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Abstract

Cross-validation is usually employed to evaluate the performance of a given statistical

methodology. When such a methodology depends on a number of tuning parameters,

cross-validation proves to be helpful to select the parameters that optimize the esti-

mated performance. In this paper, however, a very different and nonstandard use of

cross-validation is investigated. Instead of focusing on the cross-validated parameters,

the main interest is switched to the estimated value of the error criterion at optimal

performance. It is shown that this approach is able to provide consistent and efficient

estimates of some density functionals, with the noteworthy feature that these estimates

do not rely on the choice of any further tuning parameter, in that sense, they can be

considered to be purely empirical. Here, a base case of application of this new paradigm

is developed in full detail, while many other possible extensions are hinted as well.
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1 Introduction

Cross-validation is a very general and widely used technique in statistics and machine

learning (see Arlot and Celisse, 2010). Generally speaking, it is used to evaluate how a

statistical procedure, constructed on the basis of some training data, performs on a set of

independent test data. Usually, the statistical procedure of interest depends on a number of

tuning parameters, and hence cross-validation is typically employed to choose those tuning

parameters in order to optimize the estimated performance.

Here, we explore a completely different use of cross-validation, which apparently seems

not to have been exploited before. In the following, this new approach is fully developed

in the context of a specific problem in nonparametric estimation, though we note that its

scope of applicability is much wider, and we also briefly examine other contexts where this

principle yields new methodology.

The base case on which we focus is the estimation of the integral of a squared density,

since it represents the simplest problem to which our novel methodology can be applied.

This functional arises when studying the efficiency of rank-based statistics, and in some

other contexts like projection pursuit and symmetry testing or, more recently, in relation

to causal estimation (Kennedy, Balakrishnan and Wasserman, 2020). The problem has

been studied by many authors, through different methodologies, and it is by now very well

understood (see Chacón and Tenreiro, 2012, for a detailed account of contributions on the

subject). Yet, it still continues to motivate new research on the topic; see, for instance, the

exhaustive investigations of Goldenshluger and Lepski (2022a,b).

Among the existing estimators, a number of them are based on kernel smoothing; see

Sheather, Hettmansperger and Donald (1994), and references therein, or Giné and Nickl

(2008) and Wu et al. (2014), for more recent contributions. Other approaches make use of

orthogonal series, as in Laurent (1996), Klemelä (2006) or Tenreiro (2020); or wavelets, as

in Kerkyacharian and Picard (1996) and Prakasa Rao (1999); or are motivated by model

selection ideas, see Laurent and Massart (2000) and Laurent (2005). In addition, estimators

based on spacings were studied in Hall (1984), Khasimov (1989), or van Es (1992).

All those previous approaches share one feature in common: they depend on some

tuning parameter that needs to be chosen (a bandwidth, a cutoff, a spacing order, etc). In

contrast, the main novelty in our proposal is that it is fully empirical, in the sense that

the new estimator is computed solely from the data, with no tuning parameters involved.

Despite this simplicity, the method is shown to be efficient, in the sense that it reaches the

information bound and the fastest convergence rate for the problem, provided the density

is smooth enough.

In Section 2 we develop the new methodology for the base problem, illustrate how the

proposed estimator can be obtained via three different motivations, and accurately describe

its large-sample behaviour. Section 3 contains a brief simulation study that shows the
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exceptional performance of the new proposal in practice. Section 4 deals with some selected

extensions to highlight the wide applicability of the introduced principle. More intricate

developments of the same idea are shown in Section 5 to yield novel, fully empirical selectors

of the smoothing parameters for histogram and kernel density estimation. Finally, Section

6 contains a discussion on the implications of this new paradigm, and suggests further

possibilities for future applications.

2 Estimation of the integral of a squared density

Consider independent and identically distributed univariate random variables X1, . . . , Xn,

with a common continuous distribution function F with density f . The goal of this section

is to present and study the properties of a new estimator of the statistical functional Ë =∫
R
f(x)2dx =

∫
R
f(x)dF (x). As noted in the Introduction, this problem can be considered

as the base case on which we will develop our novel methodology in full detail, but we will

extend it in many other directions afterwards.

Following the terminology in Jones and Sheather (1991), from the above integral ex-

pressions of Ë two different but related ‘diagonals-in’ kernel estimators can be proposed:

first, Ë̃7
D(g) =

∫
R
f̂(x; g)2dx, but also Ë̃D(g) =

∫
R
f̂(x; g)dFn(x) = n21

∑n
i=1 f̂(Xi; g). Here,

Fn denotes the empirical distribution function and f̂(x; g) = n21
∑n

j=1 Lg(x 2Xj) stands

for the kernel density estimator, with kernel L (a symmetric integrable function with unit

integral) and bandwidth g > 0, and Lg(x) = L(x/g)/g is the scaled kernel. More explicitly,

Ë̃7
D(g) = n22

n∑

i,j=1

(L 7 L)g(Xi 2Xj) and Ë̃D(g) = n22
n∑

i,j=1

Lg(Xi 2Xj),

where 7 is the convolution product. This shows that both estimators are in fact of the same

type, with the only difference that Ë̃7
D(g) employs the convolved kernel L 7 L while Ë̃D(g)

simply makes use of L. In addition, previously Hall and Marron (1987) noted that Ë̃D(g)

contains the non-stochastic term n21Lg(0) and suggested to remove it and consider instead

the closely-related ‘no-diagonals’ estimator Ë̃ND(g) = {n(n21)}21
∑

i 6=j Lg(Xi2Xj). Both

estimators can be shown to be consistent if g c gn satisfies g ³ 0 and ng ³ > as n ³ >
(Bhattacharya and Roussas, 1969; Giné and Nickl, 2008; Chacón and Tenreiro, 2012).

Nevertheless, the choice of g in practice can be problematic: it is known that the optimal

bandwidth depends on the integral of squared density derivatives of higher order (Wand

and Jones, 1995, Section 3.5), so this raises the problem of estimating these higher order

functionals. The options here are to use yet another kernel estimation stage to estimate

those functionals, with some pilot bandwidth (and face again some further bandwidth se-

lection problem), or, more simply, to adjust the smoothing level in order to be optimal for

some location-scale family based on a reference distribution. In fact, in order to avoid an

infinitely cyclic reasoning, the reference distribution approach must be employed at some
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initial step to start this process of multiple kernel stages. However, as noted in Jones,

Marron and Sheather (1996), if a simple unimodal distribution is taken as a reference, then

any bandwidth selector relying on such an initial stage will not pass a ‘bimodality test’, in

the sense that its performance could be made arbitrarily bad by sampling from a bimodal

distribution with far enough modes.

Here we present a new estimator of Ë which, despite being closely connected with the

former kernel methods, does not require the specification of a bandwidth or any other tuning

parameter. Thus, it allows us to overcome the bandwidth selection difficulties.

The rationale for our novel proposal is the following: recall, on the other hand, that

to measure the performance of f̂(·; g) as an estimator of f it is common to use the mean

integrated squared error MISE(g) = E{ISE(g)}, where ISE(g) =
∫
R
{f̂(x; g)2f(x)}2dx. An

unbiased estimator of MISE(g) 2 Ë is given the cross-validation criterion (Rudemo, 1982;

Bowman, 1984), which can be explicitly written as

CV(g) = (ng)21R(L) + {n(n2 1)}21
∑

i 6=j

{(12 n21)(L 7 L)g 2 2Lg}(Xi 2Xj),

where R(³) =
∫
R
³(x)2dx for any square integrable function ³. Since CV(g) is unbiased for

MISE(g) 2 Ë for each g > 0 and ming>0MISE(g) ³ 0 as n ³ > (Chacón et al., 2007), it

is reasonable to expect that ming>0CV(g) ³ 2Ë in probability. This suggests considering

the estimator of Ë defined as

Ë̂ = 2min
g>0

CV(g).

Such a minimum is actually attained if R(L) < 2L(0) (Stone, 1984), so all the kernels

considered henceforth are assumed to satisfy this condition.

A few remarks about this new estimator are in order: first, note that Ë̂ is fully empirical,

in the sense that it does not require the specification of any further tuning parameter.

