

10.1 proved below), since the adjunction of Proposition 8.8 is (Set//R+)-enriched, this cocone

presents X/X0 in fact as a normed colimit of s in NVec∞.
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Examples 8.10. (1) The Cauchy sequence (1.vi) given by 1-dimensional normed vector spaces

with decreasing (őnite) norms has a one-dimensional normed colimit in SNVec00 with all vectors

having norm 0 (Remarks 8.5(2)). Its normed colimit in NVec∞ is therefore the null space.

(2) Normed colimits in NVec∞ of Cauchy sequences of Banach spaces need not be Banach.

Indeed, consider the sequence

{0} // R // R2 // R3 // ... // colimn Rn =
⊕

nR
n

of isometric embeddings of Euclidean spaces whose normed colimit is given by the direct sum (in

Vec) of its objects, normed accordingly. In the direct sum, we have the Cauchy sequence (xn)n,

where the i-th component of xn is 1
i+1 for i ≤ n, and 0 otherwise, but the sequence does not

converge in
⊕

nR
n.

9 Cauchy cocompleteness of presheaf categories

We continue to work with a quantale (V,≤,⊗, k) and őrst consider an arbitrary sequence s =

(Am
sm,n

// An)m≤n in Set||V . So, while the sets An are V-normed, the maps sm,n may not be.

Still, with the forgetful functor U : Set||V → Set, we can form the colimit A of Us in Set, with

cocone (An
γn

// A)n . Trivially, any norm on A makes the resulting V-normed set a colimit

of s in Set||V , since there is no constraint on the morphisms in that category. But there is one

norm on A that distinguishes itself by a special property, as follows.

|c| =
∧
N∈N

∨
n≥N

∨
a∈γ−1

n c

|a|;

that is, we employ the same formula as the one established for colimits of sequences in Set//V

(see Proposition 5.1), but now without any a-priori expectation that it would make the maps γn

V-normed. We call the above norm on A the γ-induced Cauchy norm since it has the important

property (C2b) (see Corollary 5.6):

Lemma 9.1. Let the set A be provided with the γ-induced Cauchy norm as above. Then, for

any mapping f : A→ B to a V-normed set B, one has |f | ≥
∨
N∈N

∧
n≥N |f · γn| .

Proof. Since, in its őrst (contravariant) variable, the internal hom [-,-] of V transforms arbitrary
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joins into meets, we have:

|f | =
∧
c∈A

[|c|, |fc|] =
∧
c∈A

[
∧
N

∨
n≥N

∨
a∈γ−1

n c

|a|, |fc|]

≥
∧
c∈A

∨
N

[
∨
n≥N

∨
a∈γ−1

n c

|a|, |fc|]

≥
∨
N

∧
c∈A

[
∨
n≥N

∨
a∈γ−1

n c

|a|, |fc|]

=
∨
N

∧
n≥N

∧
c∈A

∧
a∈γ−1

n c

[|a|, |fc|]

=
∨
N

∧
n≥N

∧
a∈An

[|a|, |f(γna)|]

=
∨
N

∧
n≥N

|f · γn| .

In order to strengthen the assertion of Lemma 9.1 and show that, in fact, Set||V , and even all

Set||V-valued presheaf categories, are Cauchy cocomplete, we need a small additional hypothesis

on the ⊗-neutral element k of the quantale V . Actually, we offer two alternative possibilities,

(A) or (B), for suitably augmenting our general quantalic setting, as follows:

(A) k is approximated from totally below (see Theorem 7.1), that is: k =
∨
{ε ∈ V | ε≪ k}.

(B) k ∧-distributes over arbitrary joins, that is: k ∧
∨
i∈I vi =

∨
i∈I k ∧ vi .

Remarks 9.2. (1) Condition (A) certainly holds when the lattice V is (constructively) completely

distributive in the sense of [45].

(2) Condition (B) trivially holds when the quantale V is integral, i.e., when k = ⊤, and also

when the underlying lattice of the quantale V is a frame since, in the latter case every element

in V ∧-distributes over arbitrary joins by deőnition, whilst in the former case the map k∧ (−) is

just the identity map on V .

(3) With the exception of those mentioned in Example 3.5(2), most quantales discussed in this

paper satisfy both conditions, (A) and (B), and the others at least one. We examine the two

conditions further in Section 15 and conőrm their logical independence.

We are now ready to prove the main general theorem of the paper.

Theorem 9.3. When the quantale V satisfies condition (A) or (B), then the V-normed category

[X, Set||V] is Cauchy cocomplete, for every small V-normed category X.

Proof. Considering a Cauchy sequence σ = (Pm
σm,n

// Pn)m≤n∈N in the category [X, Set||V]

(given by all V-normed functors X → Set||V and their natural transformations), with the forgetful

functor U : Set||V → Set we form the colimit P of Uσ in the ordinary functor category SetX,
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with cocone γ = ( Pn
γn

// P )n. Then, for every object x in X, the colimit Px of the sequence

(Uσxm,n)m≤n in Set may be provided with the Cauchy norm induced by the cocone (γxn)n (see

Lemma 9.1), and in this way P is then considered as a Set||V-valued functor.

