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Abstract. By leveraging an inherently geometric argument, we establish new properties of convex

functions Γ defined on a convex domain Ω. Suppose the graph of (convex) Γ contains a line segment

[Y 1, Y 2], where Y j = (yj ,Γ(yj)), with yj
∈ Ω, and that Y ∗ = (y∗,Γ(y∗)) lies on this segment.

Given a second-order polynomial P , whose graph touches (locally) the graph of Γ from below at

Y ∗, then a horizontal/vertical translation of P/3 touches the convex graph of Γ at least at one of

the points Y j . This, in light of the viscosity approach in PDEs, has interesting consequences for the

regularity of convex envelopes of supersolutions to a large class of partial differential equations.

These include degenerate fully nonlinear models and quasi-linear problems that have not been

treated in the literature. Our methods are versatile, and we expect them to find applications in a

broader class of models.

1. Introduction

1.1. Background. We establish new geometric properties of the graphs of convex functions and

explore their consequences for the regularity of convex envelopes of supersolutions to a wide range

of partial differential equations (PDEs).

For clarity, we introduce a few notations that will remain consistent throughout the paper. Our

domains Ω ⊂ R
d (d ≥ 2) are always bounded and convex, with the required smoothness specified

when needed. Convex functions over Ω are always denoted by Γ, and they are required to be

continuous. For a given continuous function u defined on Ω, or (merely) on the boundary ∂Ω, we

denote its convex envelope by Γu, defined as

(1) Γu(x) := sup
{

ℓ(x) | ℓ is convex in Ω, and ℓ ≤ u on Ω
}

.

Although the graph of Γ (or Γu) will be denoted by X := (x,Γ(x)) for x ∈ Ω, we shall, when

convenient for readability, make no distinction between the function and its graph. We exclusively

use x, y, z for points in Ω, while capital letters X,Y, Z are exclusively reserved for points on the

graph of the function under discussion.

We shall also use the concept of touching polynomials, borrowed from the viscosity approach

in the theory of PDEs. More precisely, we say that a (second-order) polynomial P touches the

function Γ from below at a point y ∈ Ω if P (x) ≤ Γ(x) in a small neighborhood Br(y) ⊂ Ω of y

and P (y) = Γ(y); see Definition 1. We also emphasize that, unless otherwise stated, all touching
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polynomials P in this paper are of second-order

P (x) := c+

d
∑

j=1

(

ajx
2
j + bjxj

)

, aj , bj , c ∈ R.

To set the scene, suppose a polynomial P touches Γ from below at y∗ ∈ Ω. Suppose further that

Y ∗ = (y∗,Γ(y∗)) = λ1Y
1 + λ2Y

2, with Y j = (yj ,Γ(yj)), and yj ∈ Ω. We prove that, for at least

one j ∈ {1, 2}

P j(x) :=
1

3
P (x+ y∗ − yj) + Γ(yj)−

1

3
P (y∗)

touches Γ from below at yj .

This simple observation has spillovers on the regularity of convex envelopes for supersolutions to

a wide class of PDEs, when defined in terms of viscosity, i.e. touching polynomials. Indeed, it

is intuitive to think that the smoothness of Γu is dictated by the smoothness of the contact set

{u = Γu}.
1

Now, if u satisfies a PDE inequality at contact points, meaning that

Lu ≤ f in {u = Γu} ,

where L denotes an elliptic PDE, then our results state that this property is propagated along

interior line segments of Γu, whose end points are in the contact set {u = Γu}. This, in turn,

translates to LΓu ≤ 3f on this (interior) line segment. What remains to be worked out are those

line segments that have at least one of its endpoints on the boundary. This is taken care of by a

simple idea of using the cone generated by the interior end point and the boundary as a barrier

that touches the actual point from above, and is smooth due to the smoothness of the boundary.

In either case, we obtain bounds on the PDE from the above.

At the same time, the convexity of Γu (formally) yields DeeΓu ≥ 0. This, in particular, shows

that all we need from the given PDE is that the pure second derivatives can be estimated from

above by the PDE itself, and hence by f . This is naturally the (only) technical aspect specific to

each PDE under consideration. For example, when L is the Laplace operator, one easily concludes

that pure second derivatives of Γu are bounded at contact sets. However, for more general PDEs,

estimating pure second derivatives from below is more involved and is encoded in the structure of

the equation, see (3).

