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ON THE FULLY NONLINEAR QUENCHING PROBLEM

SEUNGHYUN KIM AND JOSE MIGUEL URBANO

ABSTRACT. We study the fully nonlinear quenching problem and estab-

lish sharp C’l1 . —estimates and optimal growth at the free boundary in

two distinct scenarios: the uniformly parabolic case and the degenerate
elliptic case with oscillatory singularities. For the former, we refine, in
particular, the recent asymptotic results in [5].

1. INTRODUCTION

In this paper, we study local regularity properties of viscosity solutions
to free boundary problems with singular absorption terms. The first model
we consider is

{F(DQU) — Qu=~u""" in QpN{u> 0}, (1.1)

U= on OpQdr,

governed by a fully nonlinear uniformly parabolic operator F'. The second
model is

(1.2)

\Du|"(x)F(D2u) = ry(;p)zﬂ(@_l in QN {u > 0},
U= on 0,

governed by a degenerate elliptic operator. Here, v,v(z) € (0,1) corre-
spond to the singular absorption terms, while x(x) > 0 in the second model
represents the degeneracy associated with the gradient of the solution.

In the elliptic case and for k(x) = 0, PDEs of this form arise as the
Euler—Lagrange equations of the functional

1
/ §\Du|2 +u” dx.

The case v = 0 and v = 1 correspond to the cavitation problem and the ob-
stacle problem, respectively. The intermediate case v € (0, 1) is the quench-
ing problem we will address.
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The cavitation problem, also known as the Alt—Caffarelli problem, was
treated in the variational setting by Alt and Caffarelli in [1]. Later, Ricarte
and Teixeira in [17] studied the fully nonlinear case. The obstacle problem
was studied by Caffarelli in [10] and later extended to the fully nonlinear
setting by Lee and Shahgholian in [14]. In the case of the quenching problem,
also known as the Alt—Phillips problem, Alt and Phillips studied it in [2],
and Aratjo and Teixeira extended it to the fully nonlinear uniformly elliptic
case in [7].

The quenching problem refers to a phenomenon for which a process or
reaction abruptly stops or vanishes, often encountered in combustion theory,
heat transfer, and chemical reaction models. The quenching problem has
been extensively studied over the years, and numerous results are available
in the literature. For the variational setting involving the Laplacian oper-
ator, we refer readers to [2, 16, 15, 20]. In the nonvariational setting with
fully nonlinear uniformly elliptic operators, the authors in [7] obtained op-
timal regularity along the free boundary by investigating the fine oscillation
decay of limiting solutions. For degenerate elliptic operators, Teixeira in
[18] established optimal regularity of solutions along the free boundary. In
the uniformly parabolic case, sharp regularity result was obtained in [5] by
constructing proper barrier functions. We refer the reader to [4] and [6] for
further related extensions.

In this paper, we first establish the existence of nonnegative viscosity so-
lutions to (1.1) and (1.2) obtained as uniform limits of positive solutions
to penalized problems. Subsequently, we derive sharp local regularity re-
sults by analyzing the regularity properties of the positive solutions to these
penalized problems. For the uniformly parabolic case (1.1), we improve
upon the result in [5], which provides regularity for exponents strictly less
than the optimal value. By applying Jensen—Ishii’s lemma twice, we ob-
tain more refined estimates, ultimately enabling us to achieve the optimal
exponent. In the degenerate elliptic case (1.2), we establish the result for
the variable exponent case corresponding to oscillatory singularities under
appropriate assumptions on x(x) and 7(z). The proof relies upon the use
of both Jensen—Ishii’s lemma and Hopf’s lemma.

The paper is organized as follows. In Section 2, we introduce notation,
the basic assumptions and known results that will be used throughout. In
Section 3, we establish the sharp local regularity and the optimal growth at
the free boundary for uniformly parabolic operators by repeatedly applying
Jensen—Ishii’s lemma. In Section 4, we treat the case of a degenerate elliptic
operator with oscillatory singularities.
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2. PRELIMINARIES

2.1. Notation and definitions. Let 8" denote the space of real n xn sym-
metric matrices. For parameters 0 < A < A, the Pucci extremal operators
./\/lfA : 8™ — R are defined as

MENM) =AY e 42> e and My, (M) =AY e +A) e,

e; >0 e; <0 e; >0 e; <0

where e; = e;(M) are the eigenvalues of M € §". We denote with A 5 the
set of symmetric matrices M such that A\I < M < AI. Note that

MI (M) = sup tr(AM) and M A\(M) = inf tr(AM).
’ AcAy o ’ A€Ax A

For a bounded open domain Q2 € R", with a smooth boundary, and T > 0,
let Q7 = Q x (=T,0]. Denote by 9,Qr the parabolic boundary of {r. For
(xo,t0) € Qr and r > 0, we define the intrinsic parabolic cylinder

Qr(z0,t0) = Br(x0) x (to — 2, 0],

where B, (xo) denotes an open ball in R" centered at xy with radius r. For
convenience, we donote B, = B,(0) and @, = Q,(0,0).

Following [13], we introduce the definition of viscosity solution for the
equation

F(D*u) — 0yu = g(u,x,t) in Qr, (2.1)

where g € C(R x Q7). A similar definition applies to the elliptic case. We
denote by USC(Qr), respectively LSC(Qr), the set of upper, respectively
lower, semicontinuous functions on Q7.

Definition 2.1. A function w € USC(Qr) (resp., u € LSC(Qr)) is a
viscosity subsolution (resp., supersolution) of (2.1) if, for every (xo,to) € Qp
and ¢ € C*Y(Qp) such that u — ¢ has a local mazimum (resp. minimum,)
at (zo,to), we have

F(Dz(b(xo,to)) - 8t¢(.%'0,t0) > (T’@Sp., S) g(u(xo’tﬂ)’$07t0)‘

We say that u € C(Qp) is a viscosity solution if u is both a viscosity super-
solution and a subsolution.

