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Abstract

Given an independent and identically distributed sample of angles from some absolutely con-

tinuous circular random variable with unknown probability density function f , in this work we

study the problem of testing the hypothesis on whether f is the uniform distribution on the

circle. For this purpose we consider a Bickel–Rosenblatt type test statistic (L2 distance) based

on the Parzen–Rosenblatt type estimator for circular data. The asymptotic behaviour of the

proposed test procedure for fixed and non-fixed bandwidths is studied. From a finite sample

point of view the power performance of the tests associated with different bandwidths depends

on the considered bandwidth which acts as a tuning parameter. The automatic selection of

this tuning parameter, the choice of which is crucial to obtaining a performing test procedure,

is also addressed in this work, and comparisons are made with other existing uniformity tests

through a simulation study.
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1 Introduction

Given an independent and identically distributed sample X1, . . . ,Xn ∈ [0, 2π[ from some ab-

solutely continuous circular random variable X with unknown density f , the standard kernel

estimator of f is defined, for θ ∈ [0, 2π[, by

f̃n(θ; g) =
cg(L)

n

n
∑

i=1

L

(

1− cos(θ −Xi)

g2

)

, (1)

where L : [0,∞[→ R is a bounded function satisfying some additional conditions, g = gn is a

sequence of strictly positive numbers converging to zero as n tends to infinity, and cg(L) is chosen

so that f̃n(·; g) integrates to unity (see Beran, 1979, Hall et al., 1987, Bai et al., 1988, Klemelä,

2000, Garćıa-Portugués, 2013, Garćıa-Portugués et al., 2013). An alternative kernel estimator of

the density f , which is close in spirit to the Parzen–Rosenblatt (PR) estimator for data on the

real line (see Rosenblatt, 1956, and Parzen, 1962), is defined, for θ ∈ [0, 2π[, by

f̂n(θ;h) =
dh(K)

n

n
∑

i=1

Kh(θ −Xi), (2)

where h = hn is a sequence of strictly positive real numbers converging to zero as n tends to

infinity, Kh is a real-valued periodic function on R, with period 2π, such that

Kh(θ) = K(θ/h)/h, for θ ∈ [−π, π[,

with h > 0, K a kernel on R, that is, a bounded and integrable real-valued function on R with
∫

R
K(u)du > 0, and dh(K) a normalizing constant which is chosen so that f̂n(·;h) integrates to

unity (see Tenreiro, 2022, 2024, 2025). Other than the estimation of the underlying probability

density function, the kernel estimator (1) is used by Boente et al. (2014) and Garćıa-Portugués et

al. (2018) to test the hypothesis that f belongs to a given parametric class of densities. With the

same goal in mind, but confining our study to the simple null hypothesis case, in this paper we

are interested in using the PR-type estimator (2) to test the hypothesis H0 : f = f0, where f0 is

a fixed probability density function on the circle. Special attention will be paid to the important

case of testing the uniformity of circular distributions, which is the main goal of this work. In the

literature several tests for circular uniformity have been proposed. For a review of the available

tests, see Mardia and Jupp (2000, Chap. 6); see also Bogdan et al. (2002), Pycke (2010), Garćıa-

Portugués et al. (2018, 2021, 2023), Jammalamadaka et al. (2020), and Fernández-de-Marcos and

Garćıa-Portugués (2023), and the references therein.

As in the pioneering work by Bickel and Rosenblatt (1973), where the problem of goodness of

fit was addressed for the first time using kernel density estimators on the real line (goodness-of-fit

tests based on the histogram estimator were also suggested by Révész, 1971, and Tusnády, 1973),

in this paper we suggest a new class of goodness-of-fit tests based on the L2([0, 2π[) distance

between the PR-type estimator (2) and its expectation under the null hypothesis, leading to the
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rejection of the hypothesis H0 for large values of the statistic

In(h) = n

∫ 2π

0

{

f̂n(θ;h)− E0f̂n(θ;h)
}2
dθ, (3)

with

E0f̂n(θ;h) = dh(K)Kh ∗ f0(θ) = dh(K)

∫ 2π

0
Kh(θ − u)f0(u)du,

for θ ∈ [0, 2π[, where f0 is square integrable on [0, 2π[, and ∗ denotes the convolution product.

For the sake of simplicity we also denote by f0 the periodic extension of f0 to R given by f0(θ) =

f0(θ− 2kπ), whenever θ ∈ [2kπ, 2(k+1)π[, for some k ∈ Z. Recall that if α and β are real-valued

functions with period 2π defined on R, the convolution of α and β is defined, for x ∈ R, by

(α ∗ β)(x) =
∫ 2π

0
α(x− y)β(y)dy,

whenever this integral exists. As the integrand is periodic with period 2π, the previous definition

does not depend on the considered interval of integration with length 2π. The convolution (α ∗
β)(x) exists for almost every x ∈ R whenever α and β are integrable on [0, 2π[, and it exists for

every x ∈ R if in addition one of the functions α or β is bounded. Moreover, it exists and is

continuous for every x ∈ R, whenever α and β are square integrable on [0, 2π[. Obviously, the

convolution is a periodic function if it exists (see Butzer and Nessel, 1971, §0.4).

As it is based on the PR-type estimator of f , the statistic In(h) = In(hn) given by (3) can

be seen as a version of the Bickel–Rosenblatt (BR) statistic for circular data. Just like the BR

statistic on the real line (see Bickel and Rosenblatt, 1973, Hall, 1984, and Fan, 1994, 1998), under

the null hypothesis In(h) has a limit normal distribution when hn converges to zero as n tends to

infinity, and an infinite weighted sum of independent χ2
1 random variables when the bandwidth is

fixed, that is, hn = h > 0, for all n ∈ N. Similarly to what was pointed out by Fan (1998) for the

BR statistic on the real line, under some additional conditions on the kernel K and the bandwidth

(see Section 6), the statistic In(h) can be written as weighted L2([0, 2π[) distance between the

empirical characteristic function ϕn and the characteristic function of f0, that is,

n−1In(h) =

(
∫

R

K(u)du

)−2 1

2π

∞
∑

k=−∞

|ϕn(k)− ϕf0(k)|2|ϕK(kh)|2, (4)

where ϕn(k) = n−1
∑n

j=1 exp(ikXj) and ϕf0(k) =
∫ 2π
0 exp(ikθ)f0(θ)dθ, for k ∈ Z, and ϕK is the

Fourier transform of K defined by ϕK(t) =
∫

R
eituK(u)du, for t ∈ R. The previous alternative

representation for In(h) enables us to conclude that, as with the BR statistic on the real line

(see Fan, 1998, Tenreiro, 2007a), the test based on In(h) may be asymptotically consistent even

when the bandwidth is fixed. Moreover, from it we also conclude that the class of tests based

on In(h) considered in this work is strongly connected with the class of goodness-of-fit tests for

circular distributions based on trigonometric moments recently introduced in Jammalamadaka et

al. (2019).
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The rest of this paper is organised as follows. In Sections 2 and 3 the asymptotic behaviour of

In(h) for fixed and non-fixed bandwidths is studied. More precisely, the limiting null distribution

of In(h), the consistency of the associated test procedure, and its asymptotic power against

sequences of local alternatives are derived. Based on these results, the asymptotic superiority of

the tests based on In(h) with a fixed bandwidth over those with a non-fixed bandwidth for fixed

alternatives is established. Confining ourselves to the tests based on In(h) with fixed bandwidth,

in Section 4 we address the problem of testing a uniformity hypothesis, this being the main goal

of this work. From a practical point of view, it is natural to expect that the finite sample power

performance of the test based on In(h) may be sensitive to the choice of h which acts as a tuning

parameter. The usual strategy for selecting this tuning parameter is to evaluate the test power

performance for h varying in a finite set H (say), and then suggesting a selection of h that produces

a test with a reasonable power against a wide range of alternative distributions. As this strategy

of taking a fixed tuning parameter does not prevent the user from obtaining a test that achieves

very low power against some of the considered alternative distributions, we implement here a test

methodology studied in Tenreiro (2019) that combines tests associated to different values of the

tuning parameter into a single multiple test procedure that could show a good power performance

against a wide range of alternative distributions. As a result of a simulation study where the

empirical power of the new test is compared with that of the uniformity tests of Kuiper (1960)

and Watson (1961), the data driven smooth test of Bogdan et al. (2002), one of the tests suggested

by Pycke (2010), the projected Anderson-Darling test of Garćıa-Portugués et al. (2023), and the

10-fold smooth maximum test of Fernández-de-Marcos and Garćıa-Portugués (2023), we conclude

that the proposed test procedure is a serious competitor against all of them. Section 5 includes

a brief summary and some conclusions. For convenience of exposition the proofs are deferred to

Section 6. The simulation results and plots shown in this article were carried out using the R

software (R Development Core Team, 2021).

