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Abstract. This study examines quaternion polynomial equations with
imprecisely defined coefficients for the first time. We define the closed
quaternion ball to resolve these equations and demonstrate certain as-
pects pertaining to its arithmetic. Ultimately, we examine some specific
equations and derive some pertinent results associated with them. The
last equation will yield the de Moîvre formula for the n-th roots of a
closed quaternion ball.
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1 Introduction

A quaternion polynomial equation is an equation of type f(x) = g(x), where

f(x) = xm + am−1x
m−1 + · · ·+ a1x+ a0

and
g(x) = xn + bn−1x

n−1 + · · ·+ b1x+ b0,

are quaternion polynomials. The solution set

S = {x ∈ H : f(x) = g(x)} .

is composed by the zeros of the quaternion polynomial p(x) = f(x)−g(x), which
we know how to compute. This problem has received a lot of attention in the
last years, see for example [13] for some historical background.

Motivated by [3–6, 11, 12, 15–18], we pondered the scenario in which some
coefficients are defined with imprecision. What if we are uncertain about the
precise values of certain coefficients, just aware that they are within a specific
range? This set may be difficult to locate and represent. Therefore, we will select
a closed quaternion ball that encompasses S. We will employ closed quaternion
ball arithmetic to identify and represent this set. Until now, and as far as we
know, no attention has been paid when the coefficients and the independent
terms are uncertain in the quaternion case. The uncertainty can be expressed
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by an interval of the type [a, b] for each component of the quaternion, i.e., con-
sidering a hypercube, or taking a quaternion as the center of a hypersphere. We
will consider the second hypothesis.

In this work, operations on closed quaternion balls are considered in section
2. First, we start with a revision on quaternion algebra, focusing on quaternion
polynomials and their zeros; this is given in Subsection 2.1. In subsection 2.2,
we define closed quaternion balls and give two binary operations: addition and
multiplication; some of their properties are established. Finally, in Section 3 we
present some results related to some specific equations with imprecisely defined
coefficients and independent term. Some examples are given.

2 Preliminaries

This section presents preliminary results on quaternion algebras and closed
quaternion balls.

2.1 Quaternion Algebra

Let H = {q0 + q1i+ q2j + q3k : q0, q1, q2, q3 ∈ R} be the quaternion field, where
i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, and ki = −ik = j. For q =
q0+q1i+q2j+q3k ∈ H, the conjugate of q is defined as q = q0−q1i−q2j−q3k.
Thus, q0, the real part of q, denoted by Re(q), is given by q0 = (q + q)/2 and
qq = qq = q20 + q21 + q22 + q23 ∈ R. The norm of q, denoted by |q|, is defined by√
qq. If q ̸= 0, then q has the inverse, and it is given by q−1 = q/ |q|.

We list some basic properties and definitions.

Proposition 1. For any q1, q2 ∈ H, q1 + q2 = q1 + q2, and q1q2 = q2 q1.

In H we introduce the equivalence relation of similarity.

Definition 1. Given q, q′ ∈ H, q ∼ q′ if there exists σ ∈ H such that q′ =
σqσ−1.

If q ∼ q′, then we say that q is similar to q′. The relation ∼ in Definition
1 is an equivalence relation in H. The conjugacy class of q ∈ H is defined
by [q] = {x ∈ H : x ∼ q}. All quaternions in the conjugacy class [q] satisfy the

characterisitc polynomial ∆q(x) = x2 − t(q)x+ |q|2.
Let H[x] denote the ring of unilateral left polynomials in one variable x

over H, where x commutes elementwise with H. If p(x) =
∑n

i=0 aix
i ∈ H[x]

with an ̸= 0, we say that p(x) is a polynomial of degree n. If an = 1, we say
that the polynomial p(x) is monic. The conjugate of a quaternion polynomial
p(x) =

∑n

i=0 aix
i is defined by p(x) =

∑n

i=0 aix
i.

Given p(x) ∈ H[x] and an element q ∈ H, we define the evaluation of p(x)
at q, to be the element p(q) =

∑n

i=0 aiq
i ∈ H. To evaluate p(q), we first have

to express p(x) as
∑n

i=0 aix
i and then substitute x by q (see p. 262 in [7]).

