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Abstract

The objective of this paper is twofold. First, we characterize the geometry of the set of
all possible planar configurations of four points that share the same centroid (admissible
configurations). Particular configurations with this property consist of the vertices of a
regular quadrilateral (square) whose diagonals intersect at the centroid. Then, we define
an optimization criterion that ensures square admissible configurations are global minima
of the corresponding cost function. Our goal is to characterize and classify the critical
points of that cost function and understand how admissible configurations can be smoothly
morphed into other configurations, in particular, into square configurations.
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1. Introduction

The study of k-point configurations or arrangements on finite-dimensional Riemannian
manifolds under certain geometric constraints has gained significant attention in recent
years due to its many applications. Moreover, related mathematical inquiries, particu-
larly in three-dimensional Euclidean space, have intrigued scientists for centuries. Notable
examples include the comprehensive classification of Platonic solids, with more recent ex-
tensions to higher dimensions Baez (2020), and the role of crystallography in the study
of five-fold symmetries and quasi-crystals. Many of these topics have a strong geometric
foundation, while others are also motivated by solid-state physics, including applications in
X-ray diffraction and related fields.

For over a century, the connections between these studies and algebraic concepts have
been well established, particularly through group-theoretic methods. Early approaches
focused on the realization and representation of discrete groups, and over time, these studies
have expanded to include Lie groups, even in infinite dimensions, and aspects of invariant
theory.

Another area where the study of point arrangements plays a crucial role is in com-
puter science and engineering-related problems. Here, notable examples include packing
problems, both in the classical sense of logistics Bezdek (2010, 2013) and in more abstract
computational implementations related to code design Conway et al. (1996); Conway and
Sloane (1999), Zong (1999), Nebe et al. (2006). The German term “Lagerungen” is often
used in this context Fejes Tóth et al. (2023).

When additional geometric constraints are imposed on the desired configurations in the
form of a system of equations, the problem becomes significantly more complex. In such
cases, tools from differential geometry become necessary, as these equations often define
a differentiable sub-Riemannian manifold embedded in Euclidean space. Numerical meth-
ods designed to find such configurations must respect these constraints, making geometric
optimization techniques particularly suitable. Specifically, methods such as Riemannian
gradient descent or Riemannian versions of Newton-type algorithms ensure that both the
data and final results remain within the predefined constraint set Absil et al. (2008), Boumal
(2023).

A closely related problem in statistics involves characterizing configurations of k distinct
points on an n-dimensional Riemannian manifold that share the same centroid. Here,
researchers aim to develop efficient methods for computing these configurations and their
associated invariants Pennec (2006) .
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In the field of robotics, specific configurations and their geometric mean play a key role
in modeling how robotic networks interact with the physical environment and with each
other. For planar configurations, the geometric mean (centroid) can be interpreted as a
virtual anchor for movement and coordination in multi-robot formations. Individual robots
rely on this balance point as a common reference to guarantee coordinated behavior (see,
for instance, Bullo et al. (2009) and Mesbahi and Egerstedt (2010)). Square formations
are usually preferred when planar robots work in cooperation. That choice insures more
stability and prevents crashing. Reconfiguring their formation to avoid collision with ob-
stacles and then making them return to an optimal formation is also a major objective in
navigation of a team of robots, see, for instance, Alonso-Mora et al. (2017) and references
therein.

Being aware of the importance of understanding the geometry and dynamics of point
configurations in real applications, particularly path planning and control in cooperative
robotics, was a strong motivation for initiating this research. However, following our pre-
vious work in Machado et al. (2024), the purpose here is to provide a more comprehensive
understanding of these mathematical structures while complementing the theoretical results
with numerical experiments and illustrations.

In the recent work Machado et al. (2024), we characterized all configurations of three
points on the 2-dimensional sphere S2 that share the same Riemannian mean and study an
optimization problem that has the equilateral triangle as an optimal solution. In the mean-
while, we have noticed that the addition of a single point to the configurations increased
considerably the complexity of the problem. Due to the challenges associated with the
characterization of four-point configurations on S2 with the same Riemannian mean, the
present paper focus exclusively on planar quadrilateral configurations. As it will become
clear, this case is already more intricate than its triangular counterparts studied in Machado
et al. (2024) as a preliminary step and warm-up toward the spherical case. By combining
analytical insights with computational verification, we aim to provide a more comprehen-
sive understanding of the underlying structures, facilitating both theoretical advancements
and possible practical applications.

Our main objective in the present paper is to study the geometry of the set of all
possible planar configurations of four points that share the same centroid (admissible con-
figurations), and to define an optimization criterion ensuring that square shape admissible
configurations are global minima of the corresponding cost function. Furthermore, our aim
is to identify and classify the critical points of that cost function and investigate how ad-
missible configurations can be smoothly morphed into other configurations. In particular,
we want to understand how a quadrilateral configuration can be continuously deformed into
the vertices of a square with the same centroid.

The organization of this paper is as follows. We first introduce some of the notations
that will be used throughout the paper. After defining the main objectives of this study
in Section 3, we briefly present the geometry of the manifold of all planar configurations of
four points that keep invariant their centroid. We then define an appropriate smooth cost
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function based on mutual distances between the four points and the length of the diagonals
of the quadrilateral having those points as vertices. This cost function guarantees that
square configurations are global minimum. Still in Section 3, we compute the Riemannian
gradient of that cost and find its critical points, which turns out to be equivalent to finding
the zero set of a set of multivariate third order polynomials with rational coefficients.
The complete characterization of the critical points is done by an exhaustive case by case
study based on elementary geometric insight combined with undergraduate linear algebra.
Alternatively, we briefly describe a short cut using a Gröbner basis approach.

In section 4 we compute the Riemannian Hessian and completely classify the critical
points. In particular, the square configurations arise as global minimum of the cost function.
Using several routines from MATLAB toolboxes, the steepest descent and quasi-Newton
algorithms on manifolds have been implemented to corroborate the theoretical outcomes.
These algorithms turned out to be easy to implement, offering high accuracy and preci-
sion. To enrich the paper, meaningful plots illustrating our results are also included. The
implementation of those algorithms also show how a quadrilateral configuration can be
continuously deformed into the vertices of a square with the same centroid.

2. Notations

These are some of the notations used throughout the paper.

M smooth manifold
TpM tangent space of M at a point p ∈M
NpM normal space of M at a point p ∈M

P⊥
TpM

orthogonal projection onto the tangent space

P⊥
NpM

orthogonal projection onto the normal space

DF̂ (p) differential of a function F̂ : R6 → R at p ∈ R
6

∇F̂ gradient of F̂
∇F Riemannian gradient of a function F : M → R

H
F̂

Hessian of F̂
H

F̂
Riemannian Hessian of F

‖ · ‖ Euclidean norm

3. Quadrilateral configurations

3.1. Main objectives

Our first objective is to characterize the geometry of the set of all possible configura-
tions of four points {p0, p1, p2, p3} ⊂ R

2 that share the same centroid q ∈ R
2 (admissible
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configurations), i.e,

q = 1
4

3∑

i=0

pi. (1)

Clearly, particular configurations with this property consist of the vertices of a regular
quadrilateral (square) whose diagonals intersect at q. Our second objective is to define an
optimization criterion that ensures square admissible configurations are global minima of the
corresponding cost function. Furthermore, our goal is to characterize and classify the critical
points of that cost function within M , and investigate how admissible configurations can
be smoothly morphed into other configurations in M . In particular, we want to understand
how a quadrilateral configuration can be continuously deformed into the vertices of a square
with the same centroid.