Second, observe that Ë̂ makes quite an unconventional use of cross-validation: whereas its

classical application focuses on its minimizer ĝCV = argming>0CV(g), which is seen as a

data-based bandwidth that seeks to mimic the behaviour of gMISE = argming>0MISE(g),

here the main interest lies on the minimum value that the cross-validation criterion attains,

as an estimator of 2Ë.
Moreover, an additional independent motivation for Ë̂ can be given. Notice that the

cross-validation criterion can be written in terms of the previously introduced kernel esti-

mators of Ë, namely CV(g) = Ë̃7
D(g)2 2Ë̃ND(g), so that

Ë̂ = 2min
g>0

{Ë̃7
D(g)2 2Ë̃ND(g)} = max

g>0
{2Ë̃ND(g)2 Ë̃7

D(g)}. (1)

Since Ë̃D(g) and Ë̃7
ND(g) are consistent estimators of Ë as long as g ³ 0 and ng ³ >,

then the same applies to the estimator

〈

Ë(g) = 2Ë̃ND(g) 2 Ë̃7
D(g). But ĝCV/gMISE ³ 1 in

probability (Hall, 1983), with gMISE ³ 0 and ngMISE ³ 0 under fairly general assumptions
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(Chacón et al., 2007), which means that we can expect Ë̂ = 2CV(ĝCV) to be a consistent

estimator of Ë.

A further third motivation for Ë̂ stems from the fact that we can also express

Ë̂ = max
g>0

{
Ë̃"
ND(g)2W (g)

}
, (2)

where Ë̃"
ND(g) = {n(n2 1)}21

∑
i 6=j(2L2 L 7 L)g(Xi 2Xj) is of the same type as Ë̃ND(g),

but based on the “twicing” kernel 2L2L 7L. Here, W (g) = Ë̃"
ND(g)2 2Ë̃ND(g) + Ë̃7

D(g) =

(ng)21R(L) + OP (n
21) is such that 0 f W (g) f (ng)21R(L) if the kernel L is positive

(Devroye, 1989, Lemma 3), so it can be understood as a penalization term, and this unveils

Ë̂ as closely connected to the estimators based on model selection (see Laurent and Massart,

2000; Laurent, 2005).

Thus, Ë̂ is indeed based on kernel smoothing, but its most remarkable and striking

feature is that its bandwidth is implicitly chosen, no multistage process or reference distri-

bution are required. It remains intriguing, however, why the maximum of

〈

Ë(g) over the

possible bandwidths should result in a good choice. The key to understand this feature lies

in the behaviour of

〈

Ë(g) as an estimator of Ë, which is analyzed in detail in Appendix A of

the Supplementary Material. The crucial observation is that minimizing the mean squared

error of

〈

Ë(g) is asymptotically equivalent to minimizing its squared bias; this is an attribute

that it shares with estimators of type Ë̃D(g) (Jones and Sheather, 1991; Chacón and Ten-

reiro, 2012). Moreover, it is clear that the bias of

〈

Ë(g) = 2CV(g) equals 2MISE(g) < 0;

hence the bandwidth g that minimizes the squared bias is precisely gMISE, which is in turn

estimated by the cross validation bandwidth ĝCV that is implicitly used in Ë̂.

However, it is a common conclusion in comparative bandwidth selection studies that

the cross-validation bandwidth is unacceptably unstable for its large variability (see, e.g.,

Cao, Cuevas and González-Manteiga, 1994), therefore, the fact that Ë̂ implicitly depends

on ĝCV may suggest that this could be the case for this estimator too. Notwithstanding, the

next result shows yet another unforeseen and remarkable property of this estimator: it is

consistent under minimal assumptions and, for a smooth enough density, it is asymptotically

efficient since it is
:
n-consistent and attains the information bound for this problem.

The smoothness of f will be defined in terms of Sobolev spaces. Denote by ×f (t) =∫
R
eitxf(x)dx the characteristic function associated to f and define the Sobolev class of

densities of order ³ > 0 as H³ = {densities f such that
∫
R
|t|2³ |×f (t)|2dt < >}. The

asymptotic behaviour of the new estimator Ë̂ is described in the next result.

Theorem 1. If the density f is bounded and L is a symmetric density of bounded variation,

continuous at zero and such that R(L) < 2L(0), then

(
Ë̂ 2 Ë 2 2n21

n∑

i=1

Yi

)/
MISE(gMISE) ³ 21 almost surely,
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where Yi = f(Xi)2 Ë. As a consequence, Ë̂ is a strongly consistent estimator of Ë.

In addition, assume that
∫
R
x2L(x)dx < > and f * H³ for some ³ > 0. If ³ > 1/2,

then
:
n(Ë̂2Ë) d22³ N(0, 4Ç2), where Ç2 = Var{f(X1)} =

∫
R
f(x)3dx2Ë2. If 0 < ³ f 1/2,

then Ë̂ 2 Ë = OP (n
22³/(2³+1)).

Remark 1. The proof of the first part of Theorem 1 is given in Section 7 below. It follows

that Ë̂2Ë = 2n21
∑n

i=1 Yi+OP {MISE(gMISE)} so, asymptotically, Ë̂2Ë behaves as (twice)

an average of centred random variables plus a remainder. To prove the second statement

of the theorem, note that the first term is easily described with a central limit theorem,

so it suffices to study the rate of convergence of MISE(gMISE). Proceeding as in the proof

of Theorem 1.5 in Tsybakov (2009) it can be shown that MISE(gMISE) = O(n22m/(2m+1)),

where m = min{³, 2}. Hence, the remainder is indeed negligible if ³ > 1/2, but otherwise

becomes the dominant term, in which case it is of order O(n22³/(2³+1)).

Remark 2. Unfortunately, Theorem 1 shows that the estimator Ë is not rate-adaptive.

Bickel and Ritov (1988) showed that Ë can be estimated at rate n21/2 if f is ³-Hölder with

³ > 1/4 and at rate n24³/(4³+1) if ³ f 1/4; however, in the related Sobolev framework,

the estimator Ë̂ needs ³ > 1/2 to be asymptotically efficient. In any case, this is not

a too restrictive smoothness assumption since it holds if f is absolutely continuous and

its derivative is square integrable. Furthermore, Ë̂ is still
:
n-consistent (though with an

asymptotic variance greater than 4Ç2) if ³ = 1/2, which covers the case of a density with a

finite number of discontinuity points (van Eeden, 1985). Again, the main advantage of Ë̂ is

that it does not requiere any other further tuning parameter to be chosen.

Remark 3. As noted above, the motivation of Ë̂ in terms of a penalized criterion reveals

some interesting connections with the estimation of Ë based on model selection. In that

framework, a judicious choice of the penalization allows for the construction of rate-adaptive

estimators; therefore, this raises the open question of whether a suitable modification of the

penalty term in (2) could yield a rate-adaptive estimator in this context as well.

3 A brief numerical study

To explore the performance of the new estimator Ë̂ in practice, a brief simulation study

was carried out. Due to their nice convolution properties, the test densities included in this

study were the 15 normal mixture densities introduced in Marron and Wand (1992), plus

the 10-modal normal mixture described in Loader (1999).

For the sake of brevity, only the behaviour of three estimators of Ë is reported here:

the 2-stage solve-the-equation kernel estimator of Sheather, Hettmansperger and Donald

(1994), the 2-stage direct-plug-in kernel estimator of Jones and Sheather (1991) and the

new method introduced in Section 2. They are labeled as Ë̂SH, Ë̂JS and Ë̂CT, respectively,

in the sequel. In all cases, the standard normal density was used as the kernel. These
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three estimators share the feature that the choice of all the tuning parameters required for

their implementation (none, in the case of the new proposal) were clearly specified in their

respective references.

Another estimator that fulfils that condition is the one proposed in Wu (1995); however,

it showed an unsatisfactory performance in some preliminary experiments and was left out

of the final comparison. Many other proposals in the literature, even if shown to enjoy nice

theoretical properties, depended on some unspecified constants, with no explicit indication

on how to choose them in practice, and for this reason they were not included in the study

either.

Two sample sizes were explored, n = 100 and n = 1000. For each of these two scenarios,

B = 500 samples of size n from each test density were drawn. The performance of a certain

estimator of Ë, say Ë̂XY, with regard to some test density f , was measured by the relative

root mean squared error, RRMSE = {B21
∑B

b=1(Ë̂XY,b 2 Ë)2}1/2/Ë, where Ë̂XY,b is the

estimate obtained from the b-th synthetic sample.

To compare the performance of the estimators in the study, for each test density we

computed the RRMSE of each estimator divided by the minimum RRMSE among the

three of them for that density model. Such a ratio represents how bad an estimator is with

respect to the best, which corresponds to a ratio value of 1.000. An extended description

with more detailed results for each density model and sample size is included in Appendix

B of the Supplementary Material. Here, in Table 3, to save space we only include three

summary statistics along the 16 test densities: the mean, minimum and maximum RRMSE

ratio for each estimator.

n = 100 n = 1000

CT SH JS CT SH JS

Mean 1.095 1.261 1.335 1.044 1.300 2.246

Median 1.080 1.113 1.007 1.019 1.029 1.032

Minimum 1.000 1.000 1.000 1.000 1.000 1.000

Maximum 1.262 3.778 3.828 1.220 5.219 16.672

Table 1: Summary statistics for the RRMSE ratios of the three compared methods, along

the 16 test densities. A smaller ratio corresponds to a lower error.