In order to establish P as a normed colimit of σ, by Corollary 5.6, we must show:

(C1) The functor P : X → Set||V is V-normed (so that it serves as a colimit of σ in the ordinary

full subcategory [X, Set||V] of (Set||V)X, formed by all V-normed functors X → Set||V);

(C2a) γ is a k-cocone, i.e., k ≤
∨
N

∧
n≥N |γn|;

(C2b) |α| ≥
∨
N

∧
n≥N |α · γn|, for every natural transformation α : P → Q.

For showing (C1) we use (C2a) (the proof of which is presented further below, independently of

(C1)) and, since every Pn is V-normed and every γn = (γxn)x∈X : Pn → P is natural, obtain for

all morphisms f : x→ y in X

|f | = k⊗ |f | ≤ (
∨
N

∧
n≥N

|γn|)⊗ |f |

≤
∨
N

(
∧
n≥N

|γyn| ⊗ |f |)

≤
∨
N

∧
n≥N

|γyn| ⊗ |Pnf |

≤
∨
N

∧
n≥N

|γyn · Pnf |

=
∨
N

∧
n≥N

|Pf · γxn| ≤ |Pf | ,

with the last inequality following from the fact that Px carries the (γxn)n-induced Cauchy norm,

so that Lemma 9.1 applies.

Using this last argument again for every x ∈ X, and before turning to the more cumbersome

proof of (C2a), we can immediately show that condition (C2b) holds, as follows:

|α| =
∧
x∈X

|αx| ≥
∧
x∈X

∨
N

∧
n≥N

|αx · γ
x
n| ≥

∨
N

∧
n≥N

∧
x∈X

|αx · γ
x
n| =

∨
N

∧
n≥N

|α · γn| .

For the proof of (C2a), we őrst calculate

∨
N

∧
n≥N

|γn| =
∨
N

∧
n≥N

∧
x∈X

|γxn|

=
∨
N

∧
n≥N

∧
x∈X

∧
a∈Pnx

[|a|, |γxna|]

=
∨
N

∧
x∈X

∧
c∈Px

∧
n≥N

∧
a∈(γxn)

−1c

[|a|, |c|]

=
∨
N

∧
x∈X

∧
c∈Px

[
∨
n≥N

∨
a∈(γxn)

−1c

|a|,
∧
M

∨
m≥M

∨
b∈(γxm)−1c

|b| ]

=
∨
N

∧
M

∧
x∈X

∧
c∈Px

[ ||c||N , ||c||M ] , (∗)
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where, for the last equality, we have used the abbreviation ||c||N :=
∨
n≥N

∨
a∈(γxn)

−1c |a| for all

N ∈ N, x ∈ X, and c ∈ Px.

We now consider the alternative hypotheses (A) and (B) and őnish the proof under each of them

separately, as follows.

(A) Since the Cauchy sequence σ satisőes k ≤
∨
N

∧
n≥m≥N |σm,n|, for every ε ≪ k in V we

őnd an N ∈ N with ε ≤
∧
n≥m≥N |σm,n|, i.e., ε ≤ |σxm,n| for all n ≥ m ≥ N and x ∈ X. Now,

given any c ∈ Px and M ∈ N, in the case M ≤ N we trivially have ||c||N ≤ ||c||M and obtain

ε≪ k ≤ [||c||N , ||c||M ], so certainly ε ≤ [||c||N , ||c||M ] . If M ≥ N , with ℓ :=M −N we have

||c||M =
∨
m≥M

∨
b∈(γxm)−1c

|b| ≥
∨
n≥N

∨
a∈(γxn)

−1c

|σxn,n+ℓ a|

≥
∨
n≥N

∨
a∈(γxn)

−1c

|a| ⊗ |σxn,n+ℓ|

≥ (
∨
n≥N

∨
a∈(γxn)

−1c

|a| )⊗ ε = ||c||N ⊗ ε ,

which again implies ε ≤ [||c||N , ||c||M ]. Consequently, since k =
∨
{ε | ε≪ k}, with (∗) we obtain

k ≤
∨
N

∧
n≥N |γn|, as desired.

(B) Analyzing further the equality (∗), we have
∨
N

∧
n≥N

|γn| =
∨
N

∧
x∈X

∧
c∈Px

[ ||c||N ,
∧
M

||c||M ] , with

[ ||c||N ,
∧
M

||c||M ] = [ ||c||N ,
∧
M≤N

||c||M ∧
∧
M≥N

||c||M ]

= [ ||c||N ,
∧
M≤N

||c||M ] ∧ [ ||c||N ,
∧
M≥N

||c||M ]

≥ k ∧ [ ||c||N ,
∧
M≥N

||c||M ]

=
∧
M≥N

(k ∧ [ ||c||N , ||c||M ]) .