Recall that the centroid q of {p0, p1, p2, p3} is the unique solution of the minimization
problem

min
x∈R2

3∑

i=0

‖pi − x‖2. (2)

Formulas (1) and (2) can be trivially adjusted to include any number of points in R
n,

but our current focus is put on a simpler situation as the necessary preparation and insight
for significantly more challenging cases. We also assume that one of the points is fixed and,
without loss of generality, we fix p0.

3.2. The configuration manifold

Under the previous assumption, the following subset of R6 defines the configurations
having centroid q:

M =
{
(p1, p2, p3) ∈ R

2 × R
2 × R

2 | p1 + p2 + p3 = 4q − p0
}
. (3)

M is clearly a smooth manifold, since it is a 4-dimensional affine subspace of the embedding
space R

6. Moreover, we equip M with the Riemannian metric induced by the Euclidean
metric of the embedding space. The geometry of this manifold is particularly important to
tackle our objectives.

Lemma 1. The tangent and the normal space of M at p = (p1, p2, p3) ∈ M are given,
respectively, by

TpM =
{
(v1, v2,−v1 − v2) | vi ∈ R

2
}
, NpM =

{
(v, v, v) | v ∈ R

2
}
. (4)

Proof. M is the zero set of the function f : R6 → R
2, p = (p1, p2, p3) 7→ p1+p2+p3−4q+p0,

which has maximal rank. So, the tangent space toM at p is the kernel of the linear surjection
Df(p) : R6 → R

2, (v1, v2, v3) 7→ v1 + v2 + v3, i.e., TpM =
{
(v1, v2,−v1 − v2) | vi ∈ R

2
}
.

Clearly
{
(v, v, v) | v ∈ R

2
}
is 2-dimensional and all vectors in this vector subspace of R6

are orthogonal to vectors in TpM . So, the normal space to M at p is as given in (4).
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To simplify notations, we may represent vectors in R
6 as row vectors or column matrices.

Lemma 2. The orthogonal projection operators onto the tangent and normal space to M
at a point p = (p1, p2, p3) are given, respectively, by

P⊥
TpM : R6 → TpM, (v1, v2, v3) 7→ 1

3

[
2I −I −I
−I 2I −I
−I −I 2I

] [
v1
v2
v3

]
= 1

3

( [ 2 −1 −1
−1 2 −1
−1 −1 2

]
⊗ I

) [ v1
v2
v3

]
, (5)

and

P⊥
NpM : R6 → NpM, (v1, v2, v3) 7→ 1

3

[
I I I
I I I
I I I

] [
v1
v2
v3

]
= 1

3

( [ 1 1 1
1 1 1
1 1 1

]
⊗ I

) [ v1
v2
v3

]
, (6)

where I stands for the 2× 2 identity matrix.

Proof. Simple calculations show that these two linear operators are idempotent, i.e.,

(
P⊥
TpM

)2
= P⊥

TpM and
(
P⊥
NpM

)2
= P⊥

NpM .

Moreover,

P⊥
TpM

∣∣∣
TpM

= id, P⊥
NpM

∣∣∣
NpM

= id, ker
(
P⊥
TpM

)
= NpM, and ker

(
P⊥
NpM

)
= TpM,

which proves the assertion.

3.3. The optimization problem

In order to smoothly move inside the manifold M from a polygon configuration to a
square, we define the following cost function so that the square configuration emerges as a
global minimum.

F : M → R
+
0 ,

p = (p1, p2, p3) 7→ 1
4

((
d2(p0, p1)− d2(p1, p2)

)2
+

(
d2(p0, p1)− d2(p2, p3)

)2

+
(
d2(p0, p1)− d2(p3, p0)

)2
+

(
d2(p1, p2)− d2(p2, p3)

)2

+
(
d2(p1, p2)− d2(p3, p0)

)2
+

(
d2(p2, p3)− d2(p3, p0)

)2

+
(
d2(p0, p2)− d2(p1, p3)

)2)
.

(7)

Remark 1. Obviously, F attains its minimum value zero when the points (p0, p1, p2, p3)
form the vertices of a regular quadrilateral. The rationale behind (7) is as follows: The
first six summands in (7) ensure equality between the four sides of the quadrilateral, note
that 6 =

(
4
2

)
. Whereas the last summand in (7) serves to enforce equality between its two

diagonals. One of our objectives is to minimize the cost functional F and hopefully end up
with this regular polygon.
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Defining

A1 := d2(p0, p1)− d2(p1, p2) = ‖p0 − p1‖2 − ‖p1 − p2‖2,
A2 := d2(p0, p1)− d2(p2, p3) = ‖p0 − p1‖2 − ‖p2 − p3‖2,
A3 := d2(p0, p1)− d2(p3, p0) = ‖p0 − p1‖2 − ‖p3 − p0‖2,
C := d2(p0, p2)− d2(p1, p3) = ‖p0 − p2‖2 − ‖p1 − p3‖2,

(8)

where, for simplicity of notations, we omit the dependency on p, the cost function can be
rewritten as

F (p) = 1
4

(
A2

1 +A2
2 +A2

3 + (A1 −A2)
2 + (A1 −A3)

2 + (A2 −A3)
2 + C2

)
. (9)

In order to derive the Riemannian gradient of F , we first compute the differential of the
function F̂ , the latter seen as an extension of F to the embedding space.

Proposition 1. The differential of F̂ at p = (p1, p2, p3) ∈ R
6 in the direction of the vector

v = (v1, v2, v3) ∈ R
6 is given by

DF̂ (p)(v)

=
〈
(A1 +A2 +A3)(p1 − p0) + (3A1 −A2 −A3)(p2 − p1) + C(p3 − p1), v1

〉

+
〈
(3A1 −A2 −A3)(p1 − p2) + (3A2 −A1 −A3)(p3 − p2) + C(p2 − p0), v2

〉

+
〈
(3A2 −A1 −A3)(p2 − p3) + (3A3 −A1 −A2)(p0 − p3) + C(p1 − p3), v3

〉
.

(10)

Proof. Notice first that,

F (p) = 1
4

(
3A2

1 + 3A2
2 + 3A2

3 − 2A1A2 − 2A1A3 − 2A2A3 + C2
)
, (11)

and

DA1(p)(v) = 2〈p1 − p0, v1〉 − 2〈p1 − p2, v1 − v2〉,
DA2(p)(v) = 2〈p1 − p0, v1〉 − 2〈p2 − p3, v2 − v3〉,
DA3(p)(v) = 2〈p1 − p0, v1〉 − 2〈p3 − p0, v3〉,
DC(p)(v) = 2〈p2 − p0, v2〉 − 2〈p1 − p3, v1 − v3〉.

(12)

Therefore,

DF̂ (p)(v) = (3A1 −A2 −A3)(〈p1 − p0, v1〉 − 〈p1 − p2, v1 − v2〉)
+ (3A2 −A1 −A3)(〈p1 − p0, v1〉 − 〈p2 − p3, v2 − v3〉)
+ (3A3 −A1 −A2)(〈p2 − p0, v2〉 − 〈p1 − p3, v1 − v3〉)
+ C(〈p2 − p0, v2〉 − 〈p1 − p3, v1 − v3〉).

(13)

After simplifying and reordering expressions, we obtain the result.