2 Asymptotic null distribution and consistency

Given a probability density function on the circle f0, we establish in this section the asymptotic

null distribution and the consistency of the test based on the statistic In(hn) given by (3) to test

H0 : f = f0 against Ha : f 6= f0, (5)

for a sequence (hn) of strictly positive real numbers satisfying one of the following conditions (Bh)

for some h ≥ 0:

Assumptions on the bandwidth (hn)

(B0) hn → 0 and nhn → +∞, as n→ +∞;

(Bh) hn = h > 0, for all n ∈ N.
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Condition (B0) is usual in kernel density theory. Under (B0) the PR-type estimator f̂n given

by (2) is a consistent estimator of the common density f of the observations (Tenreiro, 2022).

If the bandwidth sequence (hn) satisfies (Bh) for some h > 0, f̂n is no more an asymptotically

unbiased estimator of f . Regarding the kernel K, which we always assume to be a bounded and

integrable real-valued function on R with
∫

R
K(u)du > 0, some additional assumptions are needed

to establish the asymptotic null distribution of In(hn) when the assumption (B0) is fulfilled, and

the consistency of the test procedure based on In(hn) when the assumption (Bh) is fulfilled for

some h > 0.

Assumptions on the kernel K

(K.1) K(u) = 0, for u /∈ [−M,M ], for some M > 0;

(K.2) ϕK(t) 6= 0, for all t ∈ R.

A simple example of a family of nonnegative kernels satisfying the previous assumptions is

given by the symmetric kernels of the form

Kp(u) = (1− |u|)p1I[−1,1](u), (6)

with p ≥ 2. In fact, for t 6= 0, we have ϕKp(t) < ϕKp(0), for all p ≥ 0, and ϕKp(t) = 2pt−2
(

1 −
ϕKp−2

(0)−1ϕKp−2
(t)

)

, for all p ≥ 2.

In the proof of the following result, given in Section 6, we show that the null asymptotic

behaviour of In(hn) depends on the limit distribution of the degenerated U-statistic with kernel

H(·, ·; f0, h) defined by (9) which may a priori be a weighted sum of independent χ2
1 random

variables or a normal distribution (see Hoeffding, 1948, Gregory, 1977, Hall, 1984, and Lee, 1990).

A normal limit distribution occurs if (B0) is satisfied, whereas a weighted sum of independent chi-

squares limit distribution arises if (Bh) is satisfied for some h > 0. These conclusions agree with

previous related results for data on the real line obtained by Bickel and Rosenblatt (1973), Hall

(1984), Fan (1994, 1998), and Tenreiro (2007a), among others. We denote by
d−→ the convergence

in distribution.

Theorem 1. Suppose that f = f0 ∈ L∞([0, 2π[).

(a) Under assumption (B0), if K satisfies (K.1) then

h1/2n

{

In(hn)− h−1
n

∫

R

K(u)2du

(
∫

R

K(u)du

)−2}
d−→ N(0, ν2),

where

ν2 = 2

∫

R

(
∫

R

K(v + u)K(u)du

)2

dv

(
∫

R

K(u)du

)−4 ∫ 2π

0
f0(θ)

2dθ. (7)

(b) If (Bh) is satisfied for some h > 0, then

In(h)
d−→

∞
∑

k=1

λk,hZ
2
k ,
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where {Zk, k ≥ 1}, are independent and identically distributed standard normal variables and

{λh,k > 0, k ≥ 1}, with
∑∞

k=1 λh,k < ∞, are the strictly positive eigenvalues of the symmetric

positive semidefinite Hilbert-Schmidt operator Hh defined, for g ∈ L2([0, 2π[, f0), by

Hhg(u) =

∫ 2π

0
H(u, v; f0, h)g(v)f0(v)dv, (8)

where

H(u, v; f0, h) = dh(K)2
∫ 2π

0
{Kh(θ − u)−Kh ∗ f0(θ)}{Kh(θ − v)−Kh ∗ f0(θ)}dθ, (9)

for u, v ∈ [0, 2π[ and h > 0, and L2([0, 2π[, f0) is the space of real-valued functions g such that
∫ 2π
0 g(y)2f0(y)dy <∞.

From the previous result we know that the statistic defined by

Tn(hn) = h1/2n

{

In(hn)− h−1
n

∫

R

K(u)2du

(
∫

R

K(u)du

)−2}

,

if (B0) is satisfied, and by

Tn(hn) = In(h),

if (Bh) is satisfied for some h > 0, has a non-degenerated limit distribution under H0. In the

following result we establish the asymptotic behaviour of In(hn) under Ha. We denote by
p−→

the convergence in probability.

Theorem 2. Let us assume that f, f0 ∈ L∞([0, 2π[) and that K satisfies (K.1).

(a) If (B0) is satisfied, then

n−1h−1/2
n Tn(hn)

p−→ 1

2π

∞
∑

k=−∞

|ϕf (k)− ϕf0(k)|2 =

∫ 2π

0
(f(θ)− f0(θ))

2dθ.

(b) If (Bh) is satisfied for some 0 < h ≤ π/M , then

n−1Tn(hn)
p−→

(
∫

R

K(u)du

)−2 1

2π

∞
∑

k=−∞

|ϕf (k)− ϕf0(k)|2|ϕK(kh)|2.

For α ∈ ]0, 1[, let us consider the test defined by the critical region

C (Tn(hn), α) =
{

Tn(hn) > q(Tn(hn), α)
}

, (10)

where q(Tn(hn), α) denotes the quantile of order 1−α of the distribution of Tn(hn) underH0. This

quantile is assumed to be a known quantity as it can be well approximated by simulating under

the null hypothesis. As stated in the next result, the test based on the critical region C (Tn(hn), α)

has a level of significance at most equal to α for each sample size n, is asymptotically of level α,

and is consistent to test H0 against Ha whenever the kernel K satisfies the additional assumption

(K.2) when (Bh) is satisfied for some h > 0.
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Theorem 3. Let us assume that f0 ∈ L∞([0, 2π[) and that K satisfies (K.1). If (B0) is satisfied

or if (Bh) is satisfied for some 0 < h ≤ π/M and K satisfies (K.2), then the test defined by the

critical region C (Tn(hn), α), where α ∈ ]0, 1[, is such that

Pf0

(

C (Tn(hn), α)
)

≤ α, for all n ∈ N,

lim
n→+∞

Pf0

(

C (Tn(hn), α)
)

= α

and

lim
n→+∞

Pf

(

C (Tn(hn), α)
)

= 1, for all f ∈ L∞([0, 2π[)\{f0}.

If the kernel K satisfies (K.1)-(K.2), from Theorem 2 we know that the probability order of

convergence of the test statistic Tn(h) to +∞ depends on h. More precisely, for all sequences (hn)

satisfying (B0) and for all 0 < h ≤ π/M , we have

Tn(hn)

Tn(h)

p−→ 0,

for all f ∈ L∞([0, 2π[)\{f0}. This establishes the asymptotic superiority of the tests based on

In(hn) with a fixed bandwidth over those with a non-fixed bandwidth for fixed alternatives.