Here, for M ≥ N , as in part (A), setting ℓ =M −N one has

||c||M ≥
∨
n≥N

∨
a∈(γxn)

−1c

|a| ⊗ |σxn,n+ℓ| = ||c||N ⊗
∨
n≥N

|σxn,n+ℓ| ≥ ||c||N ⊗ |σxN,M |

and, hence, [ ||c||N , ||c||M ] ≥ |σxN,M |. Consequently, with hypothesis (B) and the Cauchyness of σ

we obtain
∨
N

∧
n≥N

|γn| ≥
∨
N

∧
x∈X

∧
M≥N

(k ∧ |σxN,M |)

=
∨
N

(k ∧
∧
M≥N

∧
x∈X

|σxN,M |)

= k ∧
∨
N

∧
M≥N

|σN,M |

≥ k ∧ k = k ,

which concludes the proof.
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In conjunction with Remarks 9.2 we conclude:

Corollary 9.4. For every small V-normed category X, the V-normed category [X, Set||V] is

Cauchy cocomplete under any of the following hypotheses:

• the quantale V is integral;

• the lattice V is a frame;

• the lattice V is (constructively) completely distributive.

We don’t have an answer to the following question:

Problem 9.5. Is there a quantale V (and a small V-normed category X) for which the V-normed

category (of presheaves of X with values in) Set||V fails to be Cauchy cocomplete?

Remark 9.6. By Theorem 9.3, any quantale V for which Set||V is not Cauchy cocomplete must

fail Conditions (A) and (B). As observed in [20], after providing any (Abelian) group G with

the discrete order, one may consider its MacNeille completion G⊤
⊥ as a (commutative) quantale

(see Example 3.5(2)). Moreover, when G has at least order 3, one easily shows that (A) and (B)

both fail in G⊤
⊥ (see also Section 15).

10 Normed colimits as weighted colimits

In this and the next section we assume that the quantale V satisfies condition (A) or (B) so

that we can apply Theorem 9.3. Under this condition, we show that normed colimits of Cauchy

sequences can be equivalently described as weighted (formerly indexed) colimits in the sense of

[28], for an appropriate class of weights. By Deőnition 5.2, a normed colimit of a sequence s in

a V-normed category X is equivalently given by an object x of X together with bijections

Nat(s,∆z) ∼= X(x, z),

naturally in z, so that the induced cocone (κN : Nat(s|N ,∆z) −→ X(x, z))N∈N is a colimit in

Set//V ; with z = x they determine the normed colimit cocone γ = κ−1
0 (1x) : s→ ∆x.

We start with the following observation.

Proposition 10.1. Every V-normed left adjoint functor F : X → Y (in the Set//V enriched

sense) preserves normed colimits of sequences.

Proof. Let G : Y → X be right adjoint of F in Cat//V , so that we have isomorphisms

X(x,Gy) −→ Y(Fx, y),
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in Set//V , naturally in x and y. Therefore, for every sequence s, every N ∈ N and every object y

in Y, we also have an isomorphism Nat(s|N ,∆Gy) −→ Nat(Fs|N ,∆y) in Set//V , naturally in s

and y. Let x with cocone γ be a normed colimit of s in X. For every object y in Y, the diagram

Nat(s|N ,∆Gy) Nat(Fs|N ,∆y)

X(x,Gy) Y(Fx, y)

∼

κN

∼

commutes, with the inverse of the right vertical isomorphism for y = Fx sending 1Fx to Fγ.

Since the cocone (Nat(s|N ,∆Gy) → X(x,Gy))N∈N is a colimit in Set//V , so is the cocone

(Nat(Fs|N ,∆y) → Y(Fx, y))N∈N. This proves that Fx with cocone Fγ is a normed colimit

of Fs in Y.

Recall from [28] that, for V-normed functors F : A → X and ϕ : Aop → Set||V , a ϕ-weighted

colimit of F is given by an object x in X together with isomorphisms in Set//V

(10.i) X(x, y) ∼= Nat(ϕ,X(F−, y)),

naturally in y. In this context it is convenient to use the language of (Set||V)-valued distributors

X −◦−→ Y which, just like the V-valued distributors in Section 4, are deőned as V-normed functors

Xop ⊗ Y → Set||V . Every V-normed functor F : X → Y induces a pair of distributors

F∗ : X −◦−→ Y, F∗(x, y) = Y(Fx, y),

F ∗ : Y −◦−→ X, F ∗(y, x) = Y(y, Fx).

In particular, interpreting an object x in X as a V-normed functor x : E → X from the monoidal

unit E = Ek to X, one obtains

x∗ : E −◦−→ X, x∗ = X(x,−) and x∗ : X −◦−→ E, x∗ = X(−, x).

For distributors ϕ : X −◦−→ A and ψ : A −◦−→ X and objects x in X and y in Y, one considers

(ψ · ϕ)(x, y) ∼=

∫ a∈A

ψ(a, y)⊗ ϕ(x, a)

whenever this coend exists (see [37, 36]). This is certainly the case when A is small (since Set||V ,

being equivalent to Set, is small-cocomplete), and then the formula above deőnes the composite

distributor ψ ·ϕ : X −◦−→ Y. Another important case is ϕ = G∗ for a V-normed functor G : X → A,

since then one simply has

(ψ ·G∗)(x, y) ∼= ψ(Gx, y)

for all objects x in X and y in Y. Hence, the presheaf X(F−, y) in (10.i) with F : A → X can

be written as the composite X(F−, y) = y∗ · F∗ : A −◦−→ E. Moreover, for A small, any presheaf

ϕ : A −◦−→ E may be composed with F ∗ : X −◦−→ A to yield ϕ · F ∗ : X −◦−→ E, and − · F ∗ ⊣ − · F∗

is an adjunction between [Aop, Set||V] and the higher-universe V-normed category [Xop, Set||V].