We next recall the concept of parabolic superjet/subjet introduced in [12,
Section §].
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Definition 2.2. Let v : Qp — R be an upper semicontinuous function. For
every (z,t) € Qp, the parabolic superjet of v at (x,t) is the set

P (v)(z,t) :{(a,p, X)eRxR"xS"|
v(y,s) <v(x,t)+a(s—1t)+ (p,y — x)

+ %(X(y—w),y—@
+olls =t +ly —al*) as (y.5) = (,1)}.
The corresponding limiting superjet of v at (z,t) is
P (w)(x,t) ={(a,p,X) ER X R" x S" |
HZm, tim, Gms Py Xm) Such that
(@, Py Xm) € PT(0) (2, tm), and
(Tt V(T tm)y Gy Py Xim) — (2,8, 0(2, 1), a, p, X)

asm—)oo}.

Subjets P~ and limiting subjets P are defined analogously for lower semi-
continuous functions, replacing < with > for the former and Pt with P~ for
the latter. In the elliptic case, superjets and subjets are defined similarly,
as described in [12, Section 2].

2.2. Known results. We recall here Jensen-Ishii’s lemma (cf. [12]). We
state it for the parabolic case, but a similar result also holds in the elliptic
case.

Lemma 2.1 (Jensen—Ishii’s lemma). Let v € C(Q1) and suppose that
®(z,y,t) = v(w,t) — v(y,t) — Lo(lz — y|) = K(ja]* + [y* + (-1)?)

has a local mazimum at (T,7,t) € Q1 with T # 7 for L, K > 0. Then, for
every sufficiently small v > 0, there exists T € R,p € R"™ and X,Y € §"
such that

S|
]

I

(r+2KE,p+2K7, X) € P (v)(
(r,p—2K3,Y) € P~ (v)(

);
);

<)0( _OY) <L (_ZZ _ZZ > + (2K +1) <é ?) : (2.2)

Ipl = L/ (|z - 7)

<Y
|

I

and

where
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and
Z=¢%Mybx_y@9x_y+¢ﬂx_M)Q’x_y@aw_y>.
-7yl [T-7 -3l -7
Remark 2.1. Note that applying the matriz inequality (2.2) to the vec-
tor (§,€), for & € R™ arbitrary, implies that every eigenvalue of Y — X is
greater than or equal to —(4K + 2¢). Similarly, applying (2.2) to the vector

( f _g ,— f _g shows that at least one eigenvalue of Y — X 1is greater
[z—9" [z -1l
than or equal to —4L¢" (| —7y|) — (4K + 21).

3. OPTIMAL REGULARITY IN THE UNIFORMLY PARABOLIC CASE

In this section, we examine the fully nonlinear parabolic problem

F(D?*u) — u =~ in Qpn{u>0},
{ ( ) t Y T { } (3.1)

U= on 0pQr,
and establish the existence and optimal regularity of a solution under the
following assumptions.

(A1l): Fis (A, A)-uniformly elliptic, i.e.,
My A(M = N) < F(M) - F(N) < My (M — N),
for every M, N € S™.
(A2): F is 1-homogeneous, i.e.,
F(tM) =tF (M),
for every t > 0 and M € S".
The first main result of this paper is the following.

Theorem 3.1. Let v € (0,1), ¢ € C(9,27), with ¢ > 0, and assume (A1)
and (A2). There exists a nonnegative bounded viscosity solution u to (3.1)
in the sense of Definition 2.1, and v is locally of class CY®, for every
g
0, —— | N(0
ac (057 | nwan.
with the estimate
sup |u(y7 8) - ’U,(LB, t) - DU(ZL‘, t) ’ (y - ‘T)| < CT1+Q7
(4,5)€Qr(w,t)
for Qr(z,t) € Qp, where C = C(n, \,\,v,, ||l ~). Moreover, for each
ol

free boundary point (z,t), u is of class I at (x,t), with the estimate
ol
—

sup u < cr't?
Q,«(.’L’,t)

)
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for Q.(x,t) € Qp, where C = C(n, A\, A, 7, ||[u]| oo )-

Remark 3.1. The constant ap in the statement of the theorem denotes the
1

optimal exponent associated with the CH”’#—regulam’ty theory for solu-

tions of F'-caloric functions, i.e., solutions of the equation F(D2h) —0th =0

(see [19]).

We construct our solution to (3.1) as the limit of solutions to singularly
penalized approximating problems. Let p € C°°(R) be a nonnegative smooth
function with compact support in [0, 1], such that f p = 1. For each € €
(0,1), define the real function

o(s)
Buls) = /0 p(0) do,

2
where o(s) := se7=2 — 09, for o9 € (0,1), which converges to yx(s>0} as
e — 0. Here, xg denotes the characteristic function of a set E. We consider
the penalized problem

{F(D2ue) - 8tue = 55(105)“2_1 in QT’ (32)

Ue = Qe on Opfdr,

2
where ¢ € (0,1) and e = ¢ + €2-7. The following result concerns the
existence of a positive solution to (3.2) and is taken from [5, Section 3].

Proposition 3.1. There exists a viscosity solution ue to (3.2). Moreover,
ue satisfies

0 < ue < [[oll g0 1 in Qr.

For ease of notation, hereafter in this section, we will denote u. by wu.
Following the approach of [7], we will examine the regularity of the auxiliary

function
2—y
vVi=u 2
By direct calculation, we have
9 _
Dv = 5 7% Du (3.3)
and
2 — 2 —
Dy = 5 T3 D% — T’y%u_%_lDu ® Du. (3.4)

Using (3.3), (3.4) and (A2), we rewrite the equation in (3.2) as (see [5])
F(D*v + v~ Dv® Dv) — 0w = f(z,t)v™'  in Qr, (3.5)
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where

2 — 2
§ = % and fx,t) = 7756 (U(ﬂ:j)z—W) €[0,1).

The following Hélder regularity of v in the space variables has been ob-
tained in [5, Thm. 1].

Proposition 3.2. Let v € C(Q1) be a positive viscosity solution to (3.5)
in Q1. Then, for each p € (0,1), there exists C' > 0, depending only on
n,\, A,~y, p and HvHLoo(Ql), such that

|’U($7t) - U(yvt)| < C|l‘ - y|/i’
for every (x.1), (u.1) € Qs

Now, we build upon Proposition 3.2 to obtain the Lipschitz regularity of
v in the space variables, thus unlocking our optimal regularity result.