3 Local power analysis

Local power analysis of testing procedures is based on the research for local alternatives providing

a non-degenerate limiting power. To define local alternatives we consider Xn1,Xn2, . . . ,Xnn, . . .

a sequence of independent and identically distributed absolutely continuous circular random vari-

ables whose probability density function fn is such that

fn(θ) = f0(θ)
(

1 + γnη(θ) + o(γn)ηn(θ)
)

, (11)

for θ ∈ [0, 2π[, with η an a.e. (f0) non-identically null function, (γn) a sequence of positive real

numbers tending to zero as n tends to infinity, and the functions η and (ηn) are such that

sup
θ∈[0,2π[

|η(θ)| < +∞, sup
n∈N

sup
θ∈[0,2π[

|ηn(θ)| < +∞.

The goal of this section is to obtain the limiting local power function of the test associated

with the critical region given by (10) for the previous sequence of local alternatives. Assuming

that condition (Bh) is fulfilled for some h ≥ 0, it is defined by

ph(η, α) = lim
n→+∞

Pfn

(

Cn(Tn(hn), α)
)

= lim
n→+∞

Pfn

(

Tn(hn) > q(Tn(hn), α)
)

.

Theorem 4. Let us assume that f0 ∈ L∞([0, 2π[) and that K satisfies (K.1)-(K.2).
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(a) Under assumption (B0), we have

p0(η, α) =











α, γn = o(n−1/2h
−1/4
n ),

1− Φ
(

Φ−1(1− α)− µν−1
)

> α, γn = n−1/2h
−1/4
n ,

1, n−1/2h
−1/4
n = o(γn),

where

µ = (2π)−1
∞
∑

k=−∞

|ϕf0η(k)|2 > 0,

ν2 is given by (7) and Φ is the cumulative distribution function of the standard normal distribution.

(b) Under assumption (Bh) for some 0 < h ≤ π/M , we have

ph(η, α) =











α, γn = o(n−1/2),

1− Fh,η

(

F−1
h,0 (1− α)

)

≥ α, γn = n−1/2,

1, n−1/2 = o(γn),

where Fh,η is the cumulative distribution function of the random variable

∞
∑

k=1

λh,k(Zk + ah,k)
2,

with

ah,k =

∫ 2π

0
qh,k(θ)η(θ)f0(θ)dθ,

for k ≥ 1, where {λh,k, k ≥ 1} and {Zk, k ≥ 1} are defined in Theorem 1, and {qh,k, k ≥ 1} denotes

an orthonormal basis for the orthogonal complement of the eigenspace associated to λh,0 = 0,

consisting of eigenfunctions of the operator Hh defined by (8) corresponding to the collection of

its strictly positive eigenvalues, that is,
∫ 2π
0 H(·, v; f0, h)qh,k(v)f0(v) = λh,kqh,k(·), a.e. (f0), for

all k ≥ 1, where H(·, ·; f0, h) is given by (9).

In view of the degeneracy property of H(·, ·; f0, h), qh,0 = 1 is an eigenfunction of Hh corre-

sponding to the eigenvalue λh,0 = 0. In addition, under assumptions (K1)-(K2) it can be proved

that the eigenspace associated to λh,0 = 0 has dimension one, which enables us to conclude that

Hh has a countable infinite number of strictly positive eigenvalues (see Dunford and Schwartz,

1963, Corollary X.3.5, p. 905) and then λh,k → 0, as k → ∞, since
∑∞

k=1 λh,k < +∞.

From the previous theorem, we conclude that the tests based on In(hn) with a fixed bandwidth

are able to detect all the alternatives of the form (11) that converge to the null hypothesis density

function at the rate γn = o(n−1/2), whereas the tests based on In(hn) with a non-fixed bandwidth

only detect local alternatives that converge to the null hypothesis density function at the slower

rate γn = n−1/2h
−1/4
n . This establishes the asymptotic superiority of the tests based on In(hn)

with a fixed bandwidth over those with a non-fixed bandwidth for local alternatives.
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4 A uniformity goodness-of-fit test

In this section we consider the test of a uniformity hypothesis, that is, we are interested in testing

the hypotheses (5) where f0(θ) = (2π)−1, for θ ∈ [0, 2π[. In this case the BR-type statistic In(h)

defined by (3) takes the form

In(h) = n

∫ 2π

0

{

f̂n(θ;h)− (2π)−1
}2
dθ.

Taking into account the asymptotic superiority of the tests based on the BR-type statistic with

a fixed bandwidth over those with a non-fixed bandwidth for fixed and local alternatives, but

also the fact that no relevant information about the selection of the bandwidth is provided by the

asymptotic kernel density estimation theory when the true probability density function is uniform

(see Tenreiro, 2022), we will focus our attention to the case where the bandwidth h is fixed. It is

interesting to note that in this case the test based on In(h) belongs to the class of tests introduced

in Beran (1969) as

In(h) = n−1
n
∑

i,j=1

k(Xi −Xj ;h),

where

κ(u;h) = dh(K)2
∫ 2π

0
Kh(u+ v)Kh(v)dv − (2π)−1, u ∈ R,

is such that
∫ 2π
0 k(u;h)2du < ∞ and

∫ 2π
0 k(u;h)du = 0 (on these tests, also called Sobolev tests,

see Mardia and Jupp, 2000, §6.3.7, p. 110, Pycke, 2010, pp. 81–84, Jammalamadaka et al., 2020,

pp. 2228–2229, and Garćıa-Portugués et al., 2023, pp. 190–192). The set of orthonormal eigen-

functions of the operator Hh defined by (8) is the Fourier orthonormal basis of L2([0, 2π[, f0)

given by
{

1,
√
2 cos(k ·),

√
2 sin(k ·), k ∈ N

}

, and λh,k = 1
2π

∫ 2π
0 κ(u;h) cos(ku)du, is the eigenvalue

associated to both eigenfunctions
√
2 cos(k ·) and

√
2 sin(k ·), for k ∈ N. Note that, in this specific

case of testing a uniformity hypothesis, the asymptotic behaviour of In(h) under the null hypoth-

esis and under fixed alternatives could also have been derived from Proposition 1 in Pycke (2010,

p. 83).

From a practical point of view, it is natural to expect that the finite sample power performance

of the test based on In(h) with critical region

C (In(h), α) =
{

In(h) > q(In(h), α)
}

, (12)

where q(In(h), α) denotes the quantile of order 1−α of the null distribution of In(h), may be very

sensitive to the choice of h, which was confirmed through some preliminar simulation experiments.

As with the BR-test with fixed bandwidth for linear data (see Tenreiro, 2007b), the bandwidth

h acts as a tuning parameter through which the user can increase the power of the test toward

some particular direction along the alternative distributions set. However, as the formulation of

a specified alternative hypothesis is not possible in general, the usual practice is to evaluate the

test power performance for h varying in a finite set H, and then suggesting a selection of h that
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produces a test with a reasonable power against a wide range of alternative distributions. As this

strategy of taking a single value of the tuning parameter does not prevent the user from obtaining

a test that achieves very low power against some of the considered alternative distributions, we

will consider a test procedure considered in Klar (2001) and Fromont and Laurent (2006) that

combines tests associated to different values of h into a single test procedure that could show a

good power performance against a wide range of alternative distributions. The proposed test,

studied in Tenreiro (2019), which can be viewed as an improvement of the classical Bonferroni

multiple test procedure, leads to the rejection of the null hypothesis if one of the statistics In(h), for

h ∈ H, is larger than its (1−u) quantile under the null hypothesis, the level u being calibrated so

that the resulting multiple test has a level of significance at most equal to α. Thus, the associated

critical region is given by

Cn(H,u) =
{

max
h∈H

(

In(h)− q(In(h), u)
)

> 0
}

, (13)

for some u ∈ ]0, 1[. Unlike the classic Bonferroni multiple testing procedure, that can be obtained

by taking u = α/|H|, where |H| denotes the cardinality of H, the previous rejection region takes

in consideration the dependence structure among the test statistics, In(h) for h ∈ H. Taking into

account that the previous critical region can be written as

Cn(H,u) =
{

In(h̄u) > q(In(h̄u), u)
}

,

where

h̄u = h̄u(X1, . . . ,Xn) = argmax
h∈H

(

In(h)− q(In(h), u)
)

,

the previous multiple test procedure can be seen as a test based on a data-dependent procedure

for selecting the tuning parameter h: for a given sample of size n, one selects the value h ∈ H for

which the test statistic In(h) shows strong evidence, at level u, against the null hypothesis.

