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Abstract

We use homotopy operators for the L∞-algebra associated with an

equivariant deformation problem in order to describe a smooth parame-

trization of the space of structures around a given one. Along the way we

give new algebraic and explicit proofs of rigidity and unobstructedness

theorems.
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1 Introduction

When studying an algebraic or geometric structure (e.g. associative algebras,
Lie algebras, complex structures), it is fruitful to understand how it changes
under small variations. In other words, the goal is to understand a neighbour-
hood of a given structure inside the space of such structures up to equivalence
- roughly a moduli space.

By considering deformations, i.e. paths in the space of structures starting
at a given one, we can approximate infinitesimally such neighbourhoods by the
spaces of tangent vectors to deformations. The infinitesimal consequences of
the equations that the structures under observation must satisfy (e.g. associa-
tivity, the Jacobi identity, Cauchy-Riemann equations) lead to the construction
of a deformation cochain complex, such that tangent vectors to deformations
represent deformation cocycles.

This approach has been standard since the classical works on the deforma-
tion theories of complex structures by Frölicher–Nijenhuis [FN57] and Kodaira–
Spencer [KS58, KS60], of associative algebras by Gerstenhaber [Ger64], and of
Lie algebras by Nijenhuis–Richardson [NR64], among many others since then.

All these works found descriptions of appropriate deformation complexes.
It was also shown in [Kur62, Ger63, NR64], and stressed in [NR66], that the
complexes carried additional structure relevant to describing moduli spaces,
in the form of compatible Lie brackets (making the deformation complex into
a differential graded Lie algebra). This structure is useful, for example, in
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order to understand which deformation cocycles can arise as tangent vectors
to actual deformations (e.g. in [Kur62]).

From the early observations of Nijenhuis–Richardson, a guiding principle
arose, postulated by Deligne [Del86], Drinfeld [Dri14], and in an equivalent for-
mulation by Schlessinger–Stasheff [SS79]: Any reasonable deformation problem
in characteristic zero is controlled by a differentiable graded Lie algebra. This
principle has been recently turned into a theorem [Pri10, Lur11], stated as
an equivalence between the ∞-categories of formal moduli problems and of
differential graded Lie algebras. Nonetheless, there is no general procedure
to explicitly describe the Lie brackets for any deformation cochain complex,
although there are different methods available for several classes of examples.

In this paper we are interested in studying deformation problems for which
the space of structures can be described as the space σ−1(0) of zeros of a section
σ ∈ Γ(E) of a vector bundle π : E → M . In fact, we will consider the extra
structure

E x G F

M x G

Φ

σ

consisting of suitable Lie group actions of G on M and on E, an equivariant
section σ ∈ ΓG(E) and a vector bundle map Φ satisfying Φ ◦ σ = 0. We call
this structure an equivariant deformation problem.

Consider σ−1(0) ⊂ M as a topological space with the subspace topology.
Intuitively, M describes the space of ‘almost’ structures, while σ−1(0) describes
the space of actual structures. For example, σ being an associator or Jacobi-
ator, leads to σ−1(0) being the spaces of associative or Lie algebra structures
on a fixed vector space. The action of G identifies equivalent structures; the
role of F and Φ will become clear later. We are interested in the following:

Main question: For a given solution x0 ∈ σ−1(0), is there an open
x0 ∈ U ∩ σ−1(0) that admits a smooth structure?

If such an open exists we say that the equivariant deformation problem
is integrable at x0. On the other hand, the structure defining an equivariant
deformation problem implies thatG(x0) ⊂ σ−1(0), withG(x0) the orbit. Given
that G(x0) has a smooth structure, another natural question is whether the
orbit is open in σ−1(0) around x0, i.e. G(x0) ∩ U = σ−1(0) ∩ U . In this case
we call x0 rigid. Let g be the Lie algebra of G, and consider the sequence

g
demx0→ Tx0

M
dv
x0

σ
→ Ex0

Φx0→ Fx0
, (1.1)
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with mx0 : G → M the action at x0 and dvx0
σ the vertical derivative. In

[CSS14] the authors proved that the exactness of the sequence at Tx0M and
Ex0

implies rigidity of x0, and integrability at x0, respectively (see Propositions
4.3 and 4.4). Their proof relies, essentially, on the inverse function theorem: it
is a clever concatenation of the constant rank theorem and transversality. In
fact, their results can be stated as:

infinitesimal integrability/rigidity ⇒ integrability/rigidity.

These results did not yet use the additional algebraic structure that we expect
the deformation complex 1.1 to carry. In the PhD thesis [Baa19] the author
showed that the Taylor expansions of the structures defining the equivariant
deformation problem induce a (curved) L∞-structure (V, ℓ) on the sequence
1.1 [Baa19, Theorem 5.2.4]. In fact, the equation

∑

k≥0

1

k!
dkσ(0)(v,

k· · ·, v) = 0,

corresponds to the so called Maurer-Cartan equation

∑

k≥0

1

k!
ℓk(v,

k· · ·, v) = 0.