Theorem 3.2. Let v € C(Q1) be a positive viscosity solution to (3.5) in
Q1. Then, there exists C > 0, depending only on n,\, A,y and ||v||Loo(Q1),
such that

for every (2,0), (5,1) € Qy.
Proof. Define in Q1
(E(xayat) = U(‘Tat) - U(yat) - LU)(’.T - y’) - K(|$’2 + ’y|2 + (_t)Z)a
where, for a parameter a € (1,2) to be determined later,
t—11r fo<t<l,
w(t) = p
1-1  ift>1

Then, for 0 < t < 1, we have w'(t) = 1 —t* " and w”’(t) = —(a — 1)t"2.
Note also that

t
w(t) 2 3, (3.7)

for sufficiently small ¢t. We will prove that
max o <0, (3.8)

By xB1 x[-1,0]
2

for sufficiently large L and K. Then (3.6) follows from the standard trans-
lation argument.

To prove (3.8), assume, by contradiction, that ® attains its positive max-
imum at (Z,7,t) € Bié X Bié x [—1/4,0]. Then, we have T # 7,

v(Z,t) —v(y,t) > Lw(|]T —7|) > 0, (3.9)
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and
0@, 1) —v(@,1) > K (7 + [7° + (-1)?) .
By Proposition 3.2, we have
0(7,1) —o(y, 1) < Clz — 7",

where p € (0,1) is to be determined later. From

L L T2 < 12 1 (2 o v(@t) —v(@t) _ Clz g/
- t) < —t)° < <
S0l + 151+ )2 < 2+ gl + (-7 < WRD U0  CRZIE

we get

(M

—7lz. (3.10)

gl

1
- 3C\ 2
z|+ gl + 7] < | ==
al+ i+ < (%)
From (3.10), by choosing K sufficiently large, we ensure that
(E,?,E)EBL XxBi1 xB1.
10 10 100
Now, we can obtain 7 € R,p € R” and X,Y € 8", such that
(r+2KT,ps, X) € P (v)(x, D), (3.11)
(1,py,Y) €P (v)(7. 1), (3.12)

where p, = p + 2K7 and p, = p — 2Ky, with the estimate given by
Lemma 2.1. We can choose L sufficiently large so that

1< 1ol < lpel Il < 1ol (313)
Note that, by (3.10),
Iy — pol = 2K |7 + 7| < 2(3CK)3[7 — 7[5 (3.14)
By applying (3.11) and (3.12) to equation (3.5), we obtain the inequalities
F(X 4 6v(Z, 1) 'ps @ p2) — (1 + 2K1) > f(7, t)v(T, 1)1,
F(Y +6u(m,8) 'py @ py) — 7 < f(@,D)o(g,1) "
Then, we get
F(Y +6v(7,t) 'py @py) — F(X + 6v(T,1) 'ps ® pa) (3.15)
<K+ f@ 0@ — (@@
On the other hand, for every n > 0, there exists M, € A a such that
F(Y + 6v(y, )~ 'p, ® py) — F(X + ov(z, 1) p, ® pa)
> tr (M,, <Y +ou@ D p, @p,  (3.16)

— X —6v(z, 1) 'ps ®px)> — 1.
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From (3.15) and (3.16), we obtain
K +n>tr (M,(Y — X)) (3.17)
+0(g,1) " (8 tr(Mypy @ py) — f(7,7))

From Lemma 2.1,
tr(M, (Y — X)) > AN—4Lw" (|7 — y|) — (4K 4+ 20)) — A(n — 1) (4K + 2¢)
> —AALw" (T —7]) — A+ A(n — 1)) (4K + 21)
—3\Lw" (| — 7)), (3.18)

AV

for sufficiently large L. From (3.13), we know

$tr(Mypy © py) — F@.1) 2 Ny — | fll e = Do ~1> 0, (3.19)
for sufficiently large L. Using (3.9), (3.18) and (3.19), from (3.17), we obtain
K +nztr (M,(Y - X))
+o(T, %)71(5 tr(Mypy @ py) — f(7, %))
— (@ D) (e (Myps @ p,) — £(7.D))
> —3ALw(j7  7)

— (T, E)_1(2571/“173/”201,/ — po| + 6A|py — pal?

— @D + F@.D). (3.20)
Note that

F@D - 130 = 52 G L@ D) - fL@DT) 20, (321)

which follows from v(Z,t) > v(7,t), and 3. being a nondecreasing function.
Denote A = |z —7y|. Using (3.7), (3.9), (3.13), (3.14) and (3.21), from (3.20),

we have

K +1> —3\Lw"(A) — L w(A)~? (6(30)%5nAK%A%Lw’(A)
+ 125CKAM>
> LA“_2<3(a 1A - 12(30)26nAK LA
. 2450KAL‘2A1_"“+“>

S 3(a—1)A L
- 2
for sufficiently large L, provided

l—a—l—gZO and l—a+u>0.
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Note that we used A < 1. Now, choose a = 5 and u = Z, and take the

limit as 7 — 0 and L sufficiently large, to obtain a contradiction. ([
The next result is an improvement of [5, Thm. 2].

Theorem 3.3. Let v € C(Q1) be a positive viscosity solution to (3.5) in Q1.
Then, there exist rg, C > 0, depending only onn, A\, A,y and ||UHLO<>(Q1), such
that
v(z,t) — v(z, 8)| < C|t — 5|2,
for every x € B1 and t,s € (—rp,0].
2
Proof. Upon construction of a proper barrier function and application of

the comparison principle, the conclusion follows from Theorem 3.2 and [5,
Lemma 2]. O

Proof of Theorem 3.1. Once Theorem 3.2 and Theorem 3.3 are proven,
the remaining parts of the proof are similar to those in [5], where v was shown
to exhibit 17/ 2= _regularity. Here, we have established C L1/ 2_regularity,
an improvement enabling us to achieve the optimal regularity. Since only
minor modifications are required, we omit further details.