4.1 The calibration procedure

Given a finite set H of tuning parameters, we know that by selecting the value u ∈ ]0, 1[ such

that 0 < u ≤ α/|H|, the Type I error of the test with critical region Cn(H,u) given by (13) may

be put under a preassigned level of significance α (see Tenreiro, 2019, Theorem 2.1). Taking into

account that the test should have a level of significance not only less than or equal to α but also

as close to α as possible, the practical selection of the level u at which each one of the tests based

on I(h), h ∈ H, is performed, will be made by considering a regular grid Gp = {uk, k ∈ Ip} on the

interval ]0, 1[, where u1 = p, uk+1 = uk + p, for some 0 < p ≤ α/|H|, and Ip = {k ∈ N : kp < 1},
and taking for u = uH,p

n,α = un,α (say) the largest value of Gp satisfying Pf0(Cn(H,u)) ≤ α, that

is,

un,α = max
{

u ∈ Gp : Pf0(Cn(H,u)) ≤ α
}

. (14)
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Figure 1: Empirical power, at level α = 0.05 and sample sizes n = 25, 50, 75, of the tests

based on In(h), as a function of h, for distributions with densities fj, for j = 1, . . . , 6. The

red marks indicate the empirical power of the test based on the critical region Cn(H,un,α), with

H = {0.2, 0.5, 1.0, 2.0}. The power estimates are based on 10,000 samples from the considered

distributions.

In order to implement this calibration procedure in practice, we used 50,000 simulations un-

der the null hypothesis on the involved test statistics In(h), h ∈ H, and the R function quan-

tile(.,type=7) for estimating the (1− u) quantiles q(In(h), u), for u varying on Gp with p = 0.001.

Further 50,000 simulations were used for estimating the probabilities Pf0(Cn(H,u)), for u varying

on Gp.

4.2 The selection of H

Taking in mind the choice of the tuning parameters set H, we start by performing some simulation

experiments for a large set of alternative distributions in order to analyse the power performance

of the tests based on the critical regions C (In(h), α) given by (12) as a function of h, where we

take for kernel K the kernel K2 defined by (6). From now on, this will be the kernel we consider.

We concluded that a moderate or large bandwidth h leads to a test especially performing in

detecting deviations in the first trigonometric moment from the null hypothesis of uniformity,

whereas moderate or small values of h enable us to obtain test procedures highly performing in

detecting alternatives with null first trigonometric moments.
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α = 0.01 α = 0.05

H n = 25 n = 50 n = 75 n = 25 n = 50 n = 75

Distribution f1

Ha 0.53 0.95 1.00 0.80 0.99 1.00
Hb 0.51 0.95 1.00 0.78 0.99 1.00
Hc 0.56 0.96 1.00 0.80 0.99 1.00

Distribution f2

Ha 0.24 0.77 0.97 0.66 0.97 1.00
Hb 0.24 0.77 0.97 0.51 0.93 1.00
Hc 0.27 0.79 0.97 0.55 0.94 1.00

Distribution f3

Ha 0.16 0.60 0.92 0.39 0.85 0.98
Hb 0.16 0.59 0.93 0.38 0.85 0.98
Hc 0.17 0.62 0.93 0.40 0.86 0.99

Distribution f4

Ha 0.12 0.47 0.86 0.32 0.77 0.96
Hb 0.12 0.46 0.85 0.32 0.75 0.96
Hc 0.12 0.49 0.86 0.34 0.79 0.97

Distribution f5

Ha 0.10 0.39 0.78 0.27 0.69 0.93
Hb 0.09 0.34 0.75 0.26 0.65 0.92
Hc 0.10 0.38 0.77 0.28 0.69 0.93

Distribution f6

Ha 0.08 0.33 0.72 0.24 0.63 0.90
Hb 0.08 0.31 0.70 0.22 0.59 0.88
Hc 0.08 0.33 0.71 0.23 0.62 0.90

Table 1: Empirical power results, at levels α = 0.01, 0.05, and sample sizes n = 25, 50, 75,

of the tests based on the critical region Cn(H,un,α), with Ha = {0.1, 0.2, . . . , 3.1}, Hb =

{0.1, 0.2, 0.5, 1.0, 2.0, 3.0}, and Hc = {0.2, 0.5, 1.0, 2.0}, for the distributions with densities fj,

for j = 1, . . . , 6. The power estimates are based on 10,000 samples from the considered distribu-

tions.

This behaviour is illustrated in Figure 1 where we present the empirical power, at level α =

0.05, of the tests based on In(h) as a function of h for a set of distributions with probability

densities of the form fj(θ) = (2π)−1(1 + ρ cos(j(θ − π))), for θ ∈ [0, 2π[, ρ = 0.9 and j = 1, . . . , 6.

Data from this type of alternatives are generated by the acceptance-rejection method, taking the

uniform circular density as the auxiliary density. The characteristic function of density fj is such

that |ϕfj (j)| = |ρ|/2, and |ϕfj (p)| = 0, for p ∈ N \ {j}.
After this initial step we implemented the test with critical region Cn

(

H,un,α
)

by taking for

H the set {0.1, 0.2, . . . , 3.1}, as well as several other subsets of this initial large set of tuning
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n 25 50 75 100 150 200

α = 0.10

un,α 0.0468 0.0484 0.0474 0.0465 0.0465 0.0476

EL 0.0975 0.1065 0.1020 0.0953 0.0963 0.0980

α = 0.05

un,α 0.0221 0.0229 0.0221 0.0216 0.0216 0.0228

EL 0.0470 0.0530 0.0513 0.0474 0.0465 0.0481

α = 0.01

un,α 0.0040 0.0036 0.0039 0.0043 0.0042 0.0045

EL 0.0102 0.0089 0.0121 0.0095 0.0080 0.0099

Table 2: Estimated levels un,α for a preassigned level α, based on regular grids of size p = 0.0001

on the interval ]0, 1[, and estimates of the nominal levels of significance (EL) for the test based

on the critical region Cn

(

H,un,α
)

, for H = {0.2, 0.5, 1.0, 2.0} and K = K2. For the estimation of

the nominal levels, the number of replications for each case is 10,000.

parameters. We concluded that the power performance of the resulting test does not strongly

depend on the set H once it includes values of h for which the test based on In(h) reaches a good

power performance. In Table 1 we present the results observed for some of the considered sets of

tuning parameters for each one of the distributions fj, j = 1, . . . , 6.

Based on this preliminary analysis, we decided to take H = {0.2, 0.5, 1.0, 2.0}, which is the

set of tuning parameters we always consider from now on. Although the choice of the set H

may be based on some preliminar information, the previous set H is meant for the most common

situation in practice where no relevant information about the alternative hypothesis is available.

4.3 Nominal level of significance

For α = 0.01, 0.05, 0.1, and sample sizes n = 25, 50, 100, 150, 200, we present in Table 2 the

estimated levels un,α as well as estimates of the nominal levels of significance for the test based on

the critical region Cn

(

H,un,α
)

, with H = {0.2, 0.5, 1.0, 2.0}, for which 10,000 simulations under

the null hypothesis were used. With three single marginal exceptions the preassigned level α

is inside its approximate 95% confidence interval, revealing the effectiveness of the calibration

procedure through the selection of the level u as explained before.