Addition and multiplication of polynomials in H[x] are defined as in the
commutative case where the variable commutes with the coefficients. Note that
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although if f(x), g(x) ∈ H[x], then p(x) = f(x)g(x) ∈ H[x], but it does not
generally follow that p(q) = f(q)g(q). If q ∈ H is such that p(q) = 0, then q is
said to be a zero of p(x). The set of all zeros of p is denoted by Zero(p).

We remark that since an ̸= 0, p(q) = 0 if and only if a−1
n p(q) = 0. Thus, for

the sake of simplicity, we can always assume that the polynomial is monic.

We now present some results regarding quaternion polynomials.
Let p(x), q(x), r(x) ∈ H[X]. We define r(x) as a right divisor of p(x) if there

exists a polynomial r(x) such that p(x) = q(x)r(x).

Theorem 1 (pp 262 in [7]). Let q ∈ H and p(x) ∈ H[x]. Then q ∈ Zero(p)
if and only if x− q is a right divisor of p(x).

Theorem 2 (pp 263 in [7]). Let q ∈ H and p(x), q(x), r(x) ∈ H[X] such that

p(x) = q(x)r(x). If γ = r(q) ̸= 0, then

p(q) = q(γqγ−1)r(q).

Theorem 3 (Wedderburn’s Theorem [7]). All non-constant quaternion poly-

nomials can be factorized into a product of linear factors.

Corollary 1. All non-constant quaternion polynomial of degree m can be fac-

torized into a product of m linear factors.

Let p(x) =
∑n

i=0 aix
i a quaternion polynomial of degree n. The algorithm

(see [?]) to compute the zeros of p(x), is as follows:

1. compute the polynomial np(x) = p(x)p(x); this is a polynomial with coeffi-
cients in R;

2. compute zi, the complex zeros of np(x), which came in conjugate pairs; the
zeros of p(x) will belong to the conjugacy class [zi];

3. use Niven’s algorithm [10] to compute the zeros of p(x). This is done by
dividing polynomial p(x) on the right side by the characteristic polynomials
[zi], obtaining

p(x) = q(x)∆zi(x) +αx+ β.

(a) if α = β = 0, then all quaternions in the conjugacy class are zeros of
p(x);

(b) otherwise, the only zero in the class is q = −α−1β.

2.2 Closed Quaternion Balls

The definitions provided in this part are adapted for closed quaternion balls
from [2].

Definition 2. Let q ∈ H and let r ∈ R
+
0 . The closed ball in H, called a closed

quaternion ball is defined by

⟨q, r⟩ = {x ∈ H : |x− q| ≤ r}.
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If Q = ⟨q, r⟩ then the center and the radius of Q are denoted by C(Q) = q

and R(Q) = r, respectively.

The set of all closed quaternion balls is denoted by H. The zero-radius ele-

ments in H are called scalars and correspond to the quaternions themselves.

Definition 3. Let Q1,Q2 ∈ H. The closed quaternion balls Q1 and Q2 are

concentric if C(Q1) = C(Q2). Moreover, if R(Q1) = R(Q2), then Q1 and Q2

are equal.

Lemma 1. Let Q1,Q2 ∈ H such that Q1 = ⟨q1, r1⟩ and Q2 = ⟨q2, r2⟩. Then

Q1 ⊆ Q2 if and only if |q1 − q2| ≤ r2 − r1. In particular, if Q1 and Q2 are

concentric, then Q1 ⊆ Q2 if and only if r1 ≤ r2.

Proof.

[⇒] Let Q1 ⊆ Q2. The most distant x ∈ Q1 from q2 is located at the boundary of
Q1, along the line that extends through q1 and q2. Consequently, |x− q2| =
|q2 − q1|+ |x− q1| ≤ r2, leading us to deduce that |q2 − q1| ≤ r2 − r1.

[⇐] Suppose that |q1 − q2| ≤ r2 − r1 and that x ∈ Q1. Then

|x− q2| = |x− q1 + q1 − q2| ≤ |x− q1|+ |q2 − q1| ≤ r1 + r2 − r1 = r2.

Hence, x ∈ Q2, and Q1 ⊂ Q2.

If the closed quaternion balls are concentric, then q1 = q2, leading to the
conclusion that Q1 ⊂ Q2 if and only if 0 ≤ r2 − r1.

We dedicate the following subsection to operations on closed quaternion balls
and their properties.

Addition
In the current subsection, results related to properties of the addition oper-

ation are established.