We call the solutions of this equation Maurer-Cartan elements. Accordingly,
when σ is analytic around x0, we get a local correspondence between σ−1(0)
and Maurer-Cartan elements [Baa19, Theorem 5.2.5]. Given that the sequence
1.1 corresponds to

V−1
ℓ1→ V0

ℓ1→ V1
ℓ1→ V2,

and the exactness of 1.1 at Tx0
M and Ex0

amounts to the vanishing of the
cohomologies H0(V, ℓ) and H1(V, ℓ), then

infinitesimal rigidity ⇔ H0(V, ℓ) = 0,

infinitesimal integrability ⇔ H1(V, ℓ) = 0.

As long as V is finite dimensional, the vanishing Hi(V, ℓ) = 0 is equivalent to
the existence of linear maps h1 : Vi → Vi−1 and h2 : Vi+1 → Vi such that

ℓ1 ◦ h1 + h2 ◦ ℓ1 = idVi
.

The linear maps h1, h2 are called homotopy operators in degree i.
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Our main contributions are to show how to construct, from homotopy oper-
ators in degrees 0 and 1, smooth structures on σ−1(0) around x0. For rigidity
we get a parametrization of the orbit in terms of homotopy operators in degree
0. Additionally, we give a new proof of a rigidity result for Lie algebras, in
terms of the parallel transport of a connection defined in terms of homotopy
operators.

Integrability is more subtle. We will use the local correspondence between
σ−1(0) and Maurer-Cartan elements. In fact, we give a differential geometric
proof of the well-known fact that the cohomology H1(V, ℓ) of an L∞-algebra
controls the existence of formal Maurer-Cartan elements. Indeed, we get a re-
cursive process to construct a formal Maurer-Cartan element ut =

∑

k≥0
uk

k! t
k,

by solving the infinite sequence of cohomological equations

ℓ1(uk+1) = −Obsk(u0, . . . , uk),

where Obsk(u0, . . . , uk) ∈ H1(V, ℓ) are appropriate obstruction classes. We use
homotopy operators in degree 1 to provide the explicit solutions

uk+1 = −h1(Obsk(u0, . . . , uk)).

Finally we show that, provided that the L∞-algebra is N -strict, ut converges.
Using this construction, we describe a smooth structure on σ−1(0) around x0.
These arguments and constructions, in terms of homotopy operators, can be
compared with Remark 4.6 of [Cra04], which says that the perturbation lemma
corresponds to the algebraic version of Newton’s iteration method. Indeed, we
use a homotopy operator, recursively, to construct a formal solution and then
we prove its convergence.

Outline of the paper

In section 2 we use homotopy operators to give an alternative, algebraic proof
of a rigidity result (Theorem 2.6) for equivariant deformation problems:

Theorem 1. Let x0 ∈ σ−1(0). If x0 is infinitesimally rigid then it is rigid.

Additionally, we use homotopy operators for the deformation complex of
Lie algebras to construct a connection on a tautological bundle of Lie algebras.
Using the associated parallel transport we give a new proof of a rigidity result
for Lie algebras (see Theorem 2.14).

Theorem 2. If H1
CE(g, g) = 0 then g is rigid.

In section 3 we provide an introduction to L∞-algebras and Maurer-Cartan
elements.
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In section 4 we give an explicit description of the obstruction classes Obsk,
and use them to recursively construct formal Maurer-Cartan elements (see
Theorem 4.9):

Theorem 3. Let (V, ℓ) be an L∞-algebra such that H1(V, ℓ) = 0. Then any
infinitesimal deformation can be extended to a formal deformation.

In section 5 we use the explicit description of formal Maurer-Cartan ele-
ments obtained before, together with homotopy operators, in order to obtain
an integrability result (see Theorem 5.18 and Corollary 5.19), i.e. smooth
parametrizations for σ−1(0) around a structure x0.

Theorem 4. Let (M
σ→ E

Φ→ F ) x G be a real analytic deformation problem
with (V, ℓ) its associated deformation L∞-algebra. If (V, ℓ) is N -strict and
H1(V, ℓ) = 0, then σ−1(0) is smooth around x0.

We collect in Appendix A the combinatorial background material used in
the proofs; in Appendix B we compute higher order derivatives of the differ-
ential of an L∞-structure.
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2 Rigidity

2.1 Deformations

Let πE : E → M be a vector bundle with an action E x G such that the
zero section 0M · G = 0M is G-invariant. Accordingly, M inherits an action
of G. Take a G-equivariant section σ ∈ ΓG(E). We want to study the space
of solutions of σ(x) = 0. Fix x0 ∈ M such that σ(x0) = 0 and consider
σ−1(0) ⊂M with the subspace topology.