4.4 Finite sample power analysis

In order to investigate the performance of the test based on the critical region Cn(H,un,α), with

H = {0.2, 0.5, 1.0, 2.0} and K = K2, labelled IH henceforth, and compare its performance with

other existing tests, we carried out simulations for a large set of alternative distributions that

includes all the models considered in Bogdan et al. (2002) and Oliveira et al. (2012). Here we
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Figure 2: Probability densities of the mixtures of von Mises distributions whose parameters are

given in Table 3.

m w1, . . . , wm µ1, . . . , µm κ1, . . . , κm

g1 1 1 π 1

g2 2 1/4, 3/4 0, π/
√
3 1, 1

g3 2 1/2, 1/2 0, π 2, 2

g4 3 1/3, 1/3, 1/3 π/3, π, 5π/3 3, 3, 3

g5 4 1/4, 1/4, 1/4, 1/4 0, π/2, π, 3π/2 6, 6, 6, 6

g6 5 1/5, 1/5, 1/5, 1/5, 1/5 π/5, 3π/5, 5π/5, 7π/5, 9π/5 18, 18, 18, 18, 18

Table 3: Parameters of the considered mixtures of von Mises distributions.

show the empirical power results observed for some alternatives from the following two families

of distributions:

(A) Mixtures of von Mises distributions with probability densities given by

g(θ) =

m
∑

ℓ=1

wℓfvM(θ;µℓ, κℓ),

where

fvM(θ;µ, κ) =
1

2πI0(κ)
exp(κ cos(θ − µ)),

is the von Mises density with mean direction µ ∈ [0, 2π[ and concentration parameter κ ≥ 0, and
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Figure 3: Probability densities of the mixtures of wrapped Cauchy distributions whose parameters

are given in Table 4.

m w1, . . . , wm µ1, . . . , µm ρ1, . . . , ρm

h1 1 1 π 0.44

h2 2 1/4, 3/4 0, π/2 0.42, 0.42

h3 4 0.25, 0.15, 0.4, 0.2 0, 3π/4, π, 5π/4 0.69, 0.575, 0.69, 0.575

h4 3 0.5, 0.2, 0.3 0, 2π/3, 4π/3 1/2, 3/4, 3/4

h5 3 1/3, 1/3, 1/3 0, 2π/3, 4π/3 3/4, 3/4, 3/4

h6 4 1/4, 1/4, 1/4, 1/4 0, π/2, π, 3π/2 0.7, 0.7, 0.7, 0.7

Table 4: Parameters of the considered mixtures of wrapped Cauchy distributions.

Ir(ν) is, for ν ≥ 0 and r ≥ 0, the modified Bessel function of the first kind and order r defined by

Ir(ν) =
1

2π

∫ 2π

0
cos(rθ) exp(ν cos θ)dθ;

(B) Mixtures of wrapped Cauchy distributions with probability densities given by

h(θ) =

m
∑

ℓ=1

wℓfwC(θ;µℓ, ρℓ),

where

fwC(θ;µ, ρ) =
1

2π

1− ρ2

1− 2ρ cos(θ − µ) + ρ2
,
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is the wrapped Cauchy density with mean direction µ ∈ [0, 2π[ and concentration parameter

ρ ∈ [0, 1[.

From each one of these families six distributions are chosen. They include densities considered

or inspired by some of the models in Bogdan et al. (2002) and Oliveira et al. (2012). The

associated parameters are given in Tables 3 and 4, and the corresponding densities are depicted

in Figures 2 and 3. We used the package ‘circular’ (Lund and Agostinelli, 2017) for generating

data from the von Mises and the wrapped Cauchy distributions. The characteristic functions of

the considered von Mises distribution mixtures are such that |ϕg1(1)| = 0.446, |ϕg2(1)| = 0.326,

|ϕg3(1)| = 0, |ϕg3(2)| = 0.302, |ϕg4(p)| = 0, p = 1, 2, and |ϕg4(3)| = 0.197, |ϕg5(p)| = 0,

p = 1, 2, 3, |ϕg5(4)| = 0.396, |ϕg5(p)| = 0, p = 1, 2, 3, 4, and |ϕg6(5)| = 0.492. Regarding the

considered mixtures of wrapped Cauchy distributions, we have |ϕh1
(1)| = 0.44, |ϕh2

(1)| = 0.332,

|ϕh3
(1)| = 0.247, |ϕh4

(1)| = 0.090, |ϕh5
(p)| = 0, p = 1, 2, |ϕh5

(3)| = 0.421, |ϕh6
(p)| = 0, p = 1, 2, 3,

and |ϕh6
(4)| = 0.240. The first two densities of family (A) and the first three densities of family (B)

express departures from the null hypothesis of uniformity in the first trigonometric moment, while

the remaining densities of each family express deviations from the null hypothesis of uniformity

in relation to higher-order trigonometric moments (we include here the fourth density of family

(B) because it has a first trigonometric moment close to zero).

As competitor tests we consider the classical tests of Kuiper (1960) and Watson (1961), which

are based on two different measures of the discrepancy between the empirical distribution function

and the distribution function of the uniform distribution. The Kuiper test statistic V is inspired

by the Kolmogorov-Smirnov statistic for linear data, while the Watson test statistic U2 is an

adaptation of the Cramér-von Mises test for linear data. Denoting by X(1), . . . ,X(n) the ordered

observations and letting Ui = X(i)/(2π), for i = 1, . . . , n, the Kuiper test statistic can be written

as

V = max
1≤i≤n

(

Ui −
i

n

)

− min
1≤i≤n

(

Ui −
i

n

)

+
1

n
,

and the Watson test statistic can be expressed as

U2 =
n
∑

i=1

(

Ui − Ūn − i− 1/2

n
+

1

2

)

+
1

12n
,

where Ūn = (U1 + · · · + Un)/n (see Mardia and Jupp, 2000, pp. 99–105). The null hypothesis of

uniformity is rejected for large values of these statistics. Note that the Watson test is equivalent

to the projected Cramér-von Mises test of uniformity proposed in Garćıa-Portugués et al. (2021).

We also include in our study a data driven smooth test suggested by Bogdan et al. (2002),

which rejects the null hypothesis of uniformity for large values of the statistic N2S , where

N2k = 2n

k
∑

p=1

{(

1

n

n
∑

i=1

cos(pXi)

)2

+

(

1

n

n
∑

i=1

sin(pXi)

)2}

,

for k ∈ N, and S = argmin1≤k≤10 L(k), with L(k) = N2k−2k log n, and a uniformity test proposed

by Pycke (2010) which is based on the statistic Vq, with q =
√

1/2. This test belongs to a family
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of tests indexed by q ∈ ]0, 1[, that reject the null hypothesis of uniformity for large values of the

V -statistic

Vq =
2

n

n
∑

i,j=1

cos(Xi −Xj)− q

1− 2q cos(Xi −Xj) + q2
.

The simulation results presented in Bogdan et al. (2002) and Pycke (2010) support the conclusion

that these tests performs well for a wide range of alternatives, being in general better or at least

quite competitive against other tests such as the test of Rayleigh (see Mardia and Jupp, 2000,

pp. 94–99), the test of Ajne (1968), or the tests of Hermans and Rasson (1985). For this reason,

none of these tests is included in our study.

Finally, we consider in our simulation study two recently proposed tests of uniformity for

circular data. The first one is the projected Anderson-Darling test, proposed in Garćıa-Portugués

et al. (2023, p. 189), that rejects the null hypothesis of uniformity for large values of the statistic

AD =
2

n

∑

1≤i<j≤n

ψ
(

cos−1(cos(Xi −Xj))
)

+ n,

where ψ(θ) = −2 log(2π) + π−1
(

θ log θ + (2π − θ) log(2π − θ)
)

, for θ ∈ ]0, π], and ψ(0) = 0. The

second one is the K-fold smooth maximum test, proposed in Fernández-de-Marcos and Garćıa-

Portugués (2023), which is based on the family of statistics

Tκ =
2

n

∑

1≤i<j≤n

exp
(

κ(cos(Xi −Xj)− 1)
)

− (n− 1)I0(κ) exp(−κ),

that depends on the parameter κ > 0, which selection is crucial in practice to ensure a powerful

test. In implementing this test procedure, we have followed the description given in Fernández-

de-Marcos and Garćıa-Portugués (2023, Definition 2, p. 1518) by taking K = 10, which is the

authors’ recommended value for using the K-fold method, and using the gamma-match method in

Step 2.(b) to obtain the asymptotic p-values pk, for k = 1, . . . ,K. The simulation results presented

in the previous works give strong indications that both tests are quite competitive against several

other uniformity tests.