1.2. Main results. Our first result, which forms the pillar of this paper, concerns the touching

properties of convex graphs with second-order polynomials. Specifically, we aim to prove that if

a polynomial touches the graph of a convex function on a flat (polygonal) piece of dimension N ,

then a translated and scaled version of this polynomial must touch the graph at some vertex of

such a piece.

1Recall that the convex hull of a C2-domain is C1,1 (see, for instance, [14]), which is a consequence of the smoothness
of the boundary of the convex hull intersected with the boundary of the C2-domain.
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Theorem 1 (Touching property for convex graphs). Let Ω ⊂ R
d be a convex domain, not neces-

sarily smooth, and Γ : Ω → R be a continuous convex function. Suppose the graph of Γ contains

a polygonal piece P of dimension N , generated by a set of points {Y j}N+1
1 , where 1 < N ≤ d,

Y j = (yj ,Γ(yj)), with yj ∈ Ω. For y∗ ∈ Ω suppose the graph of P touches P from below at

Y ∗ = (y∗,Γ(y∗)), in Br(y
∗) ∩ Ω. Then, for at least one j, the polynomial

P j(x) = P j
y∗(x) :=

1

3N
P (x+ y∗ − yj) + Γ(yj)−

1

3N
P (y∗)

touches Γ from below at yj within Br/2(y
j) ∩ Ω.

We now highlight the consequences of Theorem 1 regarding PDEs. Notice that the geometric

properties in Theorem 1 are expressed in terms of touching paraboloids. Hence, they naturally

relate to supersolutions in the viscosity sense, which we define now.

Definition 1 (Viscosity supersolution). Let F : S(d)×R
d ×R×Ω → R. Suppose f ∈ C(Ω). We

say that u ∈ C(Ω) is a viscosity supersolution to

F (D2u,Du, u, x) = f in Ω

if, for every second-order polynomial P and x0 ∈ Ω such that u(x0) = P (x0) with u(x) ≥ P (x) in

a neighborhood of x0, we have

(2) F (D2P (x0), DP (x0), u(x0), x0) ≤ f(x0).

Suppose that Γ is a continuous convex function, and a viscosity supersolution to a fully nonlinear

PDE F , i.e.,

F (D2Γ, DΓ,Γ, x) ≤ C

for some C > 0, in the viscosity sense. Additionally, assume that F satisfies the following lower

bound

(3) F (M, ξ, t, x) ≥ (c1|ξ|
γ1 + c2|t|

γ2 + c3)λi, ∀ i = 1, · · · , d,

where M = Md×d is a positive definite matrix, ξ ∈ R
d, t ∈ R, x ∈ Ω, c1, c2, c3, γ1, γ2 are positive

constants and λi denotes the eigenvalues of M . Observe that the right-hand side is smaller than

the negative Pucci operator in this particular case, and many uniform and degenerate/singular

operators satisfy this property.

Indeed, if F = F (M) is a (λ,Λ)-uniformly elliptic operator, then (3) holds with c1 = c2 = 0 and

c3 = λ. For degenerate operators, various models satisfy (3). In particular, the fully nonlinear

counterpart of the p-Laplace operator is given by

F (M, ξ) = |ξ|pG(M),

where p > 1 and G is a (λ,Λ)-elliptic operator. This operator satisfies (3) with c1 = 1, γ1 = p,

c2 = 0, and c3 = λ.
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We notice the p-Laplacian also satisfies (3). Indeed, the non-variational formulation of ∆p can be

written as

∆pu = Tr
(

A(Du, x)D2u
)

,

where ξTA(Du, x)ξ ∼ |Du|p−2|ξ|2, for 1 < p < ∞.

The role of (3) in the regularity of Γ stems from the supersolution property in the viscosity sense.

Obviously, we have that Γ is universally Lipschitz, where the norm depends on ∂Ω; see [10, Theorem

1, Sec. 6.3]. Therefore, if c3 > 0, it follows immediately that λi is universally bounded above, with

the bound depending in part on c3. Since the matrix is positive definite, we also have λi > 0. In

particular, because Γ is convex, its pure second derivatives – and consequently, all of its second

derivatives – are bounded.

