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Abstract. We investigate a class of PDEs featuring nonlocal degen-

eracies arising from self-dependent regions determined by the solution’s

Hölder semi-norm. Notably, this framework unifies two classical settings:

free boundary problems, where degeneracy occurs along the nodal set,

and critical-point degenerate PDEs, both recast as extrema (local) prob-

lems within our formulation. For models where an elliptic PDE is only

activated beyond a given positive threshold κ > 0, we establish the local

Hölder continuity of solutions, which is the optimal regularity possible,

and prove a result of Krylov-Safonov type for operators with coefficients,

yielding universal continuity estimates for solutions, independent of co-

efficient regularity. In the globally degenerate case κ = 0, we develop

a C
1,β

−regularity theory, which sharply interpolates the known esti-

mates for the extrema local problems. Beyond its intrinsic relevance,

the framework developed in this paper provides new perspectives on

the classical extrema models, offering insights that are not accessible

through previously known approaches.
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1. Introduction

Degenerate diffusion problems have long fascinated both the mathemat-

ical community and researchers across various disciplines due to their dual

significance: their critical role in modelling a wide range of applied phe-

nomena and the deep, challenging mathematical questions they pose. These

problems are especially intriguing when diffusion collapse occurs on sets

determined by the solution itself, creating a complex interplay between the

solution’s geometry and the analytical behaviour of the governing equations.

Of particular interest are cases where ellipticity breaks down along the

zero-level set of solutions, as in the classical theory of free boundary prob-

lems. Such phenomena arise, for instance, in the well-known Alt-Phillips

problem, which involves minimizing a non-differentiable functional (see [27,

1]). The associated Euler-Lagrange equation takes the form

u1−γ∆u = f(x)χ{u>0}, (1.1)

for γ ∈ (0, 1) and f bounded and continuous. Solutions to this equation are

generally non-unique and can be obtained either through variational meth-

ods or singular perturbation techniques, as in [6]. For additional references,

see [5, 6, 18, 19, 20, 21, 25, 28].

In parallel with this theory, there has been a growing interest in models

where ellipticity vanishes at critical points, such as in the fully nonlinear

extension of the p−Laplace operator, namely,

|Du|p∆u = f(x). (1.2)

This class of problems has been systematically studied since the foundational

works of Birindelli and Demengel [8, 9, 10, 11, 12]. Significant progress was

later made by Imbert and Silvestre [23], who established gradient Hölder

regularity, with optimality results subsequently achieved in [3]. For more

recent developments, see [2, 4, 7, 13, 26].

In this paper, we explore for the first time the connection between the

aforementioned problems, linking free boundary models where ellipticity

vanishes along zeros of the solution, also known as the nodal set, and PDEs

involving degeneracies at critical points. At first glance, one might question

whether such a connection exists at all. A shred of evidence arises from the

minimization process that leads to (1.1), which provides the key estimate

|Du|2 ≲ uγ ,

for the pertaining regularity program (see [27, Lemma III.1]). Thus, vari-

ational solutions of the Alt-Phillips equation do satisfy (1.2), for f ∈ L∞,

with

p =
2− 2γ

γ
> 0.
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The reverse implication, i.e., whether solutions to (1.2) conform to the same

behaviour as implied by (1.1), does not seem to be true in general. This

observation offers a compelling mathematical motivation for investigating

the proper connection between both problems.

The approach we propose in this paper stems from applied considerations.

We focus on diffusion models that are activated only in regions where the

solutions’ variation (potential energy, voltage, temperature gradient, defor-

mation, etc.), |u(x) − u(y)|, greatly exceeds a fractional power of the dis-

placement, |x − y|α. This framework naturally introduces a one-parameter

family of operators (Fα)α∈(0,1), which, as we will show, offers an insightful

way to continuously transition between the regimes of (1.1) (corresponding

to α = 0) and (1.2) (corresponding to α = 1).

For each 0 < α < 1 fixed, the inherent degeneracy of the intermediary

model is nonlocal in nature. As such, the bridge we establish between the

two limiting (local) problems arises within a fundamentally nonlocal frame-

work. This non-locality introduces significant challenges, particularly when

developing a regularity theory that remains uniform with respect to the

parameter α.

Fα[u]

non-local degeneracies

local scenarios

FBPs

{u = 0}

α = 0

critical-point

degenerate

PDEs

{∇u = 0}

α = 1

Figure 1. The diagram highlights the transition between

different scenarios of degenerate problems. For α ∈ (0, 1),

the problem is purely nonlocal, linking the extremal (local)

cases given by Free Boundary Problems (FPBs) and critical-

point degenerate PDEs.

Specifically, for a parameter α ∈ (0, 1) and q ≥ 0, we study viscosity

solutions to equations of the form

Fα[u] :=
(

(1− α)|u|+ [u]α
)q
F (D2u) = f, (1.3)

where f ∈ L∞(B1) ∩ C(B1) and [·]α is the α−bracket, defined by

[v]α(x) := sup
y∈Bα(1−α)(x)\{x}

|v(y)− v(x)|
|y − x|α ,
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which can be interpreted as the pointwise α−Hölder semi-norm of a function.

We will show in this paper that viscosity solutions of (1.3), with F being

(λ,Λ)−elliptic, are locally of class C1,β(B1), with

β := min

(

α−
F ,

1− q(1− α)

1 + q

)

, provided q <
1

1− α
.

This is the contents of Theorem 5.1. We explain that the number 0 <

αF ≤ 1 denotes the maximal Hölder regularity exponent for the gradient

of F−harmonic functions, i.e., viscosity solutions of F (D2h) = 0, e.g. [15].

In particular, if F is assumed to be concave or convex, one can take β =

(1− q(1− α))/1 + q.

It is also crucial to emphasize that the key novelty of our result lies in

the fact that the estimate we obtain is independent of the magnitude of the

degeneracy quantity,
[

(1−α)|u|+ [u]α
]q
, making it a foundational result to

the analysis of those intermediary, nonlocal models. We expect this to be a

significant research program set to offer a fresh perspective on the theory.

An appealing feature of this estimate is that the interplay between the

degeneracy power q and the order α of the bracket determines the C1,β−re-

gularity theory that sharply interpolates between the known ones for the

models in (1.1) and (1.2). Notably, when α = 0, the degeneracy power

q is confined to vary within the interval (0, 1) and solutions are locally of

class C
1, 1−q

1+q , recovering the regularity theory for the Alt-Phillips problem,

see [22]. At the other extreme, when α = 1, the degeneracy power q can

take any positive real value, and solutions are of class C
1, 1

1+q , which aligns

with the estimates from [3]. The proofs delivered here, however, differ quite

substantially from those in the classical local settings. These differences not

only highlight the unique analytical challenges of the nonlocal setting but

also provide additional insights into the underlying mechanisms that ensure

such critical estimates hold in the classical local problems.

We emphasize that for each intermediate 0 < α < 1, the operator Fα may

be used to model problems related to certain anomalous diffusion, including

interface dynamics and complex materials. In such applications, however,

diffusion should only occur when the ratio between the solution’s variation

and a fractional power of the displacement exceeds a specified threshold.