In Tables 5 and 6 we show the empirical power of the tests IH, N2S , Vq (q =
√

1/2), V ,

U2, AD and Tκ, for the considered alternatives g1, . . . , g6 and h1, . . . , h6, respectively. We limit

ourselves to present here the results obtained for the nominal level α = 0.05 and sample sizes

n = 25, 50, 75, 100. However, similar conclusions can be drawn for the nominal levels α = 0.1, 0.01

also considered in our study. The quantiles of order 1 − α of each one of the tests based on

N2S , Vq (q =
√

1/2), V , U2 and AD, are estimated by performing 100,000 simulations under the

null hypothesis, and the corresponding power estimates are based on 10,000 samples from the

considered alternatives.

Although none of the considered tests presents uniformly better results for the considered set

of alternatives, the main conclusion that can be drawn is that the new IH test presents a good

overall performance for a wide range of alternative distributions. Although slightly less performing
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Alternatives (A)

n = 25 n = 50 n = 75 n = 100 n = 25 n = 50 n = 75 n = 100

Distribution g1 Distribution g2

IH 0.77 0.98 1.00 1.00 0.44 0.79 0.94 0.99
N2S 0.42 0.80 0.96 1.00 0.21 0.44 0.66 0.83
Vq 0.76 0.98 1.00 1.00 0.45 0.78 0.93 0.99
V 0.81 0.99 1.00 1.00 0.50 0.82 0.95 0.99
U2 0.87 0.99 1.00 1.00 0.57 0.87 0.97 1.00
AD 0.84 0.99 1.00 1.00 0.54 0.85 0.96 1.00
Tκ 0.55 0.94 1.00 1.00 0.22 0.60 0.84 0.95

Distribution g3 Distribution g4

IH 0.23 0.50 0.71 0.86 0.09 0.15 0.23 0.31
N2S 0.18 0.36 0.56 0.74 0.09 0.15 0.23 0.31
Vq 0.26 0.54 0.73 0.90 0.09 0.15 0.23 0.32
V 0.13 0.24 0.39 0.54 0.06 0.08 0.10 0.13
U2 0.12 0.21 0.37 0.55 0.06 0.07 0.09 0.10
AD 0.13 0.26 0.46 0.66 0.06 0.07 0.09 0.11
Tκ 0.02 0.09 0.21 0.40 0.01 0.01 0.02 0.02

Distribution g5 Distribution g6

IH 0.25 0.60 0.86 0.96 0.34 0.81 0.97 1.00
N2S 0.30 0.64 0.86 0.91 0.47 0.79 0.63 0.35
Vq 0.21 0.46 0.75 0.92 0.21 0.52 0.84 0.97
V 0.09 0.14 0.21 0.28 0.09 0.15 0.23 0.25
U2 0.08 0.09 0.13 0.17 0.08 0.09 0.13 0.16
AD 0.08 0.11 0.17 0.26 0.08 0.11 0.19 0.26
Tκ 0.02 0.06 0.20 0.45 0.02 0.12 0.44 0.79

Table 5: Empirical power results, at level α = 0.05 and sample sizes n = 25, 50, 75, 100, for the

tests IH, N2S, Vq (q =
√

1/2), V , U2, AD and Tκ and the alternatives g1, . . . , g6 from the family

(A). The power estimates are based on 10,000 samples from the considered distributions.

than the Kuiper, Watson and projected Anderson-Darling tests for some of the alternatives that

express departures from the null hypothesis of uniformity in the first trigonometric moment, it

is clearly better than these tests for alternatives that do not express deviations from the null

hypothesis of uniformity in the first trigonometric moment but in higher-order trigonometric

moments. Moreover, it is quite competitive against both N2S and Vq tests for the latter type of

alternatives, it outperforms the smooth N2S test and it is similar to the Vq test for the former type

of alternatives. For all the considered alternatives the test IH outperforms the 10-fold smooth

maximum test Tκ that shows a very low power against some of them. For all the sample sizes

considered the estimated significance level of the 10-fold smooth maximum test was much lower

than the nominal level α. Let us finally mention the fact that the test based N2S may present an

empirical power which is not an increasing function of n. This anomaly, observed for alternative

g6, where the empirical power for n = 100 is lower than for n = 25, but also for alternative h5,
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Alternatives (B)

n = 25 n = 50 n = 75 n = 100 n = 25 n = 50 n = 75 n = 100

Distribution h1 Distribution h2

IH 0.76 0.98 1.00 1.00 0.47 0.81 0.95 0.99
N2S 0.47 0.84 0.97 1.00 0.23 0.49 0.72 0.87
Vq 0.77 0.98 1.00 1.00 0.48 0.80 0.94 0.99
V 0.79 0.98 1.00 1.00 0.52 0.83 0.95 0.99
U2 0.84 0.99 1.00 1.00 0.59 0.88 0.97 0.99
AD 0.83 0.99 1.00 1.00 0.55 0.86 0.97 0.99
Tκ 0.54 0.92 0.99 1.00 0.23 0.62 0.86 0.95

Distribution h3 Distribution h4

IH 0.48 0.82 0.95 0.99 0.19 0.41 0.62 0.79
N2S 0.33 0.67 0.87 0.96 0.20 0.41 0.61 0.78
Vq 0.53 0.86 0.97 1.00 0.20 0.42 0.64 0.81
V 0.43 0.74 0.91 0.97 0.12 0.22 0.33 0.46
U2 0.44 0.76 0.92 0.98 0.11 0.19 0.27 0.38
AD 0.44 0.78 0.94 0.99 0.11 0.20 0.31 0.45
Tκ 0.16 0.48 0.75 0.91 0.02 0.06 0.13 0.26

Distribution h5 Distribution h6

IH 0.39 0.80 0.96 0.99 0.11 0.19 0.30 0.42
N2S 0.41 0.76 0.88 0.83 0.13 0.24 0.37 0.50
Vq 0.39 0.77 0.95 0.99 0.10 0.15 0.24 0.34
V 0.14 0.23 0.41 0.57 0.07 0.08 0.09 0.12
U2 0.11 0.18 0.30 0.49 0.07 0.07 0.08 0.09
AD 0.13 0.25 0.48 0.72 0.06 0.07 0.08 0.10
Tκ 0.04 0.22 0.55 0.81 0.01 0.01 0.02 0.03

Table 6: Empirical power results, at level α = 0.05 and sample sizes n = 25, 50, 75, 100, for the

tests IH, N2S, Vq (q =
√

1/2), V , U2, AD and Tκ, and the alternatives h1, . . . , h6 from the family

(B). The power estimates are based on 10,000 samples from the considered distributions.

as we can confirm by comparing the empirical powers for sample sizes n = 75 and n = 100, was

also observed for several other, usually multimodal, alternatives (such as models #7, #11, #13,

#14, #20 in Oliveira et al., 2012).

Taking into account the excellent performance shown by the IH and Vq tests for some of the

alternatives, together with the fact that these tests are among the best of the considered tests

for all the considered alternative distributions, if one is going to rely on one and only one of the

considered test procedures, one of the tests IH or Vq is recommended.

A function written in R language that implements an approximation for the p-value of the IH

uniformity test is available on the author’s website.
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5 Conclusions

With the aim of testing a uniformity hypothesis on the circle, we consider in this work a Bickel–

Rosenblatt type test statistic (L2 distance), based on the Parzen–Rosenblatt type estimator for

circular data, for testing a general simple null hypothesis. The asymptotic behaviour of the pro-

posed test procedure for fixed and non-fixed bandwidths is studied and the asymptotic superiority

of the tests with a fixed bandwidth over those with a non-fixed bandwidth is established for fixed

and local alternatives. Taking this into account, a multiple test procedure that combines a fi-

nite set of Bickel–Rosenblatt type test statistics for uniformity obtained for different values of

the fixed bandwidth, that acts as a tuning parameter, is then proposed for testing a uniformity

hypothesis on the circle. The results of a simulation study indicate that the new test procedure

reveals a good empirical power performance for a wide range of alternative distributions, being

quite competitive against all the uniformity tests with which it was compared.

6 Proofs

Proof of equality (4): The Fourier transforms of f̂n(·;h) and E0f̂n(·;h) = dh(K)(Kh ∗f0)(·) are
given, for k ∈ Z, by ϕf̂n(·;h)

(k) = dh(K)ϕn(k)ϕKh
(k) = dh(K)ϕn(k)ϕK(kh) and ϕE0f̂n(·;h)

(k) =

dh(K)ϕKh
(k)ϕf (k), where ϕn(k) = n−1

∑n
j=1 exp(ikXj) is the empirical characteristic function.