Definition 2.1. A smooth path xt : I → M that starts at x0 and satisfies
σ(xt) = 0 for all t ∈ I is called a deformation of x0.
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The vertical derivative of σ at x0 is the linear map dvx0
σ : Tx0M → Ex0

given by

Tx0M
dx0

σ→ T0x0
E

can∼= Tx0M ⊕ Ex0

pr→ Ex0 ,

where the isomorphism is canonically induced by the zero section 0M . The
following is a standard result in deformation theory.

Proposition 2.2. If xt is a deformation of x0 then ∂t=0 xt ∈ ker dvx0
σ.

In this sense we think of ker dvx0
σ as the model space for the tangent space

“Tx0
σ−1(0)”. In other words, the best situation we can expect is that σ−1(0)

has locally, around x0, a manifold structure modelled on ker dvx0
σ.

2.2 Rigidity

Let G(x0) be the orbit of x0 under the action M x G. By the G-equivariance
of σ we have that G(x0) ⊂ σ−1(0).

Definition 2.3. A solution x0 is called rigid if there exists an open neigh-
bourhood x0 ∈ U ⊂M such that G(x0) ∩ U = σ−1(0) ∩ U .

In the next Proposition we show that rigidity, seen as openness of the orbit
around x0, is equivalent to another notion of rigidity found commonly in the
literature, for example in Proposition 4.3 of [CSS14].

Proposition 2.4. A solution x0 is rigid if and only if there exists an open set
x0 ∈ U ⊂M and smooth map h : U → G such that, for every y ∈ σ−1(0) ∩ U ,
we have that y = x0 · h(y).

Proof. (⇒) Given that orbits of Lie group actions are locally embedded, there
exists an open neighbourhood x0 ∈ U ⊂ M such that V ′ := G(x0) ∩ U is an
open of G(x0). Take a relatively compact open set V such that x0 ∈ V ⊂
V̄ ⊂ V ′ ⊂ G(x0). Let Gx0

be the isotropy of G at x0. The diffeomorphism
µ : G/Gx0

∼= G(x0) gives us a relatively compact open set W = µ−1(V ) of
W ′ = µ−1(V ′) such that [e] ∈ W ⊂ W̄ ⊂ W ′ ⊂ G/Gx0

. Given that Gx0
⊂ G

is a closed subgroup then G → G/Gx0 is a Gx0 -principal bundle. Shrink W ′

if necessary and take a section s ∈ ΓW ′(G → G/Gx0). It induces a smooth
map h = s ◦ µ−1 : V ′ → G such that y = x0 · h(y). The result follows from
extending h : V̄ → G to a smooth map h : U ⊂ M → G. Indeed, shrinking U
if necessary, since x0 is rigid, we can assume that G(x0) ∩ U = σ−1(0) ∩ U .
(⇐) We know that G(x0) ⊂ σ−1(0). By hypothesis σ−1(0) ∩ U ⊂ G(x0) ∩ U
and the result follows.
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Let mx0 : G→M be g 7→ x0 · g. By the G-equivariance of σ, the sequence

g Tx0M Ex0 .
demx0

dv
x0

σ
(2.1)

is a cochain complex.

Definition 2.5. The solution x0 is called infinitesimally rigid if the sequence
2.1 is exact at Tx0M .

Proposition 4.3 of [CSS14] says the following:

Theorem 2.6. Let x0 ∈ σ−1(0). If x0 is infinitesimally rigid then it is rigid.

2.3 Homotopy operators and rigidity

Let (V •, δ) be a cochain complex and H•
δ (V ) its cohomology.

Definition 2.7. The pair of linear maps hk+1 : V k+1 → V k and hk : V k →
V k−1 are called homotopy operators in degree k if

δ ◦ hk + hk+1 ◦ δ = Id.

The following is a standard result:

Proposition 2.8. Let V • be finite dimensional. Then Hk
δ (V ) = 0 if and only

if there exist homotopy operators in degree k.

Now we are going to give an alternative proof of Theorem 2.6 using homo-
topy operators. Even though the idea of the proof is in essence the same, i.e.
to use the constant rank theorem, we are going to see how homotopy operators
provide an explicit parametrization of the orbit. Moreover, they give a clearer
frame on how, and why, the constant rank theorem is used. First of all, since
the results we want to prove are local, we suppose E =M ×V for some vector
space V and σ :M → V . Hence dvx0

σ corresponds to dx0σ.