Mathematically, such considerations lead to the equation

([(1− α)|v|+ [v]α]− κ)q+ F (D
2u) = f ∈ L∞(B1) ∩ C(B1), (1.4)

for some κ > 0. It is understood in (1.4) that no PDE is prescribed at points

where [(1− α)|v|+ [v]α] ≤ κ.

The problems described in the previous paragraphs, to which we shall

establish C1,β−regularity, correspond to the case κ = 0. However, for κ > 0,

the best regularity one can expect is Hölder continuity. In fact, we will
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obtain the optimal regularity for solutions of (1.4), viz. solutions are locally

α−Hölder continuous, for the same parameter α in the operator Fα, see

Proposition 3.1. That is, we show that there is no loss of regularity across

the “free boundary”

Γα,κ := {[(1− α)|v|+ [v]α] = κ} ,
as one transitions from the PDE region to the dormant region.

We further investigate models that account for the complexity of the

medium where the PDE operates, leading to problems involving variable

coefficients. Similar to the classical Krylov-Safonov theory, our objective is

to derive universal continuity estimates for solutions, independent of the reg-

ularity of the coefficients. Adopting the framework introduced by Caffarelli

in [14], we reformulate the problem as viscosity inequalities and establish a

universal C0,γ regularity estimate, see Theorem 4.1.

The remainder of the paper is organized as follows. We dedicate Sec-

tion 2 to discuss the analysis regarding the α−bracket [·]α, and Section 3

to present the basic mathematical setup, including, in subsection 3.2, the

optimal C0,α−regularity for solutions of (1.4). In Section 4, we establish

an Hölder regularity result for solutions of (1.4) which is independent of

the regularity of the coefficients. Finally, in Section 5, we prove the sharp

gradient regularity for solutions of (1.3).

2. The α−bracket

In this section, we introduce the feature that acts as the interpolating

mechanism between the regimes discussed in the introduction. For α ∈
(0, 1), consider the closed subset of B1 defined by

Nα(1−α)(B1) := {x ∈ B1 : dist(x, ∂B1) ≥ α(1− α)}.
If x ∈ Nα(1−α)(B1), then clearly Bα(1−α)(x) ⊂ B1.

Definition 2.1. Let v ∈ C(B1). The α−bracket of v is the function

[v]α : Nα(1−α)(B1) −→ [0,∞]

defined by

[v]α(x) := sup
y∈Bα(1−α)(x)\{x}

|v(y)− v(x)|
|y − x|α . (2.1)

It is clear that the α−bracket of a continuous function v at a point x0 is

the α−Hölder semi-norm of v at the point x0 in the domain Bα(1−α)(x0).

The main difference with respect to the usual Hölder semi-norm is that the

region where it is evaluated depends on the α−Hölder exponent itself. This

interdependence is the most important feature, allowing for the interpolation

between the two degenerate regimes.
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Lemma 2.1. Let v ∈ C1(B1) and x0 ∈ B1. Then

[v]α(x0) → |Dv(x0)| as α→ 1,

and

(1− α)|v(x0)|+ [v]α(x0) → |v(x0)| as α→ 0.

Proof. Observe that since α is either converging to 1 or to 0, it follows that

x0 ∈ Nα(1−α)(B1) for α sufficiently close to 1 or to 0. To prove the first

convergence, we first observe that if x ∈ Bα(1−α)(x0), then, by the mean

value theorem, there exists θ ∈ [0, 1] such that

|v(x)− v(x0)|
|x− x0|α

≤ |Dv(θx0 + (1− θ)x)||x− x0|1−α

≤ sup
z∈Bα(1−α)(x0)

|Dv(z)|(α(1− α))1−α.

This implies that

[v]α(x0) ≤ sup
z∈Bα(1−α)(x0)

|Dv(z)|(α(1− α))1−α. (2.2)

Taking the superior limit on both sides and using the continuity of Dv, we

obtain

lim sup
α→1

[v]α(x0) ≤ |Dv(x0)|,

where we used that

lim
α→1

(1− α)1−α = 1.

On the other hand, if we pick x = x0 +α(1−α)e, for an arbitrary e ∈ ∂B1,

we have

[v]α(x0) ≥ |v(x)− v(x0)|
|x− x0|α

=
|v(x0 + α(1− α)e)− v(x0)|

(α(1− α))α

= (α(1− α))1−α |v(x0 + α(1− α)e)− v(x0)|
α(1− α)

.

Taking the inferior limit on both sides, we get

|Dv(x0) · e| ≤ lim inf
α→1

[v]α(x0).

Since this holds for every e ∈ ∂B1, it follows that

|Dv(x0)| ≤ lim inf
α→1

[v]α(x0).

As a consequence, both inferior and superior limits coincide, and the first

convergence is proved. To prove the second convergence, taking advantage

of inequality (2.2) again, it readily follows that [v]α(x0) → 0 as α→ 0. □
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Remark 2.1. Note that [v]α(x0) → 0 as α → 0 under the weaker assump-

tion that the modulus of continuity of v satisfies

sup
r∈[0,α]

ωv(r)

rα
→ 0 as α→ 0.

Remark 2.2. The critical factor for the convergence of the α−bracket as α

approaches the interval endpoints is the shrinking of the domain to a single

point as α reaches these extrema, motivating the use of balls with radius

α(1 − α). Notably, this analysis would remain valid if we instead used a

function τ(α) as radius, where τ : R → R satisfies τ(α) > 0 for all α ∈ (0, 1),

τ(0) = τ(1) = 0 and lim
s→0

ωs
τ (s) = 1,

with ωτ denoting the modulus of continuity of τ .

There is an equivalent, useful way of defining the α−bracket. Let

Hα(v, x0) := inf

{

C > 0: sup
x∈Bρ(x0)

|v(x)−v(x0)| ≤ Cρα, ∀ρ ∈
(

0, α(1−α)
]

}

.

Lemma 2.2. Let v ∈ C(B1) and x0 ∈ Nα(1−α)(B1). Then

[v]α(x0) = Hα(v, x0).

Proof. We prove only the case [v]α(x0) < ∞ since the result is clear other-

wise. By the definition of infimum, for each ϵ > 0, there exists Cϵ > 0 such

that Cϵ < Hα(v, x0) + ϵ and

sup
x∈Bρ(x0)

|v(x)− v(x0)| ≤ Cϵρ
α, ∀ρ ∈

(

0, α(1− α)
]

.

Given x ∈ Bα(1−α)(x0)\{x0}, we have 0 < |x − x0| < α(1 − α). It then

follows that

|v(x)− v(x0)| ≤ sup
y∈B|x−x0|

(x0)

|v(y)− v(x0)|

≤ Cϵ|x− x0|α

< (Hα(v, x0) + ϵ) |x− x0|α.
This implies that

[v]α(x0) = sup
x∈Bα(1−α)(x0)\{x0}

|v(x)− v(x0)|
|x− x0|α

≤ Hα(v, x0) + ϵ,

for any ϵ > 0. We now pass to the limit as ϵ→ 0 to obtain

[v]α(x0) ≤ Hα(v, x0).

To prove the other inequality, just observe that

|v(x)− v(x0)| ≤ [v]α(x0) |x− x0|α,



8 D. ARAÚJO, A. SOBRAL, E. V. TEIXEIRA, AND J.M. URBANO

for any x ∈ Bα(1−α)(x0). In particular, if x ∈ Bρ(x0), for ρ ∈
(

0, α(1− α)
]

,

then

|v(x)− v(x0)| ≤ [v]α(x0) |x− x0|α = [v]α(x0) ρ
α.

