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Abstract

We study a fully nonlinear free transmission problem in the presence of

general degeneracy terms. Under minimal conditions on the degener-

acy of the model, we establish the existence of viscosity solutions for the

associated Dirichlet problem. Once the existence of solutions has been

established, we focus on their regularity estimates. By imposing a Dini-

continuity condition on the degeneracy laws involved in the model, we

prove that viscosity solutions are locally differentiable.
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1 Introduction

We consider viscosity solutions of

σ1(|Du|)F (D2u) = f in Ω ∩ {u > 0}
σ2(|Du|)F (D2u) = f in Ω ∩ {u < 0} ,

(1)

where F : S(d) → R is a uniformly elliptic operator, f ∈ L∞(Ω) ∩ C(Ω), and
σi : R+ → R+ are degeneracy rates. Here, S(d) ∼ R

d(d+1)
2 denotes the space of

symmetric matrices of order d, whereas Ω ⊂ R
d is open, bounded and connected.

We equip (1) with Dirichlet boundary data g ∈ C(∂Ω) and prove the ex-
istence of viscosity solutions to the associated Dirichlet problem. Concerning
the degeneracy rates σ1 and σ2, the existence of solutions only requires these
functions to be monotone increasing and ordered. When it comes to regularity
estimates, we impose a further condition. Namely, we require σ2 to have an in-
verse σ−1

2 which is itself a Dini modulus of continuity. Under such a condition,
we prove the differentiability of the solutions to (1).
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The model in (1) amounts to a degenerate fully nonlinear free transmission
problem. In particular, (1) describes a diffusion process degenerating as a mod-
ulus of continuity of the gradient. Meanwhile, the degeneracy depends on the
sign of the solution.

Discontinuous diffusions have been studied in the literature since the work
of Mauro Picone, circa 1950; see [39]. The problem formulated in [39] finds its
roots in the realm of elasticity theory. It attracted substantial attention from
the mathematical community. Indeed, various authors have further developed
the theory for that model, as well as proposed important variants. We refer the
reader to [33, 31, 32, 44, 17, 18, 19, 42, 38, 45, 12, 24]; see also the monograph
[13]. The main advances reported in these articles comprise the existence of
solutions and their uniqueness and a priori estimates. After the establishment
of a soundly based theory of the existence of solutions, the analysis of regularity
properties took place. For example, we mention [30, 29, 4, 5].

More recently, a corpus of finer regularity results appeared in the context of
transmission problems. In the interesting article [16], the authors examine the
regularity of the solutions under minimal regularity conditions on the transmis-
sion interface. In that paper, the domain is split into two subdomains separated
by a C1,α-regular interface. Under such an assumption, the authors first prove
that solutions are locally of class C0,Log−Lip in the domain. It stems from the
basic properties of harmonic functions. Then they show that solutions are C1,α-
regular up to the transmission interface. Their findings rely on a new stability
result relating hypersurfaces of class C1,α with flat ones.

In [43], the authors pursue the program launched in [16] in the context
of fully nonlinear equations. Indeed, they develop a fairly complete theory of
viscosity solutions for transmission problems governed by fully nonlinear opera-
tors. Their contributions include the existence and the uniqueness of solutions,
an Aleksandrov-Bakelman-Pucci estimate, and regularity results. The main
novelty in [43] regards the regularity of the solutions up to the transmission
interface. As before, they prove the optimal regularity of the solutions matches
the regularity of the interface in Hölder spaces.

In recent years, the analysis of transmission problems started to account
for diffusions with discontinuities across solution-dependent interfaces. That is,
endogenously determined rather than prescribed a priori. The first analysis of
a free transmission problems appeared recently in [1]. See also [37, 36].

In [20], the authors propose a variational free transmission problem modelled
after the p-Laplace operator. They prove the existence of a minimiser u and
obtain Hölder-continuity estimates. In addition, they examine the associated
free boundary. Among their findings, we highlight a free boundary condition and
the almost everywhere C1,α-regularity with respect to a p-harmonic measure.
Finally, the authors verify the support of ∆pu

+ is of σ-finite (d−1)-dimensional
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Hausdorff measure.
Free transmission problems driven by uniformly elliptic fully nonlinear op-

erators have been addressed in [41] and [40]. In [41], the authors prove the
existence of Lp-viscosity solutions and Lp-strong solutions for the problem

F1(D
2u) = f in Ω ∩ {u > 0}

F2(D
2u) = f in Ω ∩ {u < 0} ,

(2)

where Fi : S(d) → R are uniformly elliptic operators. The regularity theory
for (2) is the subject of [40]. In that paper, the authors prove that solutions to
(2) are in W 2,BMO(Ω), with estimates. Under a smallness assumption on the
density of the negative phase, they obtain C1,1-regularity estimates.

In the recent paper [28], the authors launch the analysis of fully nonlinear
parabolic free transmission problems. Their main result concerns the regularity
of the free boundary, as they verify that flat free boundaries are smooth.

Degenerate fully nonlinear free transmission problems are the subject of [23].
The authors consider

|Du|θ1 F (D2u) = f in Ω ∩ {u > 0}
|Du|θ2 F (D2u) = f in Ω ∩ {u < 0} ,

(3)

where F is a uniformly elliptic operator and 0 < θ1 < θ2 are fixed constants.
They prove the existence of Lp-viscosity solutions and an optimal regularity
theory in Hölder spaces. The estimates in [23] depend explicitly on θ1 and θ2.

The model in (3) is motivated by the study of fully nonlinear equations
degenerating as a power of the gradient. See [6, 7, 8, 9, 10, 22], to name just a
few. The work-horse of this theory is the equation

|Du|θF (D2u) = f in Ω, (4)

where θ ∈ (−1,∞) is a fixed constant, F is a uniformly elliptic operator, and
f ∈ L∞(Ω) ∩ C(Ω). It is well-known that solutions to (4) are locally C1,α∗

-
regular, where α∗ ∈ (0, 1) satisfies

α∗ < min

(
α0,

1

1 + θ

)
,

and α0 ∈ (0, 1) is the universal exponent in the Krylov-Safonov theory available
for F = 0. See [25, 11, 3]. Further developments include regularity estimates
for equations holding in the regions where the gradient is large and the case of
variable exponents; see also [26, 34, 14].

A generalisation of the degeneracy law p 7→ |p|θ appeared in [2]. In that

3



paper, the authors propose an equation of the form

σ (|Du|)F (D2u) = f in Ω, (5)

where σ : R+ → R+ is a modulus of continuity whose inverse σ−1 is itself a
Dini-modulus of continuity. Working under such a condition on σ, the authors
prove that solutions to (5) are locally of class C1.