Therefore we have natural isomorphisms

Nat(ϕ · F ∗, y∗) ∼= Nat(ϕ, y∗ · F∗).

From the discussion above we obtain:
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Lemma 10.2. An object x of X is a ϕ-weighted colimit of F if, and only if, x is a (ϕ·F ∗)-weighted

colimit of the identity functor X → X, and in that case we simply speak of a (ϕ · F ∗)-weighted

colimit in X.

For a V-normed category X we consider the Yoneda embedding

y
X
: X → [Xop, Set||V], x 7→ x∗ = X(-, x),

whose codomain (irrespective of potentially having to be formed in a higher universe) is V-normed

again. Actually, y
X

preserves norms since, for every f : x→ y in X, one has

| y
X
f | = |X(-, f)| =

∧
z∈X

|X(z, f)| =
∧

h:z→x

[|h|, |f · h|] = |f |.

Definition 10.3. For every V-normed category X, let PX denote the full V-normed subcategory

of [Xop, Set||V] deőned by all accessible presheaves (see [30]).

By deőnition, the accessible presheaves are the small-weighted colimits of representables. Viewing

a presheaf ϕ : Xop → Set||V as a distributor ϕ : X −◦−→ E, this means that ϕ belongs to PX if,

and only if, there is a fully faithful V-normed functor F : A → X with A small and a distributor

ψ : A −◦−→ E with ϕ = ψ · F ∗. Of course, for X small, one has PX = [Xop, Set||V].

Proposition 10.4. For every V-normed category X, the V-normed category PX is Cauchy co-

complete. Moreover, for every V-normed functor F : X → Y, the V-normed functor

PF : PX −→ PY, ϕ 7−→ ϕ · F ∗,

preserves normed colimits of sequences.

Proof. Let σ : N → PX be a Cauchy sequence in PX. Since N is a (countable) set, there is a

small full V-normed subcategory A of X (with inclusion functor I : A → X) such that σ factors

as
N

PA PX,

σ
σ0

PI=−·I∗

and σ0 : N → PA is Cauchy in PA. By Theorem 9.3, PA is Cauchy cocomplete; we let Q with

cocone Γ be a normed colimit of σ0 in PA. By Proposition 10.1, PI(Q) with PI · Γ is a normed

colimit of σ in PX. Finally, since PF · PI is left adjoint, PF (PI(Q)) with PF · PI · Γ is a

normed colimit of PF · σ.

For a Cauchy sequence s in X, we let ϕs denote the normed colimit of y
X
·s in PX. Then, for

every object y in X, the cocone

Nat(s|N ,∆y) ∼= Nat(y
X
·s|N ,∆ y

X
y) −→ Nat(ϕs, y

X
y), N ∈ N,

is a colimit in Set//V .
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Proposition 10.5. Let s be a Cauchy sequence in X. Then X has a normed colimit of s if, and

only if, X has a ϕs-weighted colimit.

Proof. Assume őrst that x with cocone γ is a normed colimit of s. Then, for every object y ∈ X,

the cocone κN : Nat(s|N ,∆y) → X(x, y) (N ∈ N) is a colimit in Set//V . Therefore we obtain an

isomorphism

(10.ii) X(x, y) −→ Nat(ϕs, y
X
y),

naturally in y which exhibit x as a ϕs-weighted colimit.

Conversely, given the natural isomorphisms (10.ii), then one obtains a colimit cocone

κN : Nat(s|N ,∆y) −→ X(x, y) (N ∈ N)

in Set//V . Therefore x with the induced cocone γ becomes a normed colimit of s in X.

We conclude that normed colimits of Cauchy sequences are equivalently described as certain

weighted colimits. Below we explain that it suffices to consider countable diagram shapes; here

we call a (V-normed) category X countable whenever the class of arrows of X is a countable set.

Facts 10.6. Let σ : N → X be a Cauchy sequence in a V-normed category X, and let ϕ : X −◦−→ E

be a colimit of y
X
·σ in PX.

1. Consider the V-normed subcategory A of X generated by the image of σ; that is, the objects

of A are given by the objects σ(n) (n ∈ N), and the arrows are őnite composites of arrows

of the form σ(n ≤ m), with inclusion functor I : A → X. By construction, A is countable.

Moreover, with σ0 : N → A denoting the sequence in A with I ·σo = σ, also σ0 is a Cauchy

sequence in A. Letting ϕ0 : A −◦−→ E be the normed colimit of the Cauchy sequence y
A
·σ0

in PA, we have ϕ = PI(ϕ0) = ϕ0 · I
∗. Therefore, X has a ϕ-weighted colimit if, and only

if, X has a ϕ0-weighted colimit of I : A → X.