Since 〈∇F̂ (p), v〉 = DF̂ (p)v, it is immediate to conclude from (10) that the Euclidean
gradient of F̂ , at the point p ∈ R

6, is given by

∇F̂ (p) =

[
(A1+A2+A3)(p1−p0)+(3A1−A2−A3)(p2−p1)+C(p3−p1)
(3A1−A2−A3)(p1−p2)+(3A2−A1−A3)(p3−p2)+C(p2−p0)
(3A2−A1−A3)(p2−p3)+(3A3−A1−A2)(p0−p3)+C(p1−p3)

]
. (14)
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3.4. Riemannian gradient

To simplify notations, define the following variables:

X := 3A1 −A2 −A3, Y := 3A2 −A1 −A3, Z := 3A3 −A1 −A2. (15)

Proposition 2. At each point p = (p1, p2, p3) ∈M , the Riemannian gradient of F , denoted
∇F , is given by

∇F (p) = 1
3

[
2(X+Y+Z)(p1−p0)+3X(p2−p1)+Z(p3−p0)+3C(p3−p1)+C(p0−p2)
(X+Y+Z)(p0−p1)+3X(p1−p2)+3Y (p3−p2)+Z(p3−p0)+2C(p2−p0)
(X+Y+Z)(p0−p1)+3Y (p2−p3)+2Z(p0−p3)+3C(p1−p3)+C(p0−p2)

]
. (16)

Proof. SinceM ⊂ R
6 is a Riemannian submanifold, the Riemannian gradient of F at p ∈M

is obtained by projecting the Euclidean gradient ∇F̂ at p onto the tangent space of M at
p. Taking into consideration that for v = (v1, v2, v3) ∈ TpM we have v3 = −v1 − v2 and
using the notations (15), the expression (14) for the Euclidean gradient simplifies and after
its projection onto TpM , given in (4), one obtains the expression (16).

We can now apply the steepest descent algorithm (Algorithm 1) to obtain approximate
solutions to the problem.

Algorithm 1: Steepest descent with Armijo line search

Input : Initial point p(0) = (p
(0)
1 , p

(0)
2 , p

(0)
3 ) and tolerance tol

Output: Stationary point p∗ = (p∗1, p
∗
2, p

∗
3)

1 for j = 0, 1, . . . do

2 Set d(j) = −∇F (p(j)) ;
3 Determine the step length αj according to Armijo rule;

4 Set p(j+1) = p(j) + αjd
(j);

5 Stop if F (p(j)) < tol or ‖∇F (p(j))‖ < tol

6 end

3.5. Characterization of the critical points

Our next goal is to characterize the critical points of the function F defined by (9). The
natural identification of a point with its position vector is used in the sequel. To simplify
the presentation, we further assume, without loss of generality, that q coincides with the
origin in R

2, that is, p1 + p2 + p3 = −p0.
Given four points in the plane, satisfying the manifold constraint, there are several

ways to arrange them relative to one another. Under the assumption q = 0, we say that
a configuration of four points is collinear if the position vector of each point with respect
to the origin is a scalar multiple of a single position vector. Note that, if three of the four
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points are on a straight line through the origin, the manifold constraint forces the fourth
point to be on the same line.

The cases listed in the tables below cover all possible arrangements of four points satis-
fying p0 + p1 + p2 + p3 = 0.

Case 1. Collinear configurations

Case 1.1 all points coincide with the origin,
Case 1.2 p1 = p0 = 0, p2 6= 0,
Case 1.3 p1 = p0 6= 0,
Case 1.4 p1 6= p0, p0 6= 0,
Case 1.5 p1 6= p0, p0 = 0.

Table 1: Possible arrangements of four collinear points in the plane

Case 2. Non-collinear configurations

Case 2.1 {p0, p1} linearly independent,
Case 2.2 {p0, p1} linearly dependent and p0 6= 0 ,
Case 2.3 {p0, p1} linearly dependent and p1 6= 0.

Table 2: Possible arrangements of four non-collinear points in the plane

The following figure shows one configuration from Case 1., another from Case 2..

p0

p1

p2

p3

q = 0

(a) Collinear configuration (Case 1.4)

p0
p1

p2

p3

q = 0

(b) Non-collinear configuration (Case 2.1)

Figure 1: A collinear and a non-collinear configuration of four points in R
2

The cases described in Table 1 and Table 2 above will be used to prove the following
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theorem which characterizes the critical points of F .

Theorem 1. Any critical point p = (p1, p2, p3) ∈M ⊂ R
6 of the function F defined by (9)

fulfills one of the following conditions:

1. p0 = p1 = p2 = p3 = 0; (17)

2. p2 = p0,

p1 = p3 = −p0;
(18)

3. p1 = p3 = λp0, for λ = −5±2
√
2

17 ,

p2 = −p0 + 2p1;
(19)

4. p2 = 0,

p0 =
[
x0 y0

]⊤
,

p1 =
1
2

[
−x0 − y0 x0 − y0

]⊤
or p1 =

1
2

[
y0 − x0 −x0 − y0

]⊤
,

p3 = −p0 − p1 − p2;

(20)

5. p0 =
[
x0 y0

]⊤
,

p1 =
1
5

[
−x0 ∓ y0

√
4∓

√
15 −y0 ± x0

√
4∓

√
15

]⊤
,

p2 = αp0 +
2α
1−α

p1, for α = ±
√

3
5 ,

p3 = −p0 − p1 − p2;

(21)

6. p0, p1, p2, p3 form the vertices of a regular quadrilateral (square). (22)

Proof. The critical points are triples (p1, p2, p3) ∈ M ⊂ R
6 with directional derivative

DF (p1, p2, p3)(v1, v2,−v1 − v2) = 0, for all v1, v2 ∈ R
2.

Using (10), the critical points (p1, p2, p3) are the solutions of the two coupled equations

(X + Y + Z)(p1 − p0) +X(p2 − p1) + Y (p3 − p2) + Z(p3 − p0) + 2C(p3 − p1) = 0,

X(p1 − p2) + 2Y (p3 − p2) + Z(p3 − p0) + C(p3 − p1) + C(p2 − p0) = 0.
(23)

Subtracting both equations and replacing the first by that, one gets

(X + Y + Z)(p1 − p0) + 2X(p2 − p1) + Y (p2 − p3) + C(p3 − p1) + C(p0 − p2) = 0,

X(p1 − p2) + 2Y (p3 − p2) + Z(p3 − p0) + C(p3 − p1) + C(p2 − p0) = 0,
(24)
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or, equivalently,

(−X − Y − Z + C)p0 + (−X + Y + Z − C)p1 + (2X + Y − C)p2 + (C − Y )p3 = 0,

(−Z − C)p0 + (X − C)p1 + (−X − 2Y + C)p2 + (2Y + Z + C)p3 = 0.
(25)

The proof consists in finding solutions of (25), for all arrangements in Table 1 and Table 2.
Case 1. Collinear configurations.
Case 1.1 All points coincide with the origin.
If p0 = p1 = p2 = p3 = 0, system (25) is trivially satisfied. So, this configuration is a

critical point.
Case 1.2 p0 = p1 = 0, p2 6= 0.
In this case p3 = −p2. Simple calculations, using (8) and (15), give X = Z = 2‖p2‖2,

Y = −10‖p2‖2, C = 0, and system (25) reduces to the unsolvable

X + Y = 0, X − 2Y = 0.