When c2 = c3 = 0 and c1 > 0, the previous argument no longer applies, allowing us to investigate

the possibility of universal Hölder continuity for DΓ. Establishing such regularity requires a more

refined analysis of the PDE’s structure.

Nevertheless, the supersolution property of Γ, combined with its convexity, imposes bounds on the

PDE. In elliptic theory, such bounds often lead to some degree of smoothness in the solutions. One

expects that the convexity of Γ should further enhance the regularity, potentially yielding optimal

smoothness.

We now formalize this discussion in the following theorem, whose proof will be presented in de-

tail.

Let F = F (M,p, r, x) be so that

(4) F (M,p, r, x)− F (M,p, s, y) ≤ ω1(|r − s|) + ω2(|x− y|),

for locally uniformly bounded moduli of continuity ωi : R
+ → R

+. For a convex function Γ, we

define EΓ to be the set of all points y ∈ Ω such that (y,Γ(y)) is an extremal point of Γ, i.e., (y,Γ(y))

is not a strict convex combination of any two other points on Γ.

Theorem 2. Let Ω be a C2-regular domain. Suppose u ∈ C(Ω) satisfies

F (D2u,Du, u, x) ≤ C, on EΓu ,

in the viscosity sense, and agrees with g ∈ C2(∂Ω) on ∂Ω. Suppose F satisfies (4). Then, for

every Ω′ ⋐ Ω, there exists a positive constant C1 = C1(C, d, ∂Ω,Ω
′, g, F ) such that

F (D2Γu, DΓu,Γu, x) ≤ C1, in Ω′,

in the viscosity sense.

Observe that the supersolution property for u is only required on EΓu . The above theorem has

interesting implications for the smoothness of convex envelopes, dictated by the ellipticity of the

PDE.
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Remark 1. In Theorem 2, if u is much larger than the boundary value, so that Γu = Γg, the

convex envelope of the boundary value, then our proof yields a simple version of existing results,

but only in the interior. Compare Theorem 4, for the case of less smooth boundary values.

We use Theorem 2 to prove new results on the regularity of the convex envelope for supersolu-

tions to nonlinear degenerate equations. Namely, the p-Poisson equation and its fully nonlinear

counterpart. The case of the latter follows from Theorem 2 directly. The case of the p-Laplacian

combines Theorem 2 with intrinsic characteristics of the operator, exploring different regularity

regimes depending on the magnitude of the gradient. The regularity of the convex envelope for

the supersolutions of these model-problems is the subject of the next theorem.

Theorem 3 (Regularity of the convex envelope). Let u ∈ C(Ω) be a viscosity solution to

F (D2u,Du, u, x) ≤ C on {u = Γu},

and suppose Ω is a C2-regular domain. Suppose further that u agrees with g on ∂Ω, for some

g ∈ C2(∂Ω). Then,

i. if F (M, ξ) = |ξ|pG(M), where p > 1 and G is a convex (λ,Λ)-elliptic operator, then

DΓu ∈ C
1

1+p

loc (Ω);

ii. if F is the p-Laplacian operator, then DΓu ∈ Cα
loc(Ω), where

α = min

(

1,
1

p− 1

)

.

In addition, these hold uniformly in every Ω′ ⋐ Ω.

Remark 2. (Optimality of Theorem 3) The optimal regularity in Theorem 3 holds only in the

interior of the domain, and we are currently unable to establish its uniform validity up to the

boundary, even in cases where such behavior is expected. In fact, even in the simple case where Ω

is the unit ball and g ≡ 0, we have neither been able to prove optimal boundary regularity nor to

construct a counterexample. Although it is tempting to conjecture one or another way, we leave it

as an open question without suggesting which one is potentially viable.

Our reasoning so far has relied on Theorem 1 and on geometric information stemming from the

C2-regularity assumptions on the boundary — both on ∂Ω and on the boundary data — as stated

in Lemma 1 below. The observation in Lemma 1, within the context of C1,γ-regularity assumptions

on the boundary, yields an additional insight.

Indeed, if g ∈ C1,β(∂Ω) and ∂Ω is locally of class C1,α, our argument builds upon previous results

(e.g., [8, Theorem 1.2]) to obtain local C1,γ-regularity estimates for the convex envelope of g. This

is the content of the next theorem.