Remark 3.2. If we consider a variable coefficient operator F = F (M, x,t),
we can obtain the same result under the assumption that, for some u > 0,
there exists a p—Holder modulus of continuity © such that

[F(M,z,t) = F(M,y,t)| < o(le —y|)||M]].

4. DEGENERATE ELLIPTIC CASE WITH OSCILLATORY SINGULARITIES
In this section, we examine the degenerate elliptic problem
{\Du|“(‘”)F(D2u) = ’y(:c)u'Y(x)_l in QN {u > 0}, (4.1)

U= on 052,

for degeneracy, and oscillatory singularity, exponents x(-) and v(+), respec-
tively. We assume the following extra hypotheses in addition to (A1) and
(A2).

(A3): The functions «,~ : @ — R are continuous and there exist constants
K1, Yo and 1 such that, for all x € €,
0 <k(x) <Ky and 0<v <~(x)<m <1

Moreover, there exists a modulus of continuity w such that

1
lim sup w(¢) log () <C,
0+ t
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for a constant C' > 0, and

for all z,y € Q.

(A4): There exists a modulus of continuity w such that, for all a > 0,
r,y € Q,and X,Y € 8", we have

oz = )" F(X) — (e — y) "W EY) < w(ale - yl?),

provided

I 0 X 0 I -1
— < < .
30‘(0 I>_<0 —Y>—3O‘<—I 1>

The second main result of this paper is the following.

Theorem 4.1. Let ¢ € C(9N), with ¢ >0, and assume (A1)-(A4). There
exists a nonnegative bounded viscosity solution u to (4.1), and u is locally
of class CY<, for every

V()
" (O’ K@ +2 ) o)
with the estimate
sup Ju(y) — u(x) - Dulx) - (y - z)| < Cr'*e, (4.2)

y€EBr(z)

for By(x) € Q, where C = C (n, A\, A, v, k, o, ||ul| ;o).
I CON
Moreover, for each free boundary point x, u is of class C’LH(IHQ*W(@ at

x, with the estimate

14— @)
sup u < Cr * #l@)+2-7(z) (4.3)
Br(z)

for B.(xz) € Q, where C = C (n, A\, A, 7, K, ||ul| o).

Remark 4.1. The constant ar in the statement of the theorem denotes the
optimal exponent associated with the C1T—regularity theory for solutions
of F-harmonic functions, i.e., solutions of the equation F(D?h) = 0 (see

[11]).

We will start by establishing the existence of a solution to (4.1). Similarly
to Section 3, we first define, for € € (0, 1),

B(s) = /0 T 0) do,
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where p € C*°(R) is a nonnegative smooth function with compact support
in [0, 1], satisfying [ p =1, o9 € (0,1) and

__

K14+2—7

Note that Sc(s) = X{s>0} as € = 0.
Now, we analyze the penalized equation
24«

2 = V(x)ﬂe(ue)uz(x)_l in Qa

]DuE]”(x)F(D%e) — €Ue + 7

(4.4)
uE = 906 on 89,

where o, = ¢ + 12,

Proposition 4.1. For each € € (0,1), there exists a viscosity solution ue to
(4.4). Moreover, u. satisfies

0 <ue < [l@ll oo +1  in (4.5)
Proof. Let u be a viscosity solution to
2+a
| Du|"®) F(D?u) — eu + € _0 in Q,
u =@, on IL,
and u be a viscosity solution to
2+«
| Du|*®) F(D?u) — eu + AR Y1 (oget T*) 071 in Q
U = P on Of).
Note that
2+«
G(M.p.1.) = [p" @ F (M) = er + 2

is degenerate elliptic and strictly decreasing in r. The existence of uw and u
follows from Perron’s method ([12, Theorem 4.1]), together with the com-
parison principle ([8, Lemma 6.3]) and [8, Lemma 6.4]. Since

0 < 9(2)Be(u)u®@ ™ < 31 (opet T 07 in Q,

it follows that @ and u are a viscosity supersolution and a viscosity subso-
lution to (4.4), respectively. By the comparison principle, we know that

u<u in Q.

Then, by [3, Theorem 2.1], there exists a viscosity solution u, to (4.4) such
that u < u. <.
Now, we prove (4.5). First, we claim that

00
Ue > ?€1+a.
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Assume, for the sake of contradiction, the set
A= {z€Q|ulz) < %e“‘a},
is nonempty. Since
Ue = e > T2 > %GHO‘ on 011,
we have
Ue > %EHO‘ on OA.
By the definitions of 8. and A, u. is a viscosity solution to

0062+o¢

| Du|*®) F(D?u) — eu +

=0 inA (4.6)

1+

Note that the constant function ?e @ is a solution to (4.6). Then applying

a0
761+a

the comparison principle, we deduce ue > in A which contradicts

the definition of A.
In addition, the constant function ||¢c|| 1o (g0 is a viscosity supersolution

to

0.062+o<

2

in ). By the comparison principle, we have

| Du|"®) F(D%u) — eu +

=0 in €,

since @, > €'t

Ue <UL ||@ell oo o0y < Il ooy +1 in £,
and (4.5) follows. O

As before, for simplicity of notation, we omit the subscript € in u. from
now on. We now consider the equation

|Du|*®) F(D?*u) — hy(z)u + ho(z) = hy(z)Bec(u)u’™@™ inQ,  (4.7)

where hi,hy and hs are nonnegative functions, all uniformly bounded by
the universal constant C.

Remark 4.2. We will examine the scaling invariance of solutions to (4.7).
Let u be a positive viscosity solution to (4.7) in Bgr(xg) € Q. Then, for
parameters R > 0 and A > 0, the rescaled function

u(zg + Rz
u(zx) = 7( )
satisfies

|Da|*®) F(D?@) — hy(2)a + ho(z) = hg(z)B:(2)a’ ™" in By,
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in the viscosity sense, where

Rﬁ(xo+Rx)+2

= Anorrny (w0 Ro);
Rn(:p0+Rm)+2

2(x) = th(% + Rz);
Rm(a:g—l—Rz)—l—Q

hs(z) hs(zg + Rx).