2. Consider N just as an ordinary category (given by its order). By Proposition 3.3, N may be

equipped with the initial normed structure with respect to the ordinary functor σ : N → X

and the given norm of X. Then, since σ is Cauchy in X, the sequence 0 ≤ 1 ≤ 2 . . .

becomes Cauchy in N as well, and we can form the normed colimit ϕ0 of y
N

in PN. With

ϕ deőned as above, X has a ϕ-weighted colimit if, and only if, X has a ϕ0-weighted colimit

of I : N → X.

All told, we have the following characterization of Cauchy cocompleteness.

Corollary 10.7. Let X be a V-normed category. Then the following assertions are equivalent.

(i) X is Cauchy cocomplete.

(ii) X has all weighted colimits of diagrams F : A → X, ϕ : A −◦−→ E, where A is small and ϕ is

a normed colimit of a Cauchy sequence of representables in PA.
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(iii) X has all weighted colimits of diagrams F : A → X, ϕ : A −◦−→ E, where A is countable and

ϕ is a normed colimit of a Cauchy sequence of representables in PA.

(iv) X has all weighted colimits of diagrams F : N → X, ϕ : N −◦−→ E, where the underlying

category of N is given by its order and ϕ is a normed colimit of a Cauchy sequence of

representables in PN.

11 Cauchy cocompletion of V-normed categories

In the previous section we have shown that normed colimits of Cauchy sequences can be equiv-

alently described as weighted colimits, for a certain choice of weights – under the assumption

that the quantale V satisőes condition (A) or (B), which we also assume in this section. Fol-

lowing the nomenclature of [30, 5], for every small V-normed category A we consider the class

Φ[A] of presheaves ϕ ∈ PA that are normed colimits of Cauchy sequences of representables as in

Corollary 10.7 (ii), and put

Φ =
∑

A small

Φ[A].

A V-normed category X is called Φ-cocomplete whenever, for all V-normed functors F : A → X

and ϕ : Aop → Set||V with A small and ϕ ∈ Φ[A], the ϕ-weighted colimit of F in X exists.

Moreover, a V-normed functor is called Φ-cocontinuous whenever it preserves all weighted colimits

with weight in Φ.

By Corollary 10.7, a normed category X is Cauchy cocomplete if, and only if, X is Φ-cocomplete.

Furthermore, since the diagram

X Y

PX PY

F

y
X

y
Y

PF

commutes (up to isomorphism) for every V-normed functor F : X → Y, using the notation of

Proposition 10.5 and writing ncolim instead of just colim to stress the normedness of a colimit,

for every Cauchy sequence s : N → X we have

PF (ϕs) = PF (ncolim(y
X
·s)) ∼= ncolim(y

Y
·F · s) = ϕF ·s.

Therefore, F preserves normed colimits of Cauchy sequences if, and only if, F is Φ-cocontinuous.

We denote by Φ-Cocts the 2-category of Φ-cocomplete small V-normed categories, Φ-cocontinuous

V-normed functors, and their natural transformations, and write Φ-COCTS for its higher universe

counterpart. For every V-normed category X, we let Φ(X) denote the smallest replete full V-

normed subcategory of PX containing X and closed under Φ-colimits. Then the Yoneda functor

of X restricts to y
X
: X → Φ(X), and we have that Φ(X) is Φ-cocomplete and the inclusion

functor Φ(X) → PX is Φ-cocontinuous. We now show that Φ(X) serves as a correct-size Cauchy

cocompletion of the V-normed category X, both for small and large X.

Lemma 11.1. For each small normed category X, the presheaf category PX is small.
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Proof. Consider

Φ0 =
∑

A countable

Φ[A],

hence Φ0 is small. By Corollary 10.7, Φ(X) = Φ0(X) for every normed category X. By [5,

Section 7], Φ0(X) is small.

Theorem 11.2 (Proposition 3.6 in [30]). For every V-normed category X and every Cauchy

cocomplete V-normed category Y, the composition with y
X
: X → Φ(X) defines an equivalence

Φ-COCTS(Φ(X),Y) → CAT//V(X,Y);

that is, Φ(−) provides a left biadjoint to the inclusion 2-functor Φ-Cocts → CAT//V. This

equivalence restricts to

Φ-Cocts(Φ(X),Y) → Cat//V(X,Y),

when X and Y are small.

12 The Banach Fixed Point Theorem for normed categories

At őrst, letting the quantale V remain general, but then specializing it to V = R+, we consider

a V-normed category X and a V-normed endofunctor F of X and give sufficient conditions

guaranteeing the existence of an object x with x ∼= Fx, in such a way that they reproduce

Banach’s Fixed Point Theorem when X = iX for a metric space X. The following terminology

makes precise what x ∼= Fx may mean in the V-normed context.