Definition 4. The binary operation + : H ×H → H, from now on referred to

as addition, is defined by the equation

⟨q1, r1⟩+ ⟨q2, r2⟩ := ⟨q1 + q2, r1 + r2⟩ .

Proposition 2. Addition is both commutative and associative. Furthermore,

⟨0, 0⟩ is the addition identity.

Proof. Due to the commutativity and associativity of addition in H and in R, it
is evident that for all A,B,C ∈ H, the following holds: A +B = B +A and
(A+B)+C = A+(B+C). Considering the neutral elements of H and R with
respect to their respective additions, it is also straightforward to demonstrate
that ⟨0, 0⟩ is the addition identity.
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Corollary 2. The elements in H that have an additive inverse are the zero-

radius closed quaternion balls. Moreover, the reciprocal of ⟨q, 0⟩ is ⟨−q, 0⟩.

Proof. A direct consequence of Definition 4.

Lemma 2. Let Q1,Q2 ∈ H. Then Q1 + Q2 = {x1 + x2 : x1 ∈ Q1 and x2 ∈
Q2}.

Proof. Let yi ∈ Qi = ⟨qi, ri⟩, for i ∈ {1, 2}. Then y1 + y2 ∈ {x1 + x2 : x1 ∈
Q1 and x2 ∈ Q2}, and

|y1 + y2 − (q1 + q2)| = |y1 − q1 + y2 − q2|
≤ |y1 − q1|+ |y2 − q2|
= r1 + r2.

Hence, y1 + y2 ∈ Q1 +Q2, and {x1 + x2 : x1 ∈ Q1 and x2 ∈ Q2} ⊆ Q1 +Q2.
Then

Now let q ∈ Q1 + Q2, y1 = r1
r1+r2

(q − q2) +
r2

r1+r2
q1, and y2 = r2

r1+r2
(q −

q1) +
r1

r1+r2
q2. Then

|y1 − q1| =
∣

∣

∣

∣

r1
r1 + r2

(q − q2) +
r2

r1 + r2
q1 − q1

∣

∣

∣

∣

=

∣

∣

∣

∣

r1
r1 + r2

(q − q2)−
r1

r1 + r2
q1

∣

∣

∣

∣

=
r1

r1 + r2
|q − q1 − q2|

≤ r1
r1 + r2

(r1 + r2) = r1.

Consequently, y1 ∈ Q1. By swapping indices 1 and 2, we get y2 from y1, leading
us to conclude that y2 ∈ Q2. Hence, q ∈ {x1 + x2 : x1 ∈ Q1 and x2 ∈ Q2} and
Q1 +Q2 ⊆ {x1 + x2 : x1 ∈ Q1 and x2 ∈ Q2}.

Definition 5. Let ⋄ : B×B → B be a binary operation in B. The operation ⋄ is

inclusion monotonic if, for all am, bm ∈ B such that am ⊆ bm, m ∈ {1, 2},
a1 ⋄ a2 ⊆ b1 ⋄ b2.

Proposition 3. The addition operation is inclusion monotonic.

Proof. Let Qm,Rm ∈ H such that Qm ⊆ Rm, m ∈ {1, 2}. By Lemma 2,
Q1 +Q2 = {x + y : x ∈ Q1 and y ∈ Q2} ⊆ {x + y : x ∈ R1 and y ∈ R2} =
R1 +R2.

Multiplication
In the current subsection, results related to properties of the multiplication

operation are established.
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Definition 6. The binary operation ∗ : H × H → H, referred to as multipli-

cation, is defined by

⟨q1, r1⟩ ∗ ⟨q2, r2⟩ ≡ ⟨q1, r1⟩ ⟨q2, r2⟩ := ⟨q1q2, r1 |q2|+ r2 |q1|+ r1r2⟩ .

Multiplication by the quaternion α ∈ H is, by definition, given by the multi-

plication of the scalar ⟨α, 0⟩:

α ⟨q, r⟩ ≡ ⟨α, 0⟩ ⟨q, r⟩ = ⟨αq, |α| r⟩ .

Although commutativity is not applicable, multiplication stays true for the
following properties.

Proposition 4. The identity element relative to multiplication is ⟨1, 0⟩.
Proof. Let ⟨q, r⟩ ∈ H. Then we get ⟨q, r⟩ ⟨1, 0⟩ = ⟨1, 0⟩ ⟨q, r⟩ = ⟨q, r⟩.
Definition 7. The multiplication operation is power-associative if, for all

Q ∈ H and for all m, s ∈ N, QsQm = Qs+m.