Since Hα(v, x0) is the infimum, it follows that

Hα(v, x0) ≤ [v]α(x0).

□

In view of Lemma 2.2, it is possible to relate the notion of α−bracket with

the local Lipschitz constant of a function v : B1 → R, which naturally arises

in the calculus of variations in L∞ (see, for instance, [16]), and is defined by

L(v, x0) := lim
r→0+

Lip (v,Br(x0)), x0 ∈ B1,

where

Lip (v,Br(x0)) := inf

{

L > 0: |u(x)− u(y)| ≤ L|x− y|, ∀x, y ∈ Br(x0)

}

.

For nonnegative functions, it can then be shown that

[v]α(x0) = Lip
(

v
1
α , Bα(1−α)(x0)

)

.

The next result concerns a continuity property of the α−bracket.

Lemma 2.3. The α−bracket of v ∈ C(B1) is a lower semicontinuous func-

tion in Nα(1−α)(B1).

Proof. Let (xk)k∈N ⊂ Nα(1−α)(B1) be such that

lim
k→∞

xk = x0.

Since Nα(1−α)(B1) is closed and xk → x0, it follows that [v]α(x0) is well-

defined. We assume x0 = 0, with no loss of generality, and let us first

consider the case [v]α(0) = ∞. We will show

lim
k→∞

[v]α(xk) = ∞,

meaning that given any L > 0, [v]α(xk) ≥ L, for k sufficiently large. Since

[v]α(0) = ∞, it follows that, for A > 0 large enough such that

A > 2α
(

L+
1

2

)

,

we can find xA ∈ Bα(1−α)(0)\{0} such that

|v(xA)− v(0)|
|xA|α

≥ A.
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For k large enough, we have xA ∈ Bα(1−α)(xk), and so

[v]α(xk) ≥ |v(xA)− v(xk)|
|xA − xk|α

≥ |v(xA)− v(0)|
2α|xA|α

− |v(xk)− v(0)|
2α|xA|α

≥ A

2α
− 1

2
,

since xk → 0 as k → ∞. Then, by the choice of A, we have

A

2α
− 1

2
> L,

from which it follows that [v]α(xk) ≥ L, as long as k is large enough.

Now, let us treat the case [v]α(0) <∞. We first claim that there is k0 ∈ N

such that [v]α(xk) <∞, for every k ≥ k0. If this holds true, then for k large

enough, we have x ∈ Bα(1−α)(xk), and so

[v]α(xk) ≥
|v(x)− v(xk)|

|x− xk|α
.

Passing to the inferior limit as k → ∞, we obtain

lim inf
k→∞

[v]α(xk) ≥
|v(x)− v(0)|

|x|α .

Since x ∈ Bα(1−α)(0) is arbitrary, this implies that

lim inf
k→∞

[v]α(xk) ≥ [v]α(0).

Let us now prove the other inequality. By the definition of supremum, there

is yk ∈ Bα(1−α)(0), such that

|v(yk)− v(xk)|
|yk − xk|α

≥ [v]α(xk)− k−1.

Taking a subsequence if necessary, we assume yk → y∞. Passing to the

inferior limit on both sides, we get

lim inf
k→∞

[v]α(xk) ≤
|v(y∞)− v(0)|

|y∞|α ≤ [v]α(0).

It then follows that

lim inf
k→∞

[v]α(xk) = [v]α(0).

We finally turn to the proof of the claim. If it is not true, we will find

a subsequence (xkj )j∈N, with xkj → 0 as j → ∞, with [v]α(xkj ) = ∞, for

every j ∈ N. By the definition of supremum, for each large L > 0, we can

find ykj ∈ Bα(1−α)(xkj ) such that

|v(ykj )− v(xkj )|
|ykj − xkj |α

≥ L.
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Taking a further subsequence if necessary, we can assume ykj → y∞. Passing

to the limit, we obtain

|v(y∞)− v(0)|
|y∞|α ≥ L.

But since
|v(y∞)− v(0)|

|y∞|α ≤ [v]α(0) <∞,

we get a contradiction if we pick L > [v]α(0). □

We conclude this section with a useful scaling property of the α−bracket.

We will state it as a lemma for further reference, introducing the notation

[v]α,r(x0) := sup
x∈Bα(1−α)r(x0)\{x0}

|v(x)− v(x0)|
|x− x0|α

, r > 0. (2.3)

Lemma 2.4. Let v ∈ C(B1) and x0 ∈ Nα(1−α)(B1). Given positive param-

eter λ and β, the function w(x) := λ−βv(x0 + λx) satisfies

[v]α(x0) = λβ−α[w]α,λ−1(0).

Proof. By direct computations, observe that

[w]α,λ−1(0) = sup
x∈Bλ−1α(1−α)(0)\{0}

|w(x)− w(0)|
|x|α

= sup
x∈Bλ−1α(1−α)(0)\{0}

|v(x0 + λx)− v(x0)|
λβ |x|α

.

Now if we replace y = x0 + λx, it follows that y ∈ Bα(1−α)(x0), and so

[w]α,λ−1(0) = sup
y∈Bα(1−α)(x0)\{x0}

|v(y)− v(x0)|
λβ−α|y − x0|α

.

The quantity in the right-hand side above is precisely λα−β [v]α(x0), from

which the result follows. □

3. Problem formulation and preliminary findings

In this section, we discuss the basic setup to be used throughout this

paper. First, since all the results are local, we may restrict ourselves to the

case of the domain Ω = B1, the unit ball centred at the origin. We denote by

Sym(n) the space of symmetric matrices of size n× n and, given constants

0 < λ ≤ Λ, we say that an operator G : Sym(n) → R is (λ,Λ)−elliptic if it

satisfies

M−
λ,Λ(M −N) ≤ G(M)− G(N) ≤ M+

λ,Λ(M −N),
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for allM,N ∈ Sym(n), where M+
λ,Λ and M−

λ,Λ stand for the Pucci Extremal

Operators defined as

M−
λ,Λ(M) := inf {Tr (AM) : spec(A) ⊆ [λ,Λ]}

M+
λ,Λ(M) := sup {Tr (AM) : spec(A) ⊆ [λ,Λ]} ,

where spec(A) denotes the set of eigenvalues of the matrix A ∈ Sym(n).

3.1. Viscosity solutions. To ease the notation, from this section onward,

we define the function

[[v]]α := (1− α)|v|+ [v]α.

We will briefly discuss the definition of viscosity solution to the problems

treated here. It is enough to provide the definition for the more general

model

([[u]]α − κ)q+F (D
2u) = f ∈ L∞(B1) ∩ C(B1), (3.1)

where F is a (λ,Λ)−elliptic fully nonlinear operator. We first bring out the

concept of “touch from above” and “touch from below”.

Definition 3.1. We say that a function φ ∈ C(B1) touches u from below

(above) at a point x0 ∈ B1, if there exists a neighborhood V ⊂ B1 containing

x0 such that

u ≥ (≤)φ in V \{x0} and u(x0) = φ(x0).

We say the touch is strict if we have instead the strict inequality.