The main conclusion from Table 3 is that the new method is always the best or very

close to the best in terms of performance. On average, it is about 10% worst than the best

for n = 100 and 5% worst than the best for n = 1000. The fact that the minimum along

the 16 density models is 1.000 for all the methods indicates that each of them is the best

for at least one of the considered test densities.

The relatively high maximum ratios observed for the estimators Ë̂SH and Ë̂JS both

correspond to the case of Loader’s ten-modal density, for which Ë̂CT performs best. While
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Ë̂CT obtains reasonably good results already for n = 100, the other two show a relatively

bad performance even for n = 1000. It is worth remarking that this is a density model

for which the ‘local variability’ in each of the ten components is very poorly modelled by

a global, unimodal reference, and this may be the crucial factor hindering the performance

of Ë̂SH and Ë̂JS (which eventually rely on a normal-reference initial stage).

4 Extensions

A great deal of extensions of the main new idea are possible, which shows its applicability in

other contexts. In the following two sections we briefly explore some of these possibilities.

4.1 Directional data

The use of a reference distribution in an initial estimation step is especially problematic

for the case of directional data. Attempting to fit circular data using a simple unimodal

reference distribution, when they were truly drawn from a density with two antipodal

modes, often leads to a fit that is close to the uniform distribution (see Oliveira, Crujeiras

and Rodŕıguez-Casal, 2012) and, therefore, to severely oversmoothed kernel estimates if

they are based on the reference distribution approach.

Next we show how our new methodology can be easily adapted to estimate the integral

of the squared density of a circular distribution. Let Θ1, . . . ,Θn be a random sample from

a circular density f : [0, 2Ã) ³ R. The goal here is to estimate Ë =
∫ 2Ã
0 f(»)2d», and we will

rely on the kernel density estimator in this context, given by f̂(»; ¿) = n21
∑n

i=1K¿(»2Θi),

where now ¿ > 0 is a concentration parameter, which acts as the bandwidth, and K¿ is

a circular kernel function. Quite commonly, the von Mises kernel with concentration ¿ is

employed, so that K¿(» 2 Θi) = exp{¿(» 2 Θi)}/{2ÃI0(¿)}), where I0 denotes the 0-order

modified Bessel function of the first kind (see Taylor, 2008).

The cross-validation criterion CV(¿) for density estimation with spherical data was

introduced in Hall, Watson and Cabrera (1987). There, it was shown that its minimum

expected value satisfies min¿>0 E{CV(¿)} ³ 2Ë as n³ >. Thus, arguing as in the linear

case above, a reasonable estimator of Ë can be defined as Ë̂ = 2min¿>0CV(¿).

The practical performance of this estimator was investigated in Chacón (2017), by

comparing it with the usual kernel estimator proposed in Di Marzio, Panzera and Tay-

lor (2011) on the basis of the 20 circular mixture models introduced in Oliveira, Crujeiras

and Rodŕıguez-Casal (2012). The new estimator performed best or second best (and quite

close to the best) for all the models. For those distributions with antipodal modes, the

classical 2-stage kernel estimator with an initial von Mises reference showed a specially bad

performance, as expected due to the aforementioned fitting issue; meanwhile, on the con-

trary, those models posed no problem at all for the new proposal, which does not rely on

any reference distribution.
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4.2 Measurement errors

The problem of estimating Ë has also been considered for the case in which the data present

measurement errors (Delaigle and Gijbels, 2002). In that context, instead of observing the

error-free variables X1, . . . , Xn, we are given a sample Y1, . . . , Yn such that Yj = Xj + ·j ,

where the unobservable errors ·1, . . . , ·n are independent of X1, . . . , Xn and are assumed to

have a fully-known density f·. Hence, the problem is that we are interested in estimating

Ë =
∫
R
fX(x)2dx but we observe a sample with density fY = fX 7 f·, where f c fX in this

section.

The classical approach here is based on deconvolution kernel density estimators: noting

that the characteristic functions of Y , X and · are related through ×Y = ×X×· with fully

known ×·, then by Fourier inversion fX is estimated by f̂X(x; g) = (ng)21
∑n

i=1K·(
x2Yi

g ; g),

where K·(x; g) = (2Ã)21
∫
R
exp(2itx)×K(t)/×·(t/g)dt, with ×K(t) =

∫
R
exp(itx)K(x)dx

standing for the Fourier transform of a kernel function K. The estimator of Ë studied in

Delaigle and Gijbels (2002) is then Ë̃7
D(g) =

∫
R
f̂X(x; g)2dx, by analogy with the error-free

case. A multi-stage procedure with a parametric start is proposed by those authors to select

the bandwidth g.

In contrast, Hesse (1999) derived a cross-validation criterion CV(g) for the density

estimator f̂X(x; g) which, as in the error-free case, satisfies E[CV(g)] = MISE(g)2Ë, where
now MISE(g) = E

∫
R
{f̂X(x; g) 2 fX(x)}2dx. Therefore, a bandwidth-free estimator can

be analogously defined as Ë̂ = 2ming>0CV(g) in this context. In this case, both the

theoretical and practical investigation of this estimator are open for future research.

4.3 Entropy estimation

Entropy estimation is a topic of great interest, both for statisticians (see Berrett, Samworth

and Yuan, 2019; Han et al., 2020) but also within the Information Theory community and

other areas (see the survey of Verdú, 2019). A number of nonparametric entropy estimators

and its applications were reviewed in Beirlant et al. (1997).

The entropy of a distribution with density f is defined as H = 2
∫
R
f(x) log f(x)dx.

This statistical functional presents some similarities with Ë. For instance, it can be alterna-

tively written as H = 2
∫
R
log f(x)dF (x), and this suggests two possible estimators: first,

H̃7
D(g) = 2

∫
R
f̂(x; g) log f̂(x; g)dx, but also H̃D(g) = 2n21

∑n
i=1 log f̂(Xi; g). The latter is

more commonly used in practice, since it avoids numerical integration. Both of them contain

some non-stochastic terms, so a third possibility is to use H̃ND(g) = 2n21
∑n

i=1 log f̂i(Xi; g),

where f̂i(x; g) = {(n2 1)h}21
∑

j 6=iK{(x2Xj)/h}.
Bandwidth selection for these estimators is a difficult and relatively unexplored topic.

However, the methodology hereby introduced also circumvents this problem as follows: the

last of the previous three estimators satisfies H̃ND(g) = 2LCV(g), where the latter acronym

stands for likelihood cross-validation, a criterion related to measuring the density estima-
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tion error through the Kullback-Leibler divergence KL(g) =
∫
R
f(x) log{f(x)/f̂(x; g)}dx.

In fact, Hall (1987) showed that E[H̃ND(g)] = 2E[LCV(g)] = E[KL(g)] + H so, since

0 f ming>0 E[KL(g)] ³ 0 under appropriate conditions, it follows that a reasonable, fully

empirical entropy estimator is given by

Ĥ = min
g>0

H̃ND(g) = 2n21max
g>0

n∑

i=1

log f̂i(Xi; g).

Incidentally, this coincides exactly with the bandwidth selection recommendation for H̃ND(g)

given in Hall and Morton (1993, Section 3), albeit with a slightly different motivation. Thus,

the theoretical properties and practical performance of Ĥ can be consulted in that paper.

Recently, Devroye and Györfi (2022) posed the open problem of finding a fully data-

driven entropy estimate that is consistent under the only condition that H <>. Given that

cross-validation techniques are typically consistent under minimal conditions, we believe

that Ĥ is a firm candidate to satisfy the requirements of that open problem.

4.4 Estimation of integrated squared density derivatives

The problem of estimating Ë is a particular instance of the more general problem of esti-

mating the integrated squared r-th density derivative »r =
∫
R
f (r)(x)2dx. This functional

is of great interest for the problem of automatic smoothing parmeter selection for density

estimation, especially the cases r = 1 for the histogram estimator, and r = 2 for the kernel

estimator (see Hall and Marron, 1987; Jones and Sheather, 1991; Wand, 1997).

This more general problem is connected to the estimation of the r-th density deriva-

tive f (r)(x). The usual estimator is constructed by taking the r-th derivative of the kernel

density estimator f̂ (r)(x; g) = (ngr+1)21
∑n

i=1 L
(r){(x 2 Xi)/g}, and its error is globally

measured through MISEr(g) = E{ISEr(g)}, where ISEr(g) =
∫
R
{f̂ (r)(x; g) 2 f (r)(x)}2dx.