Definition 8. Let Q ∈ H. We define the powers of Q ̸= ⟨0, 0⟩ by

Q0 = ⟨1, 0⟩ and Qk = Qk−1Q for k ∈ N.

If Q = ⟨0, 0⟩, then Qk = ⟨0, 0⟩, for all k ∈ N.

Proposition 5. The multiplication is power-associative.

Proof. Let Q = ⟨q, r⟩ ∈ H. On one hand,

Q2Q =
〈

q2, 2 |q| r + r2
〉

⟨q, r⟩

=
〈

q3, 3 |q|2 r + 3 |q| r2 + r3
〉

,

and

QQ2 = ⟨q, r⟩
〈

q2, 2 |q| r + r2
〉

=
〈

q3, 3 |q|2 r + 3 |q| r2 + r3
〉

,

which implies Q2Q = QQ2.
On the other hand, we have

(

Q2Q
)

Q =
〈

q3, 3 |q|2 r + 3 |q| r2 + r3
〉

⟨q, r⟩

=
〈

q4, 4 |q|3 r + 6 |q|2 r2 + |q| r3 + r4
〉

and

Q2Q2 =
〈

q2, 2 |q| r + r2
〉 〈

q2, 2 |q| r + r2
〉

=
〈

q4, 4 |q|3 r + 6 |q|2 r2 + |q| r3 + r4
〉

.

As Q2Q = QQ2 and
(

Q2Q
)

Q = Q2Q2, invoking [1], the result follows.
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Proposition 6. Let ⟨q, r⟩ ∈ H. Then, for all k ∈ N with k ≥ 1,

⟨q, r⟩k =
〈

qk, (|q|+ r)
k − |q|k

〉

.

Proof. Let ⟨q, r⟩ ∈ H. We will prove by induction. For k = 1, the equation states

⟨q, r⟩ = ⟨q, |q|+ r − |q|⟩ = ⟨q, r⟩ ,

which is clearly true. Suppose that the proposition is true for k. Then, for k+1
we have

⟨q, r⟩k+1
= ⟨q, r⟩k ⟨q, r⟩
=
〈

qk, (|q|+ r)
k − |q|k

〉

⟨q, r⟩

=
〈

qk+1, |q|
(

(|q|+ r)
k − |q|k

)

+
∣

∣qk
∣

∣ r +
(

(|q|+ r)
k − |q|k

)

r
〉

=
〈

qk, |q| (|q|+ r)
k − |q|k+1

+ |q|k r + (|q|+ r)
k
r − |q|k r

〉

=
〈

qk+1, (|q|+ r)
k+1 − |q|k+1

〉

.

By mathematical induction, it is proved that for all k ≥ 1 the statement is true.

Proposition 7. The multiplication in H is not distributive with respect to the

addition.

Proof. Let Q1 = ⟨i, 1⟩, Q2 = ⟨j, 1⟩, and Q3 = ⟨k, 1⟩. Then

Q1 (Q2 +Q3) = ⟨i, 1⟩ ⟨j + k, 2⟩ =
〈

k − j, 4 +
√
2
〉

and

Q1Q2 +Q1Q3 = ⟨i, 1⟩ ⟨j, 1⟩+ ⟨i, 1⟩ ⟨k, 1⟩ = ⟨k, 3⟩+ ⟨−j, 3⟩ = ⟨k − j, 6⟩ .

Hence,
Q1 (Q2 +Q3) ̸= Q1Q2 +Q1Q3.

The sum of two closed quaternion balls remains a closed quaternion ball.
The set {xy : x ∈ Q1 and y ∈ Q2} is generally not a closed quaternion ball.

Nonetheless, this set is bound up within an endless number of closed quaternion
balls. Among the collection of closed quaternion balls containing the set {xy :
x ∈ Q1 and y ∈ Q2}, we will demonstrate that the one with the minimal radius
is the closed quaternion ball Q1Q2.

Proposition 8. The set of all products of two quaternions from distinct closed

quaternion balls is not necessarily a closed quaternion ball.