Definition 12.1. For a V-normed functor F : X → X, we say that an object x in X is

• a forward fixed point of F if there is an isomorphism f : x→ Fx of (the ordinary category)

X with k ≤ |f |;

• a backward fixed point of F if there is an isomorphism f : Fx→ x of (the ordinary category)

X with k ≤ |f |;

• a fixed point of F if there is an isomorphism f : x→ Fx in X◦.

Facts 12.2. (1) Trivially, a őxed point of F is both, a forward őxed point and a backward őxed

point of F . By Facts 5.9(2), if X is forward (backward) symmetric, every forward (backward,

respectively) őxed point of F is already a őxed point of F .

(2) Here is a normed functor F of a normed category X in which every object is a forward őxed

point of F , but which has no backward őxed point of F : consider X = iX for X = {0, 1, 2, ...}

with X(m,n) = 0 for m ≤ n and X(m,n) = 1 otherwise, and let F be given by Fn = n+ 1 for

all n. (Note that F is even norm preserving.)

(3) For X as in (2), considering X = i(X ⊗Xop) and its normed endofunctor F ⊗ F op, we have

simultaneously (many) forward and (many) backward őxed points of F⊗F op, but no őxed point.
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For a V-normed endofunctor F : X → X, let us őrst consider any morphism f : x → Fx and,

following the standard procedure of ordinary categorical őxed point theory, form the iteration

sequence sf of f :

x
f

// Fx
Ff

// F 2x
F 2f

// F 3x
F 3f

// ... .

Assuming that, at the ordinary category level, there is a colimit cocone γf : sf → ∆y in X, we

obtain a comparison morphism f : y → Fy with ∆f ·γf = Fγf , which is an isomorphism precisely

when the (ordinary) functor F preserves the colimit. Assuming further that γf actually exhibits

y as a normed colimit of sf , since F is V-normed, in the terminology of Lemma 5.4 not only γf

must be k-cocone, but also Fγf , so that with property (C2b) of Corollary 5.6 one concludes that

f must be k-morphism:

|f | ≥
∨
N

∧
n≥N

|f · (γf )n| =
∨
N

∧
n≥N

|F (γf )n| ≥
∨
N

∧
n≥N

|(γf )n| ≥ k .

Furthermore, if F preserves y (with γf ) as a normed colimit of sf , then trivially also f
−1

must be

a k-morphism. This normed preservation of the colimit is particularly guaranteed if X is forward

or backward symmetric, since with Facts 5.9(2) and the proof of Proposition 5.8 we again obtain

that f
−1

is a k-morphism.

In summary, we proved:

Proposition 12.3. Let F : X → X be a V-normed functor preserving ordinary colimits of

sequences, and let f : x → Fx be a morphism for which the iterated sequence sf has a normed

colimit y in X. Then y is a forward fixed point of F in X, and it is even a fixed point if F

preserves the colimit y as a normed colimit, in particular if X is forward or backward symmetric.

We now consider V = R+ and provide a sufficient condition à la Banach for the existence of

a normed colimit of the iterated sequence of a morphism x → Fx, for a contractive functor

F : X → X, so that there is a (non-negative) Lipschitz factor L < 1, i.e., |Fh| ≤ L|h| for all

morphisms h in X.

Theorem 12.4. Let X be a Cauchy cocomplete normed category, and let F : X → X be a

contractive functor which preserves (ordinary) colimits of sequences. Then, if X contains any

morphism f : x→ Fx with |f | <∞, then X contains a forward fixed point of F , and even a fixed

point of F if F preserves normed colimits of Cauchy sequences; in particular, if X is forward or

backward symmetric.

Proof. In light of the Proposition, it suffices to show that the iterated sequence sf of the given

morphism f with |f | < ∞ is Cauchy. This, however, follows just like in the classical case of a

contraction of a metric space from the Cauchyness of the geometric series given by L: indeed,

for all m ≤ n one has

|(sf )m,n : Fmx→ Fnx| = |Fn−1f · ... · Fmf | ≤ (Ln−1 + · · ·+ Lm)|f | .
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Remarks 12.5. (1) The classical Banach Fixed Point Theorem for the contraction φ of a (non-

empty) complete (classical) metric space X follows when we consider X = iX and F = iφ.

(2) One cannot expect the uniqueness statement for őxed points in the classical metric case to

extend verbatim to normed categories, not even for Lawvere metric spaces: just consider the

coproduct in Met1 of two copies of the Euclidean line. However, the classical uniqueness is an

obvious consequence of the following general statement: Suppose we are given a forward őxed

point x and a backward őxed point y of the contraction F : X → X, with the property that

the minimum of {|h| | h : x → y in X} exists and is positive; then such minimal morphism h0

must be a 0-isomorphism. Indeed, since we have isomorphisms f : x→ Fx and g : Fy → y with

|f | = 0 = |g|, the minimality of |h0| forbids |h0| > 0, as this would imply

|h0| ≤ |g · Fh0 · f | ≤ |g|+ |Fh0|+ |f | = |Fh0| < |h0| .