For kernel density derivative estimation, the cross-validation criterion CVr(g) was first

introduced by Härdle, Marron and Wand (1990). It is shown in Chacón and Duong

(2013) that E[CVr(g)] = MISEr(g) 2 »r so, since ming>0MISEr(g) ³ 0 (Chacón, Duong

and Wand, 2011), again this justifies defining the fully empirical estimator of »r as »̂r =

2ming>0CVr(g).

The theoretical properties of »̂r could be deduced by following the same steps as for the

case r = 0 (i.e., the estimation of Ë) in Theorem 1 and Remark 1. The error »̂r 2 »r can

be written as an average of centred random variables plus a remainder of the same order as

ming>0MISEr(g). The latter can be shown to be O(n22m/(2m+2r+1)) when f (r) * H³ with

³ > r and L has a finite second-order moment, where m = min{³ 2 r, 2}, thus leading to a
:
n-consistent estimator whenever ³ g 2r+1/2, provided r * {0, 1}. However, preliminary

numerical work seems to suggest that the performance of »̂r might not be as satisfactory

for r g 1 as for r = 0, so this remains an avenue for further research.
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5 Applications for density estimation

All the previous extensions deal with the problem of estimating a real-valued statistical

functional. In a step further, in terms of complexity, this section investigates how to apply

the new methodology for the estimation of the error function of density estimators.

5.1 Bandwidth selection for kernel density estimation

Here we show how an application of the same principles introduced in this paper could

also be useful to suggest a new bandwidth selector for the classical kernel density estima-

tor, closely related to the smoothed cross validation methodology, but with an automatic,

implicit choice of the pilot bandwidth.

Consider now the kernel density estimator f̂(x;h) = n21
∑n

i=1Kh(x 2Xi) with kernel

K and bandwidth h > 0. As before, let us measure its performance in terms of MISE(h) =

E
∫
R
{f̂(x;h)2f(x)}2dx and denote the optimal level of smoothing in this sense by hMISE =

argminh>0MISE(h). The goal is to find an estimator of the MISE function, which would

suggest an automatic bandwidth choice by minimizing such an error estimate.

First, notice that the MISE can be expressed as

MISE(h) = {(nh)21R(K)2 n21R(Kh 7 f)}+ {R(Kh 7 f)2 2RK,h(f) +R(f)}, (3)

where we are denotingR(³) =
∫
R
³(x)2dx for any square integrable function ³ andR³,h(f) =∫

R
(³h 7 f)(x)f(x)dx for any integrable function ³ (Chacón and Duong, 2018). The first

term in curly brackets in (3) corresponds to the integrated variance of f̂(·;h), while the

second one is the integrated squared bias.

The MISE is usually simplified by keeping only the dominant term of the integrated

variance, namely (nh)21R(K), since this can be shown to have no effect on bandwidth

selection (Chacón and Duong, 2011, Theorem 1). This leads to the criterion

M(h) = (nh)21R(K) + {R(Kh 7 f)2 2RK,h(f) +R(f)}, (4)

so that the problem of estimating the MISE reduces to estimating the integrated squared

bias. In addition, note that R(Kh 7 f) = RK7K,h(f) for symmetric K. Therefore, it suffices

to investigate how to estimate functionals of the type R³,h(f).

It is convenient to introduce here the notation K0 for the Dirac delta function, as in

Jones, Marron and Park (1991). It is not a proper function, but a generalized function (see

Gel’fand and Shilov, 1964) which acts within an integral so that
∫
R
³(x)K0(x)dx = ³(0) for

any integrable function ³; in particular, this implies that K0 7 ³ = ³. The notation K0 is

well suited because Kh 7 ³(x) ³ ³(x) = K0 7 ³(x) as h³ 0 if x is a point of continuity of

a bounded function ³ (Wheeden and Zygmund, 2015, Theorem 9.8). With this notation,

the error criterion (4) can be simply written as

M(h) = (nh)21R(K) +RK7K22K+K0,h(f), (5)

11



so it suffices to estimate R³,h(f) for this particular instance of ³ = K 7K 2 2K +K0.

Next, by writing R³,h(f) as Ë³,h =
∫
R
(³h 7 f)(x)dF (x) it is immediate to recognize

its similarity with Ë =
∫
R
f(x)dF (x). The latter is the same as the former, except for the

convolution with ³h in the integrand and, besides, for the Dirac delta ³h = K0 we have

Ë³,0 = Ë. Therefore, the previously introduced methodology regarding Ë can be adapted

to estimate Ë³,h and, hence, the error criterion M(h).

For instance, the smoothed cross validation criterion (Hall, Marron and Park, 1992) is

obtained by estimating R³,h(f) = Ë³,h in (5) by

Ë̃7
³,h(g) =

∫

R

³h 7 f̂(x; g)f̂(x; g)dx = n22
n∑

i,j=1

³h 7 (L 7 L)g(Xi 2Xj), (6)

thus leading to SCV(h; g) = (nh)21R(K) + Ë̃7
K7K22K+K0,h

(g) as an estimator of M(h). A

very careful choice of the pilot bandwidth g, depending on h, can make the SCV selector

ĥSCV c ĥSCV(g) = argminh>0 SCV(h; g) attain the fastest possible relative convergence rate

towards hMISE (Jones, Marron and Park, 1991).

The choice of such a pilot bandwidth g, though, is a very delicate issue that involves

a multi-stage kernel estimation process and, eventually, the use of an initial reference dis-

tribution, with all the aforementioned problems associated to this strategy. However, with

the new methodology hereby introduced, it is possible to define an estimator of Ë³,h which

makes use of an implicitly defined pilot smoothing level, so that it does not need the spec-

ification of any further tuning parameters (although it is also based on kernel smoothing).

Let us elaborate on this.

Any of the three motivations for the estimator Ë̂ of Ë can be adapted for the estima-

tion of Ë³,h, but perhaps the most straightforward technique is the one that combines the

diagonals-in estimator introduced in (6) with the no-diagonals estimator. Explicitly, the

new, bandwidth-free estimator of Ë³,h is defined as

Ë̂³,h = max
g>0

{ 2

n(n2 1)

∑

i 6=j

³h 7 Lg(Xi 2Xj)2
1

n2

n∑

i,j=1

³h 7 (L 7 L)g(Xi 2Xj)
}
.

By using this estimator we obtain a fully empirical estimator of the error criterion M(h),

namely M̂(h) = (nh)21R(K)+Ë̂K7K22K+K0,h. The corresponding novel bandwidth selector

ĥ = argminh>0 M̂(h) can thus be seen as a variant of the SCV approach, but with the

remarkable difference that no pilot bandwidth choice is needed for its implementation.

Not relying on any auxiliary tuning parameter, the new ĥ can be easily implemented

(once the involved double optimization process is handled carefully), and its practical per-

formance can be inspected in a simulation study. Indeed, some preliminary results were

reported in Chacón (2015), showing that ĥ effectively reduces the instability of the classical

cross-validation selector for simple models (as expected from its pilot pre-smoothing fea-

ture), while at the same time it does not exhibit a too large bias in more complex scenarios
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(since it does not need an initial stage depending on a reference distribution). Its theoret-

ical analysis, however, is quite more complicated than usual (partly because of the double

optimization as well), so for the moment it stands as an open problem.

5.2 Histogram estimates

Another popular density estimator is the histogram. Even if it is by now well-understood

that histograms are not as efficient as kernel density estimators, they still stand among

the most commonly used density estimators, due to their simplicity. A detailed study of

histograms as density estimators is contained in Chapter 3 of Scott (2015).

To construct a histogram the first step is to divide the real line into bins {Bk}k*Z. To

fix ideas we will simply consider the anchor point to be the origin, and all bins to have

the same binwidth b, so that Bk = [kb, (k + 1)b). Then, the histogram density estimator is

defined as f̃(x; b) = (nb)21
∑

k*Z ¿kIBk
(x), where IA denotes the indicator function of a set

A and ¿k c ¿k(b) is the number of sample points falling within Bk.

The MISE of the histogram estimate can be exactly written as

MISE(b) = (nb)21 2 (nb)21(n+ 1)
∑

k*Z

p2k +R(f), (7)

where pk c pk(b) =
∫
Bk
f(x)dx. On the other hand, its shifted version MISE(b) 2 R(f) is

unbiasedly estimated by CV(b) = 2/{(n21)b}2(n+1)/{n2(n21)b}
∑

k*Z ¿
2
k (Scott, 2015).

So again, as in Section 2, a sensible, fully empirical estimate of R(f) can be proposed as

Ë̆ = 2minb>0CV(b).