Theorem 4 (Lower regularity of the data). Let Ω be a C1,α-regular domain, whereas g ∈ C1,β(∂Ω),

for some 0 < α, β < 1. Then Γg ∈ C1,γ
loc (Ω), where γ := min {α, β}. In addition, for every Ω′ ⋐ Ω,
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there exists C > 0, depending on g, Ω′, the geometry of ∂Ω, and the space dimension such that

∥Γg∥C1,γ(Ω′) ≤ C.

1.3. Existing results. Let v ∈ C(Ω) be a supersolution to

M−

λ,Λ(D
2v) = f in Ω,

where M−

λ,Λ is the smallest (λ,Λ)-Pucci extremal operator and f ∈ L∞(Ω). Then one concludes

that Γv ∈ C1,1
loc (Ω), [5, Lemma 2]; see also [6, Lemma 3.3]. For recent generalizations in the context

of Ld-viscosity solutions, see [4].

A different perspective on the connection of PDE and the convex envelope of a given function is

pursued in [16]. In that paper, the author considers a function g : Rd → R and shows that its

convex envelope Γg is a viscosity solution to

max
{

v(x)− g(x),−λ1(D
2v(x))

}

= 0 in R
d,

where λ1(M) stands for the smallest eigenvalue of the matrix M . Here, the interest is not in the

effects of a PDE structure of the convex envelope of the solutions but, conversely, in deriving an

equation characterizing the envelope. A PDE characterizing the convex envelope of g in a bounded

domain is the subject of [17].

The analysis of regularity properties of the convex envelope in a general setting is the topic of

[11, 3, 13], to name just a few. In [13], the authors consider an extended function v : R
d →

R ∪ {+∞}; if v ∈ C1,α
loc ({v < +∞}), then Γv ∈ C1,α

loc ({Γv < +∞}), for any α ∈ [0, 1]. They require

v(x) → +∞ as |x| → ∞. The results in [13], as well as the growth condition imposed on v, relate

to the developments in [11, 3].

In [8], the authors study the geometry of the convex envelope Γv by exploring the regularity of

v and the geometry of the convex domain Ω. Indeed, if v ∈ C1,α(Ω) and the domain is of class

C1,β , they prove that Γv is of class C1,γ , where γ := min {α, β}. When it comes to ensuring

C1,1-regularity for Γv, the authors find that both v and the boundary of Ω must be of class C3,1

for this result to hold in general. Compare the latter with the findings in [7].

The remainder of the paper is organized as follows. Section 2 gathers two auxiliary lemmas used

in the paper, whereas Section 3.1 details the proof of Theorem 1. The proof of Theorem 2 is the

subject of Section 3.2, and Section 3.3 presents the proof of Theorem 3. Section 3.4 accounts for

the proof of Theorem 4 and closes the paper.

2. Two technical Lemmas

Let g ∈ C2(∂Ω) and denote with G(∂Ω) the set

G(∂Ω) = Gg(∂Ω) :=
{

(x, g(x)) ∈ R
d+1 | x ∈ ∂Ω

}

.

For y ∈ Ω, we define the cone generated by the graph of g on ∂Ω and y as

Cg(y, ∂Ω) :=
{

(x, τ) ∈ R
d+1 | (x, τ) = (z + λ(y − z), λ), for z ∈ G(∂Ω) and λ ∈ R

}

.
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We are interested in the curvature of Cg(y, ∂Ω) for certain values of λ. For I ⊂ (−∞, 1], denote

with Cg(y, ∂Ω, I) the subset of Cg(y, ∂Ω) defined as

Cg(y, ∂Ω, I) :=
{

(x, τ) ∈ R
d+1 | (x, τ) = (z + λ(y − z), λ), for z ∈ G(∂Ω) and λ ∈ I

}

.

For x ∈ Cg(y, ∂Ω, I), denote by κ(x) the curvature of the cone at x. Next, we study the curvature

of Cg(y, ∂Ω, [−1/2, 1/2]).

Lemma 1 (Uniform bounds for the cone curvature). Let Ω ⊂ R
d be a bounded, convex domain

of class C2. Let further g ∈ C2(∂Ω). For y ∈ Ω, consider the cone generated by y and the graph

of g on ∂Ω. Then there exists C > 0, depending on the dimension, the curvature of ∂Ω, and the

smoothness of g, such that κ(x) < C for every x ∈ Cg(y, ∂Ω, [−1/2, 1/2]).