Case 1.3 p0 = p1 6= 0.
In this case p2 = λp0, for some real scalar λ, and p3 = −(2 + λ)p0. So, replacing in (8)

and (15), we obtain




A1 = −(λ− 1)2‖p0‖2
A2 = −4(1 + λ)2‖p0‖2
A3 = −(3 + λ)2‖p0‖2
C = −8(λ+ 1)‖p0‖2

=⇒





X = 2(5 + 10λ+ λ2)‖p0‖2
Y = −2(1 + 10λ+ 5λ2)‖p0‖2
Z = 2(−11− 6λ+ λ2)‖p0‖2

(26)

and, after some simplifications, system (25) reduces to

2λ3 + λ2 + 4λ+ 1 = 0, 9λ3 + 27λ2 + 47λ+ 29 = 0, (27)

which has no real solutions.
Case 1.4 p0 6= p1, p0 6= 0.
In this case, there exist real scalars λ and µ such that

p1 = λp0, p2 = µp0, p3 = −(1 + λ+ µ)p0. (28)

Replacing in (8) we obtain

A1 = (µ− 1)(2λ− µ− 1)‖p0‖2, A2 = −4(µ+ 1)(λ+ µ)‖p0‖2,
A3 = −(µ+ 3)(2λ+ µ+ 1)‖p0‖2, C = −4(λ+ 1)(λ+ µ)‖p0‖2.

(29)

After some tedious calculations we obtain

X = 2
(
λ(6µ+ 2) + µ2 + 4µ+ 3

)
‖p0‖2,

Y = −2
(
λ(6µ+ 2) + 5µ2 + 4µ− 1

)
‖p0‖2,

Z = −2
(
2λ(µ+ 3)− µ2 + 4µ+ 5

)
‖p0‖2,

(30)
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and the system of equations (25) reduces to

2λ3 − 2λ2(3µ+ 2)− λ
(
3µ2 + 6µ+ 1

)
− 4µ3 + µ2 + 4µ+ 1 = 0,

2λ3 + 2λ2(6µ+ 5) + λ
(
15µ2 + 26µ+ 13

)
+ 9µ3 + 12µ2 + 9µ+ 4 = 0.

(31)

Let f(λ, µ) and g(λ, µ) denote the polynomials on the left hand side of the previous equa-
tions. To solve the system, we look for the common zeros of the bivariate polynomials f
and g using Sylvester’s resultant method. Sylvester’s resultant is the determinant of the
Sylvester matrix of the two polynomials. We then use the fact that a necessary and suffi-
cient condition for f and g to have a common root is that its resultant vanishes, see Cox
et al. (2007).

The Sylvester matrix for the polynomials in (31) is

S =




2 −6µ−4 −3µ2−6µ−1 −4µ3+µ2+4µ+1 0 0
0 2 −6µ−4 −3µ2−6µ−1 −4µ3+µ2+4µ+1 0
0 0 2 −6µ−4 −3µ2−6µ−1 −4µ3+µ2+4µ+1
2 12µ+10 15µ2+26µ+13 9µ3+12µ2+9µ+4 0 0
0 2 12µ+10 15µ2+26µ+13 9µ3+12µ2+9µ+4 0
0 0 2 12µ+10 15µ2+26µ+13 9µ3+12µ2+9µ+4


 (32)

Note that
det(S) = 4096(µ− 1)(µ+ 1)6

(
17µ2 + 14µ+ 1

)
. (33)

When µ = 1, the system of equations (31) reduces to

λ3 − 5λ2 − 5λ+ 1 = 0, λ3 + 11λ2 + 27λ+ 17 = 0, (34)

whose solution is λ = −1. This yields the critical points described in item 2. of the theorem.
When µ = −1, the system of equations (31) reduces to

λ3 + λ2 + λ+ 1 = 0, λ3 − λ2 + λ− 1 = 0, (35)

which is easily seen to have only λ = ±ı as solutions.
Finally, when µ = −7±4

√
2

17 , one gets λ = −5±2
√
2

17 , which gives the description in item 3.
of the theorem.

Case 1.5 p1 6= p0, p0 = 0
In this case, p1 6= 0 and instead of (28) and (29) we have

p0 = 0, p2 = µp1, p3 = −(1 + µ)p1, (36)

A1 = −µ(µ− 2)‖p1‖2,
A2 = −4µ(µ+ 1)‖p1‖2,
A3 = −µ(µ+ 2)‖p1‖2,
C = −4(µ+ 1)‖p1‖2,

(37)

12



from what follows

X = 2µ(µ+ 6)‖p1‖2, Y = −2µ(5µ+ 6)‖p1‖2, Z = 2µ(µ− 2)‖p1‖2. (38)

Then, system (25) reduces to

4µ3 + 3µ2 + 6µ− 2 = 0, 9µ3 + 15µ2 + 12µ+ 2 = 0, (39)

which has no real solutions.
Concluding, the only critical points with collinear configurations are the ones stated in

the theorem.
Case 2. Non-collinear configurations
Case 2.1 p0 and p1 are linearly independent.
In this case, we will get critical points that fulfill the descriptions of items 4., 5. and 6.

of the theorem.
Let α and β be real scalars such that p2 = αp0 + βp1. Since p0 + p1 + p2 + p3 = 0, then

p3 = −(1 + α)p0 − (1 + β)p1. Replacing these values of p2 and p3 in (25), we obtain the
following system of linear equations

0 = (2α− 1)X + 2αY − Z − 2αC,

0 = (2β − 1)X + 2(1 + β)Y + Z − 2(1 + β)C,

0 = −αX − 2(1 + 2α)Y − (2 + α)Z − 2C,

0 = −(β − 1)X − 2(1 + 2β)Y − (1 + β)Z − 2C,

(40)

that can be written as the matrix equation

[ 2α−1 2α −1 −2α
2β−1 2β+2 1 −2(β+1)
−α −2(2α+1) −α−2 −2
1−β −2(2β+1) −β−1 −2

]

︸ ︷︷ ︸
N

[
X
Y
Z
C

]
=

[
0
0
0
0

]
, detN = 32(2α− β + αβ). (41)

If detN 6= 0, then X = Y = Z = C = 0, which implies that p0, p1, p2, p3 form the
vertices of a regular quadrilateral, thus obtaining the critical point described by item 6. in
the theorem.

If detN = 0, then β = 2α
1−α

(note that this is well defined, since for α = 1, detN = 64).
Using the definition of X, Y , Z and C in (15) and (8), and assuming that α 6= 0 (the case
α = 0 is considered later), the above system of equations is equivalent to

0 = 3A1 −A2 −A3 − 1+α(3+α−α2)
4α2 C,

0 = −A1 + 3A2 −A3 − 1+α(−3+α+α2)
4α2 C,

0 = −A1 −A2 + 3A3 +
1+α(−1+α+3α2)

4α2 C,

(42)
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and the solution is thus given by

A1 =
1+α(2+α−2α2)

8α2 C, A2 =
(1−α)(1+α2)

8α2 C, A3 =
α(1−3α2)

8α2 C. (43)

Using the definition of A1, A2, A3 and C in (8), the above is still equivalent to

0 = ‖p1‖2(1 + 2α+ 4α3 − 17α4 + 2α5)− p⊤0 p1(α− 1)(2α5 − 17α4 + 6α3 + 4α+ 1)

+ ‖p0‖2α(α− 1)2(−4α3 + α2 + 4α+ 1),

0 = ‖p1‖2(α+ 1)(α4 − 18α3 + 2α2 − 2α+ 1)− p⊤0 p1α(α− 1)2(9α3 + 7α2 + α− 1)

+ ‖p0‖2(α− 1)(α5 − 27α4 − 14α3 − 10α2 + α+ 1),

0 = ‖p1‖2(3α4 − 12α2 + 1)− p⊤0 p1(α− 1)(3α4 − 10α3 − 12α2 − 10α+ 1)

− ‖p0‖2α(α− 1)2(5α2 + 8α+ 5).