To highlight the similarities of the histogram-type estimate Ë̆ and the kernel-based

estimate Ë̂, it is convenient to note that

∑

k*Z

¿2k =

n∑

i,j=1

{∑

k*Z

IBk
(Xi)IBk

(Xj)
}
=

∑

i 6=j

{∑

k*Z

IBk
(Xi)IBk

(Xj)
}
+ n.

The former shows how the V -statistic V (b) = (n2b)21
∑

k*Z ¿
2
k can be expressed as U(b) +

(nb)21, where U(b) = (n2b)21
∑

i 6=j

{∑
k*Z IBk

(Xi)IBk
(Xj)

}
is the corresponding U -statistic.

Hence, modulo n2 1 j n j n+ 1 we can write

Ë̆ j max
b>0

{
V (b)2 2/(nb)

}
= max

b>0

{
2U(b)2 V (b)

}
,

which is the equivalent to (1) for the histogram estimate.

The cross-validation criterion here is derived by replacing the unknown term b21
∑

k*Z p
2
k

in the MISE expression with the empirical estimate U(b). Following the analogy with

the kernel estimator, a smooth cross-validation criterion is obtained when b21
∑

k*Z p
2
k is

estimated thorugh Vb(c) = b21
∑

k*Z{
∫
Bk
f̃(x; c)dx}2, where f̃(x; c) is the histogram density

estimator with pilot binwidth c. More explicitly, if f̃(x; c) is based on the partition {C3}3*Z
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with C3 = [3c, (3+1)c), then
∫
Bk
f̃(x; c)dx = (nc)21

∑n
i=1

∑
3*Z IC3

(Xi)»(Bk +C3) where »

denotes the Lebesgue measure in R; therefore,

Vb(c) = b21(nc)22
n∑

i,j=1

∑

k*Z

∑

3,32*Z

IC3
(Xi)IC

32
(Xj)»(Bk + C3)»(Bk + C32). (8)

The main difficulty here lies on the choice of the pilot binwidth c. However, constructing

the corresponding U -statistc Ub(c) as in (8), but with the first double sum restricted to

i 6= j, and reasoning analogously as for the kernel estimator, a sensible estimate of the

unknown b21
∑

k*Z p
2
k is given by maxc>0{2Ub(c) 2 Vb(c)}. Replacing this estimate in (7)

gives a smooth cross validation criterion for the histogram, which automatically (internally)

adjusts the pilot binwidth, and hence leads to a new, fully empirical, SCV-type binwidth

selector for histogram density estimation.

6 Discussion

When a certain methodology depends on some tuning parameter, and cross-validation is

employed to estimate its performance, its most common utility lies on using its minimiser

as a data-driven choice for the tuning parameter. Here, a very different feature is explored,

namely how the corresponding optimal cross-validated performance defines an estimator of

a certain statistical functional.

This approach is fully developed for the base case of cross-validation for kernel density

estimation, where a new estimator of the integrated squared density is found, with the

remarkable property that it does not rely on the choice of any further tuning parameter.

The whole analysis is conducted in the univariate setting, but it could be extended in a

straightforward manner to the multivariate case, where the standard kernel estimate of this

functional does depend on the choice of a smoothing parameter (see Chacón and Duong,

2010, Section 3.2).

In addition, here the focus is on independent data, but it must be noted that cross-

validation techniques for density estimation with dependent data are also available (see

Hart and Vieu, 1990), so an analogue procedure for the estimation of the integrated squared

density with dependent data could be derived in a similar fashion.

Many other applications are outlined in Sections 4 and 5, which shows the potential of

the novel approach. Those related to smoothing parameter selection for density estimation

surely deserve further attention, from both theoretical and practical perspectives. Partic-

ularly, it appears that the bandwidth selector introduced in Section 5.1 might have some

connection to the methodology developed by Goldenshluger and Lepski (2011), albeit with

a completely different motivation. Studying its asymptotic and finite-sample properties

certainly consitutes a future research challenge.
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7 Proof of Theorem 1

The proof of Theorem 1 makes extensive use of the results in Nolan and Pollard (1987),

which show that several random criteria C(g), say, are almost surely uniformly equivalent

to MISE(g). Precisely, this means that supg>0 |C(g)/MISE(g)2 1| ³ 0 almost surely.

To begin with, under the conditions of Theorem 1, Equation (13) in Nolan and Pollard

(1987) assures that

sup
g>0

∣∣∣∣
ISE(g)2 CV(g)2 Ë 2 Zn

MISE(g)

∣∣∣∣ ³ 0 almost surely,

where Zn = 2n21
∑n

i=1 Yi. Moreover, Equation (12) in the same reference states that

supg>0 |ISE(g)/MISE(g)21| ³ 0 almost surely, so that is is possible to replace ISE(g) with

MISE(g) in the previous display. Hence, the random variable

An(g) = 12 MISE(g)

CV(g) + Ë + Zn

satisfies supg>0 |An(g)| ³ 0 almost surely. This further implies that with probability one

CV(g) + Ë + Zn > 0 for all g > 0 for large enough n, and since

{12An(gMISE)}{CV(gMISE) + Ë + Zn} = MISE(gMISE) f MISE(ĝCV)

= {12An(ĝCV)}{CV(ĝCV) + Ë + Zn},

it follows that with probability one, for large enough n,

{12An(gMISE)}
CV(gMISE) + Ë + Zn

CV(ĝCV) + Ë + Zn
f 12An(ĝCV).

Therefore,
CV(gMISE) + Ë + Zn

CV(ĝCV) + Ë + Zn
³ 1 almost surely

and, from the equivalence with the MISE, it also holds that

MISE(gMISE)

CV(ĝCV) + Ë + Zn
³ 1 almost surely,

which finishes the proof of Theorem 1.
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Oliveira, M., Crujeiras, R. M. and Rodŕıguez-Casal, A. (2012). A plug-in rule for bandwidth

selection in circular density estimation. Computational Statistics and Data Analysis, 56,

3898–3908.

Prakasa Rao, B. L. S. (1999). Estimation of the integrated squared density derivatives by

wavelets. Bulletin of Informatics and Cybernetics, 31, 47–65.

Rudemo, M. (1982). Empirical choice of histograms and kernel density estimators. Scandi-

navian Journal of Statistics, 9, 65–78.

Scott, D. W. (2015). Multivariate Density Estimation: Theory, Practice and Visualization,

2nd Edition. Wiley, Hoboken.

Sheather, S. J., Hettmansperger, T. P. and Donald, M. R. (1994). Data-based bandwidth

selection for kernel estimators of the integral of f2(x). Scandinavian Journal of Statistics,

21, 265–275.

Stone, C. J. (1984). An asymptotically optimal window selection rule for kernel density

estimates. Annals of Statistics, 12, 1285–1297.

Taylor, C. C. (2008). Automatic bandwidth selection for circular density estimation. Com-

putational Statistics and Data Analysis, 52, 3493–3500.

19



Tenreiro, C. (2020). Bandwidth selection for kernel density estimation: a Hermite series-

based direct plug-in approach. Journal of Statistical Computation and Simulation, 90,

3433–3453.

Tsybakov, A. B. (2009). Introduction to Nonparametric Estimation. Spriner, New York.

van Eeden, C. (1985). Mean integrated squared error of kernel estimators when the density

and its derivative are not necessarily continuous. Annals of the Institute of Statistical

Mathematics, 37, 461–572.

van Es, B. (1992). Estimating functionals related to a density by a class of statistics based

on spacings. Scandinavian Journal of Statistics, 19, 61–72.
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A Detailed theoretical analysis of ψ̌(g)

In this appendix we provide a detailed analysis of the estimator of Ë =
∫
R
f(x)2dx defined

by

〈

Ë(g) = 2CV(g), where CV is the cross-validation function associated to the kernel

density estimator f̂(·; g) of f . More precisely, we prove that there exists a bandwidth

gMSE that minimizes the mean squared error MSE(g) of

〈

Ë(g) and that it is asymptotically

equivalent to the bandwidth gMISE that minimizes the mean integrated squared error of

f̂(·; g). These results support the idea of taking gMISE as the target bandwidth for

〈

Ë(g),

giving us an additional motivation for estimating Ë by Ë̂ =

〈

Ë(ĝCV), where the cross-

validation bandwidth ĝCV = argming>0CV(g) seeks to mimic the behaviour of gMISE.

A.1 Introduction

Given X1, . . . , Xn independent real-valued random variables with common probability den-

sity function f , we are interested in the estimation of the functional

Ë =

∫

R

f(x)2dx.