- Ar(wo+Rz)+2—(xo+Rx)

Note that, as a consequence of (A3), hi,hs and hs are nonnegative func-
tions, uniformly bounded by a constant that depends only on the universal
constants, A and R.

Let us now denote

(x)
a(x) = .
R EP T
To obtain the optimal growth of the solution, we first prove the following
estimate.

Theorem 4.2. Let uw € C(By) be a positive viscosity solution to (4.7) in
By. Then, for each p € (0,1), there exists C > 0, depending only on
n, A Ay, ke and ||ull ooy, such that

1 1
1+i1§1foc 1+il§1fo¢

w(@) Pro—u(y) | < Cle—ylt, (4.8)
for every x,y € B1.

2
Proof. Denote

— 3 0 Y1
Qo = %llfa < [m+2*70’ 2-m |’

and let v = uT%0. Applying (A2), we rewrite (4.7) as
| Do|*®) F(D?*v 4 agv™ Do @ Dv) — hy (z)v' ~00%@) 4 hyy~eols@)+1)
= ha(z) B (v1T0)?®) in By, (4.9)

a(r) = (14 ao)(y(x) — r(z) = 2) + K(z) +1
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and

= (15 )WJ)H hi(a),

14+ ag
for ¢ = 1,2,3. Note that

~1<a(z) <0 in By, (4.10)

and hi, he and h3 are nonnegative functions, uniformly bounded by C. De-
note also

f(@) = ha()Be (v(z)+)

which is a nonnegative bounded function.
Defining

O(z,y) = v(z) —v(y) - Lle — y|* — K(jz[> + |y|*) in By,
we will prove that

~max_ ¢ <0, (4.11)
B%XB%

for sufficiently large L and K, thus obtaining (4.8). To obtain (4.11), assume
that ® attains its positive maximum at (,7) € B1 x B1. This implies that
2 2

T#y, v(@) >v(y)+ Lz -7y
and
LIz — 7 + K (72 + [§1%) < 2ol (4.12)
From (4.12), by choosing K sufficiently large, we ensure that
(z,7) € Bi X Bi'
Now, we can obtain p € R" and X,Y € 8", such that
(P2 X) € P (0)(@), (4.13)
(py, Y) €P (v)(®), (4.14)

where p, = p + 2K7 and p, = p — 2Ky, with the estimate given by
Lemma 2.1. We can choose L sufficiently large so that

1 1 3
U< oul < Splfz =g~ < Ipal,py| < SuLlz =71 (4.15)
By applying (4.13) and (4.14) to equation (4.9), we obtain the inequalities

2" F (X + aov(@) e @ pr) — ha(T)o(T) 0@
+ ha(@)w(@) "0 @D > f(F)(F) @),
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and

Py "D F (Y + agu(®)~'py @ py) — b1 (@)o(7)' o)

+ha(G)om) "D < (o).

Then, we get

F(Y + aou(m)'p @) 'pr @ p) (4.16)
< Iy ™D (F@e@) P + I ()e@)' = — ha(g)o(y) - tO)
= [pal P (f @@ 4 T (@@ @ T (@)o(z) @),

<
®
s
NI
|
el
<
+
o
S
4

On the other hand, for every n > 0, there exists M, € Ay a such that

F(Y +a0o(@) 'py @1,) — F(X + a0v(@) e ©p2)  (417)
> tr(My(Y + agv(y) ™~ lpy QRpy — X — aov(f)_lpx ®pg)) — 1.

From (4.16) and (4.17), we obtain

n > tr(M, (Y — X)) (4.18)
+0(@) "~ (a0 tr(Mypy @ py) — |~ @ (f@o(@ @+
+ B (@)D y(g)o(p) D))
—1

7)) tl" npx ® pm) |px | —(® (f(f)v(f)&(f)—H

+ Iz >v<x>2 20s(@) — hy(@pu (@) 0@ ),
and, from Lemma 2.1,

tr(My(Y = X)) > A(4(1 = p) L[z = 7~ — (4K +20))
— A(n — 1)(4K + 20)
> du(1 — p)LfE — 1"
— A+ Aln— 1)(AK + 20)
> 3\l — w)Lfz — gh 2, (4.19)
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for sufficiently large L. From (4.10) and (4.15), we get

o tr(Mypy @ py) = |y | P (F(@)o(@) DT+ (G)o(g)? 0 ®
~ ha(@)u(y) D)

70 ral =
Alpy[2 = Cmaix (1, o] ) = C masx (1, 03

TRkt 2—7
Y0 1 2 2
> — = A\N|(=uL) -C 1, w)—C (1, oo)
> W (Gut) - Cmax(t ol ) - G (Lol
>0, (4.20)

for sufficiently large L. Using that v(7)~' > v(Z)"!, from (4.15), (4.18),
(4.19) and (4.20), we obtain

1> tr(M, (Y = X))

+ (@)™ (a0 tr(Myp, © ) = Ip,| P (£ P!
+ B ()0 — R (po(y) D))
—o(@) (a0 tr(Mype @ p2) — [pal @ (f(@)o(@) 3@
+ T (@)o(@)* 0@ — Ty(@)o(a)! 0@ D))

> 3aa(1 - )Lz — g
— (@) {200nAlpy|lpy — pal + a0Alpy — pal? + Iy P (/(7)
0@ P+ T (5)u(@)* 00 D) + o | Ty (@)e(m) 0@+ |

> 3a(l - )Lz — g

- U(E)_1{3a0nAKuL|f — " + apAK? + 20 max(1, |[v] )

+ C max (1, ||vuim)}.