(44)

By computing the determinant of the coefficient matrix N1 of system (44), it yields

detN1 = 32(α− 1)3α4
(
α2 + 1

)3 (
5α2 − 3

)
.

If this determinant does not vanish, the only solution of (44) is ‖p1‖ = ‖p0‖ = p⊤0 p1 = 0,
which contradicts the assumption that p0 and p1 are linearly independent. Therefore, it
suffices to study the cases where α = ±

√
3/5. Next, we only consider the case α =

√
3/5,

since the study when α = −
√

3/5 is analogous.
For α =

√
3/5, the above system of equations reduces to

‖p0‖2 = −5p⊤0 p1, ‖p1‖2 =
√
15−5
5 p⊤0 p1, (45)

or, equivalently, to

‖p0‖2 = −5p⊤0 p1, ‖p1‖2 = 5−
√
15

25 ‖p0‖2. (46)

The second equation tells us that p1 is on the circle centered at the origin with radius√
5−

√
15

5 ‖p0‖, and since p⊤0 p1 = ‖p0‖‖p1‖ cos θ, where θ is the angle between p0 and p1,

we also get from (46) that cos θ = −1√
5−

√
15
, which implies sin θ =

√
5−

√
15

10 . Therefore,

there are two possibilities for the localization of p1, corresponding to applying a clockwise

or an anticlockwise rotation of angle θ to the point

√
5−

√
15

5 p0. More precisely, writing

p0 =
[
x0 y0

]⊤
and p1 =

[
x1 y1

]⊤
,

[ x1
y1 ] =

√
5−

√
15

5




−1√
5−

√
15

−
√

5−
√
15

10

√
5−

√
15

10
−1√
5−

√
15


 [ x0

y0 ] =
1
5




−x0−5−
√
15√

10
y0

5−
√
15√

10
x0−y0


 , (47)
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and

[ x1
y1 ] =

√
5−

√
15

5




−1√
5−

√
15

√
5−

√
15

10

−
√

5−
√
15

10
−1√
5−

√
15


 [ x0

y0 ] =
1
5


−x0+

5−
√
15√

10
y0

−5−
√
15√

10
x0−y0


 . (48)

Since 5−
√
15√

10
=

√
4−

√
15, the above gives two solutions for the descriptions in item 5. of

the theorem. The other two are obtained with α = −
√

3/5.
Finally, we deal with the situation when α = 0, which implies β = 0, and consequently

p2 = 0. In this case, the system of equations (41) reduces to
[−1 0 −1 0
−1 2 1 −2
0 −2 −2 −2
1 −2 −1 −2

]

︸ ︷︷ ︸
N

[
X
Y
Z
C

]
=

[
0
0
0
0

]
. (49)

from where we get Y = X = −Z and C = 0. Using identities (15) and (8), the former is
equivalent to A1 = A2, A3 = 0 and C = 0. And since in this case p3 = −p0 − p1, we easily
get the following conditions on p1, in terms of p0.

‖p1‖2 = 1
2‖p0‖

2, ‖p1‖2 = −p⊤0 p1. (50)

Using this and the fact that p⊤0 p1 = ‖p0‖‖p1‖ cos θ, where θ is the angle between p0 and p1,
we obtain cos θ = −

√
2/2, from where the two solutions in the description of item 4. will

emerge. Indeed, writing p0 =
[
x0 y0

]⊤
and p1 =

[
x1 y1

]⊤
, the first equation in (50) tells

us that the point p1 must live on the circle centered at the origin with radius 1√
2
‖p0‖, and

so there are 2 possibilities for the localization of p1, corresponding to applying a clockwise
or an anticlockwise rotation of angle θ = 3π

4 to the point 1√
2
p0. More precisely,

[ x1
y1 ] =

1√
2

[
cos

3π
4 − sin

3π
4

sin
3π
4 cos

3π
4

]
[ x0
y0 ] =

1
2

[−1 −1
1 −1

]
[ x0
y0 ] =

1
2

[−x0−y0
x0−y0

]
, (51)

and

[ x1
y1 ] =

1√
2

[
cos

3π
4 sin

3π
4

− sin
3π
4 cos

3π
4

]
[ x0
y0 ] =

1
2

[−1 1
−1 −1

]
[ x0
y0 ] =

1
2

[−x0+y0
−x0−y0

]
. (52)

This completes the proof of case 1.1.
Case 2.2 p0 and p1 are linearly dependent, p0 6= 0.
Under these conditions, the manifold constraint also forces p0 and p2 to be linearly

independent. We will show that there are no critical points in this case.
Let p1 = λp0, for some λ ∈ R, and p3 = −(1 + λ)p0 − p2. Replacing these values of p1

and p3 in (25), and using the fact that p0 and p2 are linearly independent, we obtain the
following linear matrix equation.

[
−(λ+1) 2λ λ−1 −2λ

2 2 0 −2
λ −2(λ+1) −(λ+2) −2(λ+1)
−1 −4 −1 0

]

︸ ︷︷ ︸
N

[
X
Y
Z
C

]
=

[
0
0
0
0

]
. (53)
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It happens that detN = −32λ. If λ 6= 0, this equation only has the trivial solution
X = Y = Z = C = 0, which implies A1 = A2 = A3 = C = 0, meaning that the points
p0, p1, p2, and p3 are the vertices of a regular quadrilateral. However, due to the assumption
that p0 and p1 are linearly dependent, this configuration cannot happen. So, λ = 0, p1 = 0,
and the equation (53) is indeterminate. Simple calculations, show that in this case X = C,
Y = 0 and Z = −C, or, equivalently, using identities (15), A1 = C/4, A2 = 0, A3 = −C/4.
Then, written in terms of the points, the solutions of (53) must satisfy





‖p0‖2 − ‖p2‖2 = −p⊤0 p2
p⊤0 p2 + ‖p2‖2 = 0

−3‖p0‖2 − ‖p2‖2 = 5p⊤0 p2

⇔





‖p0‖2 = −2p⊤0 p2
‖p2‖2 = −p⊤0 p2
p⊤0 p2 = 0

⇔ p0 = p2 = 0, (54)

which contradicts the assumption p0 6= 0. This case doesn’t produce any critical points.
Case 2.3 p0 and p1 are linearly dependent, p1 6= 0.
Under these conditions, the manifold constraint also forces p1 and p2 to be linearly

independent. We will show that in this case there are no critical points.
Let p0 = λp1, for some λ ∈ R, and p3 = −(1 + λ)p1 − p2. Although the procedure is

similar to the previous case, we still need to do computations since the formulas involved
are not symmetrical with respect to p0 and p1. Replacing the values of p0 and p3 in (25),
and using the fact that p1 and p2 are linearly independent, we now obtain

[
−(λ+1) 2 1−λ −2

2 2 0 −2
1 −2(λ+1) −(2λ+1) −2(λ+1)
−1 −4 −1 0

]

︸ ︷︷ ︸
N

[
X
Y
Z
C

]
=

[
0
0
0
0

]
. (55)