In the present paper, we extend the approach in [23] to a degenerate trans-
mission problem governed by equations as in (5). We start with a result on the
existence of solutions. Let g ∈ C(∂Ω) and consider the Dirichlet problem

σ1(|Du|)F (D2u) = f in Ω ∩ {u > 0}
σ2(|Du|)F (D2u) = f in Ω ∩ {u < 0}

u = g on ∂Ω.

(6)

Our first main result provides conditions on the degeneracy laws σ1 and σ2

ensuring the existence of viscosity solutions to (6). This is the content of the
next theorem.

Theorem 1 (Existence of viscosity solutions). Let Ω ⊂ R
d be a domain satisfy-

ing a uniform exterior sphere condition. Suppose F is a (λ,Λ)-uniformly elliptic
operator, f ∈ L∞(Ω)∩C(Ω), and g ∈ C(∂Ω). Suppose further that σi ∈ C(R+)

are monotone increasing, with σ2(t) ≤ σ1(t) for every t > 0, and σi(t) → 0 as
t → 0. Then there exists a viscosity solution u ∈ C(Ω) to (6). Furthermore, u
is a viscosity sub-solution to

min
{
σ1(|Du|)F (D2u), σ2(|Du|)F (D2u)

}
= ‖f‖L∞(Ω) in Ω (7)

and a viscosity super-solution to

max
{
σ1(|Du|)F (D2u), σ2(|Du|)F (D2u)

}
= −‖f‖L∞(Ω) in Ω. (8)

The proof of Theorem 1 relies on an approximate problem. Indeed, to the
best of our knowledge, the comparison principle is not available for viscosity
solutions of (6). This is expected since the dependence of the equation in (6)
is not monotone. Therefore, there is no a priori reason to ensure properness of
the operator. We design an approximate problem depending on a functional pa-
rameter v ∈ C(Ω) and a perturbation parameter ε > 0. For such a problem, the
comparison principle is available; hence, we construct sub and super-solutions
agreeing with g on ∂Ω. An application of Perron’s method yields the existence of
a viscosity solution for v and ε fixed. Schauder’s fixed point theorem eliminates
the functional parameter, whereas the stability of viscosity solutions allows us
to take the limit ε → 0, ultimately establishing the Theorem 1.
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We stress two interesting consequences of our arguments. First, a simple
adjustment of our methods provides the existence of viscosity solutions to (5),
completing the program launched in [2]. Also, by modifying the sub and super-
solutions used in the proof of Theorem 1, we learn the solutions whose existence
follows from the theorem are indeed Lipschitz continuous. We detail these re-
marks further in the paper.

Once the existence of solutions has been understood, we shift our focus to the
regularity of the solutions. Here, we suppose that σ2 ≤ σ1 and impose a Dini-
continuity condition on σ−1

2 . Under those conditions, we prove that solutions
to (1) are locally differentiable. Without loss of generality, we set Ω ≡ B1 when
dealing with regularity estimates. Our second main theorem reads as follows.

Theorem 2 (Interior C1-regularity estimates). Let u ∈ C(B1) be a viscos-
ity solution to (1). Suppose F is a (λ,Λ)-uniformly elliptic operator and f ∈
L∞(Ω) ∩ C(Ω). Suppose also σi are monotone increasing, with σ2(t) ≤ σ1(t)

for every t > 0. Suppose further that σ−1
2 is a Dini-continuous modulus of

continuity. Then u ∈ C1
loc(B1). Moreover, there exists a modulus of continu-

ity ω : R+
0 → R

+
0 depending only upon the dimension, ellipticity constants, σi,

‖u‖L∞(B1), and ‖f‖L∞(B1) such that

|Du(x)−Du(y)| ≤ ω(|x− y|),

for every x, y ∈ B1/4.

The proof of Theorem 2 relies on several ingredients. First, we notice that
solutions to (1) satisfy two viscosity inequalities in the entire domain B1. Then
we resort to standard approximation methods to construct hyperplanes locally
comparable with the solution, except for a prescribed error. Finally, the summa-
bility due to the Dini continuity of σ−1

2 ensures the convergence of such hyper-
planes and concludes the proof. A by-product of our argument is an explicit
modulus of continuity for Du.

We notice that it suffices to require σ−1
2 to be a Dini-continuous modulus

of continuity, with no similar requirement on σ1. This is because we resort
to a characterisation of Dini-continuity based on the summability of a series
governed by σ−1

2 . Therefore, the assumption that σ2 ≤ σ1 builds upon the
Dini-continuity of σ−1

2 to ensure that σ−1
1 is also Dini-continuous.

The remainder of this paper is organised as follows. Section 2.1 details our
main assumptions, whereas Section 2.2 gathers definitions and former results
used in the paper. The existence of solutions is the subject of Section 3, where
we detail the proof of Theorem 1. In Section 4 we put forward the proof of
Theorem 2, establishing the optimal regularity of the solutions to (1).
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2 Preliminaries

In this section, we gather preliminary results and notions used throughout the
paper. We start by stating our main assumptions.

2.1 Main assumptions

When studying the existence of solutions for the Dirichlet problem associated
with (1), we impose a geometric condition on the boundary of Ω.

Definition 1 (Uniform exterior sphere condition). Let Ω ⊂ R
d be a domain.

We say that Ω satisfies a uniform exterior sphere condition if for any x ∈ ∂Ω

there exists a ball B ⊂ R
d \ Ω of radius r > 0, independent of x, such that

x ∈ ∂B.

Our first assumption concerns the geometry of ∂Ω.

Assumption 1 (Uniform exterior sphere condition). We suppose the domain
Ω ⊂ R

d satisfies a uniform exterior sphere condition.

We proceed by requiring the fully nonlinear operator F to be uniformly
elliptic.

Assumption 2 (Uniform ellipticity). Fix 0 < λ ≤ Λ. We suppose that the
operator F : S(d) → R is (λ,Λ)-elliptic. That is, for every M, N ∈ S(d) we
have

λ ‖N‖ ≤ F (M +N)− F (M) ≤ Λ ‖N‖ ,

provided N ≥ 0.

The existence of solutions relies on a monotonicity condition on the degen-
eracy rates. This is the content of our next assumption.

Assumption 3 (Monotonicity of degeneracy rates). The degeneracy rates σ1, σ2 :

R+ → R+ are continuous, monotone increasing, with

lim
t→0

σi(t) = 0,

for i = 1, 2. In addition,
σ1(t) ≥ σ2(t)

for every t ∈ [0, 1]. Furthermore, we assume without loss of generality that

σ1(1) ≥ σ2(1) ≥ 1.

When it comes to regularity estimates, additional conditions on σ2 are nec-
essary. Namely, one requires this degeneracy law to have an inverse which is a
Dini-continuous modulus of continuity.
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Assumption 4 (Dini continuity). The degeneracy rate σ2 : R+ → R+ has an
inverse σ−1

2 that is a Dini-continuous moduli of continuity.