Assuming that K satisfies (K.1) and 0 < h ≤ π/M , we have

ϕKh
(k) =

∫ π/h

−π/h
K(v) exp(ikhv)du =

∫

R

K(v) exp(ikhv)du = ϕK(kh),

and dh(K)−1 =
∫ π/h
−π/hK(y)dy =

∫

R
K(u)du. Therefore, equality (4) follows easily from the

Parseval’s identity (see Butzer and Nessel, 1971, Proposition 4.2.2, p. 175). �

Proof of Theorem 1: Given X1, . . . ,Xn ∈ [0, 2π[ independent circular random variables with

common probability density function f0 ∈ L∞([0, 2π[), we begin by noticing that the statistic

In(h) defined by (3) can be written as

In(h) = EH(X1,X1; f0, h) + Jn(h) +Rn(h), (15)

where

Jn(h) =
2

n

∑

1≤i<j≤n

H(Xi,Xj ; f0, h)

and

Rn(h) =
1

n

n
∑

i=1

{H(Xi,Xi; f0, h)− EH(Xi,Xi; f0, h)},

with H(u, v; f0, h) defined by (9) for u, v ∈ [0, 2π[ and h > 0.

In order to derive the asymptotic behaviour of each one of the terms of the right-hand side of

equality (15), we start by establishing two useful properties.
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Property 1. For u, v ∈ [0, 2π[ and h > 0, we have

dh(K)−2H(u, v; f0, h) = K̄h ∗Kh(u− v) + r(u, v; f0, h), u, v ∈ [0, 2π[, h > 0,

where K̄h(u) = Kh(−u) and

Cf0 := sup
h>0

sup
u,v∈[0,2π[

|r(u, v; f0, h)| <∞.

Proof: For u, v ∈ [0, 2π[ and h > 0 we have

dh(K)−2H(u, v; f, h) =

∫ 2π

0
Kh(θ − u)Kh(θ − v)dθ −

∫ 2π

0
Kh(θ − u)(Kh ∗ f)(θ)dθ

−
∫ 2π

0
Kh(θ − v)(Kh ∗ f)(θ)dθ +

∫ 2π

0
(Kh ∗ f)(θ)2dθ,

where
∫ 2π
0 Kh(θ − u)Kh(θ − v)dθ = K̄h ∗Kh(u− v) and

|(Kh ∗ f)(θ)| ≤ ||f ||∞
∫ 2π

0
|Kh(θ − u)|du ≤ ||f ||∞

∫

R

|K(u)|du,

which concludes the proof. �

Property 2. If K satisfies (K.1) and 0 < h ≤ π/(3M), then

K̄h ∗Kh(u) = h−1K̄ ⋆ K(h−1u)1I[−π+hM,π−hM ](u), for u ∈ [−π, π],

where K̄(u) = K(−u) and ⋆ denotes the convolution product

K̄ ⋆ K(u) =

∫

R

K̄(u− v)K(v)dv =

∫

R

K(u+ v)K(v)dv, u ∈ R.

Proof: As K̄h ∗Kh is symmetric, it is enough to consider the case u ∈ [0, π]. Taking into account

that Kh is periodic with period 2π with Kh(θ) = K(θ/h)/h, for θ ∈ [−π, π[, we have

K̄h ∗Kh(u) = h−2

∫ π

−π
1I[−π,π[(u− y)K̄(h−1(u− y))K(h−1y)dy

+ h−2

∫ π

−π
1I[π,2π[(u− y)K̄(h−1(u− y − 2π))K(h−1y)dy

= h−1

∫ π/h

(u−π)/h
K̄(h−1u− z)K(z)dz + h−1

∫ (u−π)/h

−π/h
K̄(h−1(u− 2π)− z)K(z)dz.

For 0 < h ≤ π/M and u ∈ [0, π − hM ], we have

K̄h ∗Kh(u) = h−1

∫

R

K̄(h−1u− z)K(z)dz = h−1K̄ ⋆ K(h−1u),

as −π/h ≤ (u− π)/h ≤ −M ≤M ≤ π/h. For 0 < h ≤ π/M and u ∈ ]π − hM,π] we have

K̄h ∗Kh(u) = h−1K̄ ⋆ K(h−1u) + h−1

∫ (u−π)/h

−M
K̄(h−1(u− 2π)− z)K(z)dz,
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as −π/h ≤ −M ≤ (u − π)/h ≤ M ≤ π/h, and h−1u − z ≥ M for z ≤ (u − π)/h. In order

to conclude, it suffices to note that the right-hand side of the previous equality vanishes when

0 < h ≤ π/(3M). �

Taking into account that Kh(θ) = K(θ/h)/h ≤ h−1||K||∞ and

sup
u∈[0,2π[

|K̄h ∗Kh(u)| ≤ h−1||K||∞
∫

R

|K(u)|du, (16)

from Property 1 we deduce that

sup
u,v∈[0,2π[

|H(u, v; f0, h)| ≤ dh(K)2
(

h−1||K||∞
∫

R

|K(u)|du + Cf0

)

,

which enables us to rewrite equality (15) as

In(h) = EH(X1,X1; f0, h) + Jn(h) +Op

(

n−1/2dh(K)2(1 + h−1)
)

. (17)

If the assumption (Bh) is satisfied for some h > 0, from this equality we conclude that the

convergence in distribution stated in part (b) follows from the limit distribution theorem for

degenerate U-statistics with fixed kernel applied to the U-statistic Jn(h) as E|H(X1,X1; f0, h)| <
∞, E(H(X1, v; f0, h)) = 0 for all v ∈ [0, 2π[, and E(H(X1,X2; f0, h)

2) < ∞ (see Gregory, 1977,

Theorem 2.1, p. 111), and the fact that EH(X1,X1; f0, h) =
∑∞

k=1 λh,k, which follows from the

integral form of H(u, v; f0, h).

From now on we assume that the bandwidth h = hn satisfies the assumption (B0) and that

the kernel K satisfies assumption (K.1). Under these conditions and for large enough n we have

EH(X1,X1; f0, h) = h−1

∫

R

K(u)2du

(
∫

R

K(u)du

)−2

+O(1),

from which together with equality (17) we deduce that

h1/2
{

In(h)− h−1

∫

R

K(u)2du

(
∫

R

K(u)du

)−2}

= h1/2Jn(h) + op(1).

Therefore, in order to establish the convergence in distribution stated in part (a) of Theorem 1 we

will prove that h1/2Jn(h) is asymptotically normal with zero mean and variance ν2. As Jn(h) is

a degenerate U-statistic with a kernel depending on n, such asymptotic normality will be derived

by using U-statistics techniques introduced in Hall (1984). For that some auxiliary results are

established in the following propositions.

Proposition 1. We have

a) hE
(

H(X1,X2; f0, h)
2
)

=

(
∫

R

K(u)du

)4 ∫

R

K̄ ⋆ K(v)2dv

∫ 2π

0
f0(θ)

2dθ + o(1);

b) h3E
(

H(X1,X2; f0, h)
4
)

= O(1).
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Proof: From Property 1 we have

h1/2dh(K)−2H(X1,X2; f0, h) = h1/2K̄h ∗Kh(X1 −X2) + h1/2r(X1,X2; f0, h),

where E
(

hr(X1,X2; f0, h)
2
)

≤ hCf0 = o(1). Moreover, from Property 2 and for h small enough

(h ≤ π/(3M)) we have

hE
(

K̄h ∗Kh(X1 −X2)
2
)

= h

∫ 2π

0

∫ 2π

0
K̄h ∗Kh(u− v)2f0(u)f0(v)dudv

= h

∫ 2π

0
K̄h ∗Kh(w)

2f̄0 ∗ f0(w)dw

= h−1

∫ π−hM

−π+hM
K̄ ⋆ K(h−1w)2f̄0 ∗ f0(w)dw

=

∫

R

K̄ ⋆ K(v)2f̄0 ∗ f0(hv)dv.