We can now define the notion of viscosity solution to our problem (3.1).

Definition 3.2. We say that u ∈ C(B1) is a (κ, α)−viscosity supersolution

(subsolution) to (3.1) if for every φ ∈ C2(B2) touching u from below (above)

at x0, with [[φ]]α(x0) > κ, we have

([[φ]]α(x0)− κ)q F (D2φ(x0)) ≤ (≥)f(x0).

We remark on the subtle importance of understanding objects in the

viscosity sense, particularly because of the α−bracket. This is to avoid

pathological situations where stability may not be true, as in the sense

described below.

Remark 3.1. Let uk(x) = k−1|x|α2 . Observe that [[uk]]α(0) = ∞ for every

k ∈ N, but uk converges uniformly to u∞ ≡ 0 that satisfies [[u∞]]α(0) = 0.

On the other hand, if the objects are understood in the viscosity sense,

then the α−bracket will be stable under uniform limits. In particular, we

have the following stability result.
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Lemma 3.1. Let vk ∈ C(B1) be a sequence such that vk → v∞ uniformly

in B1. Assume

([[vk]]α − κ)q+F (D
2vk) = fk,

in the viscosity sense in B1, with fk → f∞ uniformly in B1. Then, v∞
solves

([[v∞]]α − κ)q+F (D
2v∞) = f∞,

in the viscosity sense in B1.

Proof. We prove only the subsolution side. Let ϕ be a C2 function touching

v∞ from below at x∞ in Br(x∞) ⊂ B1, with [[ϕ]]α(x∞) > κ. By uniform

convergence, we obtain Ck → 0 such that ϕk := ϕ + Ck will touch vk from

below at some point xk. This sequence xk will converge to x∞. But then,

since

[[ϕk]]α(xk) = (1− α)|ϕ(xk) + Ck|+ [ϕ]α(xk),

we have, from the proof of Lemma 2.3, that up to subsequence

[[ϕk]]α(xk) → [[ϕ]]α(x∞), (3.2)

and so [[ϕk]]α(xk) > κ for k sufficiently large. By assumption, there holds

([[ϕk]]α(xk)− κ)q+F (D
2ϕk(xk)) ≤ fk(xk).

Passing to the limit and using again (3.2), we get

([[ϕ]]α(x∞)− κ)q+F (D
2ϕ(x∞)) ≤ f∞(x∞).

The same could have been done if we had a touch from above, and this

proves the lemma. □

3.2. C0,α−Hölder regularity. We will now discuss the C0,α regularity of

solutions to (3.1). Heuristically, this corresponds to the optimal regularity

since any α−Hölder continuous function u, with [[u]]α ≤ κ at every point,

automatically solves the equation with f ≡ 0. We prove this regularity in

the following proposition.

Proposition 3.1. Let u be a (κ, α)−viscosity solution to (3.1). Then, u is

locally of class C0,α, and there exists a constant C = C(n, λ,Λ, α, κ) such

that,

sup
x,y∈B1/2

|u(x)− u(y)|
|x− y|α ≤ C

(

∥u∥L∞(B1) + ∥f∥L∞(B1)

)

.

Proof. Let L1 and L2 be positive constants to be chosen in the sequel and

define

Φ(x, y) := L1 ϕ(|x− y|) + L2(|x|2 + |y|2),
where ϕ(r) = rα. We will show that for large enough L1 and L2, the quantity

M := max
x,y∈B1/2

{u(x)− u(y)− Φ(x, y)}
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is non-positive. Seeking a contradiction, we assume M > 0 and let (x′, y′) ∈
B1/2 × B1/2 be the points where the maximum is attained. First, observe

that if we define

Ψ+(x) := M + u(y′) + Φ(x, y′)

Ψ−(y) := −M + u(x′)− Φ(x′, y),

then Ψ+ touches u from above at x′ and Ψ− touches u from below at y′.

Moreover, we note that

L2(|x′|2 + |y′|2) ≤ Φ(x′, y′) < u(x′)− u(y′),

and so

max{|x′|, |y′|} ≤
√

2∥u∥L∞(B1)

L2
.

Picking L2 > 0 large enough, depending only on ∥u∥L∞(B1), we assure both

x′ and y′ lies within the interior of B1/2. Since M > 0, it also follows that

x′ ̸= y′, and thus Φ is smooth in a neighborhood of (x′, y′). Now, we choose

L1 large enough such that

L1 >
2∥u∥L∞(B1)

(α(1− α))α
.

Since M > 0, it then follows that

|x′ − y′| < α(1− α).

The analysis now can be divided into two cases: if [Ψ+]α(x
′) ≤ κ+ 1, then

we have

L1|x′ − y′|α + L2(|x′|2 − |y′|2) = Ψ+(x
′)−Ψ+(y

′)

≤ [Ψ+]α(x
′)

≤ (κ+ 1)|x′ − y′|α.
Since L2(|x′|2 − |y′|2) ≥ −2L2|x′ − y′|α, we get

L1|x′ − y′|α ≤ (κ+ 1 + 2L2)|x′ − y′|α,
and so L1 ≤ κ + 1 + 2L2. This leads to a contradiction once L1 is chosen

to be large enough, depending on L2 and κ. The same contradiction would

have been achieved if instead [Ψ−]α(y
′) ≤ κ+ 1.

Now, we assume [Ψ+]α(x
′) > κ+ 1 and [Ψ−]α(y

′) > κ+ 1. In particular,

the equation is available at those points since [[·]]α ≥ [·]α. From Jensen-

Ishii’s Lemma [17, Theorem 3.2], given ι ∈ (0, 1), there exist X,Y ∈ S(n),
such that

([[Ψ+]]α(x
′)− κ)q+F (X) ≥ f(x′) and ([[Ψ−]]α(y

′)− κ)q+F (Y ) ≤ f(y′),

which readily implies

F (X) ≥ −∥f∥L∞(B1) and F (Y ) ≤ ∥f∥L∞(B1), (3.3)
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since

min
(

[[Ψ+]]α(x
′), [[Ψ−]]α(y

′)
)

≥ 1 + κ.

In addition,
[

X 0

0 −Y

]

≤
[

Z −Z
−Z Z

]

+ (2L2 + ι)I2n×2n, (3.4)

where Z = L1D
2
xϕ(| · |)(x − y). Estimate (3.4) applied to vectors (ξ, ξ),

provides spec(X − Y ) ⊂ (−∞, 4L2 + 2ι]. On the other hand, now choosing

(η̂,−η̂), for η̂ = (x− y)/|x− y|, gives
(X − Y )η̂ · η̂ ≤ 4Zη̂ · η̂ + (4L2 + 2ι)

= 4L1ϕ
′′(|x− y|) + 4L2 + 2ι.

This implies that at least one eigenvalue of (X − Y ) should be less than

4L1ϕ
′′(|x− y|) + 4L2 + 2ι.

Therefore,

M+(X − Y ) ≤ Λ(n− 1)(4L2 + 2ι) + λ(4L1ϕ
′′(|x− y|) + 4L2 + 2ι)

= nΛ(4L2 + 2ι) + 4λL1ϕ
′′(|x− y|).