Proof. Because the radial curvature of the cone is zero, we examine the tangential curvature at

x ∈ Cg(y, ∂Ω, [−1/2, 1/2]). Let yj ∈ ∂Ω and s = (s1, . . . , sd−1) be local coordinates near yj .

Denote with x(s) a local parametrization of ∂Ω. The cone generated by {(x, g(x) | x ∈ ∂Ω} and

(y∗,−T ) is parametrized near yj as

C(s, λ) = λ(y∗, T ) + (1− λ) (x(s), g(x(s))) ,

where y∗ ∈ Ω and T > 0 are fixed, though arbitrary. We compute the derivatives of C(s, λ) with

respect to s. Indeed,

∂C

∂si
= (1− λ)





d
∑

j=1

∂xj
∂si

ej +

d
∑

j=1

(

∂g

∂xj

∂xj
∂si

)

ed+1





and

∂2C

∂sℓ∂si
= (1− λ)





d
∑

j=1

∂2xj
∂sℓ∂si

ej +

d
∑

k,j=1

(

∂2g

∂xk∂xj

∂xj
∂si

+
∂g

∂xj

∂2xj
∂sℓ∂si

)

ed+1



 .

Because λ ∈ [−1/2, 1/2] confines the analysis to a strip away from (y∗, T ), we get

|κ(x)| ≤ C1

d
∑

ℓ,i=1

∂2C(x, λ)

∂sℓ∂si
≤ C,

where C > 0 depends on the geometry of ∂Ω and the C2-norm of the function g. □

We emphasize we use Γ for a convex function as well as for its graph, whenever it improves

readability.

Lemma 2 (Smoothness from the boundary). Let Ω′ ⋐ Ω be such that dist(Ω′, ∂Ω) > τ , for some

τ > 0 fixed, though arbitrary. Let g ∈ C2(∂Ω) and Γ be the convex envelope of a function agreeing

with g on ∂Ω. Let also Y ∗ be a point on the graph of Γ. Suppose Y ∗ is generated by Y 1, Y 2 ∈ Γ,

with y1 or y2, or both, lying on ∂Ω. Suppose a polynomial P touches Γ from below at Y ∗. Then

there exists C > 0 such that

D2P (y∗) ≤ CI.
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The constant C > 0 depends only on the dimension, the geometry of ∂Ω, the boundary value g,

and τ .

Proof. Consider the segment [Y 1, Y 2] and suppose first both y1 and y2 are on ∂Ω. Suppose without

loss of generality that y∗ = λy1 + (1− λ)y2, for some λ ∈ (0, 1/2). Notice λ is uniformly bounded

from below by a constant depending only on τ and the diameter of Ω.

Let ỹi := (y∗+yi)/2, for i = 1, 2. Clearly, dist(ỹi, ∂Ω) > τ/2. Now, Theorem 1 ensures that a shift

of P/3 touches Γ at Ỹ 1 or Ỹ 2. However, Lemma 1 ensures the curvature of the cone generated by

Y ∗ and G(∂Ω) is uniformly bounded at the points (ỹi, w̃i) ∈ C(Y ∗, ∂Ω). Since the opening of P

at ỹi is controlled by the curvature of the cone, there exists a universal constant C > 0 such that

D2P̃ (ỹi) ≤ C̃I. By taking C := C̃/3d, one completes the proof in that case.

If only one point, say y1, lies on the boundary ∂Ω, extend the segment [Y 1, Y 2] until it intersects

∂Ω. Denote the intersection point with y2, after relabeling and arguing as before, one finishes the

argument. □

It might be insightful to compare the claim in Lemma 2 with the following example. Let Ω := B1

and Γ = (1 + x1)
2−ϵ. Notice Γ ∈ C3,1−2ϵ(∂Ω), yet Γ is not uniformly C1,1 in the interior of Ω; see

[8, Section 2].

The main geometric reason for the failure of smoothness in this example (in light of Lemma 2) is

that the line segments [Y 1, Y 2] (or flat pieces) on Γ = (1 + x1)
2−ϵ are orthogonal to the x1-axis.