It also happens that detN = −32λ. If λ 6= 0, this equation only has the trivial solution
X = Y = Z = C = 0, which implies A1 = A2 = A3 = C = 0, meaning that the
points p0, p1, p2, and p3 are the vertices of a regular quadrilateral. However, as before, this
contradicts the assumption that p0 and p1 are linearly dependent. So, consider that λ = 0
and consequently p0 = 0. In this case, solutions of (55) satisfy Y = −X, Z = 3X, and
C = 0, or, equivalently, using identities (15), A1 = 2A2, A3 = 3A2, C = 0. Taking into
consideration that, in this case, p2−p3 = 2p2+p1, p1−p3 = 2p1+p2, A1 = −‖p2‖2+2p⊤1 p2,
A2 = −4(‖p2‖2 + p⊤1 p2), A3 = −‖p2‖2 − 2p⊤1 p2, and C = −4(‖p1‖2 + p⊤1 p2), the solutions
written in terms of the points simplify to





7‖p2‖2 = −10p⊤1 p2
11‖p2‖2 = −10p⊤1 p2
‖p1‖2 = −p⊤1 p2

⇔ p1 = p2 = 0, (56)

contradicting the assumption p1 6= 0. So, this case does not produce further critical points.
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Remark 2. Note that the second configuration in the description 4. of Theorem 1 results
from a reflection of the first configuration across the line generated by p0. The same happens
to the two configurations in the description 5. corresponding to the same value of the
parameter α. Obviously, there are also two square configurations in the description 6. that
are related by the same reflection that interchanges the points p1 and p3. In all cases, the
reflection responsible for these linear transformation has the matrix representation

R = 1
x2
0
+y2

0

[
x2
0
−y2

0
2x0y0

2x0y0 −x2
0
+y2

0

]
. (57)

The configurations in the description 5. corresponding to a particular value of the parameter
α, for instance α =

√
3/5, are also related to those corresponding to α = −

√
3/5, but in

this case one needs a rotation matrix Θ ∈ SO(6), namely

Θ =

[
0 0 I2
0 I2 0
I2 0 0

]
, (58)

that keeps p2 invariant and interchanges p1 and p3.

Remark 3. There is an alternative proof of Theorem 1, we want to sketch here. It is,
however, heavily supported by computations by means of the computer algebra system Math-
ematica, Version 14.2, cf. Wolfram Research, Inc..

The set of critical points is defined by the zero set of the third order polynomials, with
rational coefficients, in six real variables, see (7). We have been successful in solving this
system by straight forward geometric insight, as seen above. A more modern approach to
tackle such a problem could be by using Gröbner bases. Due to well-known issues concerning
complexity, see, for instance, Bose (1995) or Cox et al. (2007), usually one does not know
in advance if a derived Gröbner basis, i.e. a new set of polymomials, often greater in number
and possibly of much higher degree, even though generating the same ideal, is more suited
for finding the solution set explicitly. For the current case, however, we have been successful
in confirming the closed form solution and its geometric interpretation.

The setting is as follows:

• Define six equations by the zero set of (7) and add the two affine equations, defining
the constraint set M .

• We might first assume that the centroid of the four points is equal to zero, and also
ignore the trivial case when all points coincide.

• Without loss of generality, we might secondly assume that one of the four points is
nonzero and in particular equal to a standard basis vector in R

2. The latter is correct,
as the critical point condition is invariant under nonzero scaling, and also invariant
under a collective rotation of all four points in R

2.
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• For the corresponding new polynomial system, i.e., eight equations, which generate
the same ideal as (7) does on M , we compute a Gröbner basis. By our geometric
insight, we know already that the critical point set is zero dimensional (i.e. a discrete
set), ensuring by the so called Finite Theorem (Thm 2.1.2 in Dickenstein and Emiris
(2010)), that such an approach is feasible.

Many details have to be omitted here. However, we mention that the Gröbner basis we
computed consists of ten equations, i.e. two more than the earlier eight, and the polynomials
showing up are of 14-th degree. At first glance, this seems a potential disaster, but looking
carefully to this result, one was even able to solve that system at least in principle using
paper and pencil (including some minor Mathematica support), essentially by some sort of
back substitution. Here, one also needs to use to full capacity, the ability of Mathematica
to deal with radicals and root reducing methods from ordinary algebra. The amazing point
we want to mention here is that all the solutions already found by geometric insight above,
are recovered, actually the solutions are all given by algebraic numbers or, in other words,
by explicit symbolic representations in the sense of computer algebra.

The figure below contains all the critical points (p1, p2, p3) when p0 is chosen to be[
0 1

]⊤
, up to a reflection across the y-axis or, for some configurations in 5., up to the

rotation that interchanges p1 and p3.
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Figure 2: Collinear configurations of critical points described in Theorem 1
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[
0
−1

]
, p3 =

[−1
0

]

Figure 3: Non-collinear configurations of critical points from Theorem 1 for p0 = [ 0
1
]

4. Classification of the critical points

From the Euclidean gradient given in (14), we can now proceed with the Hessian.
Similarly to the gradient, we first compute the Euclidean Hessian H

F̂
(recall that F̂ is an

extension of F to the embedding space), and then project it onto the tangent space to M
to obtain the Riemannian Hessian HF . To simplify notations, we also use the same letters
for the matrix representation of the Hessians. To compute the Hessian of F̂ , we proceed as
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follows, with p = (p1, p2, p3), and A1, A2, A3 and C as defined in (37):

D2
11F̂ (p) = 6(p1 − p0)(p1 − p0)

⊤ + 2(p1 − p0)(p2 − p1)
⊤

+ 2(p2 − p1)(p1 − p0)
⊤ + 6(p1 − p2)(p1 − p2)

⊤

+ 2(p1 − p3)(p1 − p3)
⊤ − (2A1 − 2A2 − 2A3 + C)I,

D2
12F̂ (p) = 2(p1 − p0)(p1 − p2)

⊤ − 2(p1 − p0)(p2 − p3)
⊤

− 6(p1 − p2)(p1 − p2)
⊤ + 2(p2 − p1)(p2 − p3)

⊤

+ 2(p3 − p1)(p2 − p0)
⊤ + (3A1 −A2 −A3)I,

D2
13F̂ (p) = 2(p1 − p0)(p2 − p3)

⊤ − 2(p1 − p0)(p3 − p0)
⊤

− 2(p2 − p1)(p2 − p3)
⊤ + 2(p2 − p1)(p3 − p0)

⊤

+ 2(p3 − p1)(p1 − p3)
⊤ + CI,

D2
22F̂ (p) = 6(p1 − p2)(p1 − p2)

⊤ + 2(p1 − p2)(p2 − p3)
⊤

− 6(p3 − p2)(p2 − p3)
⊤ − 2(p3 − p2)(p1 − p2)

⊤

+ 2(p2 − p0)(p2 − p0)
⊤ − (2A1 + 2A2 − 2A3 − C)I,

D2
23F̂ (p) = −2(p1 − p2)(p2 − p3)

⊤ + 2(p1 − p2)(p3 − p0)
⊤

+ 6(p3 − p2)(p2 − p3)
⊤ + 2(p3 − p2)(p3 − p0)

⊤

+ 2(p2 − p0)(p1 − p3)
⊤ + (3A2 −A1 −A3)I,

D2
33F̂ (p) = 6(p2 − p3)(p2 − p3)

⊤ + 2(p2 − p3)(p3 − p0)
⊤

+ 6(p3 − p0)(p3 − p0)
⊤ − 2(p0 − p3)(p2 − p3)

⊤

+ 2(p1 − p3)(p1 − p3)
⊤ + (2A1 − 2A2 − 2A3 − C)I.