From (3.3), we conclude −2∥f∥∞ ≤ M+(X − Y ) and so

L1ϕ
′′(|x′ − y′|) ≥ −C0(n, λ,Λ, L2),

for some C0 > 0. Since ϕ(r) = rα, we obtain

α(1− α)L1 ≤ α(1− α)L1|x′ − y′|α−2 ≤ C0.

We get a contradiction by picking L1 large enough, depending on C0 and

α. □

Remark 3.2. The estimates established in this section depend on the gov-

erning operator F . Similar results can be derived for PDEs with coefficients,

F (x,D2u), provided that x 7→ F (x,D2u) is continuous. However, the esti-

mates will inherently depend on the modulus of continuity of the operator.

The primary goal of the next section is to achieve a universal C0,γ regularity

estimate that remains independent of the smoothness of the coefficients.

4. Uniform continuity estimates

The main contribution of this section is to establish a theorem of Krylov-

Safonov type for differential inequalities of the form

M−
λ,Λ(D

2u) ≤ C0 and M+
λ,Λ(D

2u) ≥ −C0 (4.1)

within {[u]α > µ} ∩ B1, for some C0 > 0 and µ > 0. We remark that

solutions will be understood in the viscosity sense, in the spirit of Definition
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3.2, with [[·]]α replaced by [·]α, which is a slightly weaker notion of solution

since [[·]]α ≥ [·]α. For simplicity, we will still refer to them as (µ, α)−viscosity

solutions.

The estimates will depend solely on C0, λ, Λ, the dimension, and µ,

making them applicable to any uniformly elliptic fully nonlinear operator

F (x,D2u), independently of the modulus of continuity of the coefficients.

4.1. Scaling and approximation properties. We start by discussing

how scaling allows us to consider a normalized setting. Assuming u is a

solution to (4.1), if we define, for r > 0,

v(x) = C−1
0 u(rx),

then v solves

M−
λ,Λ(D

2v) ≤ r2 and M+
λ,Λ(D

2v) ≥ −r2,

within {[v]α,r−1 > µrαC−1
0 } ∩Br−1 , where [·]α,r−1 is defined in (2.3) and we

have used Lemma 2.4. We observe that, for r < 1 and C0 > 1, the scaling

v actually satisfies the inequalities in a larger set since

[v]α ≤ [v]α,r−1 .

This scaling feature will play a key role when obtaining the Hölder estimate

since the previous remarks allow us to deal with (ν, α)−viscosity solutions

of

M−
λ,Λ(D

2u) ≤ 1 and M+
λ,Λ(D

2u) ≥ −1 (4.2)

within {[u]α > ν} ∩B1, for a parameter ν small enough.

We next remark that this notion of solution is robust enough to allow the

use of inf and sup convolutions, which are important tools in the viscosity

theory.

Lemma 4.1. Let u be a (ν, α)−viscosity solution to

M−
λ,Λ(D

2u) ≤ 1 in {[u]α > ν} ∩B1.

Then the inf −convolution uϵ given by

uϵ(x) := inf
y∈B1

{

u(y) +
1

2ϵ
|y − x|2

}

,

is a (ν, α)−viscosity solution to

M−
λ,Λ(D

2uϵ) ≤ 1 in {[uϵ]α > ν} ∩ Vϵ,

where Vϵ := {x ∈ B1 : dist(x, ∂B1) > 2
√

ϵ∥u∥L∞}. Similarly, if u is a

(ν, α)−viscosity solution to

M+
λ,Λ(D

2u) ≥ −1 in {[u]α > ν} ∩B1.
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Then the sup−convolution uϵ given by

uϵ(x) := sup
y∈B1

{

u(y)− 1

2ϵ
|y − x|2

}

,

is a (ν, α)−viscosity solution to

M+
λ,Λ(D

2uϵ) ≥ −1 in {[uϵ]α > ν} ∩ Vϵ.

Proof. Let φ ∈ C2 touch uϵ from below at x0 ∈ Vϵ, with [φ]α(x0) > ν.

Consider now the point x⋆0 where uϵ(x0) is attained. From the touch, we

have

φ(x0) = uϵ(x0) = u(x⋆0) +
1

2ϵ
|x0 − x⋆0|2,

and, since uϵ is an infimum, we also have

φ(x) ≤ uϵ(x) ≤ u(y) +
1

2ϵ
|y − x0|2,

for every x, y ∈ B1. The function Ψ, defined by

Ψ(x) := φ(x+ x0 − x⋆0)−
1

2ϵ
|x0 − x⋆0|2,

touches u from below at x⋆0. Moreover,

|Ψ(x)−Ψ(x⋆0)|
|x− x⋆0|α

=
|φ(x+ x0 − x⋆0)− φ(x0)|

|x− x⋆0|α
=

|φ(x+ x0 − x⋆0)− φ(x0)|
|x+ x0 − x⋆0 − x0|α

.

Taking the supremum in x ∈ Bα(1−α)(x
⋆
0), we obtain

[Ψ]α(x
⋆
0) = [φ]α(x0),

and so [Ψ]α(x
⋆
0) > ν. By assumption, this implies

M−
λ,Λ(D

2Ψ(x⋆0)) ≤ 1,

and the proof is done once we observe that D2Ψ(x⋆0) = D2φ(x0). Similar

arguments can be used to prove the second part of the lemma. □

4.2. A positivity argument. The program starts with a key positivity

result: nonnegative continuous supersolutions that are large on a set of pos-

itive measure remain strictly positive in a smaller set. Building on this,

a refinement of techniques from [24] is required to establish the result for

classical C2 supersolutions, while the extension to viscosity solutions is han-

dled via approximation using inf and sup convolutions. In what follows, we

bring the proof for C2 functions, and the rest of the proof follows mutatis

mutandis as in [24, Proposition 3.5], alongside with Lemma 4.1.

Lemma 4.2. Let u be a nonnegative (ν, α)−viscosity solution to

M−
λ,Λ(D

2u) ≤ 1 in B1.

There are positive constants ν0, δ and M such that, if ν ≤ ν0 and

|{u > M} ∩B1| > (1− δ)|B1|,
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then u > 1 in B1/4.

Proof. As discussed before, we assume u ∈ C2. Seeking a contradiction,

assume that for all ν0, δ,M , there is u satisfying the assumptions of the

lemma, such that

u(x0) ≤ 1 for some x0 ∈ B1/4.

Let V := {u > M}∩B1/4 and consider ψ(y) = ϖ|y|α/2 for some constant ϖ

satisfying

ϖ >
1

(3/4)α/2 − (1/2)α/2
.

Given x ∈ V , slide −ψ(y−x) until it touches u from below for the first time.

In other words, let yx ∈ B1 be the point where

min
y∈B1

{u(y) + ψ(y − x)}

is attained. Observe that since u ≥ 0 and x ∈ B1/4, it follows that

u(y) + ψ(y − x) ≥ ϖ|y − x|α/2 > ϖ(3/4)α/2, for y ∈ ∂B1.

By the contradiction assumption, it follows that

u(x0) + ψ(x0 − x) ≤ 1 +ϖ(1/2)α/2,

and so

min
y∈B1

{u(y) + ψ(y − x)} ≤ 1 +ϖ(1/2)α/2.