A typical example of degeneracy law satisfying Assumptions 3 and 4 is

σ1(t) := tp1 and σ2(t) := tp2 ,

where 1 ≤ p2 < p1. They satisfy Assumption 3. Also, σ−1
i (t) = t1/pi , which

is Hölder continuous with exponent 1/pi. In what follows, we gather auxiliary
results used in the manuscript.

2.2 Elementary notions and auxiliary results

We start with the notion of degenerate ellipticity. More general than the re-
quirements in Assumption 2, this notion unlocks an important variant of the
maximum principle, which we recall later.

Definition 2 (Degenerate ellipticity). We say the operator G : S(d)×R
d×R×

Ω → R is degenerate elliptic if, for every (p, r, x) ∈ R
d×R×Ω and M, N ∈ S(d)

with M ≤ N , we have

G(M,p, r, x) ≤ G(N, p, r, x).

Degenerate ellipticity can be regarded as an order-preserving property of
a fully nonlinear operator. We note it follows from uniform ellipticity. For
completeness, we recall the notion of viscosity solution.

Definition 3 (Viscosity solution). Let G : S(d)×R
d×R×Ω → R be a degenerate

elliptic operator. We say that u ∈ USC(Ω) [resp. u ∈ LSC(Ω)] is a viscosity
sub-solution [resp. super-solution] to

G(D2u,Du, u, x) = 0 in Ω (9)

if, whenever ϕ ∈ C2(Ω) and u − ϕ attains a maximum [resp. minimum] at
x0 ∈ Ω, we have

G(D2ϕ(x0), Dϕ(x0), u(x0), x0) ≤ 0

[resp. G(D2ϕ(x0), Dϕ(x0), u(x0), x0) ≥ 0].

If u ∈ C(Ω) is both a viscosity sub-solution and a C-viscosity super-solution to
(9), we say that u is a viscosity solution to (9).

In case a viscosity solution u ∈ C(Ω) is such that ‖u‖L∞(Ω) ≤ 1, we refer
to u as a normalized viscosity solution. We continue with the definition of the
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extremal Pucci operators. Indeed, for 0 < λ ≤ Λ, define Aλ,Λ ⊂ S(d) as

Aλ,Λ :=
{
A ∈ S(d) | λ|ξ|2 ≤ Aξ · ξ ≤ Λ|ξ|2 for every ξ ∈ R

d
}
.

The extremal operators are defined as follows.

Definition 4 (Extremal Pucci operators). Let 0 < λ ≤ Λ be fixed, though
arbitrary. The extremal Pucci operator M−

λ,Λ : S(d) → R is given by

M−
λ,Λ(M) := inf

A∈Aλ,Λ

Tr(AM).

Also, define M+
λ,Λ(M) := −M−

λ,Λ(−M).

For properties of the extremal operators, we refer the reader to [15, Lemma
2.10]. Among other things, the extremal operators are useful in defining uniform
ellipticity. Indeed, an operator F : S(d) → R satisfies Assumption 2 if, for any
M, N ∈ S(d), we have

M−
λ,Λ(M −N) ≤ F (M)− F (N) ≤ M+

λ,Λ(M −N).

In the study of interior regularity of (1), we resort to a sequential argument
(usual in the setting of approximation methods). A fundamental ingredient in
this realm is compactness. We continue by recalling auxiliary results used to
produce compactness in our context.

Proposition 1 (Maximum principle). Let H,G ∈ C(S(d) × R
d × Ω) be de-

generate elliptic operators. Let u ∈ USC(Ω) be a C-viscosity sub-solution to
G(D2u,Du, x) = 0 in Ω and v ∈ LSC(Ω) be a C-viscosity super-solution to
H(D2v,Dv, x) = 0 in Ω. Define w : Ω× Ω → R as

w(x, y) := u(x)− v(y).

Let Ψ ∈ C2(Ω × Ω) and suppose (x, y) ∈ Ω × Ω is a local maximum point for
w −Ψ. For every ε > 0 there exist X, Y ∈ S(d) such that

G(X,DxΨ(x, y), x) ≤ 0 ≤ H(Y,DyΨ(x, y), y).

In addition,

−
(
1

ε
+ ‖D2Ψ(x, y)‖

)
I ≤

(
X 0

0 −Y

)
≤ D2Ψ(x, y) + ε

[
D2Ψ(x, y)

]2
.

For a proof of Proposition 1, we refer the reader to [21, Theorem 3.2]. We
continue with a variant of a regularity result for equations holding only where
the gradient is large. See [27]; see also [35].
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Proposition 2 (Hölder regularity). Fix γ > 0. Let u ∈ C(Ω) be a normalized
viscosity solution to

M−
λ,Λ(D

2u) ≤ C0 in Ω ∩ {|Du| ≥ γ}
M+

λ,Λ(D
2u) ≥ −C0 in Ω ∩ {|Du| ≥ γ} .

There exists β ∈ (0, 1) such that u ∈ Cβ
loc(Ω). Moreover, for Ω′

⋐ Ω there exists
C > 0 such that

‖u‖Cβ(Ω′) ≤ CC0.

Finally, β = β(λ,Λ, d) and C = C(λ,Λ, d, γ, diam(Ω), dist(Ω′, ∂Ω)).

We close this section with a proposition relating the sequence spaces ℓ1(R
d)

and c0(R
d). See [2, Lemma 1].

Proposition 3. Let (aj)j∈N ∈ ℓ1 and take ε, δ > 0, arbitrary. There exists a
sequence (cj)j∈N ∈ c0, with maxj∈N |cj | ≤ ε−1, such that

(
aj
cj

)

j∈N

∈ ℓ1

and

ε

(
1− δ

2

)
‖(aj)‖ℓ1 ≤

∥∥∥∥
(
aj
cj

) ∥∥∥∥
ℓ1

≤ ε(1 + δ) ‖(aj)‖ℓ1 .

3 The existence of solutions

The study of the existence of solutions for fully nonlinear free transmission
problems entails genuine difficulties. For instance, fundamental properties -
such as properness - are not available for the operator. As a consequence, the
comparison principle for viscosity solutions and Perron’s method are out of
reach. To establish the existence of a viscosity solution to (1) equipped with a
Dirichlet boundary condition, we resort to the approximation strategy devised
in [41, 23]. In the sequel, we introduce an approximate equation.

Let v ∈ C(Ω). For ε ∈ (0, 1), define gv,ε : R
d → [0, 1] as

gv,ε :=

{
max

(
min

(
v+ε
2ε , 1

)
, 0
)

in Ω,
0 in R

d \ Ω.

The heuristic underlying the definition of gv,ε is the following. In {v > ε}, we
have gv,ε = 1, whereas gv,ε = 0 in the set {v < −ε}. In the region {−ε ≤ v ≤ ε}
the function takes values between 0 and 1. The idea behind gv,ε is to build
an indicator function outside of an ε-neighborhood of the free boundary. To
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smoothen gv,ε, we define a weight function hv,ε as follows: for x ∈ Ω, set

hv,ε(x) := (gv,ε ∗ ηε) (x).