The result stated in a) follows now from the continuity of f̄0 ∗ f0 and the fact that dh(K)−1 =
∫

R
K(u)du, for h ≤ π/M . Similar arguments can be used to prove b). �

For x, y ∈ [0, 2π[ define

G(x, y; f0, h) = E
(

H(X1, x; f0, h)H(X1, y; f0, h)
)

.

Proposition 2. We have

hE
(

G(X1,X2; f0, h)
2
)

= O(1).

Proof: From the definition of H(u, v; f0, h) and Property 1 we have

dh(K)−4G(x, y; f0, h) =

∫ 2π

0
K̄h ∗Kh(u− x)K̄h ∗Kh(u− y)f0(u)du

+

∫ 2π

0
K̄h ∗Kh(u− x)r(u, y; f0, h)f0(u)du

+

∫ 2π

0
K̄h ∗Kh(u− y)r(u, x; f0, h)f0(u)du

+

∫ 2π

0
r(u, x; f0, h)r(u, y; f0, h)f0(u)du

=: gn1(x, y) + gn2(x, y) + gn2(y, x) + gn3(x, y),

where |gn2(x, y)| ≤ Cf0 ||f0||∞
∫ 2π
0 |K̄h ∗Kh(v)|dv ≤ Cf0 ||f0||∞

∫

R
K(u)2du, and |gn3(x, y)| ≤ C2

f0
,

for all x, y ∈ [0, 2π[. In order to conclude, it suffices to use (16) and the fact that

E
(

gn1(X2,X2)
2
)

=

∫ 2π

0

∫ 2π

0

(
∫ 2π

0
K̄h∗Kh(u− x)K̄h∗Kh(u− y)f0(u)du

)2

f0(x)f0(y)dxdy

≤ 2π||f0||4∞
(
∫ 2π

0
|K̄h ∗Kh(u)|du

)3

sup
u∈[0,2π[

|K̄h ∗Kh(u)|

≤ 2π||f0||4∞
(
∫

R

K(u)2du

)3

sup
u∈[0,2π[

|K̄h ∗Kh(u)|. �
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Taking into account the previous propositions we conclude that

E(Gn(X1,X2; f0, h)
2) + n−1E(Hn(X1,X2; f0, h)

4)

{E(Hn(X1,X2; f0, h)2)}2
= O

(

n−1h−1 + h
)

= o(1).

Therefore, from the central limit theorem for degenerate U-statistics of Hall (1984, Theorem 1,

pp. 3–4), we conclude that h1/2Jn(h)
d−→ N(0, ν2). This ends the proof of Theorem 1. �

Proof of Theorem 2: Given X1, . . . ,Xn ∈ [0, 2π[ independent circular random variables with

common probability density function f ∈ L∞([0, 2π[), consider the following expansion where

In(h) is the statistic defined by (3):

n−1In(h) =

∫ 2π

0

{

f̂n(θ;h)− Ef̂n(θ;h)
}2
dθ +

∫ 2π

0

{

Ef̂n(θ;h)− E0f̂n(θ;h)
}2
dθ

+ 2

∫ 2π

0

{

f̂n(θ;h)− E0f̂n(θ;h)
}{

Ef̂n(θ;h)− E0f̂n(θ;h)
}

dθ

=: An +Bn + 2Cn.

Reasoning as in the proof of equality (4), from the Parseval’s identity we have

Bn =

(
∫

R

K(u)du

)−2 1

2π

∞
∑

k=−∞

|ϕf (k)− ϕf0(k)|2|ϕK(kh)|2,

as K satisfies (K.1) and 0 < h ≤ π/M . From Theorem 1 and the previous equality we know

that An = op(1) and Bn = O(1), respectively, and also Cn = op(1) from the Cauchy-Schwarz

inequality. Therefore, we have

n−1In(h) =

(
∫

R

K(u)du

)−2 1

2π

∞
∑

k=−∞

|ϕf (k)− ϕf0(k)|2|ϕK(kh)|2 + op(1),

from which we get the asymptotic behaviour of the statistic Tn(hn) stated in Theorem 2. �

Proof of Theorem 3: Denoting by Fn,hn
the distribution function of Tn(hn) under the null

hypothesis, from the properties of the quantile function (see van der Vaart, 2000, Lemma 21.1,

p. 304) we have

Pf0

(

Tn(hn) > q(Tn(hn), α)
)

= 1− Pf0

(

Tn(hn) ≤ q(Tn(hn), α)
)

= 1− Fn,hn

(

F−1
n,hn

(1− α)
)

≤ 1− (1− α) = α.

Denoting by Fh the cumulative distribution functions of the limiting distribution of Tn(hn) under

the null hypothesis when the assumption (Bh) is satisfied for some h ≥ 0, we know from Theorem

1 that Fh is continuous on R. Therefore, in order to prove that the test with critical region

C (Tn(hn), α) is asymptotically of level α it is enough to show that

Fn,hn

(

F−1
n,hn

(1− α)
)

→ Fh

(

F−1
h (1− α)

)

. (18)
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We have

∣

∣Fn,hn

(

F−1
n,hn

(1− α)
)

− Fh

(

F−1
h (1− α)

)
∣

∣

≤ sup
x∈R

∣

∣Fn,hn
(x)− Fh(x)

∣

∣+
∣

∣Fh

(

F−1
n,hn

(1− α)
)

− Fh

(

F−1
h (1− α)

)
∣

∣,

where, from the continuity of Fh, supx∈R
∣

∣Fn,hn
(x) − Fh(x)

∣

∣ → 0 (van der Vaart, 2000, Lemma

2.11, p. 12). Finally, using the fact that Fh is strictly increasing on {x ∈ R : Fh(x) > 0}, we get

that F−1
h is continuous on ]0, 1[, from which we deduce that

Fh

(

F−1
n,hn

(1− α)
)

→ Fh

(

F−1
h (1− α)

)

(van der Vaart, 2000, Lemma 21.2, p. 305). This concludes the proof of (18).

Taking into account that q(Tn(h), α) = F−1
n,hn

(1−α) → F−1
h (1−α), the consistency of the test

with critical region C (Tn(hn), α) follows from the convergence in probability of the test statistic

Tn(hn) to +∞ for a fixed alternative f ∈ L∞([0, 2π[)\{f0}, that we can deduce from Theorem

2 when (B0) is satisfied, and under the additional assumption (K.2) on the kernel when (Bh) is

satisfied for some 0 < h ≤ π/M . �

Proof of Theorem 4: Adapting the proofs of Theorems 1 and 2 for local alternatives, and for

µ, ν2, {λh,k, k ≥ 1} and {ah,k, k ≥ 1} defined in their statements, we may conclude that: a) under

assumption (B0), we have Tn(hn)
d−→ N(0, ν2), for γn = o(n−1/2h−1/4), Tn(hn)

d−→ N(µ, ν2),

for γn = n−1/2h−1/4, and Tn(hn)
p−→ +∞, for n−1/2h−1/4 = o(γn); b) under assumption (Bh)

for some 0 < h ≤ π/M , we have Tn(hn)
d−→

∑∞
k=1 λk,hZ

2
k , for γn = o(n−1/2), Tn(hn)

d−→
∑∞

k=1 λh,k(Zk + ah,k)
2, for γn = n−1/2, and Tn(hn)

p−→ +∞, for n−1/2 = o(γn). Theorem 4

follows now from these results and the arguments used in the proof of Theorem 3. �
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Garćıa-Portugués, E., Crujeiras, R.M., and González-Manteiga, W. (2013), ‘Kernel Density Esti-

mation for Directional-Linear Data’, Journal of Multivariate Analysis, 121, 152–175.
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Garćıa-Portugués, E., Navarro-Esteban, P., Cuesta-Albertos, J.A. (2021), ‘A Cramér-von Mises

Test of Uniformity on the Hypersphere’, In: Balzano, S., Porzio, G.C., Salvatore, R., Vistocco,

D., Vichi, M. (eds) Statistical Learning and Modeling in Data Analysis. CLADAG 2019. Studies

in Classification, Data Analysis, and Knowledge Organization. Springer, Cham.



27
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