For that we consider the estimator of Ë given by

〈

Ë(g) = 2CV(g),

where g c gn > 0 is a sequence of real numbers converging to zero as n tends to infinity,

and CV(g), given by

CV(g) = (ng)21R(L) + {n(n2 1)}21
∑

i 6=j

{(12 n21)(L 7 L)g 2 2Lg}(Xi 2Xj),

is the cross-validation criterion function associated to the kernel density estimator

f̂(x; g) = n21
n∑

j=1

Lg(x2Xj), (1)

where we denote R(³) =
∫
R
³(x)2dx for an arbitrary square integrable real function ³, L is

a kernel, that is, a bounded, symmetric and integrable function with unit integral, 7 denotes

the convolution product, and Lg(x) = L(x/g)/g is the scaled kernel associated to L.

The rest of this appendix is organized as follows. In Section A.2 we provide mild

conditions on the kernel and the density that ensure the existence of a bandwidth gMSE,

called exact optimal bandwidth, that minimizes the mean squared error MSE(g) of

〈

Ë(g). In

Section A.3 we study the asymptotic properties of this bandwidth. In Section A.4 we prove

that gMSE is asymptotically equivalent to the bandwidth gMISE that minimizes the mean

integrated squared error of the kernel density estimator (1), and we obtain the relative rates

of convergence of gMSE to gMISE. These results suggest that using a kernel L of order higher

than 2 may not be convenient as the quality of the approximation between gMSE and gMISE

decreases when the kernel order increases. All the proofs are deferred to Section A.5.
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A.2 Existence of an exact optimal bandwidth

For g > 0, we have

〈

Ë(g) = 2(ng)21R(L) + UMg + n21UNg ,

where Mg and Ng are the scaled kernels associated to

M = 2L2 L 7 L and N = L 7 L,

respectively, and for a given bounded, symmetric and integrable function ×, U×g is the

U -statistic

U×g =
2

n(n2 1)

∑

1fi<jfn

×g(Xi 2Xj).

Taking into account that EU×g = R×,g(f), with

R×,g(f) =

∫

R

×g 7 f(x)f(x)dx,

we deduce that the bias B(g) of

〈

Ë(g) can be written as

B(g) = E

〈

Ë(g)2 Ë = 2(ng)21R(L) +RM,g(f) + n21RN,g(f)2 Ë. (2)

From this equality and Equation (10) in Chacón et al. (2007b, p. 296) we see that B(g) =

2MISE(g), where MISE(g) = E
∫
R
{f̂(x; g)2f(x)}2dx is the mean integrated squared error

of the kernel density estimator (1).

On the other hand, from the covariance formula between two U -statistics (see Lee, 1990,

Theorem 2, p. 17), we deduce that the variance V(g) of

〈

Ë(g) is given by

V(g) = Var(UMg) + 2n21Cov(UMg , UNg) + n22Var(UNg)

= 4(n2 2){n(n2 1)}21
{
TM,M,g(f) + 2n21TM,N,g(f) + n22TN,N,g(f)

}

2 (4n2 6){n(n2 1)}21
{
RM,g(f)

2 + 2n21RM,g(f)RN,g(f) + n22RN,g(f)
2
}

+ 2g21{n(n2 1)}21
{
RM2,g(f) + 2n21RM ·N,g(f) + n22RN2,g(f)

}
, (3)

with

T×,Ç,g(f) =

∫

R

×g 7 f(x)Çg 7 f(x)f(x)dx,

where × and Ë are bounded, symmetric and integrable functions.

Combining equations (2) and (3) we obtain the following exact formula for the mean

squared error MSE(g) of the estimator

〈

Ë(g):

MSE(g) =
{
(ng)21R(L)2RM,g(f)2 n21RN,g(f) + Ë

}2

+ 4(n2 2){n(n2 1)}21
{
TM,M,g(f) + 2n21TM,N,g(f) + n22TN,N,g(f)

}

2 (4n2 6){n(n2 1)}21
{
RM,g(f)

2 + 2n21RM,g(f)RN,g(f) + n22RN,g(f)
2
}

+ 2g21{n(n2 1)}21
{
RM2,g(f) + 2n21RM ·N,g(f) + n22RN2,g(f)

}
. (4)
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This exact error formula is the analogue of formula (5) in Chacón and Tenreiro (2012, p. 526)

and will be useful to explore the existence and limit behavior of the optimal bandwidth.

In the following results we will make the next assumptions on the kernel L and the

density f :

(L1) L is a bounded, symmetric and integrable function with unit integral, which is contin-

uous at zero, with R(L) < 2L(0).

(D1) f is bounded.

The next result shows that under mild conditions there is always an exact optimal

bandwidth, that is, a bandwidth which minimizes the exact MSE of estimator

〈

Ë(g). It is

the analogue of Theorem 1 in Chacón and Tenreiro (2012, p. 526) for the ‘diagonals-in’

kernel estimator Ë̃D(g) = n22
∑n

i,j=1 Lg(Xi 2Xj).

Theorem 1. Under assumptions (L1) and (D1), there exists gMSE = gMSE,n(f) such that

MSE(gMSE) f MSE(g), for all g > 0.

A.3 Limit behavior of gMSE

From formula (4) and Lemma 1 in Section A.5 below it follows that MSE(g) ³ 0 for any

bandwidth sequence g = gn such that g ³ 0 and ng ³ >, as n³ >. Therefore, conditions

g ³ 0 and ng ³ > are sufficient for

〈

Ë(g) to be consistent. It is natural, then, to wonder

if the bandwidth gMSE also fulfill the previous consistency conditions. We will see that

the second condition holds quite generally but the same is not necessarily true for the first

one. This is similar to the situation with the exact optimal bandwidth for the ‘diagonals-in’

kernel estimator Ë̃D(g), as shown in Chacón and Tenreiro (2012).

Theorem 2. Under assumptions (L1) and (D1), we have ngMSE ³ >, as n³ >.

For the analysis of the limit behavior of the sequence gMSE we use the notation ×K(t) =∫
R
eitxK(x)dx, t * R, for the characteristic function of an integrable function K, and for

every density f and every kernel L, we denote

Cf = sup{r g 0 : ×f (t) 6= 0 a.e. for t * [0, r]},

Df = sup{t g 0 : ×f (t) 6= 0},

SL = inf{t g 0 : ×L(t) 6= 1} and

TL = inf{r g 0 : ×L(t) 6= 1 a.e. for t g r}.

A detailed discussion about these quantities is presented in Chacón et al. (2007b). In

particular, we note that all these exist, with Cf , Df possibly being infinite, SL, TL * [0,>),

Cf f Df and SL f TL. By definition, SL > 0 for superkernels and SL = 0 if L is a kernel

of finite order ¿ (even), that is, if mj(L) = 0 for j = 1, 2, . . . , ¿ 2 1 and m¿(L) 6= 0 with

4



|m¿ |(L) <>, where mj(L) =
∫
R
ujL(u)du and |mj |(L) =

∫
R
|ujL(u)|du (see Chacón et al.,

2007a).

An additional assumption on the kernel is needed to show that gMSE converges to zero:

(L2) L is such that ×L(t) f 1, for all t * R.

In the following result we show that gMSE converges to zero under very general condi-

tions. In particular, if L is a kernel of finite order, the convergence to zero takes place with

no additional conditions on f other than being bounded. The same property occurs in the

superkernel case whenever the characteristic function of f has unbounded support.

Theorem 3. Under assumptions (L1), (L2) and (D1), if SL = 0 or Df = > then gMSE ³ 0,

as n³ >.

A.4 The bandwidths gMSE and gMISE

In order to study the order of convergence to zero of the exact optimal bandwidth gMSE,

we need some additional assumptions on the kernel L and the density f :

(L3) L is a kernel of finite order ¿ (even) such that (21)¿/2m¿(L) < 0 and |m|2¿(L) <>.

(D2) f has bounded and integrable derivatives up to order ¿.

Under conditions (L1)–(L3), (D1) and (D2), from Lemma 2 and the fact that M =

2L 2 L 7 L and N = L 7 L are kernels of orders 2¿ and ¿, respectively, with m2¿(M) =

2(2¿)!m¿(L)
2/(¿!)2 and m¿(N) = 2m¿(L), we conclude that the bias and variance of

〈

Ë(g)

given by equations (2) and (3), respectively, admit the asymptotic expansions, as g ³ 0,

B(g) = 2(ng)21R(L)2 g2¿R(f (¿))m¿(L)
2/(¿!)2 +O(n21) + o(g2¿) (5)

and

V(g) = 4n21Var f(X1) +O
(
n21g2¿ + n22g21

)
,

from which we get the following asymptotic expansion for the mean square error of

〈

Ë(g):

MSE(g) = 4n21Var f(X1) +
{
(ng)21R(L) + g2¿R(f (¿))m¿(L)

2/(¿!)2
}2

+O(n22g21) + o(n21g2¿21 + g2¿). (6)

Based on these asymptotic expansions, in the following result we start by establish-

ing that the exact optimal bandwidth gMSE is of order n21/(2¿+1). Therefore, for g of

order n21/(2¿+1) and the fact that B(g) = 2MISE(g), we get the equality MSE(g) =

4n21Var f(X1)+MISE(g)2(1+ o(1)), that suggests that the optimal bandwidth gMSE may

be asymptotically equivalent to the bandwidth gMISE that minimizes the mean integrated

squared error of the kernel density estimator f̂(·; g) given by (1) (regarding the existence

and asymptotic behaviour of gMISE, see Chacón et al., 2007b). This fact, together with the

order of convergence of the relative error gMSE/gMISE 2 1, is established in the following

result.
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Theorem 4. Under assumptions (L1)–(L3), (D1) and (D2), we have:

(a) The bandwidths gMSE and gMISE are of the same order, that is,

0 < lim inf n1/(2¿+1)gMSE f lim supn1/(2¿+1)gMSE <>.