In particular, it follows that the point where the minimum is attained is in

the interior since

1 +ϖ(1/2)α/2 < ϖ(3/4)α/2,

by the choice of ϖ. We denote it by yx. Picking M large enough, it then

follows that u(yx) < M , which assures that yx ̸= x, since, by assumption,

u(x) > M . As a consequence, ψ(· − x) is smooth near yx.

Notice that from the C2 assumption on u and the fact that yx is an interior

point where the minimum is attained, it follows that

D(u+ ψ(· − x))(yx) = 0,

and so

Du(yx) = −Dψ(yx − x) ⇐⇒ x = yx + [Dψ]−1(Du(yx)). (4.3)

This formula assures that the mapping m : T → U given by m(yx) = x is

well-defined, where

T := {yx ∈ B1 : min{u(y) + ψ(y − x)} = u(yx)− ψ(yx − x), forx ∈ V } ,
is the set of points where the minimum is attained as we vary x ∈ V . From

now on, for simplicity, we will drop the subscript when referring to points

in the domain of m.
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It follows from (4.3) that m is a Lipschitz map since u ∈ C2. We also

have that

D2u(y) ⪰ −D2ψ(y −m(y)). (4.4)

To ensure we can use the equation within T , we need to guarantee that

[ψ]α(y −m(y)) is large for every y ∈ T . Since y,m(y) ∈ B1, it is enough to

show that

inf
z∈B2

[ψ]α(z) > ν0. (4.5)

To ease notation, let us define rα = α(1 − α) and consider z ∈ B2. Notice

that

[ψ]α(z) = ϖ sup
x∈Bα(1−α)(z)

||x|α/2 − |z|α/2|
|x− z|α

≥ ϖ
||z + rα

2 z|α/2 − |z|α/2|
| rα2 z|α

= ϖ|z|−α/2 (1 +
rα
2 )α/2 − 1

( rα2 )α

≥ 2−α/2ϖ
(1 + rα

2 )α/2 − 1

( rα2 )α
= G(α) > 0,

where we used that if z ∈ B2, then (1+rα/2)z ∈ Brα(z). Picking ν0 ≤ G(α),
we ensure (4.5) is true, and the equation is available within T . Combining

it with (4.4) and the fact that u is a supersolution, we obtain

|D2u(y)| ≤ C(1 + |D2ψ(y − x)|),
for some constant C depending on λ, Λ and n. From (4.3), replacing x =

m(y), and applying the chain rule, it follows that

D2u(y) = D2ψ(y −m(y))(I −Dm(y)),

and so

|Dm(y)| ≤ 1 + C
1 + |D2ψ(y − x)|
|D2ψ(y − x)| ≤ C1.

By assumption, we estimate (1−4nδ)|B1/4| ≤ |V |. Moreover, it follows that

|V | =
∫

V
dx =

∫

T
| detDm(y)|dy ≤ C1|T |.

Since T ⊂ {u < M}, we get

(1− 4nδ)|B1/4| ≤ C1|T | ≤ C1δ|B1/4|.
This is a contradiction for δ small enough depending only on ellipticity

constants and dimension. □
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4.3. A doubling property and the Lϵ−estimate. We will next prove

a doubling property for supersolutions of our equations. This property is

a type of positivity argument and begins with the construction of a spe-

cial barrier function. As in [24], let ϕ(x) = |x|−p for p > 0. By direct

computations, if p is large enough, we have

M−
λ,Λ(D

2ϕ(x)) ≥ p|x|−p−2 for x ̸= 0. (4.6)

This function also possesses a large α−Hölder semi-norm. As we did before,

for z ∈ B2, we have

[ϕ]α(z) ≥ ||z + α(1− α)/2z|−p − |z|−p|
|α(1− α)/2z|α

= |z|−p−α 1− (1 + rα/2)
−p

rαα/2

≥ 2−p−α

(

1− (1 + rα/2)
−p

rαα/2

)

=: g(α),

where rα = α(1− α). Observe that g(α) is positive for every α > 0, but, as

α→ 1, we also have g(α) ≥ c for some universal constant (see the discussion

at the end of this section).

Lemma 4.3. Let u be a nonnegative (ν, α)−viscosity solution of

M−
λ,Λ(D

2u) ≤ 1 in B2.

There are constants M > 1 and ν0 > 0 such that if u > M in B1/4 and

ν ≤ ν0, then u > 1 in B1.

Proof. Define

B(x) :=M
ϕ(x)− 2−p

2 · 4p ,

where, by previous computations, M > 1 is chosen large enough and ν0 > 0

is chosen small enough so that B > 1 and [B]α ≥ ν0 in B1. We have B = 0

on ∂B2 and B < M on ∂B1/4. Consequently, it follows that B ≤ u in the

ring B2\B1/4. Indeed, if there exists x0 ∈ B2\B1/4 such that B(x0) > u(x0),

then

min
B2\B1/4

{u−B} < 0,

and the minimum is attained in B2\B1/4. Since [B]α is large, the equation

holds at the point of minimum, say x′, implying that

M−
λ,Λ(D

2B)(x′) ≤ 1.

However, by (4.6), it follows that

p|x′|−p−2 ≤ 1,
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a contradiction for p large enough. Since B > 1, we obtain u ≥ B > 1 in

B1. □

The junction of both positivity lemmas leads to the following corollary.

Corollary 4.1. Let u be a nonnegative (ν, α)−viscosity solution to

M−
λ,Λ(D

2u) ≤ 1 in B2.

There are positive constants ν0, δ and M > 1 such that if ν ≤ ν0, and

|{u > M} ∩B1| > (1− δ)|B1|,
then u > 1 in B1.

Proof. Indeed, let M = M1M2, where M1 is from Lemma 4.2 and M2 is

from Lemma 4.3. It then follows that v = u/M2 satisfies the assumption of

Lemma 4.2, which implies u > M2 in B1/4. From Lemma 4.3, we will have

u > 1 in B1. □

Scaling then leads to the next corollary.

Corollary 4.2. Let u be a nonnegative (ν, α)−viscosity solution to

M−
λ,Λ(D

2u) ≤ η in Br,

for r ≤ 1 and η ≥ 1. There are positive constants ν0, δ and M > 1 such that

if ν ≤ ν0, and

|{u > ηM} ∩Br/2| > (1− δ)|Br/2|,
then u > η in Br/2.

Proof. Consider the function ur defined as

ur(x) = η−1u
(r

2
x
)

.

From the scaling property (cf. subsection 4.1), this function satisfies

M−
λ,Λ(D

2ur) ≤
(r

2

)2
within

{

[ur]α,( r
2)

−1 > ν
(r

2

)α
η−1

}

,

and, in particular, within {[ur]α > ν}. We can then apply Corollary 4.1 to

get ur > 1 in B1, from which the result follows. □

A consequence of these results is the Lϵ estimate, which we state in a

scaled version for future purposes.

Lemma 4.4. There exist small positive constants ν ′ and ϵ′ such that if

ν ≤ ν ′ and ϵ ≤ ϵ′, and u is a nonnegative (ν, α)−viscosity solution to

M−
λ,Λ(D

2u) ≤ ϵ in B2r,

|{u > rγ} ∩Br| >
1

2
|Br|,

for r, γ ∈ (0, 1), then we have u > ϵrγ in Br.
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Proof. The proof is a consequence of the previous corollaries and follows the

same lines as the proof of [24, Lemma 5.3]. □

It is then standard, see [24, Proof of Theorem 1.1], that this implies Hölder

continuity, which we state for the more general problem (4.1).