Alternative proof of Theorem 2.6. By hypothesis the sequence 2.1 is exact and
so by Proposition 2.8 there exists homotopy operators h2 : V → Tx0

M and
h1 : Tx0M → g such that

demx0
◦ h1 + h2 ◦ dx0

σ = Id. (2.2)

Let ψh : ker dx0
σ → G(x0) ⊂M be given by the composition

ker dx0
σ g G G(x0) ⊂M.

h1 exp mx0
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Equation 2.2 implies that d0ψh = Id. Additionally, dimG(x0) = rk demx0 =
dimker dx0σ and so ψh gives a local parametrization of the orbit around x0.
Moreover, since ψh is an embedding, there exists a complement Tx0

M =
ker dx0

σ ⊕ C and a chart ϕ : U ⊂ M → ker dx0
σ ⊕ C, with x0 7→ 0, and

such that
y ∈ G(x0) ⇐⇒ ϕ(y) = (v, 0) ∈ ker dx0σ ⊕ C.

Hence x0 is rigid if and only if σ(v, c) = 0 implies that c = 0. To see this,
define Φ : ker dx0σ ⊕ C → ker dx0σ ⊕ V by (v, c) 7→ (v, σ(v, c)). Given that
σ(v, 0) = 0 for all v and rk dx0σ = dimC, then d0Φ has maximal constant
rank and the result follows.

Remark 2.9. With respect to the previous structure, the map h : U ⊂M → G
given in Proposition 2.4 corresponds to

h := exp ◦h1 ◦ (Id− h2 ◦ dx0
σ) ◦ ϕ.

2.4 Rigidity of Lie algebras and parallel transport

Let g be a finite dimensional vector space and let Ck(g) := Hom(∧kg, g).
Consider the action Ck(g) x GL(g) given by

(η ·A)(x1, . . . , xk) := A−1η(Ax1, . . . , Axk).

A Lie algebra structure on g is an element µ ∈ C2(g) which is a zero of the
Jacobiator Jac : C2(g) → C3(g), given by

Jac(µ)(x, y, z) = µ(µ(x, y), z) + µ(µ(y, z), x) + µ(µ(z, x), y).

Accordingly, Lie algebras can be thought as zeros of the equivariant section

C2(g)× C3(g) x GL(g)

C2(g) x GL(g)

Jac

We denote the space of Lie algebra structures on g by Lie(g) := Jac−1(0).
The trivial vector bundle τC2(g) := C2(g) × g → C2(g) is equipped with

a tautological skew-symmetric bilinear operation [−,−] : ∧2τC2(g) → τC2(g),
given by

[−,−] : C∞(C2(g), g)× C∞(C2(g), g) → C∞(C2(g), g),

[α, β](µ) = µ(α(µ), β(µ)).
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We call the pair (τC2(g), [−,−]) the tautological bundle of C2(g). The re-
striction of τC2(g) to the subspace Lie(g) ⊂ C2(g) is a topological vector sub-
bundle; the restriction of [−,−] makes it into a bundle of Lie algebras.

Definition 2.10. The tautological bundle of g is the (topological) bundle of
Lie algebras τg := (Lie(g)× g → Lie(g), [−,−]).

Now fix a µ0 ∈ Lie(g) and suppose that we have homotopy operators
hµ0

2 : C3(g) → C2(g) and hµ0

1 : C2(g) → C1(g) for the sequence

C1(g) C2(g) C3(g).
demµ0

dµ0
Jac

Denote by H1(µ0) the cohomology at the middle term of this complex. It
vanishes, because we have the homotopy operators. Let µ0 ∈ U ⊂ C2(g) be an
open set such that the maps H2 : U × C3(g) → C2(g) and H1 : U × C2(g) →
C1(g), given by

H2(µ, ·) :=hµ0

2 ◦ (1− (dµ−µ0
Jac) ◦ hµ0

2 )−1,

H1(µ, ·) :=hµ0

1 ◦ (1− (dµ−µ0m) ◦ hµ0

2 )−1

are well-defined. Denote hµ2 = H2(µ, ·) and hµ1 = H1(µ, ·). By Proposition
3.4 of [Cra04], whenever µ ∈ Lie(g)∩U , we have that hµ1 and hµ2 are homotopy
operators for

C1(g) C2(g) C3(g).
demµ dµJac

(2.3)

Consider the restriction of τC2(g) to U , the bundle (U × g → U, [−,−]). Given
that U ⊂ C2(g) is an open subset of a vector space, we can identify X(U) with
C∞(U,C2(g)). Define the connection ∇ : X(U)× Γ(U × g) → Γ(U × g) by

∇Xξ := LXξ +H1(X)(ξ).