As we approach the point z := (−1, 0′), these segments become closer and closer to the tangent

line to the domain at z. In the words of the lemma, τ → 0.

Remark 3. It is noteworthy, that above discussion, about the segment [Y 1, Y 2] becoming eventually

tangential in the limit as we approach the boundary point z, is the main technical part in many

existing proofs for optimal smoothness up to the boundary. This is also the main trouble point in

our study, forcing us to stay inside the domain, and not get uniform estimates up to the boundary.

3. Proof of Theorems

3.1. Proof of Theorem 1. Suppose first y1, . . . , yN+1 are in Ω. Consider now the case when Y ∗

is generated by two points Y 1, Y 2, so that N = 1 and

y∗ = λ1y
1 + λ2y

2.

We prove that at least one of P j will touch Γ at the point yj .

Now, towards a contradiction, suppose that neither P 1 nor P 2 touch Γ at y1 or y2, respectively.

Next we subtract the linear function (x− y∗) · ∇P (y∗) (which represents a supporting plane) from

Γ, and translate such that y1 = 0 = (0′, 0) and y2 = (0′, x∗d), and assume y∗ = (0′, s) for some

s ≥ x∗d/2. If s < x∗d/2, then we may change the role of y1, y2. We keep the same notation for

this P . Furthermore, since ∂dP ≡ 0, we need not to translate the polynomial anymore, as it is

“cylindrical” in xd-direction.
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Without loss of generality, we may assume that ∂jP (x) = 0 for all directions xj where ∂jP (x) ≤ 0

(including the xd-direction). Moreover, P is non-negative (P ≥ 0) and homogeneous of order

two.

These reductions imply that, to prove the theorem, it suffices to show that the xd-independent

polynomial P , which touches Γ at y∗, is such that P/3 touches Γ from below at one of the points

y1 or y2.

If this does not happen, then we have a point X∗ = (x∗, x∗d+1) on the graph of Γ such that

(5) x∗d+1 = Γ(x∗) <
1

3
P (x∗).

Define now Lt (0 ≤ t ≤ 1) to be the line segment connecting the origin to X∗, so that

Lt := t(X∗) = t(x∗, x∗d+1), L0 = 0, L1 = X∗.

The convexity of Γ ensures that Lt stays above the graph of Γ, i.e. it belongs to the convex set

{xd+1 ≥ Γ(x)}.

It follows by inspection that Lt has to cut the graph of the polynomial P at some point. Hence,

for some t0 we have

t0x
∗

d+1 = P (t0x
∗) = t20P (x∗),

so that x∗d+1 = t0P (x∗). By virtue of (5) and the fact that P ≥ 0, we obtain t0 < 1/3. This means

that at the point X∗, where Lt intersects the graph of P , the xd-coordinate satisfies t0x
∗

d < x∗d/3.

This contradicts the assumption that y∗ = (0′, s), with s ≥ x∗d/2, is a touching point for P , which

implies that P ≤ Γ in a neighborhood of this point.

Now, suppose Y ∗ is generated by several (or all) of the points {Y j}Nj=1. In this case, starting

from Y ∗ and following line segments on P, one reaches either a vertex or a point on a lower-

dimensional edge of the polygon P, with the touching property holding for at least one of them.

In the first case, the proof is completed. In the second case, we apply a dimension reduction

argument or simply continue along the segments, repeating the process until we reach a vertex

with the touching property, which must happen within at most N steps. The proof of Theorem 1

is completed.

3.2. Proof of Theorem 2. Let Y ∗ = [y∗,Γu(y
∗)] be a point in Γu, with y∗ ∈ Ω′ ⋐ Ω, and P be a

paraboloid touching Γu from below at y∗. We prove there exists a universal constant C1 > 0 such

that

(6) F (D2P (y∗), DP (y∗),Γu(y
∗), y∗) ≤ C1.

Indeed, if y∗ ∈ {Γu = u}, the supersolution property for u ensures (6) holds with C1 = C. Suppose

otherwise that y∗ ∈ Ω \ {Γu = u}.

Then there exists a (smallest) polygonal piece P1 ⊂ Γu of dimension N ≤ d, generated by points
{

Y j
}N+1

j=1
, such that Y ∗ ∈ P1 and yj ∈ {x ∈ Ω : Γu = u} for every j = 1, . . . , N+1. With smallest

we mean it is impossible to generate Y ∗ with M points, for M < N . Notice that some, or even all,
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points yj may belong to ∂Ω. We start the analysis with the case N = 1 and examine the general

scenario using a reduction argument. We split the proof into three steps for clarity.