Then we introduce the approximating degeneracy function σv,ε, given by

σv,ε(p, x) := σ1(p)hv,ε(x) + (1− hv,ε(x))σ2(p).

Remark 1. Because 0 ≤ gv,ε ≤ 1, we have 0 ≤ hv,ε ≤ 1. Therefore, σv,ε is a
convex combination of σ1 and σ2. Hence, we conclude σ1(p) ≥ σv,ε(p, x) ≥ σ2(p)

for every p ∈ R
d and every x ∈ Ω.

For ε ∈ (0, 1), consider

σv,ε(ε+ |Du|)
[
εu+ F (D2u)

]
= f in Ω. (10)

Inspired by ideas in [23], we start by establishing a comparison principle for sub
and super-solutions to (10).

Proposition 4 (Comparison Principle). Let u ∈ USC(Ω) be a viscosity sub-
solution to (10), and w ∈ LSC(Ω) be a viscosity super-solution to (10). Suppose
Ω is a bounded domain, F is degenerate elliptic, and f ∈ L∞(Ω) ∩ C(Ω). If
u ≤ w on ∂Ω, then, u ≤ w in Ω.

Proof. As usual, the proof follows from a contradiction argument. Suppose the
statement of the proposition is false. Then there is x0 such that

(u− w)(x0) = max
x∈Ω

u− w > 0.

Set τ := (u− w)(x0). For δ > 0, define Φ : Ω× Ω → R as

Φδ(x, y) := u(x)− w(y)− |x− y|2
2δ

.

Denote with (xδ, yδ) the minimiser of Φδ(x, y). Because

lim
δ→0

|xδ − yδ|2
2δ

= 0,

both xδ and yδ are in Ω, provided δ > 0 is taken sufficiently small; see [21,
Lemma 3.1]. From Proposition 1, there are X,Y such that

(
xδ − yδ

δ
,X

)
∈ J2,+u(xδ) and

(
xδ − yδ

δ
, Y

)
∈ J2,−w(yδ),
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with

−3

δ

(
I 0

0 I

)
≤
(
X 0

0 −Y

)
≤ 3

δ

(
I −I

−I I

)
.

In particular, X ≤ Y . Hence the degenerate ellipticity of F yields

ετ2 ≤ ε(u(xδ)− w(yδ))

≤ f(xδ)

σv,ε

(
ε+ |xδ−yδ|

δ , xδ

) − f(yδ)

σv,ε

(
ε+ |xδ−yδ|

δ , yδ

) .

Combining Remark 1 and Assumption 3 we get

min

(
σv,ε

(
ε+

|xδ − yδ|
δ

, xδ

)
, σv,ε

(
ε+

|xδ − yδ|
δ

, yδ

))
≥ σ2(ε).

Hence,

f(xδ)

σv,ε

(
ε+ |xδ−yδ|

δ , xδ

) − f(yδ)

σv,ε

(
ε+ |xδ−yδ|

δ , yδ

) ≤ f(xδ)− f(yδ)

σv,ε

(
ε+ |xδ−yδ|

δ , xδ

)

+
f(yδ)

σv,ε

(
ε+ |xδ−yδ|

δ , xδ

) − f(yδ)

σv,ε

(
ε+ |xδ−yδ|

δ , yδ

)

Let ω1 and ω2 be the moduli of continuity of f and σv,ε respectively. Then

f(xδ)− f(yδ)

σv,ε

(
ε+ |xδ−yδ|

δ , xδ

) +
f(yδ)

σv,ε

(
ε+ |xδ−yδ|

δ , xδ

) − f(yδ)

σv,ε

(
ε+ |xδ−yδ|

δ , yδ

)

≤ ω1(|xδ − yδ|)σ2(ε) + |f |L∞(Ω)

σv,ε

(
ε+ |xδ−yδ|

δ , yδ

)
− σv,ε

(
ε+ |xδ−yδ|

δ , xδ

)

σv,ε

(
ε+ |xδ−yδ|

δ , xδ

)
· σv,ε

(
ε+ |xδ−yδ|

δ , yδ

)

≤ ω1(|xδ − yδ|)σ2(ε) + ‖f‖L∞(Ω)

ω2(|xδ − yδ|)
σ2(ε)2

Because

ω1(|xδ − yδ|)σ2(ε) + ‖f‖L∞(Ω)

ω2(|xδ − yδ|)
σ2(ε)2

−→ 0

as we take the limit δ → 0, we conclude ετ2 ≤ 0, which yields a contradiction
and completes the proof. The result is then obtained by letting δ go to zero.

Once the comparison principle is available, we proceed by constructing ex-
plicit sub and super-solutions for (10). This is the subject of the next proposi-
tion.

Proposition 5 (Existence of global sub and super-solutions). Let Ω be a domain
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satisfying u uniform exterior sphere condition. Suppose F is a degenerate elliptic
operator, f ∈ L∞(Ω)∩C(Ω) and g ∈ C(∂Ω). Suppose further that Assumption 3
holds. Then there is a pair of functions w,w in C(Ω) such that, for every ε > 0

and v ∈ C(Ω), w, w are viscosity super and sub-solutions to (10) respectively.

Proof. We will construct only a super-solution to (10) since one analogously
obtains a sub-solution. Our argument follows exactly along the same lines as in
[23]. In the sequel, we only mention the adjustments necessary to the present
setting.

Define functions w1 and wy,η as in [23, Lemma 2]. From the definition of
w1, we conclude

σv,ε(ε+ |Dw1|, x)[εw1F (D2w1(x))] ≥ f(x), (11)

for every x ∈ Ω. Also, the definition of wy,η ensures that

σv,ε(ε+ |Dwy,η|)[εwy,η(x) + F (D2wy,η(x)) ≥ f(x),

for every 0 < ε, η < 1, and x ∈ Ω. Therefore, the functions wy,η are super-
solutions of (10) for every 0 < ε, η < 1 and y ∈ ∂Ω. Thus, the functions

w̃y,η(x) := min(wy,η(x), w1(x)) (12)

are viscosity super-solutions of (10), since the minimum of viscosity super-
solutions is a super-solution. In the same manner, we have at last that the
function

w(x) := inf {w̃y,η(x) | y ∈ ∂Ω, 0 < η < 1} (13)

is a viscosity super-solution satisfying w = g on ∂Ω.