Note that we used the fact that

0 < ag(k(T) + 1) < ~(T)
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Finally, since v(Z) ™! < L7YZ — 7| ™" and |Z — 7| < 1, we get
n >3 u(l — p)Llz —y["?
— Lz g™ <3a0nAKpL|f — gt 4+ apAK? + C)
> Lz — g1 2{3Mu(1 — ) — 3eonAKuL ™' [z — '
— (AK? + C)L 2T - yyHﬂ}
> Al —p)L,

for sufficiently large L. By taking the limit as n — 0, we obtain a contra-
diction and conclude the proof. O

Remark 4.3. Let R <1 and u € C(Br(zo)) be a viscosity solution to
| Dul"® F(D?u) — hy(z)u + ho(z) = hs(z)Be(w)u? ™~ in Br(xo).
Then, for u € (0,1), it follows from Theorem 4.2 that

1 1
1+ inf « 1+ inf o«
u(x) PREO —u(y)  Preo) | < Clo -yl (4.21)
for every x,y € Br(xo). Indeed, denote & := inf « and let
2 Br(zo)
_ u(zo + Rx)
U(I’) = W m Bl.

By Remark 4.2, 4 satisfies
|Da|*®) F(D?@) — hy(2)a + ho(z) = hg(z)B:(a)a’ ™~ in By,

in the viscosity sense, where

€= eR_%,
k(x) = k(zo + Rx);
V(@) = y(z0 + Ra);
Bl(x) _ R2—an(xo+R:c)h1(xo + Rz);
hia(z) = RI-8R@TR)+D b, (10 1 Ry

iLg(l’) _ Rﬂ/(:co—l—Rac)—a(n(zo—&—Rm)—&-Q—'y(aco—I—Rac))hg(xo + Rl‘)

forx € By. For 0 < <1+ a(xg), defining in B;
hl,,B(-T) _ Rn(wo+Rm)+2—Bn(xo+Rm)hl(l,o + R.T),
hQ’/g(.%') _ Rn(mo+Rx)+2—,8(ﬁ(xo+Rx)+1)h2(mo + Rm),
h375($) _ Rn(azo+Rr)+2—ﬁ(n(xo+Rz)+2—'y(mg+Rm))h3(xo + RZE),
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we have that hy g, ha g and h3 g are uniformly bounded. Indeed, from

Y(zo) — alwo)(k(z0) +2 = ¥(x0)) = 0
and (A3), we have
(@0t Re)+2—B(k(z0+Re)+2—7(w0+ Re))
< Rw(zo—i-Ra:)—a(zg)(n(a:o+Rz)+2—'y(zg+R:c))
_ R’y(wo+Rx)7’y($0)+C¥(Io)(H(CEO)7R($0+Rx)+’y($0+RI)7’}/(930))
< R3@(R)
<C,
in B1. By similar calculations, we can see that

RH(IO +Rz)+2—LFr(xo+Rx) Rn(xo +Rz)+2—LF(k(xo+Rx)+1)

and

are universally bounded. The functions hi,ho and hs correspond to the case
B8 =1+a. Then, applying Theorem 4.2 to 4, we obtain

1 1
1+inf & 1+inf &
a@) B —aly) B < Cle -yl (4.22)

for every x,y € B1, where
2

¥(z)
R(z) +2 — ()

Note that iélfd =a. Hence, (4.22) implies (4.21).
1

a(z) = = oz + Rx).

We can now prove the optimal growth of the solution using Theorem 4.2.

Theorem 4.3. Let u be a positive viscosity solution to (4.7) in By. There
exists a universal constant C > 0, depending only on n, A\, A, v, k and
[ull oy, but not depending on e, such that

supu < C (u(O) + r1+o‘(0)> , (4.23)
By

N

for every r <

Proof. Let us first observe that to establish (4.23), it suffices to show

1+ inf a
supu < C <u(0) +r P > , (4.24)
By
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for every r < 1/2. Indeed, by the Mean Value Theorem, together with (A3),
we obtain, for x,y € By,

v(z) ()

k(y)+2—(z)  s(y)+2—(y)

(@ (@)
[o(2) — oWl < [iersm ~ more®

_|_

v(@) _ r(y)+2 _
< ig}g t12— ()2 lk(z) — K(y)| + Osglsllg)l (r(y)1+2—35)2 [v(z) —v(y)|

< [r(z) — £(y)| + 2|v(z) — v(y)]
< 3w(|z — y)). (4.25)

Using (4.25) and again (A3), we conclude

1+inf o _
r B < rl+o¢(0)r73w(2r)

< Oplte),

To prove (4.24), we assume, by contradiction, that for every integer [, there
exist Fy, w;, K1, Y1, hig, hay, hsy, € and 1 < 1/2 such that

| Dug @) By (D) — hy g (x)ug + ho(z) = hay(2)Be (w)u]" ™™ in By,
in the viscosity sense,
0 < hiyghoy,hg) <C in By

but

1+]§nf o7}
sp:=supu; > 1 (ul(O) + 7 o ) . (4.26)

By,

Denote a7 = inf o and define w;
27

uy(rz) .

wy(x) ==
si

Then, by Remark 4.2, w; satisfies

’le’fﬂ(m)Fl(Dle) — Bl7l(x)wl -+ iZQJ(x) = ilg}l(x)ﬁgl (wl)w?’(x)_l in Bl,
(4.27)



ON THE FULLY NONLINEAR QUENCHING PROBLEM

in the viscosity sense, where, for z € Bi,

_ T;iz(?"lx)-f—Q

hii(z) = Whl,l(ﬂx);

R T;ﬁz(rlfﬁ)-ﬂ

h2,l(='17) = W}lu(rlfﬂ);
ki(riz)+2

7 _ l
hg’l(x) - 871(7’113)-&-2—710196) hg’l(rlx)'

Also, from (4.25) and (4.26), we have

and

l < <

T1+al(nx) Tl—i—oTl 1
Sy S l

in B;. Using (4.29) and

ki(rx) +2 —y(rmx) > 1 in By,

we obtain
Ky(riz)+2 1+a(rix) k(@) +2—y(rz)
u = < ! —0 as
sﬁl(rz$)+2—71(7‘z$) o S -1
l

in B;. Note that, from (4.30),

Bi,l—>0 as [ — oo,

21

(4.28)

(4.29)

[l — o0,

(4.30)