(59)

So, the matrix representation of the Euclidean Hessian is, at each p ∈ R
6,

H
F̂
(p) =

[
D2

11
F̂ (p) D2

12
F̂ (p) D2

13
F̂ (p)

(D2
12
F̂ )⊤(p) D2

22
F̂ (p) D2

23
F̂ (p)

(D2
13
F̂ )⊤(p) (D2

23
F̂ )⊤(p) D2

33
F̂ (p)

]
. (60)

4.1. The Riemannian Hessian

Proposition 3. The matrix representation of the Riemannian Hessian, in Euclidean co-
ordinates of the embedding space R

6, at every p ∈ M , is the 6 × 6 symmetric matrix with
block structure,

HF (p) =
1
9

[
H11 H12 −H11−H12

H⊤
12

−H⊤
12
−H23 H23

−H11−H⊤
12

H⊤
23

H11+H⊤
12
−H⊤

23

]
, (61)
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where

H11= 40v1v
⊤
1 +56v2v

⊤
2 +24v3v

⊤
3 −8v1v

⊤
2 −8v2v

⊤
1 −4v1v

⊤
3 −4v3v

⊤
1 −12v2v

⊤
3 −12v3v

⊤
2

+ (−22A1 + 14A2 + 10A3 − 8C)I,

H12= −8v1v⊤1 − 40v2v
⊤
2 + 16v1v

⊤
2 + 16v2v

⊤
1 − 16v1v

⊤
3 − 16v3v

⊤
1 − 24v2v

⊤
3 + 24v3v

⊤
2

+ (26A1 − 10A2 − 14A3 − 2C)I,

H23= −8v1v⊤1 − 40v2v
⊤
2 − 48v3v

⊤
3 + 16v1v

⊤
2 + 16v2v

⊤
1 + 48v3v

⊤
2 + 8v1v

⊤
3 + 8v3v

⊤
1

+ (−10A1 + 26A2 − 2A3 − 2C)I,

(62)

A1, A2, A3 and C are defined in (37), and v1, v2, v3 are defined by

v1 := p1 − p0, v2 := p1 − p2, v3 := p1 − p3. (63)

Proof. The Riemannian Hessian HF is the restriction of the Euclidean Hessian to the tan-
gent space. Consequently,

HF (p) = P⊥
TpM H

F̂
(p) P⊥

TpM , (64)

where P⊥
TpM

is the matrix that defines the orthogonal projection onto TpM . Taking into

consideration that, according to (63),

p2 − p0 = v1 − v2, p2 − p3 = v3 − v2, p3 − p0 = v1 − v3, (65)

one easily obtains the matrix representation of the Riemannian Hessian after some compu-
tations.

4.2. Damped Newton method

Using the Riemannian Hessian, we can apply a damped Newton method (Algorithm 2)
to numerically compute solutions for our minimization problem. In general, this method
locally converges faster than steepest descent methods as it incorporates second-order in-
formation, allowing for more precise and efficient steps toward the minimum.
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Algorithm 2: Damped Newton’s method

Input : Initial point p(0) = (p
(0)
1 , p

(0)
2 , p

(0)
3 ), λ(0) > 0, α(0) > 0, and tolerance tol

Output: Stationary point p∗ = (p∗1, p
∗
2, p

∗
3)

1 for k = 0, 1, . . . do

2 Set B(k) = HF (p
(k)) + λ(k)In ;

3 while rcond(B(k)) < tol do

4 Increase λ(k) = 2λ(k);

5 Recompute B(k) = HF (p
(k)) + λ(k)In;

6 end

7 Solve d(k) from B(k)d(k) = −∇F (p(k));

8 Perform line search to update α(k);

9 Update p(k+1) = p(k) + α(k)d(k);

10 Stop if F (p(k)) < tol or ‖∇F (p(k))‖ < tol

11 end

Figure 4 illustrates the comparative performance of the steepest-descent method and
the damped Newton method when applied to the same initial configuration of points, rep-
resented in each case as the vertices of a polygon with black edges. The points in the final
configuration are joined by red edges. The results clearly indicate that the damped Newton
method converges significantly faster, requiring fewer iterations to reach a solution than
the steepest-descent approach. These illustrations corroborate the increased performance
of damped Newton methods, reinforcing their benefits in optimization problems.
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Figure 4: Configurations given by the steepest-descent algorithm (on the left) and by the damped Newton
algorithm (on the right) for the same initial configuration
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4.3. Classification of the critical points

We start with some remarks that will be used to substantially simplify the proof of the
next theorem.

Remark 4. Since a plane rotation can bring any point in the plane to the y-axis, to simplify

notations we may assume that, for the configurations in Theorem 1, p0 =
[
0 y0

]⊤
, for some

y0 ∈ R\{0}. The nature (minimum, maximum, or saddle) of the critical points will not be
affected by this coordinate change. Indeed, if R denotes the rotation matrix in SO(2) that
brings p0 to the y-axis, then the rotation matrix

Θ =
[
R 0 0
0 R 0
0 0 R

]
∈ SO(6),

rotates the other three points (identified with a point in R
6) accordingly, and the Hessian

matrix for the new configuration is ΘHF Θ⊤, thus keeping the set of eigenvalues invariant,
as well as its signature. A similar argument can be used to reduce the classification of critical
points whenever two configurations are related by a rotation or a reflection, an orthogonal
matrix) as well. Remark 2 already identified such configurations.

Remark 5. The nature of a critical point p depends on the signature of the Riemannian
Hessian. By considering the relationship (64) between Euclidean and Riemannian Hessians,
it becomes clear that to analyse the sign of the quadratic form u⊤HFu at p we can either
consider a generic direction u ∈ R

6 or a restricted direction u ∈ TpM . In the proof of the
Theorem 2, our choice for the direction u will be based on how it simplifies calculations.

Since the Hessian matrix has a block structure, to compute u⊤HFu it is convenient to

use the notation u =
[
u⊤1 u⊤2 u⊤3

]⊤
for a vector in u ∈ R

6, where ui ∈ R
2, i = 1, 2, 3.

Theorem 2. The critical points of the function F on M , characterized in Theorem 1, are
classified as:

(a) The critical points (p1, p2, p3) corresponding to the descriptions 1., 2. and 6. of
Theorem 1 are global minima;

(b) The critical points (p1, p2, p3) corresponding to the descriptions 3., 4. and 5. of
Theorem 1 are saddle points.

Proof. The statement is obvious for p0 = p1 = p2 = p3 = 0.
When p2 = p0, p1 = p3 = −p0, we have v1 = v2, v3 = 0, A1 = A2 = A3 = C = 0, and

the Hessian matrix reduces to

HF = 16
9

[
5v1v⊤1 −v1v

⊤
1

−4v1v⊤1
−v1v

⊤
1

2v1v⊤1 −v1v
⊤
1

−4v1v⊤1 −v1v
⊤
1

5v1v⊤1

]
= 16

9

[
5 −1 −4
−1 2 −4
−4 −1 5

]

︸ ︷︷ ︸
S

⊗(v1v⊤1 ). (66)
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We now consider the eigenvalues of certain matrices. The spectrum of S is σ(S) = {9, 3, 0},
σ(v1v

⊤
1 ) = {‖v1‖2, 0}, and σ(S ⊗ v1v

⊤
1 ) = {9‖v1‖2, 3‖v1‖2, 0, 0, 0, 0}, consequently HF has

2 positive eigenvalues and 4 eigenvalues equal to zero. Together with the fact that in this
case the function F attains its minimum value (zero), it tells us that the critical point for
the description 2. in Theorem 1 is a global minimum.