Corollary 1. Let Ω be a domain satisfying a uniform exterior sphere condition.
Suppose F is degenerate elliptic, f ∈ L∞(Ω) ∩ C(Ω) and g ∈ C(∂Ω). Further-
more, assume Assumption 3 holds. Then for every ε > 0 and v ∈ C(Ω), there
is a unique viscosity solution uv,ε in C(Ω), such that w ≤ uv,ε ≤ w ∈ Ω. There
is also β(d, λ,Λ) > 0, such that for every Ω′ ⊂ Ω,

‖uv,ε‖Cβ(Ω′) ≤ C, (14)

for some C = (d, λ,Λ, ‖uv,ε‖L∞(Ω) , ‖f‖L∞(Ω) , dist(Ω
′, ∂Ω))

Proof. To prove the existence of uv,ε, one combines the comparison principle
(Proposition 4) and the existence of global sub and super-solutions (Proposition
5) and resort to Perron’s method. To obtain (14) notice that uv,ε is a viscosity
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sub-solution of

M−
λ,Λ(D

2uv,ε) = ‖f‖L∞(Ω) + ‖uv,ε‖L∞(Ω) in {|Duv,ε| > 1}

and a viscosity super-solution to

M+
λ,Λ(D

2uv,ε) = −‖f‖L∞(Ω) − ‖uv,ε‖L∞(Ω) in {|Duv,ε| > 1}. (15)

A straightforward application of Proposition 2 completes the proof.

Once we have established the existence of a unique viscosity solution uv,ε to
(10) agreeing with g on ∂Ω, we address the parameters v ∈ C(Ω) and ε > 0.
To handle the functional parameter v, we resort to the Schauder fixed point
theorem. Define B ⊂ C(Ω) as

B :=
{
w ∈ C(Ω) |w ≤ w ≤ w

}
, (16)

where w and w are the sub and super-solutions constructed in Proposition 5.
Define also the map T : B → C(Ω) as Tv := uv,ε. We prove there exists a fixed
point v∗ ∈ B for T .

Proposition 6 (Properties of the map T). Let B ⊂ C(Ω) be defined as in
(16). Define T : B → C(Ω) as Tv := uv,ε. Then there exists v∗ ∈ B such that
Tv∗ = v∗.

The proof of Proposition 6 follows along the same lines as in [23, Lemma 3]
and is omitted. In what follows, we detail the proof of Theorem 1.

Proof of Theorem 1. Proposition 6 is tantamount to the existence of uε ∈ B

such that
σuε,ε(ε+ |Duε|, x)[εuε + F (D2uε)] = f in Ω, (17)

with uε = g on ∂Ω.
Corollary 1 builds upon the Arzelà-Ascoli theorem to produce a subsequence

(uεn)n∈N, with εn < 1/n, and a function u ∈ B such that uεn → u in C(Ω),
as n → ∞. Since σv,ε converges to σ1χ{u>0} + σ2χ{u<0} uniformly on compact
subsets of ({u > 0} ∪ {u < 0})∩Ω, a standard argument on the stability of vis-
cosity solutions allows us to conclude that u solves (1) in ({u > 0} ∪ {u < 0})∩Ω.
Moreover, since σ1 ≥ σv,ε ≥ σ2, u is also a viscosity sub-solution to (7) and a
viscosity super-solution to (8) in Ω.

Remark 2 (Existence of solutions for the pure equation). We notice the ar-
guments above can be easily adjusted to provide an existence result for the
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problem

σ(|Du|)F (D2u) = f in Ω

u = g in Ω,
(18)

provided Ω ⊂ R
d satisfies a uniform exterior sphere condition and g ∈ C(∂Ω).

The main modification is in the choice of the approximated problem. Indeed,
we should consider

σ(ε+ |Du|)
[
εu+ F (D2u)

]
= f in Ω,

and establish a comparison principle along the same lines as before. Then
building sub and super-solutions also following the previous rationale, would
allow one to evoke Perron’s method and conclude the argument.

Remark 3 (Existence of globally Lipschitz-continuous solutions). We believe
it is possible to change the sub and super-solutions in Proposition 5 according
to the model proposed in [11, Lemma 2.2]. Under such a construction, and
resorting to the conclusion of Theorem 2, we conclude the existence of a globally
Lipschitz-continuous viscosity solution to (1).

4 Local C1-regularity estimates

In this section, we detail the proof of Theorem 2. Our strategy is based on a
technique introduced in [41, 23], relating (1) with a pair of viscosity inequalities
holding in the entire domain. Indeed, if u ∈ C(Ω) is a viscosity solution to (1),
it solves

min
(
σ1(|Du|)F (D2u), σ2(|Du|)F (D2u)

)
≤ C0 in Ω

and
max

(
σ1(|Du|)F (D2u), σ2(|Du|)F (D2u)

)
≥ −C0 in Ω.

In the sequel, we prove that viscosity solutions to (1) are locally Hölder con-
tinuous, with estimates. For simplicity, and without loss of generality, we set
Ω ≡ B1. The next result is a direct consequence of Proposition 2.

Proposition 7 (Hölder continuity). Let u ∈ C(B1) be a viscosity solution to

min
(
σ1(|q +Du|)F (D2u), σ2(|q +Du|)F (D2u)

)
≤ C0 in B1 (19)

and

max
(
σ1(|q +Du|)F (D2u), σ2(|q +Du|)F (D2u)

)
≥ −C0 in B1, (20)

14



where q ∈ R
d is fixed, though arbitrary. Suppose Assumptions 2 and 3 are in

force. Suppose further |q| ≤ A0, for some constant A0 > 1. Then there exists
β ∈ (0, 1) such that u ∈ Cβ

loc(B1). In addition, for every τ ∈ (0, 1) there exists
Cτ > 0 for which

‖u‖Cβ(Bτ )
≤ Cτ .

The constant Cτ depends on λ, Λ, the dimension d, C0 and σi(A0), for i = 1, 2.

Proof. Let p be such that |p| > 2A0. Hence |q+ p| > A0. This inequality builds
upon Assumption 3 to ensure

σ := min (σ1(A0), σ2(A0)) ≤ min (σ1(|q + p|), σ2(|q + p|)) .

Hence, u solves

M−
λ,Λ(D

2u) ≤ C0

σ
in B1 ∩ {|p| > 2A0}

and
M+

λ,Λ(D
2u) ≥ −C0

σ
in B1 ∩ {|p| > 2A0} .

By setting γ := 2A0 in Proposition 2 the result follows.

We continue with an application of the maximum principle to produce Hölder
continuity for a solution to (19)-(20) in case |q| ≥ A0. Our argument follows
along the same lines as in [23, Proposition 5].

Proposition 8 (Hölder continuity). Let u ∈ C(B1) be a viscosity solution to
(19)-(20). Suppose Assumptions 2 and 3 are in force. Then u ∈ Cβ

loc(B1), for
some universal constant β ∈ (0, 1). In addition, for every ρ ∈ (0, 1) there exists
C > 0 such that

‖u‖Cβ(Bρ)
≤ C.

Proof. We argue as in the proof of [23, Proposition 5]; in the sequel, we omit
most of the details, stressing the main differences with respect to the argument
in that paper. We split the proof into four steps.