(b) The bandwidths gMSE and gMISE are asymptotically equivalent, that is,

gMSE/gMISE ³ 1.

(c) There exists a constant C, depending on L and f , such that

n1/(2¿+1)
(
gMSE/gMISE 2 1

)
= C(1 + o(1)).

This result supports the idea of taking gMISE as the target bandwidth for

〈

Ë(g), giving us

an additional motivation for estimating Ë by Ë̂ =

〈

Ë(ĝCV). Moreover, it also enables us to

recommend the use of a kernel L of second order (¿ = 2) because the order of convergence

to zero of the relative error gMSE/gMISE 2 1 is a decreasing function of the kernel order.

A.5 Proofs

We start by establishing the continuity and limit behaviour of the functions g 7³ R×,g(f)

and g 7³ T×,Ç,g(f) defined in Section A.2.

Lemma 1. Under assumption (D1), assume that ×, Ç are bounded and integrable functions.

(a) The function g 7³ R×,g(f) is continuous with

lim
g³0

R×,g(f) = R(f)

∫

R

×(u)du.

In addition, if × is continuous at zero, then limg³> g R×,g(f) = ×(0).

(b) The function g 7³ T×,Ç,g(f) is continuous with

lim
g³0

T×,Ç,g(f) = R(f3/2)

∫

R

×(u)du

∫

R

Ç(u)du.

In addition, if × and Ç are continuous at zero, then limg³> g2 T×,Ç,g(f) = ×(0)Ç(0).

Proof: Taking into account that

R×,g(f) =

∫

R

×(u)(f̄ 7 f)(ug)du, (7)

where f̄(u) = f(2u), part (a) follows from the dominated convergence theorem and the

boundedness and the continuity of the convolution product of square integrable functions

(see also Chacón et al., 2007b, Lemma, p. 296). Moreover, we have

T×,Ç,g(f) =

∫

R

∫

R

×(u)Ç(v)
(
f̄ » f̄ » f

)
(ug, vg)dudv, (8)
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where we are denoting

(³» ³ » ³)(x, y) =

∫

R

³(x2 z)³(y 2 z)³(z)dz.

Therefore, part (b) follows from the dominated convergence theorem and the boundedness

and the continuity of ³» ³ » ³ when ³, ³ and ³ are bounded and integrable functions (see

Chacón and Tenreiro, 2012, proof of Lemma 1, p. 539). �

Proof of Theorem 1: From the expression (4) for the MSE function, and the properties of

the functions g 7³ R×,g(f) and g 7³ T×,Ç,g(f) shown in Lemma 1, we conclude that g 7³

MSE(g) is a continuous function such that limg³0MSE(g) = > and limg³>MSE(g) = Ë2.

Moreover, from the hypotheses on L we have

lim
g³>

g2(MSE(g)2 Ë2) = 2>,

which enables us to conclude that we can choose g > 0 big enough so that MSE(g) < Ë2.

This concludes the proof. �

Proof of Theorem 2: Suppose that ngMSE does not converge to infinity. Then ngMSE has a

subsequence which is upper bounded by some positive constant C. Therefore, along that

subsequence we have gMSE ³ 0. From (2) this implies that

lim sup
n³>

MSE(gMSE) g lim sup
n³>

B(gMSE)
2 = lim sup

n³>
{n21g21

MSER(L)}
2 g {R(L)/C}2 > 0,

which contradicts the fact that limn³>MSE(gMSE) = 0, as we can deduce from 0 f

MSE(gMSE) f MSE(g) ³ 0, for any bandwidth sequence g = gn such that g ³ 0 and

ng ³ >, as n³ >. �

Proof of Theorem 3: Denote by Λf,L the set of accumulation points of the sequence (gMSE).

Take 0 < » * Λf,L and (gnk
) a subsequence of (gMSE) such that » = limk³> gnk

. Writing

B(g;n) and MSE(g;n) for B(g) and MSE(g), respectively, from equalities (2) and (3) we

get that, for fixed g > 0,

lim
n³>

MSE(g;n) = lim
n³>

B(g;n)2 = {RM,g(f)2 Ë}2,

so that using Lemma 1 and Theorem 2, we obtain

0 = lim
g³0

{RM,g(f)2 Ë}2 = lim
g³0

lim
k³>

MSE(g;nk)

g lim
k³>

MSE(gnk
;nk) g lim

k³>
B(gnk

;nk)
2 = {RM,»(f)2 Ë}2.

Therefore

Λf,L ¢ {» g 0 : RM,»(f) = Ë}
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Taking into account that ×M (t) = (22 ×L(t))×L(t) f 1, for all t * R, then reasoning as in

the proof of Theorem 4 in Chacón and Tenreiro (2012) we conclude that

Λf,L ¢

[
0,min

(
SM
Cf

,
TM
Df

)]
.

As SM = SL and TM = TL, we finally get

0 f lim sup
n³>

gMSE f min

(
SL
Cf

,
TL
Df

)
,

which concludes the proof. �

In the following result we study the differentiability of the functions g 7³ R×,g(f) and

g 7³ T×,Ç,g(f) defined in Section A.2, and we provide asymptotic expansions for them and

the corresponding derivatives when g ³ 0.

Lemma 2. Under assumptions (D1) and (D2), let × and Ç be bounded and integrable

functions such that |m|3(×), |m|3(Ç) <> and mk(×) = mk(Ç) = 0, for all k = 1, . . . , 32 1,

for some even integer 3 such that 2 f 3 f 2¿.

(a) The function g 7³ R×,g(f) is twice differentiable with

R×,g(f) = R(f)m0(×) + (21)3/2g3R(f (3/2))m3(×)/3! + o(g3),

dR×,g(f)/dg = (21)3/2g321R(f (3/2))m3(×)/(32 1)! + o(g321)

and

d2R×,g(f)/dg
2 = (21)3/2g322R(f (3/2))m3(×)/(32 2)! + o(g322).

(b) The function g 7³ T×,Ç,g(f) is differentiable with

T×,Ç,g(f) = ·0m0(×)m0(Ç) + (21)3/2g3·3
(
m3(×)m0(×) +m0(×)m3(Ç)

)
/3! + o(g3)

and

dT×,Ç,g(f)/dg = (21)3/2g321·3
(
m3(×)m0(×) +m0(×)m3(Ç)

)
/3! + o(g321),

where ·3 =
∫
R
f (3/2)(z)(f2)(3/2)(z) dz.

Proof: Taking into account assumption (D2), the functions f̄ 7 f and h = f̄ » f̄ » f

have continuous derivatives up to order 2¿. From the expressions (7) and (8) for R×,g(f)

and T×,Ç,g(f), respectively, standard Taylor’s expansions and the dominated convergence

theorem lead to

R×,g(f) =
321∑

i=0

gi

i!
(f̄ 7 f)(i)(0)

∫

R

ui×(u)du

+
g3

(32 1)!

∫

R

∫ 1

0
u3×(u)(12 t)321(f̄ 7 f)(3)(ugt)dtdu

= R(f)m0(×) + g3(f̄ 7 f)(3)(0)m3(×)/3! + o(g3)
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and

T×,Ç,g(f)

=
∑

0fi+jf321

gi+j

i!j!

"i+jh

"xi"yj
(0, 0)

∫

R

ui×(u)du

∫

R

vjÇ(v)dv

+
∑

i+j=3

3g3

i!j!

∫

R

∫

R

∫ 1

0
ui×(u)vjÇ(v)(12 t)321 "3h

"xi"yj
(tug, tvg)dtdudv

= ·0m0(×)m0(Ç) +
g3

3!

(
m3(×)m0(×)

"3h

"x3
(0, 0) +m0(×)m3(Ç)

"3h

"y3
(0, 0)

)
+ o(g3).