Proof. It is sufficient to consider an example that fails. Let Q1 = ⟨−5− 2i, 2⟩
and Q2 = ⟨5 + 2j, 4⟩. Then Q1Q2 =

〈

−25− 10i− 10j − 4k, 8 + 6
√
29
〉

. Given

that |−25− 10i− 10j − 4k| ≤ 8 + 6
√
29, we deduce that 0 ∈ Q1Q2, while

0 ̸∈ Q1 and 0 ̸∈ Q2.
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Lemma 3. Let Q1,Q2 ∈ H. Then {xy : x ∈ Q1 and y ∈ Q2} ⊆ Q1Q2.

Proof. Let Q1,Q2 ∈ H, x ∈ Q1 = ⟨q1, r1⟩, and y ∈ Q2 = ⟨q2, r2⟩. Then

|xy − q1q2| = |xy − xq2 + xq2 − q1q2|
= |x(y − q2) + (x− q1)q2|
= |x(y − q2)− q1(y − q2) + q1(y − q2) + (x− q1)q2|
= |(x− q1)(y − q2) + q1(y − q2) + (x− q1)q2|
≤ |x− q1| |y − q2|+ |q1| |y − q2|+ |x− q1| |q2|
= r1r2 + |q1| r2 + |q2| r1.

Hence, xy ∈ Q1Q2.

Proposition 9. Given the closed quaternion balls Q1 = ⟨q1, r1⟩ and Q2 =
⟨q2, r2⟩, Q1Q2 is the closed quaternion ball centered at q1q2 with the smallest

radius that contains {xy : x ∈ Q1 and y ∈ Q2}.

Proof. If Q1 = ⟨q1, r1⟩ and Q2 = ⟨q2, r2⟩, then

Q1Q2 = {x ∈ H : |x− q1q2| ≤ |q1| r2 + |q2| r1 + r1r2} .

It is easy to see that the quaternion

x = q1q2 +
|q1| r2 + |q2| r1 + r1r2

|q1| |q2|
q1q2

belongs to the border of Q1Q2. Hence, by Lemma 3, we conclude the proposition.

Proposition 10. The multiplication in H is inclusion monotonic.

Proof. Let Q1 = ⟨q1, r1⟩, Q2 = ⟨q2, r2⟩, Q3 = ⟨q3, r3⟩, and Q4 = ⟨q4, r4⟩, such
that Q1 ⊆ Q3 and Q2 ⊆ Q4. Then

Q1Q2 = ⟨q1q2, |q1| r2 + |q2| r1 + r1r2⟩ .

Let x ∈ Q1Q2. Then

|x− q3q4| = |x− q1q2 + q1q2 − q3q4|
≤ |x− q1q2|+ |q1q2 − q3q4|
≤ |q1| r2 + |q2| r1 + r1r2 + |q1q2 − q1q4 + q1q4 − q3q4|
≤ |q1| r2 + |q2| r1 + r1r2 + |q1| |q4 − q2|+ |q4| |q3 − q1| .

Since Q1 ⊆ Q3 and Q2 ⊆ Q4, by Lemma 1,

|x− q3q4| ≤ |q1| r2 + |q2| r1 + r1r2 + |q1| (r4 − r2) + |q4| (r3 − r1)

= (|q2| − |q4|)r1 + r1r2 + |q1| r4 + |q4| r3
≤ |q4 − q2| r1 + r1r2 + |q1| r4 + |q4| r3.
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Again, by Lemma 1,

|x− q3q4| ≤ (r4 − r2)r1 + r1r2 + |q1| r4 + |q4| r3
= r4r1 + |q1| r4 + |q4| r3. (1)

Since Q1 ⊆ Q3, we know that |q3 − q1| ≤ r3 − r1. Thus

|q1| − |q3| ≤ |q3 − q1| ≤ r3 − r1

from where we conclude that

|q1| ≤ r3 − r1 + |q3| .
Substituting in equation (1), we obtain

|x− q3q4| ≤ r4r1 + (r3 − r1 + |q3|)r4 + |q4| r3
= |q4| r3 + |q3| r4 + r3r4.

Hence, x ∈ Q3Q4, and Q1Q2 ⊆ Q3Q4.

3 Polynomial Equations in Closed Quaternion Balls

In this section, we will solve quaternion polynomial equations with coefficients
and independent terms that are not precisely defined. This leads us to polynomial
equations over closed quaternion balls.

Resolving equations within closed quaternion balls is not as straightforward
as it may appear. For example, the solution of a simple equation as

A2X
2 = A1X +A0,

where A2,A1,A0 ∈ H is not the same as the solution of the equation

A2X
2 −A1X = A0.