Step 1 - Suppose N = 1. In that case, Y ∗ = λY 1 + (1 − λ)Y 2. Three possibilities arise: (i.)

y1 and y2 are in the interior of Ω, (ii.) y1 is on ∂Ω and y2 is in Ω, or (iii.) both points are on

∂Ω.

In Case (i.), Theorem 1 ensures that there exists at least one j ∈ {1, 2} such that P j touches yj ;

for definiteness, suppose j = 1. Hence,

DP (y∗) = 3DP 1(y1) and D2P (y∗) = 3D2P 1(y1).

Calculating the PDE and using the properties of F , see (4), we have

F (D2P (y∗), DP (y∗), P (y∗), y∗) = F (3D2P 1(y1), 3DP 1(y1),Γ(y∗), y∗)

≤ C + ω1(|Γ(y
∗)− Γ(y1)|) + ω2(|y

∗ − y1|)

≤ C1,

where C1 > 0 depends on C, the dimension d, the domain Ω and F , through ωi and its homogeneity

degree.

In Case (ii.) we may assume P 2 does not touch Γu at y2 since then, by the supersolution property,

we would be done. Denote by ỹ1 the point

ỹ1 :=
1

2

(

y1 + y∗
)

.

An application of Lemma 2 ensures the existence of a universal constant C > 0 such that

D2P (y∗) ≤ CI.

Finally, if Case (iii.) holds, Lemma 2 once again ensures the former upper bound for D2P (y∗)

is available, perhaps with a different constant, still universal. Therefore, one finds C1 > 0 such

that

F (D2P (y∗), DP (y∗), P (y∗), y∗) ≤ C1.

In the sequel, we treat the case 1 < N ≤ d.

Step 2 - Let 1 < N ≤ d. As before, if y1, . . . , yN+1 ∈ Ω, the result follows from Theorem

1 combined with the supersolution property for u. We continue by supposing there exists j ∈

{1, . . . , N + 1} such that yj ∈ ∂Ω. For definiteness, let y1 ∈ ∂Ω. Consider the segment
[

Y 1, Y ∗
]

and extend it until it intersects the boundary of P1. Denote the intersection point with Z1, which

lies in a polygon P2 with dimP2 = N − 1; indeed, were dimP2 < N − 1, Y ∗ would be generated

by less than N +1 points, and P1 would not be the smallest polygon generating Y ∗. In particular,

z1 ∈ Ω.

Step 3 - At the point z1 either one of the following holds:

I - No shifted version of P touches Γu at Z1;
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II - A shifted version of P touches Γu at Z1.

In Case I, we set ỹ1 := 1
2

(

y1 + y∗
)

∈ Ω, and invoke Lemma 2, which yields D2P (y∗) ≤ CI, for

some universal constant C > 0, leading to

F (D2P (y∗), DP (y∗), P (y∗), y∗) ≤ C1.

In Case II, we assume z1 ∈ Ω \ {Γu = u.}, since otherwise, the supersolution property yields the

required estimate.

Now, letting z1 play the role of y∗, we may iterate the argument above and reach to either of the

cases, again. Repeating in finite steps (maximum N steps), we arrive at the case when a final

shift of P touches {Γu = u}, or alternatively it does not, and we are in Case I. In either case, we

conclude again the bound of the PDE for Γu. Theorem 2 is complete.

3.3. Proof of Theorem 3. We divide the argument into two cases, corresponding to the different

operators appearing in the statement. For each operator in the theorem, we employ a distinct

approach.

Case 1) |Du|pG(D2u): By Theorem 3 we have

∣

∣|DΓu|
pG(D2Γu)

∣

∣ ≤ C in B3/4,

for some universal C > 0. Hence, [12, Theorem 1] implies DΓu ∈ Cα∗

loc(B3/4), with local uniform

estimates, where α∗ is the minimum between the exponent associated with the Krylov-Safonov

regularity theory and 1/(p + 1). The convexity of G ensures the former is equal to 1, and the

argument is complete in this case, as was pointed out in [2, Corollary 3.2].