Step 1 - Fix 0 < r < (1− τ)/2 and consider the modulus of continuity ω(t) :=

t− t2/2. Define the quantity

L := sup
x,y∈Br(x0)

(
u(x)− u(y)− L1ω(|x− y|)− L2

(
|x− x0|2 + |y − x0|2

))
.

As usual, our goal is to choose L1 and L2 such that L ≤ 0 for every x0 ∈ Bτ .
Suppose such a choice is not possible. It is tantamount to say there exists x0

such that L > 0 regardless of the choice of L1 and L2. Arguing as in [23,
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Proposition 5], we find points (X, px, x), (Y, py, y) ∈ S(d)×R
d ×Br(x0), and a

constant ι > 0, such that

M−
λ,Λ(X − Y ) ≥ 4λL1 − (λ+ (d− 1)Λ)(4L2 + 2ι), (21)

min (σ1(|q + px|)F (X), σ2(|q + px|)F (X)) ≤ C0, (22)

max (σ1(|q + py|)F (Y ), σ2(|q + py|)F (Y )) ≤ C0, (23)

and
F (X) ≥ F (Y ) +M−

λ,Λ(X − Y ). (24)

Combining (21)-(24), we get

4λL1 ≤ (λ+ (d− 1)Λ) (4L2 + 2ι) + C0

(
1

σi(|q + pj |)
+

1

σk(|q + pℓ|)

)
, (25)

where i, k ∈ {1, 2}, and j, ℓ ∈ {x, y}.

Step 2 - Because
|px|, |py| ≤ L1(1 + |x− y|) + 2L2,

where L2 := (4
√
2/r)2, we conclude there exists a > 0 such that

|px|, |py| ≤ aL1.

Set A0 = 10aL1 and suppose |q| > A0. For those choices, it is clear that
q 6= px and q 6= py. Moreover,

|q + pj | ≥ A0 −
A0

10
≥ 9

10
A0,

for j ∈ {x, y}. Therefore,

1

σi(|q + pj |)
≤ 1

σi(|q + pj |)
=

1

σi(9aL1)
,

for i ∈ {1, 2}. Hence, (25) becomes

4λL1 ≤ (λ+ (d− 1)Λ) (4L2 + 2ι) + C(L1)C0,

where the constant C(L1) is monotone decreasing in L1. By taking L1 > 0

large enough, one gets a contradiction and proves that solutions to (19)-(20) are
locally Lipschitz continuous if |q| ≥ A0.

Step 3 - In case |q| ≤ A0, Proposition 7 ensures the Hölder continuity of u.
This fact builds upon the conclusion in Step 2 to complete the proof.
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The compactness stemming from the former result unlocks an approximation
lemma, instrumental in our analysis. This is the content of the next proposition.

Proposition 9 (Approximation Lemma). Let u ∈ C(B1) be a viscosity solution
to (19)-(20). Suppose Assumptions 2 and 3 are in force. Let α0 ∈ (0, 1) be the
exponent for the Krylov-Safonov regularity theory available for F = 0. For every
δ > 0 there exists ε > 0 such that, if C0 ≤ ε then one can find h ∈ C1,α0

loc (B9/10)

satisfying
‖u− h‖L∞(B9/10)

≤ δ.

In addition, there exists C > 0 for which

‖h‖C1,α0 (B8/9)
≤ C.

Finally, the constant C = C(d, λ,Λ) > 0 is independent of q.

Proof. The proof resorts to a contradiction argument. For ease of presentation,
we split it into six steps.

Step 1 - Suppose the result does not hold. In this case, there are sequences
(σn

1 )n∈N, (σn
2 )n∈N, (qn)n∈N, (un)n∈N, (Fn)n∈N, (fn)n∈N and δ0 > 0 such that:

1. The operator Fn satisfies Assumption 2, for every n ∈ N;

2. The functions σn
1 and σn

2 are such that σn
i (0) = 0, σn

i (1) ≥ 1 and, if
σn
i (an) → 0, then an → 0;

3. The function fn ∈ L∞(B1) ∩ C(B1) is such that

‖fn‖L∞(B1)
=: Cn → 0 as n → ∞;

4. The following inequalities hold in the viscosity sense:

min
(
σn
1 (|Dun + qn|)Fn(D

2un), σ
n
2 (|Dun + qn|)Fn(D

2un)
)
≤ Cn

and

max
(
σn
1 (|Dun + qn|)Fn(D

2un), σ
n
2 (|Dun + qn|)Fn(D

2un)
)
≥ −Cn,

in the unit ball B1;

5. We have
sup

x∈B7/8

|un(x)− h(x)| > δ0

for every n ∈ N, and every h ∈ C1,α0

loc (B8/9).
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To produce a contradiction, we use the compactness available for the sequence
(un)n∈N and the uniform ellipticity of Fn. This is the subject of the next steps.

Step 2 - Because of Proposition 8, there exists a subsequence, still denoted
with (un)n∈N, converging uniformly to some u∞ ∈ Cβ

loc
(B1). Also, Assumption

2 implies that (Fn)n∈N is a sequence of uniformly Lipschitz-continuous opera-
tors. As a consequence, there exists F∞ satisfying Assumption 2 such that Fn

converges to F∞, locally uniformly (through some subsequence if necessary).
Our goal is to prove that u∞ is a viscosity solution to F∞(D2w) = 0 in B1. We
only show a sub-solution property, as its super-solution counterpart is entirely
analogous. Consider the paraboloid p(x) defined as

p(x) := u∞(y) + b · (x− y) +
1

2
(x− y)TM(x− y).

Suppose p touches u∞ from above in a vicinity of y ∈ B1. Consider also the
sequence (xn)n∈N such that p touches un from above at xn and xn → y as
n → ∞. We then have

min (σn
1 (|b + qn|)Fn(M), σn

2 (|b + qn|)Fn(M)) ≤ Cn. (26)

The proof is complete if we verify F∞(M) ≤ 0. To reach this conclusion we split
the remainder of our argument into several cases, depending on the behaviour
of b + qn.

Step 3 - Suppose the sequence (qn)n∈N does not admit a convergent subse-
quence. That is, |qn| → ∞ as n → ∞. Then there exists N ∈ N such that

|b + qn| ≥ 1

for n > N . In this case, (26) implies

Fn(M) ≤ Cn

σn
1 (|b + qn|)

≤ Cn or Fn(M) ≤ Cn

σn
2 (|b + qn|)

≤ Cn.

In any case, we get Fn(M) ≤ Cn. By taking the limit n → ∞, one recovers
F∞(M) ≤ 0 and completes the proof in this case. It remains to examine the
case where (qn)n∈N is bounded.