As only scalars possess an additive inverse, only terms with a radius of zero may
be transferred from the left-hand side to the right-hand side, and vice versa.

Considering this constraint, we can still derive interesting results for certain
particular equations.

Proposition 11. Let X = ⟨q, r⟩ satisfy the equation

AnX
n +An−1X

n−1 + · · ·+A1X +A0 = 0α, (2)

where Ai = ⟨ai, ri⟩ ∈ H, for i = 0, . . . , n and 0α = ⟨0, α⟩ ∈ H. Then equation

(2) has solution if and only if

|q|n rn + |q|n−1
rn−1 + · · ·+ |q| r1 + r0 ≤ α, (3)

where q is the zero of the quaternion polynomial

p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0.

Besides, for each q, there exists only one value for r ≥ 0 that satisfies equa-

tion (2).
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Proof. Let X = ⟨q, r⟩ and Ak = ⟨ak, rk⟩. Calling upon Proposition 6, we have

AkX
k = ⟨ak, rk⟩

〈

qk, (|q|+ r)
k − |q|k

〉

=
〈

akq
k,
∣

∣qk
∣

∣ rk + (|ak|+ rk)
(

(|q|+ r)
k − |q|k

)〉

=
〈

akq
k, (|ak|+ rk) (|q|+ r)

k −
∣

∣akq
k
∣

∣

〉

.

Thus,

n
∑

k=0

AkX
k =

n
∑

k=0

〈

akq
k, (|ak|+ rk) (|q|+ r)

k −
∣

∣akq
k
∣

∣

〉

=

〈

n
∑

k=0

akq
k,

n
∑

k=0

(

(|ak|+ rk) (|q|+ r)
k −

∣

∣akq
k
∣

∣

)

〉

=

〈

n
∑

k=0

akq
k,

n
∑

k=0

(

k
∑

i=0

(|ak|+ rk) |q|k−i
ri −

∣

∣akq
k
∣

∣

)〉

Equaling
n
∑

k=0

AkX
k = ⟨0, α⟩, we get from the center

p(q) = 0, (4)

where p(x) =
n
∑

k=0

akx
k, and from the radius

α =

n
∑

k=0

(

k
∑

i=0

(|ak|+ rk) |q|k−i
ri − |akq|k

)

. (5)

The RHS of this last equation is a polynomial in r where all the coefficients and
the independent term are positive. The smallest value for r is naturally zero.
Hence, taking all the terms in the RHS which correspond to i = 0 we obtain

α ≥
n
∑

k=0

|q|k rk.

Besides, if this last condition is verified, for each quaternion zero of (4),
equation (5) has all coefficients positive and a negative independent term. Hence,
by Descartes’ rule of signs, there exists only one positive solution.

We next consider second-degree equations given by the equality of two second-
degree polynomials.

Proposition 12. Consider the second-degree closed quaternion ball equation

⟨a2, r2⟩X2 + ⟨a1, r1⟩X + ⟨a0, r0⟩ = ⟨b2, r2⟩X2 + ⟨b1, r1⟩X + ⟨b0, r0⟩ , (6)
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where |b2| ≠ |a2|, and let q be a zero of the quaternion polynomial

p(x) = (a2 − b2)x
2 + (a1 − b1)x+ a0 − b0.

For each q, the solutions of (6) are the closed quaternion balls X = ⟨q, 0⟩, and

X = ⟨q,β − 2 |q|)⟩, where

β = −|a1| − |b1|
|a2| − |b2|

provided that β ≥ −2 |q|.

Proof. Applying the closed quaternion ball arithmetic to both sides of the equa-
tion

⟨a2, r2⟩X2 + ⟨a1, r1⟩X + ⟨a0, r0⟩ = ⟨b2, r2⟩X2 + ⟨b1, r1⟩X + ⟨b0, r0⟩ ,

and putting X = ⟨x, r⟩, we get two equations: one for the center

a2x
2 + a1x+ a0 = b2x

2 + b1x+ b0;

and another for the radius, which after canceling equal terms from both sides of
the equation

|a2|R2 + |a1|R−
∣

∣a2q
2
∣

∣− |a1q| = |b2|R2 + |b1|R−
∣

∣b2q
2
∣

∣− |b1q|

where R = |q|+ r. Manipulating these two equations, we obtian

p(x) = α2x
2 +α1x+α0

and
α2(R

2 − |q|2) +α1(R− |q|) = 0,

where αi = |ai| − |b|i.
From the second equation it follows

(α2(R+ |q|) +α1)(R− |q|) = 0 ⇐⇒ (α2(r + 2 |q|) +α1)r = 0.