A direct computation shows the following:

Lemma 2.11. For every α, β ∈ Γ(U × g) and X ∈ X(U) we have that

∇X [α, β]− [∇Xα, β]− [α,∇Xβ] =

X(α, β) +H1(X)([α, β])− [H1(X)(α), β]− [α,H1(X)(β)]. (2.4)

Proposition 2.12. Let µt : I → U ∩ Lie(g) be a deformation of µ0. Then,
for every α, β ∈ Γ(U × g), we have that

∇∂tµt
[α, β] = [∇∂tµt

α, β] + [α,∇∂tµt
β].
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Proof. By Proposition 2.2 we know that ∂tγ(t) ∈ ker dγ(t)Jac. The fact that
hµt

1 is an homotopy operator for the sequence 2.3, with µ = µt, implies that

(demµt
◦ hµt

1 )(∂tµt) = ∂tµt.

But for A ∈ C1(g) we get

demµt
(A)(x, y) = µt(A(x), y) + µt(x,A(y))−A(µt(x, y)),

and then

(∂tµt)(x, y)+h
µt

1 (∂tµt)(µt(x, y))−µt(h
µt

1 (∂tµt)(x), y)−µt(x, h
µt

1 (∂tµt)(y)) = 0.

Letting x = α(µt), y = β(µt), X = ∂tµt, and recalling that [−,−](µt) = µt,
we conclude that the right hand side of 2.4 vanishes and the result follows.

The deformation µt is called trivial if (g, µt) ∼= (g, µ0) for all t.

Corollary 2.13. If H1(µ0) = 0 then every (small) deformation µt of µ0 is
trivial.

Proof. ∇∂tµt
is a derivation of [−,−] and [−,−](µt) = µt. Hence, the parallel

transport P t,0
µ (∇) : g → g along µt gives a Lie algebra isomorphism between

(g, µ0) and (g, µt).

Indeed, the parallel transport can be thought of as a smooth function
Pµ(∇) : I → GL(g) and the Lie algebra isomorphism (g, µ0) ∼= (g, µt) is
given by the change of coordinates induced by the parallel transport, i.e.

µ0(x, y) =
(

P t,0
µ (∇)

)−1
µt(P

t,0
µ (∇)(x), P t,0

µ (∇)(y)).

In other words
µ0 = µt · P t,0

µ (∇). (2.5)

Theorem 2.14. If H1(µ0) = 0 then µ0 is rigid.

Proof. The space of Lie algebra structures Lie(g) is a quadratic affine algebraic
variety. Because of [BCR98, Theorem 9.3.6] we have that it is locally path
connected.

This fact, together with 2.5, implies the result.

3 An introduction to L∞-algebras

In this section we follow chapter 2 of [Baa19].
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3.1 The graded symmetric algebra

Let V =
⊕

i∈Z
Vi be a graded vector space. An element v ∈ V is called

homogeneous if v ∈ Vk for some k ∈ Z. Its degree is denoted by |v| := k. The
tensor algebra of V can be decomposed by degree and rank via

⊗

V =
⊕

k∈N

⊕

i∈Z

⊕

n1+...+nk=i

⊗k
j=1Vnj

,

with k the rank and i the degree. Accordingly, (
⊗

V,⊗) becomes a graded
algebra with respect to the degree. Let I be the graded ideal generated by

I := 〈u⊗ v − (−1)|u||v|v ⊗ u | u, v ∈ V homogeneous〉.

The quotient S(V ) :=
⊗

V/I has the induced algebra structure ⊙ from ⊗ and
is called the graded symmetric algebra of V . It is useful to introduce a sign
rule that takes care of these symmetries.

Definition 3.1. Let σ ∈ Sk be a permutation and v1, . . . , vk ∈ V homogeneous
elements. The Koszul sign rule is given by

ǫσ(v1, . . . , vk) :=
∏

i<j
σ(i)>σ(j)

(−1)|vi||vj |.

We would write ǫσ when there is no risk of confusion. The sign rule is such
that

vσ(1) ⊙ · · · ⊙ vσ(k) = ǫσ v1 ⊙ · · · ⊙ vk.

3.2 Plurilinear maps

Let V and W be two graded vector spaces.

Definition 3.2. A linear map f :
⊗k

V → W is called graded symmetric if,
for any two consecutive indices i and i+ 1, we have that

f(v1, . . . , vi, vi+1, . . . , vk) = (−1)|vi||vi+1|f(v1, . . . , vi+1, vi, . . . , vk).

f is called homogeneous of degree d ∈ Z if, for every k-tuple of homogeneous
elements v1, . . . , vk ∈ V , we have that

f(v1, . . . , vk) ∈W|v1|+···+|vk|+d.

Let Lin
(

Sk(V ),W
)

d
be the vector space of graded symmetric k-multilinear

maps of degree d.
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Definition 3.3. The space of plurilinear maps of degree d is the vector space
given by

Lin (S(V ),W )d :=
∏

k∈N

Lin
(

Sk(V ),W
)

d
.