Theorem 4.1. Let u be a (µ, α)−viscosity solution to (4.1). Then, there

exists γ ∈ (0, 1) and a constant C > 0, depending only on dimension, ellip-

ticity, α and µ, such that

∥u∥C0,γ(B1/2)
≤ C

(

∥u∥L∞(B1) + C0

)

.

4.4. Connection with the α−bracket problem and uniform continu-

ity. We dedicate the final part of this section to explain how one connects

the α−bracket problem with the theory developed herein and briefly discuss

uniform continuity in terms of the parameter α.

Let u be a viscosity solution of (3.1). Observe that if φ ∈ C2 touches u

from below at x0, with [φ]α(x0) > κ + 1, then, since [[·]]α ≥ [·]α, we also

have [[φ]]α(x0) > κ+ 1 and thus

([[φ]]α(x0)− κ)qF (x0, D
2φ(x0)) ≤ f(x0).

Therefore,

F (x0, D
2φ(x0)) ≤ ([[φ]]α(x0)− κ)−q∥f∥L∞(B1) ≤ ∥f∥L∞(B1).

Since F is (λ,Λ)−elliptic in the matrix variable, it follows that

M−
λ,Λ(D

2φ(x0)) ≤ ∥f∥L∞(B1) + |F (x0, 0)|.
Likewise, if φ ∈ C2 touches u from above with [φ]α(x0) > κ + 1, we would

have

M+
λ,Λ(D

2φ(x0)) ≥ −
(

∥f∥L∞(B1) + |F (·, 0)|L∞(B1)

)

.

An immediate consequence is that a solution of (3.1) with bounded measur-

able coefficients also solves (4.1) with C0 = ∥f∥L∞(B1) + |F (·, 0)|L∞(B1) and

µ = κ+ 1.

We conclude with a remark on the stability of the estimates as the param-

eter α approaches its extrema. First, we observe that no uniformity in the

estimates is expected as α→ 0 since this limit corresponds to functions that

solve a PDE only where |u| > κ, with no further information available for

|u| ≤ κ. However, our analysis reveals that uniform-in-α estimates can still

be obtained, provided α remains bounded away from zero. In particular,

stability is ensured as α → 1, and we briefly outline the reasoning behind

this conclusion.

The heart of the matter lies within scaling, Lemma 4.2 and Lemma 4.3,

which leads to the uniform-in-α Lϵ estimate. In Lemma 4.2, the step that

needs to be done carefully is precisely when estimating (4.5) from below.
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Indeed, recall the notation rα = α(1−α) and consider z ∈ B2. In the proof

of Lemma 4.2, we have shown that

[ψ]α(z) ≥ 2−α/2ϖ
(1 + rα

2 )α/2 − 1

( rα2 )α
= G(α),

where

ϖ >
1

(3/4)α/2 − (1/2)α/2
.

In the event that α is bounded from below, say α ≥ α0, the function G can

also be bounded from below by a positive constant, uniformly in α. Indeed,

G(α) ≥
√
2

2
ϖ

[

(1 + rα
2 )α/2 − 1

]

( rα2 )α

≥
√
2

2

1

(3/4)α0/2 − (1/2)α0/2

(

(1 + rα
2 )α/2 − 1

( rα2 )α

)

.

The function on the right-hand side above is continuous in α, and none of

the ingredients vanishes as long as α < 1. Therefore, if α ∈ [α0, α1] for some

α1 close enough to 1, then

G(α) ≥ c1,

for some c1 = c1(α0, α1). On the other hand, observe that by direct compu-

tations

lim
α→1

[

(1 + rα
2 )α/2 − 1

]

( rα2 )α
=

1√
2
lim
s→0







(

2
1−s + s

)
1−s
2 −

(

2
1−s

)
1−s
2

s






=

1

4
.

Putting all together, we get that there exists a constant c > 0, depending

on α0, such that

G(α) ≥ c,

for every α ∈ [α0, 1]. The same reasoning applies to Lemma 4.3.

5. C1,β−regularity for κ = 0

In this section, we discuss the regularity theory of (0, α)−viscosity solu-

tions, that is functions that satisfy

[[u]]qαF (D
2u) = f, (5.1)

in the viscosity sense (cf. Definition 3.2). We will assume F (0) = 0 for

simplicity. Our goal here is to seek gradient estimates that are independent

of the magnitude of [[u]]α. We are also interested in their behaviour as

α→ 1.

Scaling analysis provides insight into the regularity regime that can be

expected. For instance, if one considers v(x) = u(λx)λ−(1+β) and picks the
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parameters so that the equation is invariant, then it can be seen that β has

to satisfy

1 + β ≤ 2 + αq

1 + q
= 1 +

1− q(1− α)

1 + q
.

Observe that this regularity regime interpolates the endpoint cases for which

a local degenerate problem appears. Notice, as well, that we need to assume

1− q(1− α) > 0, i.e.,

q <
1

1− α
,

so we are in a regime where gradient regularity is available.

The program to prove gradient regularity for such solutions begins by

seeking compactness estimates for solutions of an auxiliary problem with a

shift in the zero-order term. More precisely, we define

w(x) = r−(1+β)[u(rx)− ξ · (rx)].
It can be checked that w solves

[[w + r−βξ · (−)]]q
α,r−1Fr(D

2w) = fr,

where Fr(M) := r1−βF (rβ−1M), fr(x) = rq(−1−β+α)+1−βf(rx), and

[[v]]α,r−1(x) = (1− α)
∣

∣v(r−1x)
∣

∣+ [v]α,r−1(x).

To obtain continuity for such solutions, we will have to consider two cases

corresponding to when the shift term is large or small.

To ease notation, whenever it is clear that the shift in the zero-order term

is a vector, we will write [[w + ξ]]α instead of [[w + ξ · (−)]]α.

Proposition 5.1. Let r ∈ (0, 1), and w ∈ C(Br−1) be a viscosity solution

to

[[w + p⃗ ]]q
α,r−1F (D

2w) = f in B1.

If |p⃗ | ≤ c0, for some c0 > 0, then there exist γ ∈ (0, 1) and C > 0, depending

only on dimension, ellipticity, α and c0, such that

∥w∥C0,γ(B1/2)
≤ C

(

∥w∥L∞(B1) + ∥f∥L∞(B1)

)

.

Proof. Define µ := 1+c0(α(1−α))1−α. We claim that w is a (µ, α)−viscosity

solution to (4.1), with C0 = ∥f∥L∞(B1). Indeed, if [w]α > µ, then by the

following chain of inequalities

[[w + p⃗ ]]α,r−1 ≥ [[w + p⃗ ]]α ≥ [w]α − c0(α(1− α))1−α,

it follows that [[w + p⃗ ]]α,r−1 ≥ 1. Therefore,

M−
λ,Λ(D

2w) ≤ F (D2w) ≤ ∥f∥L∞(B1)[[w + p⃗ ]]−q
α,r−1 ≤ C0.

Likewise,

M+
λ,Λ(D

2w) ≥ −C0,

and thus w is entitled to Theorem 4.1 and the result follows. □
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For large slopes, we have the following result.