The two solutions are r = 0 and r = −α1/α2 − 2 |q|.

Proposition 13. Consider the closed quaternion ball polynomial equation

AnX
n + · · ·+A1X +A0 = BnX

n + · · ·+B1X +B0,

where Ai = ⟨ai, ri⟩ and B = ⟨bi, ri⟩, for i = 0, . . . , n, and the centers of An

and Bn are not similar. Then the scalar X = ⟨q, 0⟩ is a solution, where q the

the zero of the quaternion polynomial

p(x) = (an − bn)x
n + · · ·+ (a1 − b1)x+ a0 − b0.

Besides that, if for each q there exists another solution X ∈ H, this solution

doesn’t depend on the radius of the coefficients.
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Proof. In the proof of the Proposition 12 we see that, from the closed quaternion
ball polynomial equation, two equations are derived: one for the center, which
provides the roots of the quaternion polynomial; and another for the radius.
Since the radii of the coefficients of terms of equal degree are identical, they
cancel each other, rendering the equation for the radius independent on them.
Furthermore, it is evident that r = 0 constitutes a solution for every root q of
the center equation. Since the radius equation does not depend on the ri’s, any
other solution will not depend on them.

Finally, a classical problem associated with polynomial equations is the n-
th root of an element. Indeed, an n-th root of a closed quaternion ball A is
a closed quaternion ball X such that Xn = A. This equation leads to the de
Moîvre’s formula, from where we obtain the formula for the n-th root of a closed
quaternion ball, as can be seen in the following result.

Proposition 14. Let a ∈ H be given in the polar form

a = |a| (cos θ + ûa sin θ) ,

with ûa ̸= 0. Then A = ⟨a, ra⟩ ∈ H has exactly n n-th roots given by

n
√
A =

〈

n

√

|a|
(

cos

(

θ + 2kπ

n

)

+ ûa sin

(

θ + 2kπ

n

))

, n

√

|a|+ ra − n

√

|a|
〉

,

for k = 0, . . . , n− 1.

Proof. Let X = ⟨q, r⟩ and A = ⟨a, ra⟩. The n-th roots of A can be obtained
by the closed quaternion ball equation Xn = A. Substituting X and A in this
equation, we obtain two equations:

{

qn = a

(|q|+ r)
n − |q|n = ra

.

The solution for the first equation is wellknown and can be found in [8], and is
given by

q = n

√

|a|
(

cos

(

θ + 2kπ

n

)

+ ûa sin

(

θ + 2kπ

n

))

,

for k = 0, . . . , n− 1.
For the second equation equation there is only one real positive solution,

namely,
r = n

√

|a|+ ra − n

√

|a|.
Hence, the n solutions for the n-th roots of the closed quaternion balll A are

given by

n
√
A =

〈

n

√

|a|
(

cos

(

θ + 2kπ

n

)

+ ûa sin

(

θ + 2kπ

n

))

, n

√

|a|+ ra − n

√

|a|
〉

,

for k = 0, . . . , n− 1.
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The next examples illustrate our findings.

Example 1. Let X = ⟨q, r⟩.

X3 + a2X
2 + a1X = B, (7)

where

a2 = −(i+ 2j + 3k)

a1 = 6i− 3j + 2k

B = ⟨−a0, 1⟩
a0 = 6

From the closed quaternion ball polynomial equation, we obtain two equa-
tions, one for the center and the other for the radius:

{

q3 + a2q
2 + a1q + a0 = 0

r3 + (3 |q|+
√
14)r2 + (3 |q|2 + 2

√
14 |q|+ 7)r = 1

.

There are three zeros for the first equation,

q1 =
1

25
(12i− 16j + 15k)

q2 =
1

13
(−10j + 24k)

q3 = 3k,

where q1 ∈ [i], q2 ∈ [2i], and q3 ∈ [3i]. Hence, |q1| = 1, |q2| = 2, and |q3| = 3.
For each of these zeros, there exists only one radius. Solving the second equation,
we obtain r1 ≈ 0.055979, r2 ≈ 0.029195, and r3 ≈ 0.017644, respectively. Thus,
equation (7) has three solutions:

X1 ≈
〈

1

25
(12i− 16j + 15k), 0.055979

〉

X2 ≈
〈

1

13
(−10j + 24k), 0.029195

〉

X3 ≈ ⟨3k, 0.017644⟩ .