An element ℓ ∈ Lin (S(V ),W )d is given by a sequence (ℓk)k∈N such that
ℓk ∈ Lin

(

Sk(V ),W
)

d
. In particular ℓ0 : R → Vd is identified with its image

ℓ0(1) ∈ Vd.

3.3 L∞-algebras

Recall that a permutation σ ∈ Sp+q is a (p, q)-unshuffle if σ(1) < · · · < σ(p)
and σ(p+1) < · · · < σ(p+q). We denote the space of (p, q)-unshuffles by Sp,q.

Definition 3.4. The map Jacn : Lin (S(V ), V )d → Lin (Sn(V ), V )2d, given
by

Jacn(ℓ)(v1, . . . , vn) =
∑

i+j=n+1
i≤j

∑

σ∈Si,j−1

ǫσℓj
(

ℓi
(

vσ(1), . . . , vσ(i)
)

, vσ(i+1), . . . , vσ(n)
)

, (3.1)

is called the n-Jacobiator.

Example 3.5. Let ℓ ∈ Lin (S(V ), V )1 be such that ℓk = 0 for k 6= 1, 2. Then:

1. Jac1(ℓ) = 0 if and only if (V, ℓ1) is a cochain complex.

2. Jac3(ℓ) = 0 if and only if (V, ℓ2) is a graded Lie algebra.

3. Jac1(ℓ) = Jac2(ℓ) = Jac3(ℓ) = 0 if and only if (V, ℓ1, ℓ2) is a differential
graded Lie algebra.

Definition 3.6. A curved L∞-algebra structure on V is a plurilinear map
of degree one ℓ ∈ Lin (S(V ), V )1 such that Jacn(ℓ) = 0 for all n ∈ N. Its
curvature is the element ℓ0 ∈ V1. An L∞-algebra is a curved L∞-algebra with
zero curvature.

Remark 3.7. L∞-algebras were introduced in [LS93]. The definition given
in this paper is usually encountered as L∞[1]-algebra structures. Using the
shifted graded vector space (V [1])d := Vd+1 and the décalage isomorphism,
one can show that the definitions in loc. cit. and in this paper are equivalent.
A textbook account of the use of L∞-algebras in deformation theory can be
found in [Man22].
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3.4 Twisted L∞-algebras and the Maurer-Cartan equa-

tion

Let (V, ℓ) be an L∞-algebra and u ∈ V0.

Definition 3.8. The twisting of ℓ by u is the graded map ℓu ∈ Lin(S(V ), V )1
given by

ℓup(v1, . . . , vp) :=
∑

k∈N

1

k!
ℓp+k(⊙ku⊙ v1 ⊙ · · · ⊙ vp).

Let Cℓ = {u ∈ V0 | ℓu converges}.
Definition 3.9. The domain of convergence of a curved L∞-algebra (V, ℓ) is
the interior of Cℓ. We denote it by Dℓ := Int(Cℓ).

The following result is given by Propositions 2.4.3 and 2.4.4 of [Baa19].

Proposition 3.10. For every curved L∞-algebra (V, ℓ), the map

l : Dℓ → Lin(S(V ), V )1, u 7→ ℓu,

is real analytic and its derivatives are given by

Dkl(u)(⊙ku̇)(v1, . . . , vp) = ℓuk+p(⊙ku̇⊙ v1 ⊙ · ⊙ vp).

Moreover, (V, l(u)) is a curved L∞-algebra.

Corollary 3.11. For every smooth path ut ⊂ Dℓ we have that

∂tℓ
ut

i (∂r1t ut ⊙ · · · ⊙ ∂rit ut) = ℓut

i+1(∂tut ⊙ ∂r1t ut ⊙ · · · ⊙ ∂rit ut)

+

i
∑

j=1

ℓut

i (∂r1t ut ⊙ · · · ⊙ ∂
rj+1
t ut ⊙ · · · ⊙ ∂rit ut).

Proof. We can write ℓut

i (∂r1t ut⊙· · ·⊙∂rit ut) as l(ut)(∂
r1
t ut⊙· · ·⊙∂rit ut). Using

the chain rule the result follows.

The Maurer-Cartan equation measures how far the twisted curved L∞-
algebra ℓu is from being an L∞-algebra. Explicitly, MC : Dℓ ⊂ V0 → V1 is
defined by MC(u) := ℓu0 .

Definition 3.12. u ∈ Dℓ is a Maurer-Cartan element if u ∈ MC−1(0).
Explicitly

MC(u) = ℓu0 =
∑

k∈N

1

k!
ℓk(⊙ku) = 0.

We denote by MC(V, ℓ) the set of Maurer-Cartan elements of (V, ℓ).