Now, when the four points are at the vertices of a regular quadrilateral, we have v3 =
v1 + v2, A1 = A2 = A3 = C = 0, and the main blocks of the Hessian matrix simplify to

H11 = 56(v1v
⊤
1 + v2v

⊤
2 )

H12 = H23 = −8(5v1v⊤1 + 5v2v
⊤
2 − 3v1v

⊤
2 + 3v2v

⊤
1 )

(67)

For the critical point p = (p1, p2, p3) of this configuration, we take u ∈ TpM , so that
u3 = −u1 − u2. After simplification, the quadratic form becomes

u⊤HFu = 1
9

(
u⊤1 2(2H11 +H⊤

12)u1 + u⊤2 (H11 − 3H⊤
12 −H12)u2

+ 2u⊤1 (2H11 + 2H12 −H⊤
12)u2

)
.

(68)

After further simplification, one gets

u⊤HFu = 72
9

(
2(u⊤1 v1)

2 + 2(u⊤1 v2)
2 + 2(u⊤1 v1)(u

⊤
2 v2) + 2(u⊤1 v2)(u

⊤
2 v2)

+ 2(u⊤1 v1)(u
⊤
2 v2)− 2(u⊤1 v2)(u

⊤
2 v1) + 3(u⊤2 v1)

2 + 3(u⊤2 v2)
2
)

= 72
(
(u⊤1 v1 + u⊤2 v1)

2 + (u⊤1 v1 + u⊤2 v2)
2 + (u⊤1 v2 + u⊤2 v2)

2

+ (u⊤1 v2 − u⊤2 v1)
2 + (u⊤1 v2 + u⊤2 v2)

2 + (u⊤2 v2)
2 + (u⊤2 v1)

2
)
.

(69)

Since all summands are pure squares, the quadratic form is clearly non-negative, thus
proving that the critical point for the regular quadrilateral described in Theorem 1 is a
local minimum. Actually, since F takes the value zero at this configuration, it is a global
minimum.

Next we prove that the remaining critical points are saddle points. The strategy to prove
that a critical point is a saddle will be to show that there exist two directions u,w ∈ R

6

such that the quadratic forms u⊤HFu and w⊤HFw have opposite signs at that point.
For the critical points described by item 3. in Theorem 1, we have p1 = p3 = λp0,

p2 = −(1 + 2λ)p0, where λ = −5±2
√
2

17 . In this case,

A1 = A2 = −8λ(λ+ 1)‖p0‖2, A3 = 0, C = 4(λ+ 1)2‖p0‖2. (70)

Consider the direction u ∈ R
6 with components u1 = v1, and u2 = u3 = 0. Then,

u⊤HFu = 1
9

(
(−8A1 − 8C)v⊤1 v1 + 40(v⊤1 v1)

2 + 56(v⊤1 v2)
2 − 16(v⊤1 v1)(v

⊤
1 v2)

)

= 16
9 (λ− 1)2(33λ2 + 18λ+ 5))‖p0‖4 > 0.

(71)
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Now consider the direction w ∈ R
6, with w2 = w3 = 0 and w1 ∈ R

2 such that w⊤
1 v1 = 0.

Using these conditions, we obtain

w⊤HFw = 1
9(−8A1 − 8C)w⊤

1 w1 = −32
9 (1− λ2)‖p0‖2‖w1‖2 < 0. (72)

Therefore, the critical points described by item 3. in Theorem 1 are saddle points.
For the critical points described by item 4. in Theorem 1, we consider p2 = 0, p0 =[

x0 y0
]⊤
, p1 = 1

2

[
y0 − x0 x0 − y0

]⊤
, p3 = −p0 − p1 − p2. To simplify notations, we

consider the vector r =
[
−y0 x0

]⊤
and rewrite the points pi also in terms of this vector,

which is orthogonal to p0 and satisfies ‖r‖ = ‖p0‖. So, p1 = −1
2(p0 + r), p2 = 0 and

p3 = −1
2(p0 − r). Moreover,

v1 = −1
2(3p0 + r), v2 = −1

2(p0 + r), v3 = −r; A1 = A2 = 2‖p0‖2, A3 = C = 0,

and the main blocks of the Hessian matrix reduce to

H11 = 92p0p
⊤
0 + 28rr⊤ + 24p0r

⊤ + 24rp⊤0 − 16‖p0‖2I,

H12 = −4p0p⊤0 − 20rr⊤ − 36p0r
⊤ − 12rp⊤0 + 32‖p0‖2I,

H23 = −4p0p⊤0 − 20rr⊤ + 12p0r
⊤ + 36rp⊤0 + 32‖p0‖2I.

Now consider those directions u,w ∈ R
6, where u1 = p0, u2 = u3 = 0 and w2 = p0,

w1 = w3 = 0. A simple calculation, taking into account that r is orthogonal to p0, gives

u⊤HFu = p⊤0 H11p0 =
76
9 ‖p0‖

4, w⊤HFw = p⊤0 (−H⊤
12 −H23)p0 = −56

9 ‖p0‖
4.

So, the critical points described by item 4. in Theorem 1 are saddle points.
Finally, we consider the configurations given at item 5. of Theorem 1. According to

Remark 4, it is enough to choose only one configuration and also take x0 = 0. Defining

µ :=
√

(4−
√
15) and ν :=

√
6 (to simplify notations), we consider

p0 =
y0
5 [ 05 ] , p1 =

y0
5

[ µ
−1

]
, p2 =

y0
5 [ ν

−3 ] , p3 =
y0
5

[−µ−ν
−1

]
, (73)

which correspond to α =
√

3
5 . In this case,

A1 =
y2
0

25 (2µν − ν2 + 32),

A2 =
−4y2

0

25 (µν + ν2 − 8),

A3 = −y2
0

25ν(2µ+ ν),

C =
−4y2

0

25 (µ2 + µν − 16) =
12y2

0

5 .

(74)
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Let us consider a direction u ∈ R
6, with u1 = p0, u2 = 0 and u3 = −u1. After simplifica-

tions, this yields

u⊤HFu = 1
9p

⊤
0 (4H11+3H⊤

12−H⊤
23)p0=

144
9

(
(p⊤0 v1)

2+(p⊤0 v2)
2− 3

5y
2
0(p

⊤
0 p0)

)
=16y40 > 0. (75)

Choosing a direction w, with w1 = p3 − p0, w2 = −u1, and w3 = 0, and performing some
lengthy computations, one obtains

w⊤HFw = 1
9w

⊤
1 (H11 − 3H⊤

12 −H23)w1 =
8

125(245− 76
√
15)y40 < 0. (76)

So, the configurations described in 5. are saddle points. The proof is now complete.

Figure 5 illustrates the behavior of the points p1, p2, p3 in a neighborhood of the saddle
points described in Theorem 2. The illustrations were generated using the steepest-descent
algorithm. Depending on the deviation of the initial configuration from the critical points
in figures 2 and 3, we observe either convergence to a regular quadrilateral configuration
or to a collinear arrangement where p2 = p0 and p1 = p3 = −p0, both of which are local
minima of the functional F .
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Figure 5: Behavior in a neighborhood of a saddle point, when p0 = [ 0
1
]
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We finalize this paper with some pictures that illustrate how quadrilateral configurations
are continuously deformed into the vertices of a square with the same centroid. These
configurations were generated using the steepest descent algorithm. The quadrilaterals
observed in the pictures correspond to specific iterations of the process, highlighting its
progressive deformation towards the final square shape.

(a) (b)

(c) (d)

Figure 6: Morphing a quadrilateral configuration into a square with the same centroid, using the steepest
descent algorithm
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