Proposition 5.2. Let r ∈ (0, 1), and w ∈ C(Br−1) be a viscosity solution

to

[[w + p⃗ ]]q
α,r−1F (D

2w) = f in B1.

There exists c0 > 0 large such that if |p⃗ | ≥ c0, then

∥w∥C0,1(B1/2)
≤ C

(

∥w∥L∞(B1) + ∥f∥L∞(B1)

)

.

Proof. We apply once more the Ishii-Lions method, as in the proof of Propo-

sition 3.1, with the key difference that we do not need to localize further

the points where the maximum is attained. Recall that the first argument,

the one dealing with points where the maximum was attained in the region

where no PDE was in place, made the estimate blow up when α→ 1.

Let L1 and L2 be positive constants to be chosen in the sequel and define

Φ(x, y) := L1 ϕ(|x− y|) + L2(|x|2 + |y|2),
where ϕ(r) = r − θr3/2. We will show that for large enough constants L1

and L2, the quantity

M := max
x,y∈B1/2

{u(x)− u(y)− Φ(x, y)}

is non-positive. Seeking a contradiction, we assume M > 0 and let (x′, y′) ∈
B1/2 ×B1/2 be the points where the maximum is attained. Observe that

L2(|x′|2 + |y′|2) ≤ Φ(x′, y′) < u(x′)− u(y′),

and so

max{|x′|, |y′|} ≤
√

2∥u∥L∞(B1)

L2
.

Picking L2 > 0 large enough, depending only on ∥u∥L∞(B1), we assure both

x′ and y′ lie within the interior of B1/2. Since M > 0, it also follows that

x′ ̸= y′, and thus Φ is smooth in a neighborhood of (x′, y′).

Notice that

[[w + p⃗ ]]α,r−1(y′) ≥ [w + p⃗]α(y
′)

≥
w
(

y′ + α(1− α) p⃗
|p⃗ |

)

− w(y′)

(α(1− α))α
+ |p⃗ |(α(1− α))1−α

≥
Φ
(

x′, y′ + α(1− α) p⃗
|p⃗ |

)

− Φ(x′, y′)

(α(1− α))α
+ c0(α(1− α))1−α

≥
(

c0 − [Φ(x′,−)]C0,1

)

(α(1− α))1−α.

Now, recalling the definition of Φ, one can explicitly calculate [Φ(x′,−)]C0,1

and get that [[w + p⃗ ]]α,r−1(y′) ≥ 1 if c0 is chosen large enough, depending



REGULARITY ESTIMATES FOR PDES WITH NONLOCAL DEGENERACIES 25

on L1, L2. In particular, this choice is uniform as α → 1. The rest of the

proof follows along the lines of the proof of Proposition 3.1. □

Remark 5.1. In Proposition 5.2, since the shift is large, we could divide

both sides by |p⃗ |q to get the following PDE

[[θw + e⃗]]q
α,r−1F (D

2w) = |p⃗ |−qf,

where θ = |p⃗ |−1. The reasoning to get the Lipschitz estimate would have

been the same, except that the parameter θ would be small. This remark is

useful for the reasoning in the following lemma.

In what follows, we prove a flatness lemma. To ease notation, we introduce

Fn,λ,Λ :=

{

u ∈ C(B1)

∣

∣

∣

∣

F (D2u) = 0 in the viscosity sense inB1 for

some (λ,Λ)−elliptic operatorF : Sym(n) → R

}

.

Lemma 5.1. Let r ∈ (0, 1), and w ∈ C(Br−1) be a viscosity solution to

[[w + p⃗ ]]q
α,r−1F (D

2w) = f in B1.

Given δ > 0, there exists ϵ > 0 small such that if

∥w∥L∞(B1) ≤ 1 and ∥f∥L∞(B1) ≤ ϵ,

then we can find h ∈ Fn,λ,Λ such that

∥u− h∥L∞(B1) ≤ δ.

Proof. Assume, seeking a contradiction, this is not true. There would be

δ0 > 0 and a sequence (rk, wk, p⃗k, fk, Fk)k∈N such that

[[wk + p⃗k]]
q

α,r−1
k

Fk(D
2wk) = fk,

with ∥fk∥L∞(B1) ≤ k−1 and ∥wk∥L∞(B1) ≤ 1, but

dist [wk,Fn,λ,Λ] ≥ δ0, (5.2)

for every k ∈ N.

If we can extract a convergent subsequence of p⃗k, then we also do it

for wk and Fk. This is possible by equicontinuity of Fk, which is due to the

(λ,Λ)−ellipticity assumption and Proposition 5.1 or Proposition 5.2 applied

to wk, depending on how large is the vector sequence. Let us label their

limits as p⃗, w and F .

We claim that w solves

F (D2w) = 0 in B1, (5.3)

in the viscosity sense. Indeed, let φ be a second-order polynomial touching

w from below at x0. If [[φ]]α(x0) = 0, then φ ≡ 0 in Bα(1−α)(x0) and so

F (D2φ(x0)) = 0
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trivially, since F (0) = 0. We may then assume [[φ]]α(x0) > 0. By uniform

convergence, there exists Ck → 0 such that φ = φ + Ck touches wk from

below at xk with φk → φ and xk → x0. By Lemma 2.3, [[·]]α is lower semi-

continuous, from which follows that [[φk]]α(xk) is also positive and bounded

from below. Using the equation for wk, we get

Fk(D
2φ(xk)) ≤ ∥fk∥L∞(B1)[[φk + p⃗k]]

−q

α,r−1
k

(xk)

≤ k−1[[φ+ p⃗k]]
−q
α .

Passing to the limit as k → ∞, we have

F (D2φ(x0)) ≤ 0.

Reversing the inequalities, we obtain F (D2w) ≥ 0 in the viscosity sense,

and so (5.3) follows.

This leads to a contradiction for large k. Now, if we cannot extract a

convergent subsequence of p⃗k, this means that |p⃗k| → ∞. Dividing the

equation by θqk = 1/|p⃗k|q we write

[[θkwk + e⃗k]]
q

α,r−1
k

Fk(D
2wk) = θqkfk.

The sequence wk is Lipschitz by Remark 5.1, and passing to a subsequence

if necessary, we get

F (D2w) = 0,

in the viscosity sense in B1 by the very same arguments. This then leads to

a contraction with (5.2) for k large enough. □

Now, gradient regularity for solutions to (5.1) follows by somewhat stan-

dard techniques (see, for instance, [13]), and thus, we omit the proof of our

ultimate result.

Theorem 5.1. Let u be a viscosity solution to (5.1). Then, u ∈ C1,β(B1/2),

with

β = min

(

α−
F ,

1− q(1− α)

1 + q

)

,

where αF denotes the maximal Hölder regularity exponent for the gradi-

ent of F−harmonic functions. Furthermore, there exists a constant C =

C(n, λ,Λ, α, q), such that the following estimate holds

∥u∥C1,β(B1/2)
≤ C

(

∥u∥L∞(B1) + ∥f∥
1

1+q

L∞(B1)

)

.

Finally,

lim
α→1

C(n, λ,Λ, α, q) <∞.
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[5] D.J. Araújo, A. Sobral, E. V. Teixeira and J.M. Urbano, On free boundary problems

shaped by oscillatory singularities, Preprint, arXiv:2401.08071 (2024).
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