14



4 Deformations of Maurer-Cartan elements and

obstructions

4.1 Deformations and obstructions

Let (V, ℓ) be an L∞-algebra and let u0 ∈MC(V, ℓ).

Definition 4.1. A deformation of u0 is a smooth path ut ⊂ Dℓ that starts at
u0 and satisfies MC(ut) = 0.

We want to find obstructions to the existence of deformations ut of u0. Let
ut ⊂ Dℓ be any smooth path starting at u0. Natural necessary conditions for
MC(ut) = 0 to hold are the differential consequences of this equation, namely
∂kt=0MC(ut) = 0. Denote ∂kt=0ut = uk0 and use the notation ~ri = k of Appendix
A.2 for partitions of a number.

Proposition 4.2. For every k ∈ N we have the equation

∂kt=0MC(ut) = ℓu0
1 (uk0) +

k
∑

i=2

∑

~ri=k

(

k

~ri

)

1

i!
ℓu0
i (ur10 ⊙ · · · ⊙ uri0 ).

Proof. Since MC(ut) = ℓut

0 then ∂t(MC(ut)) = ℓut

1 (∂tut). We now make use
of Proposition B.1, taking vt = ∂tut, to conclude that

∂kt=0MC(ut) = ℓu0
1 (uk0)+

k−1
∑

i=1

k−1−i
∑

j=0

∑

~ri=k−1−j

(

k − 1

~ri

)

1

i!j!
ℓu0
i+1(u

r1
0 ⊙ · · · ⊙ uri0 ⊙ uj+1

0 ).

Reorganizing the terms we get

∂kt=0MC(ut) = ℓu0
1 (uk0) +

k
∑

i=2

∑

~ri=k

(

k − 1

~ri

)

ri
(i− 1)!

ℓu0
i (ur10 ⊙ · · · ⊙ uri0 ).

Moreover, for every pair of summands rp and rq of r1 + · · ·+ ri = k, we have
that

∑

~ri=k

(

k − 1

~ri

)

rp
(i− 1)!

ℓu0
i (ur10 ⊙· · ·⊙uri0 ) =

∑

~ri=k

(

k − 1

~ri

)

rq
(i− 1)!

ℓu0
i (ur10 ⊙· · ·⊙uri0 ).
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Thus

i ·
∑

~ri=k

(

k − 1

~ri

)

ri
(i− 1)!

ℓu0
i (ur10 ⊙ · · · ⊙ uri0 )

=
∑

~ri=k

(

k − 1

~ri

)

r1 + · · ·+ ri
(i− 1)!

ℓu0
i (ur10 ⊙ · · · ⊙ uri0 )

=
∑

~ri=k

(

k

~ri

)

1

(i− 1)!
ℓu0
i (ur10 ⊙ · · · ⊙ uri0 ),

and the result follows.

We will focus on building paths ut that satisfy this sequence of necessary
conditions.

Definition 4.3. A k-deformation of u0 is a path ut ⊂ Dℓ that starts at u0
and satisfies ∂jt=0MC(ut) = 0 for all 0 ≤ j ≤ k. It is called (k+1)-extendable if

there exists a (k+ 1)-deformation vt of u0 such that vj0 = uj0 for all 0 ≤ j ≤ k.

The problem of (k + 1)-extending a k-deformation ut, i.e. finding an ap-
propriate vk+1

0 , amounts to solving the equation

0 = ℓu0
1 (vk+1

0 ) +Obsk(ut), (4.1)

where the last term of the equation is the following obstruction.

Definition 4.4. Let k ∈ N. The obstruction to (k + 1)-extendability of a
k-deformation ut is the element Obsk(ut) ∈ V1 given by

Obsk(ut) =

k+1
∑

i=2

∑

~ri=k+1

(

k + 1

~ri

)

1

i!
ℓu0
i (ur10 ⊙ · · · ⊙ uri0 ). (4.2)

Recall that, by the first Jacobi identity 3.1, (V, ℓu0
1 ) is a cochain complex.

We will now see that the obstructions are cocycles.

Proposition 4.5. If ut is a k-deformation of u0 then ℓu0
1 (Obsk(ut)) = 0. In

particular it defines a class in H1(V, ℓu0).

In order to prove this proposition we make use of the following lemma.

Lemma 4.6. For every k ∈ N we have the following equation

ℓut

1 (∂ktMC(ut))

+

k
∑

i=1

k−i
∑

j=0

∑

~ri=k−j

(

k

~ri

)

1

i!j!
ℓut

i+1(∂
r1
t ut ⊙ · · · ⊙ ∂rit ut ⊙ ∂jtMC(ut)) = 0.
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Proof. By Proposition B.1, letting vt =MC(ut), the left-hand side equals

∂kt ℓ
ut

1 MC(ut) = ℓut

1 (∂ktMC(ut))+

k
∑

i=1

k−i
∑

j=0

∑

~ri=k−j

(

k

~ri

)

1

i!j!
ℓut

i+1(∂
r1
t ut ⊙ · · · ⊙ ∂rit ut ⊙ ∂jtMC(ut)).