(3) Theorem 12.4 improves Kubiś’s Corollary 4.2 in [33], since the normed sequential colimits

considered there are not necessarily unique up to 0-isomorphism: see Facts 5.9(3). Actually,

we have not been able to establish a valid proof of Kubǐs’s version of the Banach Fixed Point

Theorem since, in the absence of Condition (C2b), one cannot argue as in our proof of Proposition

12.3.

(4) Under fairly general conditions on a quantale V , the paper [7] provides an in-depth study

of őxed points of a V-endofunctor F in the specialized situation X = iX for a V-category X,

with the contractivity of F expressed by an accompanying łcontrol functionž φ : V → V. Earlier

works in this context include [32], preceded by [44].

We must leave the question of how the approach of [7] may be generalized to arbitrary V-normed

categories and functors for future work.

13 Appendix: Local presentability of Cat//V

We őrst want to show that the category Set//V is locally presentable ([17, 3]) and revisit its

strong generator {Ev | v ∈ V} (see Facts 2.3(4)).

Lemma 13.1. For the least regular cardinal λ larger than the size of the set V, and for every

element v ∈ V, the V-normed set Ev whose only element has norm v is λ-presentable in Set//V,

that is: the functor Pv : Set//V → Set represented by Ev preserves λ-directed colimits.

Proof. For a λ-directed ordered set I (so that any subset of size < λ has an upper bound in I),

we consider an I-indexed diagram (fi,j : Ai → Aj)i≤j with colimit cocone (gi : Ai → B)i∈I in

Set//V . We must show that every morphism b : Ev → B in Set//V has an essentially unique

factorization through some gi. But such morphism is described by an element b ∈ B with v ≤ |b|,

and since B carries the őnal structure with respect to the colimit cocone, we have |b| =
∨
Cb

with

Cb = {|a| | ∃i ∈ I : a ∈ g−1
i b} ⊆ V.
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For every u ∈ Cb we choose an index iu ∈ I and an element au ∈ g−1
iu
b with |au| = u. Since the

terminal object {∗} is λ-presentable in Set and I is λ-directed, there are j ∈ I and a ∈ Aj so

that, for all u ∈ Cb, one has iu ≤ j and fiu,j(au) = a. Therefore gj(a) = b and, for all u ∈ Cb,

u ≤ |a|. Consequently v ≤ |a|, that is, the map Ev → Aj with value a is actually a morphism in

Set//V , and we conclude that b : Ev → B factors through gj : Aj → B. The essential uniqueness

of this factorization follows from the fact that a singleton set is λ-presentable in Set.

Proposition 13.2. The category Set//V is locally presentable.

Proof. The Set-based topological category Set//V is cocomplete, and every object of its strong

generator {Ev | v ∈ V} is locally λ-presentable, with λ as in Lemma 13.1.

Since Set//V is locally presentable, by the general result shown in [29] this important property

gets inherited by (Set//V)-Cat:

Corollary 13.3. The category Cat//V is locally presentable.

14 Appendix: Comparison with idempotent completeness

For a general V-normed category X we brieŕy examine the question of whether constant sequences

in X are Cauchy and have a normed colimit in X. Here a sequence s : N → X is understood to be

constant if sm,n = e : x→ x for all m < n in N. Such morphism e must necessarily be idempotent

in the ordinary category X, and every idempotent morphism deőnes a constant sequence. Recall

that the idempotent e splits in X if e = t · r for some morphisms r, t with r · t = 1 (which already

exist when X has epi-mono factorizations, or equalizers, or coequalizers). Such factorization of e

is unique, up to a uniquely determined isomorphism.

Lemma 14.1. The constant sequence given by an idempotent e : x → x has a colimit in the

ordinary category X if, and only if, e splits.

Proof. Given a colimit cocone ρn : x→ y (n ∈ N) of the constant sequence deőned by e, one has

ρ0 = ρ1 · e = ρ2 · e · e = ρ2 · e = ρ1

and, inductively, ρ1 = ρ2 = · · · =: r. The colimit cocone makes this morphism epic. Furthermore,

the cocone η with ηn = e for all n corresponds to a morphism t : y → x with t · r = e, which also

satisőes r · t = 1y since r · t · r = r · e = r.

Conversely, given the splitting r, t of e, the cocone ρ with ρn := r : x → y for all n which we

call related to the splitting, exhibits y as a colimit of the constant sequence e: since any cocone

α : s→ ∆z is easily seen to satisfy α0 · t = αn · t, we obtain (α0 · t) · ρn = αn for all n ∈ N, and

furthermore, any morphism f : y → z with ∆f · ρ = α necessarily satisőes f · r = α0, so that

f = α0 · t.
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Recall that X (as an ordinary category) is said to be idempotent complete6 if all idempotents

split in X. Idempotent completeness of the category X◦ suffices to provide an affirmative answer

to the question raised at the beginning of this section. More precisely:

Proposition 14.2. The constant sequence s in a V-normed category X given by an idempotent

morphism e is Cauchy precisely when e is a k-morphism. In this case, the constant cocone related

to a given splitting e = r·t of e in X gives a normed colimit of s in X if, and only if, the morphisms

r and t are both k-morphisms.