.

Example 2. Let X = ⟨q, r⟩.

X3 +A2X
2 = −A1X −B, (8)

where

A2 = ⟨−(i+ 2j + 3k), 0⟩
A1 = ⟨6i− 3j + 2k, 0⟩
B = ⟨−a0, 1⟩
a0 = 6



14 R. Serôdio et al.

From the closed quaternion ball polynomial equation, we obtain two equa-
tions, one for the center and the other for the radius:

{

q3 + a2q
2 + a1q + a0 = 0

r3 + (3 |q| −
√
14)r2 + (3 |q|2 − 2

√
14 |q|+ 7)r − 1 = 0

.

The zeros of the first equation are the same as in Example 1. For each of
these zeros, there exists only one radius. Solving the second equation, we obtain
r1 ≈ 0.41989, r2 ≈ 0.21859, and r3 ≈ 0.083365, respectively. Thus, equation (8)
has three solutions:

X1 ≈
〈

1

25
(12i− 16j + 15k), 0.41989

〉

X2 ≈
〈

1

13
(−10j + 24k), 0.21859

〉

X3 ≈ ⟨3k, 0.083365⟩ .

.

Example 3. Let X = ⟨q, r⟩.

X3 +A2X
2 +A1X +A0 = ⟨0, 1⟩ , (9)

where

A2 = ⟨−(i+ 2j + 3k), 0.1⟩
A1 = ⟨6i− 3j + 2k, 0.2⟩
A0 = ⟨6, 0.1⟩

From the closed quaternion ball polynomial equation, we obtain two equa-
tions, one for the center and the other for the radius:
{

q3 + a2q
2 + a1q + a0 = 0

R3 + (|a2|+ r2)R
2 + (|a1|+ r1)R+ r0 − 1−

∣

∣q3
∣

∣−
∣

∣a2q
2
∣

∣− |a1q| = 0
,

where R = |q|+ r.
The zeros of the first equation are the same as in Example 1. For q3, condition

(3) in Proposition 11 is not verified. Therefore, there is no solution for (9).
For q2 and q1 the condition is verified. Solving the second equation, we obtain
r′1 ≈ 0.0331229, and r′2 ≈ 0.00289056. Thus, equation (9) has two solutions:

X1 ≈
〈

1

25
(12i− 16j + 15k), 0.0331229

〉

X2 ≈
〈

1

13
(−10j + 24k), 0.00289056

〉

.

.

Example 4. Consider the equation

⟨2, 2⟩X2 + ⟨1, 10⟩X + ⟨2, 1⟩ = ⟨1, 2⟩X2 + ⟨4, 10⟩X + ⟨5, 1⟩ .
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From the closed quaternion ball polynomial equation, we obtain two equa-
tions, one for the center and the other for the radius:

{

q2 − 3q − 3 = 0

(r + 2 |q| − 3)r = 0
.

From the first equation, we get

q1 =
3−

√
21

2
and q2 =

3 +
√
21

2
.

From Proposition 12, we have β = 3. For q1, the quantity β − 2 |q1| =
6−

√
2 > 0. Hence, for this root, there are two solutions:

X1 = ⟨q1, 0⟩ and X2 =
〈

q1, 6−
√
21
〉

.

For q2, the quantity β− 2 |q2| < 0. Therefore, for this root, there is only one
solution:

X3 = ⟨q2, 0⟩ .

Example 5. Let A = ⟨4(1 + i+ j + k), 19⟩. The quaternion a = 4(1+ i+ j+k)
written in polar form is given by a = 8 (cos θ + ûa sin θ), where θ = π

3 and
ûa = 1√

3
(i+ j+k). Applying the de Moîvre’s formula, the cube roots of A are:

Q1 =

〈

8

(

cos
(π

9

)

+ sin
(π

9

) i+ j + k√
3

)

, 1

〉

Q2 =

〈

8

(

cos

(

7π

9

)

+ sin

(

7π

9

)

i+ j + k√
3

)

, 1

〉

Q3 =

〈

8

(

cos

(

13π

9

)

+ sin

(

13π

9

)

i+ j + k√
3

)

, 1

〉

.

It can easily be checked that Q3
i = A, for i = 1, 2, 3.
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