Moreover, from the differentiation theorem under the integral sign we have

dR×,g(f)/dg =

∫

R

u×(u)(f̄ 7 f)2(ug)du,

d2R×,g(f)/dg
2 =

∫

R

u2×(u)(f̄ 7 f)22(ug)du

and

dT×,Ë,g(f)/dg =

∫

R

∫

R

×(u)Ç(v)

(
u
"h

"x
(ug, vg) + v

"h

"y
(ug, vg)

)
dudv.

By using again Taylor’s expansions and the dominated convergence theorem we get

dR×,g(f)/dg =
g321

(32 1)!
(f̄ 7 f)(3)(0)m3(×) + o(g321),

d2R×,g(f)/dg
2 =

g322

(32 2)!
(f̄ 7 f)(3)(0)m3(×) + o(g322),

and

dT×,Ç,g(f)/dg =
g321

(32 1)!

(
m3(×)m0(×)

"3h

"x3
(0, 0) +m0(×)m3(Ç)

"3h

"y3
(0, 0)

)
+ o(g321).

Parts (a) and (b) follow now from the fact that (f̄ 7 f)(3)(0) = (21)3/2R(f (3/2)) and
"3h
"x3

(0, 0) = "3h
"y3

(0, 0) = (21)3/2
∫
R
f (3/2)(z)(f2)(3/2)(z)dz. �

Proof of Theorem 4: (a) From expansion (6) and taking for g the bandwidth g = c n1/(2¿+1),

with c > 0, we get

limn4¿/(2¿+1)
(
MSE(g0)2 4n21Var f(X1)

)
= U(c),

with

U(c) = {c21R(L) + c2¿R(f¿)m¿(L)
2/(¿!)2}2.

Therefore, as MSE(gMSE) f MSE(g0), we have

lim supn4¿/(2¿+1)
(
MSE(gMSE)2 4n21Var f(X1)

)
f U(c) <>. (9)
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Moreover, using the fact that gMSE ³ 0, from expansion (6) we also get

n4¿/(2¿+1)
(
MSE(gMSE)2 4n21Var f(X1)

)

=
{
(n1/(2¿+1)gMSE)

21R(L) + (n1/(2¿+1)gMSE)
2¿R(f (¿))m¿(L)

2/(¿!)2
}2

+o
(
(n1/(2¿+1)gMSE)

21 + (n1/(2¿+1)gMSE)
2¿21 + (n1/(2¿+1)gMSE)

4¿
)
,

which contradicts (9) if lim inf n1/(2¿+1)gMSE = 0 or lim supn1/(2¿+1)gMSE = >. This

completes the proof of part (a).

(b) Taking into account that inequality (9) is true for all c > 0, we also have

lim supn4¿/(2¿+1)
(
MSE(gMSE)2 4n21Var f(X1)

)
f U(c0(f, L)), (10)

where

c0(f, L) =

(
R(L)(¿!)2

2¿R(f (¿))m¿(L)2

)1/(2¿+1)

(11)

is the minimizer of the function c 7³ U(c). By using standard arguments, inequality (10)

enables us to conclude that c0(f, L) is the only accumulation point of the bounded sequence

(n1/(2¿+1)gMSE), that is, gMSE is asymptotically equivalent to g0 = c0(f, L)n
21/(2¿+1) (see

Chacón, 2004, pp. 44–46). This concludes the proof of part (b) as it is well-known that the

sequence g0 is asymptotically equivalent to gMISE (see Chacón et al., 2007b, pp. 293–294).

(c) From Lemma 2 and equality (2) the function B(g) is twice differentiable with

B22(g) = 22n21g23R(L)2 2¿(2¿ 2 1)g2¿22R(f (¿))m¿(L)
2/(¿!)2

+O(n21g¿22) + o(g2¿22). (12)

Therefore, a Taylor’s expansion leads to

0 = MISE2(gMISE) = 2B2(gMISE) = 2B2(gMSE)2 (gMISE 2 gMSE)B
22(g̃),

from which we deduce that

n1/(2¿+1)
(
gMSE/gMISE 2 1

)
= c0(f, L)ngMSEB

2(gMSE)
(
ng̃3B22(g̃)

)21
(1 + o(1)), (13)

for some g̃ between gMISE and gMSE, and c0(f, L) given by (11). Taking into account that

g̃ is asymptotically equivalent to gMSE, from equation (12) we obtain

ng̃3B22(g̃) = 2(2¿ + 1)R(L)(1 + o(1)). (14)

On the other hand, from Lemma 2 and equality (3) we know that the function V(g) is

differentiable with

V2(g) = 22n22g22R(f)R(M)2 8n21g2¿21{·2¿ 2 2¿R(f (¿))R(f)}m¿(L)
2/(¿!)2

+ o(n22g22 + n21g2¿21)

10



and

n2g2MSEV
2(gMSE) = D(f, L)(1 + o(1)),

withD(f, L) = 22R(f)(R(M)24R(L))24¿21·2¿R(f
(¿))21R(L). Therefore, by using equa-

tion MSE2(gMSE) = 2B(gMSE)B
2(gMSE)+V2(gMSE) = 0, and the fact that ngMSEB(gMSE) =

2(2¿ + 1)(2¿)21R(L)(1 + o(1)), which can be deduce from equation (5), we get

ngMSEB
2(gMSE) = ¿(2¿ + 1)21D(f, L)R(L)21(1 + o(1)). (15)

The stated result with C = 2¿(2¿+1)22c0(f, L)D(f, L)R(L)22 follows now from (13), (14)

and (15). �

B Additional information on the simulation study

Here, a more detailed account of the simulation results summarized in Section 3 of the

main text is given. Let us recall that the test densities included in the study are the 15

normal mixture densities introduced in Marron and Wand (1992), plus the 10-modal normal

mixture described in Loader (1999), which will be referred to as Density #16.

These test densities are all not equally hard to estimate. To measure how easy is a given

density f to estimate we can resort to the functional

Q(f) = inf
u>0

u21

∫

R

f(x)1/2Ã{u5f 22(x)f(x)21/2}dx

introduced in Wand and Devroye (1993), with Ã(t) = E|Z2t|, where Z is a random variable

with a standard normal distribution. These authors also showed that this functional is

approximately minimised for the Beta(5.3, 5.3) distribution, yielding a value of about 1.92.

The value of Q(f) for each of the test densities in the simulation study is given in Table 1.

Density # 1 2 3 4 5 6 7 8

Q(f) 1.99 2.16 4.36 4.2 3.26 2.29 2.59 2.55

Density # 9 10 11 12 13 14 15 16

Q(f) 2.62 4.18 7.08 5.11 3.82 6.2 5.32 4.99

Table 1: Density-estimation-difficulty functional Q(f).

From Table 1, the test densities can be categorised into three groups: the first one

comprises densities 1, 2, 6, 7, 8 and 9, which can be considered as easy-to-estimate densities,

with Q(f) < 2.7; densities 3, 4, 5, 10 and 13 could be seen as medium-estimation-difficulty

densities, since they have 3.2 < Q(f) < 4.4; and densities 11, 12, 14, 15 and 16 may be cast

as difficult-to-estimate densities, with Q(f) > 4.9.

Figures 1 and 2 (for n = 100 and n = 1000, respectively) contain boxplots showing the

distribution of the relative errors for the estimators Ë̂CT, Ë̂SH and Ë̂JS in the study, for
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Figure 1: Distribution boxplots for the relative error of the estimators Ë̂CT, Ë̂SH and Ë̂JS

for n = 100.

each of the test densities considered. On the top of each boxplot there is also a number,

showing the sample relative root mean squared error of the corresponding estimator for the

test density under consideration, along the B = 500 simulation runs, as defined in the main

text.

These results reveal that, for the group of easy-to-estimate densities, the plug-in-type
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Figure 2: Same as Figure 1, but for n = 1000.

estimator Ë̂JS performs quite satisfactorily. But it does not appear so competitive for

some of the other density models, especially for densities 3, 4, 10, 12, 14, 15 and 16. The

classical alternative Ë̂SH, based on a solve-the-equation rule, seems to adapt better to the

more difficult-to-estimate scenarios. However, it also fails abysmally for Density #16, more

markedly with sample size n = 100.

The breakdown of both estimators Ë̂JS and Ë̂SH for this model #16 is caused by the use

of a quite inadequate reference distribution at their starting steps. This is an unfortunate
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issue that the new estimator Ë̂CT does not present, since it does not depend on the choice

of a reference distribution. This feature pays off extremely well for this model, since Ë̂CT

appears to have a clear advantage over the two other estimators for this Density #16. But

in fact, the new proposal shows a very competitive performance along the whole group of

test densities, ranking either first or very close to the first one for all density models, as

reflected in the summary statistics reported in the main text.
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