(4.31)

for i = 1,2,3. By Theorem 4.2 and Remark 4.3, along with (4.28) and

(4.31), for 0 < p < 1, we have that {w;}, is equicontinuous and

1 1+ inf &

T+ inf & Br(wo)
sup w; < | wi(zg) PR 4+ CRV
Bg(l’o)

2—y 14+ —0—
<C (wl(xo) P —i—R“) S

(4.32)
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for Br(zo) C B;. Note that we used

70 <a< 71
K1+2—" 2—-m
From
[Fu(z) — Fa(y)| = [ri(riz) — ma(riy)]
< w(|r(z —y)l)
< w(lz —yl),
and

(@) =Wl = n(rz) =yl

< @(|ri(z —y)l)

< w(lz —yl),
for z,y € Bp, we know that also {%;},, {%}, are equicontinuous. Then,
by the Arzela—Ascoli Theorem, the equicontinuity of {%;},, {%:}; and {w;},,

combined with (A3) and (4.28), implies the existence of kg, 5o, wo € C(B1)
such that, up to a subsequence,

K1 — Ko, Y — Yo, w; — wo,

locally uniformly in B;. Furthermore, by (A1), possibly after passing to a
subsequence, F} converges locally uniformly to Fp, which satisfies (A1). We
can rewrite (4.27) as

wll—’?l(l‘) ’le‘kl(x)Fl(DQUJl) - Bl,l(fU)w?_%(I) + 527l($)wl1—%(5’3)
= }N‘Lg,l(x)ﬁgl (wl) in Bl,

in the viscosity sense. From stability of viscosity solutions and (4.31), wq
satisfies

w(l]_:yo(x)’Dwoﬁo(x)Fo(DQ’wo) =0 in Bl.
Note that, by the cutting lemma ([13, Lemma 6]), we have
Fo(D?wy) =0 in {wy > 0} N By, (4.33)

in the viscosity sense. By (4.32), we get
2— 1+—120
sup wy < C (wo(gyo)% + R”) ¥ (4.34)
B g (wo)

for 0 < < 1 and Bgr(zo) C By. Furthermore, by (4.28), we obtain

wp >0 in By, wp(0)=0 and supwy=1. (4.35)
By
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From (4.35), there exist 2z € {wg > 0} N B; and 2y € {wg = 0} N By such
that

dist(z4, {wo = 0}) = |24 — 20/
By Hopf’s lemma with (4.33), we obtain

i inf wo (20 + h(z+ — 20)) — wo(20)
h—0+ h

> 0. (4.36)
On the other hand, by applying (4.34) with zy = 29, we obtain

70
sup wp < C’R“(H“l”*m),
Bg(m)

for 0 < 1 < 1 and sufficiently small R > 0. Then, choosing pu satisfying

H (1 - H1+’Y207“/0) > 1,

we get
lim sup wo(20 + h(z+ — 20)) — wo(20) — Tim sup wo(zo + h(z+ — 20))
h—0-+ h h—0-+ h
< limsup Ch ®1+2-70
h—0+
=0,
which contradicts (4.36). -

Now, we will prove the Lipschitz continuity of the solution.

Proposition 4.2. Let u be a positive viscosity solution to (4.7) in Bj.
There exists a universal constant C > 0, depending only on n,\,A,v, K
and [|ul| o p,y, but not depending on €, such that

sup |u(z) — u(0)| < Cr,

1
for every r < 3
Proof. Let r < 1/2. We will consider two cases based on the range of r in
terms of u(0) =: . By Remark 4.2, we may assume 6 < 1/2.
Case 1) r > 6: by Theorem 4.3, we obtain
supu < C(0 + 'Oy <0 +r) <20,

T
so we have

sup |u(x) — u(0)] <supu+u(0) <2Cr+60 < (2C + 1)r. (4.37)

T T
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u(x)
0

Case 2) 0 < r < 0: define w(z) =

satisfies

| Dw|*®) F(D*w) — hy(x)w + he(z) = hs(z)Be(w)w @~ in By, (4.38)

in B;. Then, by Remark 4.2, w

in the viscosity sense, where, for z € By,

Note that
o) B Cu(0)+6
w(z) = u(b) < P < (u(0) +6) =2C in By, (4.39)
0 0 0
which follows from Theorem 4.3. We also have
n > infa =inf a =: ay,
2— Y1 B1 By
where R
G(z) = V()

RF(z)+2-9(x)
1
Applying Theorem 4.2 to w, with y = 3 we obtain

1 1 1
w(z) s — w(0)THos | = [w(z)TFas — 1| < Clz|z in B,
2

which in turn implies
2
1+«
w(z) > (1 - C|xy%) "> (1 - cmé) 20 iy B,
2

Then,

w> - in By, (4.40)

N | =

for a universal constant dyp > 0. We can rewrite (4.38) as
| Dw|F ™) F(D*w) = hy (x)w — ha(z) + hs(2)Be(w)w ™1 in By, (4.41)
and, by (4.39) and (4.40), the right-hand side of (4.41) is bounded by

o 1 Yo—1
C 2C+ 1 -+ <2) in Bgo.
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The regularity result from [9] implies that

sup [w(z) —w(0)] < Cr,

]
for0 <r < 50. By scaling back, we obtain

sup |u(z) — u(0)| < Cr,

r

f0r0<r§02ﬂ.

)
For 70 < r < 0, using (4.37), we get

sup [u(z) —u(0)] < supfu(z) —u(0)|

B, By
< (20 +1)0
< 2pc+r
do

O

As a consequence of Proposition 4.2, we derive a gradient bound for the
solution, which is instrumental in establishing its sharp local regularity.