Step 4 - If the sequence (qn)n∈N is bounded, at least through a subsequence
it converges to some q∞ ∈ R

d. Suppose

|b + q∞| =: τ > 0.
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Then one can find N ∈ N such that

|b + qn| >
τ

2
,

provided n > N . Hence, σn
i (|b + qn|) > σn

i (τ/2) for every n > N and the
previous argument easily adjusts to yield

Fn(M) ≤ Cn

σn
1 (τ/2)

or Fn(M) ≤ Cn

σn
2 (τ/2)

.

In any case, Fn(M) ≤ Cn, with Cn → 0 as n → ∞. Once again we recover
F∞(M) ≤ 0. It remains to study the case |b + q∞| = 0.

Step 5 - Without loss of generality we suppose b = 0 and y = 0. Also,
suppose M has k ∈ {1, . . . , d} strictly positive eigenvalues. Indeed, were all the
eigenvalues of M non-positive, ellipticity would ensure Fn(M) ≤ 0 for every
n ∈ N, leading immediately to the desired conclusion.

For i = 1, . . . , k, denote with ei the eigenvector associated with the i-th
strictly positive eigenvalue of M . Define E as the subspace of Rd spanned by
e1, . . . , ek and write R

d =: E ⊕G. Finally, consider the test function

ϕ(x) := κ sup
e∈Sd−1

〈PEx, e〉+
1

2
xTMx,

where 0 < κ ≪ 1 is a fixed constant, PE is the orthogonal projection into E

and S
d−1 is the unit sphere of dimension (d− 1). We notice that usual stability

results ensure that ϕ touches un from above at some point xκ
n, with xκ

n → 0 as
n → ∞. Note that ϕ is C2 outside G. If xκ

n ∈ G, we modify the function ϕ to
consider

ϕe(x) := κ 〈PEx, e〉+
1

2
xTMx.

Hence,

min (σn
1 (|κe+Mxn + qn|)Fn(M), σn

2 (|κe+Mxn + qn|)Fn(M)) ≤ Cn. (27)

Choosing,

e :=
Mxn

|Mxn|
and noticing that

κ

2
≤ κ− |qn| ≤ |κe+Mxn + qn| ,

for large enough n ≫ 1, inequality (27) yields

Fn(M) ≤ Cn

σn
1 (κ/2)

or Fn(M) ≤ Cn

σn
2 (κ/2)

, (28)
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for every n ∈ N.
Now, suppose PExn 6= 0. Arguing as before, we get that either

σn
1

(∣∣∣∣Mxn + κ
PExn

|PExn|
+ qn

∣∣∣∣
)
Fn

(
M + κ

(
Id+

PExn

|PExn|
⊗ PExn

|PExn|

))
≤ Cn

or

σn
2

(∣∣∣∣Mxn + κ
PExn

|PExn|
+ qn

∣∣∣∣
)
Fn

(
M + κ

(
Id+

PExn

|PExn|
⊗ PExn

|PExn|

))
≤ Cn.

Notice that
κ

2
≤ κ− |qn| ≤

∣∣∣∣Mxn + κ
PExn

|PExn|
+ qn

∣∣∣∣ ;

moreover,

κ

(
Id+

PExn

|PExn|
⊗ PExn

|PExn|

)
≥ 0,

in the sense of matrices. Ellipticity builds upon the monotonicity of σn
i to

produce (28) also when Pexn 6= 0. By taking the limit n → ∞ in (28), we get
F∞(M) ≤ 0. We have established that u∞ is a viscosity solution to F∞ = 0 in
B1.

Step 6 - Because F∞(D2u∞) = 0 in B1, standard regularity results imply that
u∞ ∈ C1,α0

loc (B1) with estimates, where α0 ∈ (0, 1) is the (universal) exponent
stemming from the Krylov-Safonov theory. By taking h := u∞ one finds a
contradiction and concludes the proof.

We use Proposition 9 to construct a sequence of approximating hyperplanes.
The difference between the solution and such approximating hyperplanes behave
in a precise geometric fashion. Such a geometric control of the difference between
the solution and a hyperplane is key to differentiability.

4.1 Proof of Theorem 2

We start by introducing γ(t) := tσ2(t); because t 7→ tσ2(t) is a bijective map, it
has an inverse. Set ω(t) := γ−1(t). We use ω(·) to examine an alternative.

For α0 ∈ (0, 1) as in Proposition 9, suppose first

tα0

ω(t)
−→ 0, as t → 0,

we choose r ∈ (0, 1) and define µ1 > 0 such that

2Crα0 = ω(r) =: µ1, (29)
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where C > 0 is the universal constant in Proposition 9. On the contrary, suppose
that

tα0

ω(t)
−→ M, as t → 0,

where M ∈ R is some positive constant. In this case, set

µ1 := r
α0
2 =

1

2C
, (30)

where α0 ∈ (0, 1) and C > 0 are once again the constants in Proposition 9. We
notice both (29) and (30) imply

2Cr1+α0 = µ1r (31)

We proceed by defining the constant θ = r
µ1

and considering the sequence

(ak)k∈N :=
(
σ−1
2 (θk)

)
k∈N

.

Under Assumption 4, the inverse σ−1
2 is Dini-continuous; as a consequence,

the sequence
(
σ−1
2 (θk)

)
k∈N

is summable, and (ak)k∈N ∈ ℓ1. Now, we resort to
Proposition 3. For 0 < δ < 1

4 , we set 0 < ε < 1 as

ε :=
1

1 + δ
.

For these choices, an application of Proposition 3 yields a sequence (ck)k∈N such
that

7

10

∞∑

i=1

σ−1
2 (θk) ≤

∞∑

i=1

σ−1
2 (θk)

ck
≤

∞∑

i=1

σ−1
2 (θk).

Finally, we design two sequences of moduli of continuity
(
σk
1 (·)

)
k∈N

and(
σk
2 (·)

)
k∈N

given by

σ0
i (t) := σi(t),

σ1
i (t) :=

µ1

r
σi(µ1t),

σ2
i (t) :=

µ1µ2

r2
σi(µ1µ2t),

...

σk
i (t) :=

k∏
j=1

µj

rk
σi(

k∏

j=1

µjt),
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with µ1 > r as defined and (µk)k∈N determined as follows. If

µk

k−1∏
j=1

µj

rk
σ2


µk

k−1∏

j=1

µjck


 ≥ 1,

then µk = µk−1. Otherwise µk < 1 is chosen to ensure

k∏
j=1

µj

rk
σ2




k∏

j=1

µjck


 = 1.

We notice Assumption 3 ensures that such a choice for the sequence (µk)k∈N

implies
k∏

j=1

µj

rk
σ1




k∏

j=1

µjck


 ≥ 1.

Once these ingredients are available, we combine them with Proposition 9 to
produce a sequence of affine functions whose difference with respect to u grows
in a controlled fashion.