Case 2) ∆pu: We recall that Theorem 2 implies ∆pΓu ∈ L∞(B99/100). Consequently, we con-

clude there exists α ∈ (0, 1) such that Γu ∈ C1,α
loc (B99/100), with estimates (see, for instance, [9];

see also [1] and references therein). To obtain the optimal regularity of the convex hull, we refine

the analysis by considering two regimes.

First, we fix x0 ∈ B99/100 and set β ∈ (0, 1) as

(7) β :=
1

p− 1
.

Suppose first that

(8) |DΓu(x0)| ≤ rβ ,

and that we can find C > 0 such that

(9) sup
x∈Br(x0)

|Γu(x)− Γu(x0)| ≤ Cr1+β .
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The triangle inequality then yields the desired result

sup
x∈Br(x0)

|Γu(x)− Γu(x0)−DΓu(x0) · (x− y)| ≤ Cr1+β .

We thus need to show inequality (9). Consider the scaled function

Γu(x) :=
Γu(rx+ x0)− Γu(x0)

r1+β
.

We have

∆pΓu = r1−β(p−1)∆pΓu;

the choice of β in (7) builds upon Theorem 2 to yield ∆pΓu ∈ L∞(B99/100). Therefore there exists

C > 0 such that

0 ≤ ∆pΓu ≤ C, in B99/100.

Now, by the assumption (8) we have |DΓu(x0)| ≤ rβ , implying

Γu(x) + 1 ≥ Γu(x)−DΓu(0) · x =
Γu(rx+ x0)− Γu(x0)

r1+β
−DΓu(x0) · x ≥ 0,

for every x ∈ B1, where the last inequality is due to the convexity of Γu.

Using the weak Harnack inequality for non-negative super-solutions [15, Theorem 3.13], we con-

clude that

∥Γu(x) + C∥Ls(B3/4) ≤ C1(inf Γu(x) + C) = C1C,

since Γu(0) = 0.

Next, we apply the maximum principle (cf. [15, Corollary 3.10]) to the p-subharmonic function

Γu(x) to obtain

sup
B1/2

Γu(x) ≤ ∥Γu(x) + C∥Ls(B3/4) ≤ C.

This gives us (9) and leads to

sup
x∈Br(x0)

|Γu(x)− Γu(x0)−DΓu(x0) · (x− y)| ≤ Crp/(p−1).

Now we consider the case |DΓu(x0)| ≥ rβ , for 0 < r < 1/4. Here we set r
1/(p−1)
x0

:= |DΓu(x0)| and

define Γ̃u : B1 → R as

Γ̃u(x) :=
Γu(rx0

x+ x0)− Γu(x0)

r
p/(p−1)
x0

.

By Case 1, |Γ̃u(x)| ≤ 1 on B99/100. Moreover 0 ≤ ∆pΓ̃u ≤ C, and |DΓ̃u(0)| = 1. Therefore, by

continuity of DΓ̃u, there exists 0 < r∗ < 1 such that

(10)
∣

∣

∣
DΓ̃u(x)

∣

∣

∣
>

1

2

in Br∗ . We conclude Γ̃u satisfies

0 ≤ div
(

A(x)DΓ̃u

)

≤ C in B99/100,
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for some A ∈ Cα(B99/100,R
d). Because of (10), we notice A is uniformly elliptic. As a consequence,

we obtain Γu ∈ C1,α
loc (Br∗/2) for every α ∈ (0, 1), with estimates. The previous steps combine to

complete the proof.

3.4. Proof of Theorem 4. Fix Ω′ ⋐ Ω and take y ∈ Ω′. Let y1 ∈ ∂Ω be the closest boundary

point to y. Let z ∈ Ω be such that y = λy1 + (1− λ)z, for some λ ∈ (0, 1/2).

Consider the cone generated by z and g(∂Ω). Away from the vertex, the cone is of class C1,γ ,

where γ := min(α, β). This norm is also uniform, if λ ≤ 1/2, as we have assumed; compare with

Lemma 1. As a consequence, the convex graph Γg is touched from above by a C1,γ-graph.

The above, in light of [8, Definition 1.1], means that Γg is (1+γ)-semi-concave. Hence, by Theorem

1.2 in [8], the result follows.
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