Proposition 4.3. Let u be a positive viscosity solution to (4.7) in Bj.
There exists a universal constant C > 0, depending only on n,\,A,~v, K
and |[ul e (p,y, but not depending on €, such that

()

|Du(z)| < Cu(x)~=+2  in Bi.
2

Proof. Let xg € B 1 and

u(l'o) 1+a1(w0)
To = 7 5

1
where M is a constant chosen such that rg < 1 Define
~u(xo + ro)
w(ﬁ) = T(IO) 1m Bl.
To

Then, by Remark 4.2, w satisfies

| Dw|*®) F(D?*w) — by (2)w + ha(x) = ha(x)Be(w)w® 1 in By,
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in the viscosity sense, where, for z € B,

14a(zg)
T 14

,a(xg)fi(Io#»T‘ol)hl(xO + TOZU);

_a(xo)(n(azo+row)+1)h2 (l‘o + ’I“()%) .

iLg(SL‘) _ Tg(mo—&—ma:)—a(zo)(n(a:o+r0a7)+2—7(a:0+rom))h3 (-730 + Tol').

Recall that, by Remark 4.3, hi,hy and hg are uniformly bounded.
Using Theorem 4.3, we get

1+a(zo)
u(zg +rox) _ Clu(xo) +r )
SUp W = sup —— < 1+a(m?)) =C(M+1).
B: Bi 7y 0
Therefore, applying Proposition 4.2, we conclude
[Du(ao)| = 5™ [Dw(0)
(o)
< Crg™™
a(zq)
_ ¢ u(zo) T+a(zq)
B M
B v(z0)
= Cu(zg)r@0)+2,

O

Using the optimal growth and gradient bound for the solutions, we obtain

the following sharp local estimates, uniform in e.

Theorem 4.4. Let u be a positive viscosity solution to (4.7) in By. For
xg € Bi and B € (0,a(xo)] N (0,aF), there exists a universal constant
2

C > 0, depending only on n, \,\,v,k, 3 and Hu||Loo(Bl), and independent of

€, such that

sup  |u(z) — u(wo) — Du(wo) - (x — z)| < Crith,
z€Br(z0)

| =

for every r <

1
Proof. Fix xog € B1, 8 € (0,a(z9)] N (0,ar) and r < T Let
2

(4.42)
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1
where M > 1 is a constant chosen in such a way that rg < —. We will

=

consider two cases based on the range of r in terms of rg.

Case 1) r > ro: by the definition of ¢, u(z¢) = MréJrﬁ < Mr'*P; then,
applying Theorem 4.3 and Proposition 4.3, we obtain

sup ’u(:c) —u(x) — Du(zo) - (x — 1'0)’
2€Byr(x0)
y(zo0)
< C(U(CCO) + rl—i—a(mo)) + u(xg) + Cru(zo) k(zo)+2
_(zo)
< C{MTHB + plra(@o) (N pptHB) rlzo)+2 }

< Crith, (4.43)

Note that we used that
(z0) +2 — (o)

18 a1 148"

(:CQ) + 2 Ii(mo) + 2
=1-(1 +»8)1+;($0)
> 0.

Case 2) 0 <7 < ro: define

u(xo + rox) .
w($) = W m Bl.
0

Then, by Remark 4.2, w satisfies

| Dw|*®) F(D?*w) — hy(2)w + ha(x) = ha(x)Be(w)w™® 1 in By, (4.44)

in the viscosity sense, where, for x € Bj,

To + Tox);

€
(x)
(x)
hi(x) = rg_ﬁﬁ(xﬁmx)hl(xo + rox);
( ) (l)—ﬂ(li(;vo+7"oz)+1)h2(
(x)

~(zo+roz)—B(k(zo+roz)+2—(zo+rox)) hs(zo + o).

I
=
o
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Recall that, by Remark 4.3, Ay, ko and hs are uniformly bounded.

Applying Theorem 4.3, we get

Clu(zo) +rg ™)
1+

To

u(zo + rox)
réJ”B

Sup w = sup <

B: B:
< O(M + 1§ P)
<C(M+1). (4.45)
The definition of ry implies that w(0) = M > 1, thus, using Proposition 4.2,
we obtain
w> ] in By, (4.46)
for universal a constant dg > 0. We can now rewrite (4.44) as
| Dw|®®) F(D*w) = hy(x)w — ha(z) + hs(z)B:(w)w’ @Y in By, (4.47)
and by (4.45) and (4.46), the right-hand side of (4.47) is universally bounded
in Bs,. Since

7(20) 7(0) 1
< = =
o) = 2 —@) ~ 0 +2-3(0) < A0+ 1’
the regularity result from [9] implies that there exists a universal constant

C > 0 such that

sup |w(z) — w(0) — Dw(0) - x| < Cr'*h,

]
for0<r < 50. By scaling back, we have

sup  |u(z) — u(xo) — Du(zo) - (z — x0)| < Cr'*P,
z€Br(z0)

1)
for0<r§r070.

)
For TOTO < r <o, from (4.43), we obtain
sup |u($) —u(zo) — Du(xp) - (x — xo)’
z€Br(x0)

< sup ‘u(x) — u(zg) — Du(xg) - (x — -TO)‘

€ By (z0)
< Cré+ﬁ

9 145
<C () ritB,
do
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Combining the previous results through the limiting process, we finally
establish the existence and sharp local regularity of viscosity solutions to
equation (1.2).

Proof of Theorem 4.1. By Proposition 4.1, the sequence {u}, is uni-
formly bounded, and by Proposition 4.2, it is equicontinuous. Therefore, by
the Arzela—Ascoli Theorem, there exists a continuous function u such that,
up to a subsequence, u. converges locally uniformly to u. By the properties
of u., the limit function v is nonnegative and bounded. Now, we show that
u is a viscosity solution to (1.2). For x € {u > 0} N, the continuity of u
implies that u > u(x)/2 in Bs(z), for some 6 > 0. Then by the uniform
convergence of u, to u, we obtain u, > u(x)/4 > (o9 + 1)e! ™ in Bj(z), for
sufficiently small e. By the definition of 3., we know that u. satisfies

0.062-&-04

2
in the viscosity sense. Taking the limit as ¢ — 0 and using the stability
of viscosity solutions, we conclude that u is a viscosity solution to (1.2).
The regularity along the free boundary with the estimate (4.3) follows from
(4.23) and the limiting process. Similarly, the local regularity result with
estimate (4.2) follows from (4.42) and the limiting process.

|Due|n(x)F(D2u6) — €U + = 7($)U3(m)_1 in B(g(l‘),
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