Proposition 10. Let u ∈ C(B1) be a normalized viscosity solution to (19)-
(20). Suppose Assumptions 1-4 hold true. There exists ε > 0 such that, if
‖f‖L∞(B1)

< ε, one finds a ∈ R and b ∈ R
d satisfying |a|+ ‖b‖ ≤ C, for some

universal constant C > 0. In addition,

sup
x∈Br

|u(x)− (a+ b · x)| ≤ µ1r,

where µ1 > 0 has been chosen in the algorithm described above.

Proof. We start by choosing the approximation parameter δ > 0 in Proposition
9. Indeed, set

δ :=
µ1r

2

and let ε > 0 be the corresponding smallness regime ensuring the existence of
h ∈ C1,α0

loc (B9/10), with ‖h‖C1,α0 (B8/9)
≤ C, such that

sup
x∈B8/9

|u(x)− h(x)| ≤ µ1r

2
, (32)
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where the inequality follows from (31). The regularity available for h implies

sup
x∈Br

|h(x)− h(0)−Dh(0) · x| ≤ Cr1+α0 . (33)

By combining (32) and (33), one finds

sup
x∈Br

|u(x)− (a+ b · x)| ≤ µ1r,

and completes the proof.

Now we extrapolate the findings in Proposition 10 to arbitrary small scales,
in a discrete scheme.

Proposition 11 (Oscillation control at discrete scales). Let u ∈ C(B1) be a
normalized viscosity solution of (19)-(20). Assume that Assumptions 1-4 hold
and that ‖f‖L∞(B1)

≤ ε, where ε is the same as in Proposition 10. Then for
every n ∈ N, there are affine functions (φn)n∈N of the form

φn(x) := an + bn · x (34)

satisfying

sup
x∈Brn

|u(x)− φn(x)| ≤
(

n∏

i=1

µi

)
rn, (35)

|an+1 − an| ≤ C

(
n∏

i=1

µi

)
rn, (36)

and

|bn+1 − bn| ≤ C

n∏

i=1

µi. (37)

Proof. The proof follows from an induction argument. The case n = 1 is covered
by taking φ1 := a+ b · x, where a ∈ R and b ∈ R

d are as in Proposition 10. It
accounts for the base case.

Suppose the case n = k−1 has already been established; it remains to verify
the statement for n = k. To that end, consider the function

uk(x) :=
uk−1(rx)− ℓk−1(rx)

µk · r , (38)

where r < µ1 ≤ µ2 . . . ≤ µk have been chosen earlier. Note that uk solves

min
(
F k
1 (Duk, D

2uk), F
k
2 (Duk, D

2uk)
)
≤ ‖fk‖L∞(B1)

in B1
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and

max
(
F k
1 (Duk, D

2uk), F
k
2 (Duk, D

2uk)
)
≥ −‖fk‖L∞(B1)

in B1,

where

F k
i (p,M) := σk

i

(∣∣∣∣p+
Dφk−1

µk−1

∣∣∣∣
)
Fk(M),

with

σk
i (t) :=

k∏
j=1

µj

rk
σi




k∏

j=1

µjt


 ,

Fk(M) := rk




k∏

j=1

µj




−1

F






k∏

j=1

µj


(rk

)−1
M


 ,

and
fk(x) := f(rkx).

The choice of (µj)
k
j=1 and the construction of the degeneracies σk

i allows us
to evoke Proposition 10 and obtain an affine function φ satisfying

sup
x∈Br

|uk(x)− φ(x)| ≤ µ1r.

Now, rewriting the above in terms of u, we get

sup
x∈B

rk

|u(x)− φk(x)| ≤
(

k∏

i=1

µi

)
rk,

where

φk(x) := φ1(x) +

k−1∑

i=2

φi(r
−1x)

k−1∏

i=1

(µi)r
i = ak + bk · x.

In addition,

|ak − ak−1| ≤ C

(
k−1∏

i=1

µi

)
rk−1,

and

|bk − bk−1| ≤ C

(
k−1∏

i=1

µi

)
,

which completes the proof.

Next, we present the proof of Theorem 2, which stems from the choice of
the sequence (µn)n∈N and the geometric decay in Proposition 11.
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Proof of Theorem 2. We start by noticing two possibilities concerning the se-
quence (µn)n∈N. Either the sequence repeats after some index N ≥ 2 or we
have µn < µn+1 for infinitely many indices n ∈ N.

In the former case, it is well-known that C1,α-regularity estimates are avail-
able, for 0 < α < α0, where α0 ∈ (0, 1) is the (universal) exponent associated
with the Krylov-Safonov theory for F = 0. The second possibility amounts to

n+1∏
i=1

µi

rn+1
σ2

([
n+1∏

i=1

µi

]
cn+1

)
= 1.

Here, the definition of µn implies

n∏
i=1

µi

rn
σ2

(
n∏

i=1

µi cn

)
= 1.

Hence,

n∏

i=1

µi =
1

cn
σ−1
2




rn

n∏
i=1

µi


 ≤ σ−1

2 (θn)

cn
. (39)

Define (τn)n∈N as

(τn)n∈N :=

(
n∏

i=1

µi

)

n∈N

.

Because of (39), we conclude that (τn)n∈N ∈ ℓ1, and its norm is bounded by
∞∑
i=1

σ−1
2 (θi). The latter is finite due to the summable characterisation of Dini

continuity and Assumption 4.
As a consequence, we infer that

lim
n→∞

(
n∏

i=1

µi

)
= 0;

therefore, (an)n∈N and (bn)n∈N are Cauchy sequences and there exists a∞ ∈ R

and b∞ ∈ R
d such that

an −→ a∞ and bn −→ b∞,
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as n → ∞. Moreover, notice that

|a∞ − an| ≤ C

(
∞∑

i=n

τi

)
rn and |b∞ − bn| ≤ C

(
∞∑

i=n

τi

)
. (40)

Set ϕ(x) := a∞+b∞·x and fix 0 < ρ ≪ 1. Let n ∈ N be such that rn < ρ ≤ rn+1.
Combine Proposition 11 with the inequalities in (40) to obtain

sup
x∈Bρ

|u(x)− ϕ(x)| ≤ sup
x∈Brn

|u(x)− φn(x)|+ sup
x∈Brn

|ϕ(x)− φn(x)|

≤ 1

r
C

(
τn +

∞∑

i=n

τi

)
ρ

≤ C

(
∞∑

i=n

τi

)
ρ.

(41)

Because the parameter n ∈ N in the inequalities in (41) is arbitrary, one can
choose n = n(ρ) as

n(ρ) := ⌊1/ρ⌋ .

Define σ : [0,∞) → [0,∞) as

σ(t) :=

∞∑

i=⌊1/t⌋

τi

if t > 0, with σ(0) = 0. We conclude that σ(t) is a modulus of continuity.
Hence, for every 0 < ρ ≪ 1, (41) becomes

sup
x∈Bρ

|u(x)− ϕ(x)| ≤ Cσ(ρ)ρ,

which completes the proof since ϕ is an affine function.
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