Proof. The őrst claim is obvious. Also, trivially the constant cocone ρ related to the splitting

r, t of e is a k-cocone if, and only if, r is a k-morphism. Since ρ is an ordinary colimit cocone,

for the proof of the second claim, assuming k ≤ |r|, we just need to show that k ≤ |t| holds if,

and only if, ∨
N∈N

∧
n≥N

|f · ρn| = |f · r| ≤ |f |

for all f : y → z in X. Indeed, from k ≤ |t| one obtains |f · r| ≤ |f · r| ⊗ |t| ≤ |f · r · t| = |f | , and

conversely, exploiting this inequality for f = t, from k ≤ |e| we obtain k ≤ |t · r| ≤ |t|.

Corollary 14.3. For a V-normed category X, if the category X◦ is idempotent complete, every

constant Cauchy sequence in X has a normed colimit.

15 Appendix: Condition A vs. Condition B

For a (unital and commutative) quantale V = (V,≤,⊗, k), we show the logical independence of

conditions (A) and (B) of Section 9.1, i.e., of the conditions

(A) k =
∨

{u ∈ V | u≪ k} and (B) k ∧ (−) : V → V preserves arbitrary joins.

(B) ⇏ (A):

It suffices to őnd an integral quantale which does not satisfy (A) (see Remarks 9.2(2)). This is

not hard; for example, for any inőnite set X, consider the coőnite topology O(X) on X (so that

a non-empty subset U ⊆ X is open precisely when X \U is őnite) as a quantale (O(X),⊆,∩, X).

Then any open set U with U ≪ X must be empty since, otherwise, the őniteness of X \ U

makes the inőnite set X satisfy X =
⋃
x∈U X \ {x}, whereas no x ∈ U allows U ⊆ X \ {x}.

Consequently, (A) is violated in O(X).

(A) ⇏ (B) (see [20]):

6We adopt here the terminology used in the recent paper [21]. Other terms used in the literature are Karoubi

complete, Lawvere complete or, most frequently, Cauchy complete. We avoid the latter term, not to risk

confusion with the dualization of our term of Cauchy cocompleteness for normed categories which is far more

directly modelled after Cauchy’s original ideas than idempotent completeness (of any ŕavour) is. Besides, as

a concept that gained its recognition through various important contributions in different contexts, it may

indeed be difficult to attach just one person’s name to idempotent completeness.
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Consider the 3-element cyclic group Z3 = ({0, 1, 2},+) as a discretely ordered set. Its MacNeille

completion adds the top and bottom elements ⊤ and ⊥ to it, giving us the 5-element diamond

lattice M3, with atoms 0, 1, 2. This lattice becomes a quantale as in Examples 3.5(2). The

quantalic unit 0 makes (B) fail in M3, but (A) fails as well. To overcome the failure of (A),

one extends the lattice M3 by two new elements, k and ⊤, and obtains the desired 7-element

quantale M3 satisfying (A) but not (B). Indeed, its quantalic operation ⊗ extends the tensor

product of M3 and makes k a new tensor-neutral element in M3, above only 0 and ⊥, while ⊤

becomes a new top element in M3; tensoring by ⊤ is deőned by ⊤⊗⊤ = ⊤ and ⊤⊗ α = ⊤ for

α ∈ {⊤, 0, 1, 2}. The element k is trivially join prime in M3 (i.e., k ≪ k), but k ∧ − does not

distribute over the join 1 ∨ 2.

⊤

⊤ k

1 0 2

⊥

⊗ ⊤ k ⊤ 0 1 2 ⊥

⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊥

k ⊤ k ⊤ 0 1 2 ⊥

⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊤ ⊥

0 ⊤ 0 ⊤ 0 1 2 ⊥

1 ⊤ 1 ⊤ 1 2 0 ⊥

2 ⊤ 2 ⊤ 2 0 1 ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Remarks 15.1. (1) Following a question posed at the occasion of the second-named author’s

presentation of some of the results of this paper at the Portuguese Category Seminar in October

2023, a őrst witness for (A) ⇏ (B) was communicated to the authors shortly afterwards by Javier

Gutiérrez-García. His subsequent paper [20] with Ulrich Höhle comprehensively analyzes and

characterizes many types of quantales with (A) ⇏ (B), even in the context of not necessarily

commutative or unital quantales. The above example of a quantale witnessing (A) ⇏ (B) is

smallest with that property, but there are other such 7-element quantales. Remarkably, as men-

tioned in Remark 9.6 and shown in [20], the procedure of őnding counter-examples as sketched

here starting with the group Z3 may be followed with any group G of at least 3 elements instead.

(2) There are many inőnite topological spaces X (other than those carrying the coőnite topology)

such that O(X) witnesses (B) ⇏ (A), but none of them can be Alexandroff (so that O(X) would

be closed under arbitrary intersection). Indeed, one easily veriőes that the quantale O(X)

is completely distributive for every Alexandroff space X. Other types of integral quantales

satisfying (B) but violating (A) include those complete MV-algebras whose underlying lattice

fails to be completely distributive. Indeed, by Proposition 3.13 of [19], such MV-algebras must

fail condition (A).
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