By the 0-th Jacobi identity 3.1, ℓut

1 MC(ut) = ℓut

1 (ℓut

0 ) = 0.

Proof of Proposition 4.5. By hypothesis ∂kt=0MC(ut) = 0. Using Lemma 4.6,
we get that

ℓu0
1 (∂k+1

t=0MC(ut)) = 0.

By Proposition 4.2,

∂k+1
t=0MC(ut) = ℓu0

1 (uk+1
0 ) +Obsk(ut), (4.3)

and the result follows.

We can now recast Equation 4.1 as an equation in cohomology.

Theorem 4.7. Let u0 ∈ MC(V, ℓ) be a Maurer-Cartan element and ut ⊂ Dℓ

a deformation of u0. Then

Obsk(ut) = 0 in H1(V, ℓu0),

for every k ∈ N.

Proof. If ut is a deformation of u0, it is in particular a k-deformation and k+1-
extendable, for all k. The result follows from Proposition 4.5 and Equation
4.1.

4.2 Formal Maurer-Cartan elements

Now we consider the formal power series V [[t]] := ⊕i∈ZVi[[t]]. We can extend
the L∞-algebra framework to the formal setting by letting all the structure
maps be t-linear.

Definition 4.8. A formal Maurer-Cartan element of (V, ℓ) is a Maurer-Cartan
element of (V [[t]], ℓ).

Let u[[t]] ∈ V0[[t]] be u[[t]] =
∑

k≥0

uk
k!
tk. By the Equations 4.3 we know that

u[[t]] is a formal Maurer-Cartan element if and only if

ℓu0
1 (uk+1) +Obsk(u[[t]]) = 0, for all k. (4.4)
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By definition, Obsk(u[[t]]) depends only on u0, . . . , uk. Therefore we can con-
struct a formal Maurer-Cartan element by solving a recursive sequence of co-
homological equations.

Theorem 4.9. Let v0 be a Maurer-Cartan element of (V, ℓ). If H1(V, ℓv0) = 0
then, for every v1 ∈ ker ℓv01 , there exists a formal Maurer-Cartan element u[[t]]
such that u0 = v0 and u1 = v1.

Proof. Let u0 = v0 and u1 = v1 ∈ ker ℓv0
1 and suppose we have u0, . . . , uk such

that 4.4 holds for 1 ≤ j ≤ k − 1. By Proposition 4.5, letting

uk[[t]] =

k
∑

j=0

uj
j!
tj ,

we have that Obsk(uk[[t]]) ∈ H1(V, ℓv0). Consequently, there exists uk+1 such
that

ℓv0
1 (uk+1) +Obsk(uk[[t]]) = 0.

Therefore, we can extend the k-deformation uk[[t]] to the (k + 1)-deformation

uk+1[[t]] =
k+1
∑

j=0

uj
j!
tj .

Remark 4.10. The same result, when (V, ℓ) is a differential graded Lie alge-
bra, is classic and can be found for example in [DMZ07, Theorem 3.25] (in the
context of deformations of associative algebras). Although the result for gen-
eral (V, ℓ) could then be obtained via rectification (see [Qui69, Appendix B6],
or [Hin01, Section 2.2]) that process leads to infinite dimensional differential
graded Lie algebras.

We have chosen to offer a construction of the obstructions directly in terms
of (V, ℓ). When V is finite dimensional, the obstructions turn out to be conve-
nient for the study of convergence of formal Maurer-Cartan elements, explicitly
realizing them as smooth families of Maurer-Cartan elements. We will focus
on that task in the next Section.
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5 Integrability

We come back to the set up of Section 2:

E x G

M x G

σ (5.1)

Definition 5.1. We say that the problem 5.1 is integrable at x0 if there exists
an open subset x0 ∈ U ⊂ M and a (immersed) submanifold Sx0

⊂ M such
that Sx0

∩ U = σ−1(0) ∩ U .

Remark 5.2. If we have integrability at x0 then G(x0) ∩ U ⊂ Sx0
∩ U . Fur-

thermore, by Proposition 2.2

dimG(x0) ≤ dimSx0 ≤ dimker dvx0
σ.

Definition 5.3. The problem 5.1 is called maximally integrable at x0 if it is
integrable of maximal dimension, i.e. dimSx0

= dimker dvx0
σ.

5.1 Stable sections

In order to motivate the definition of stable sections, and of equivariant defor-
mation problems, we recall one of the main elements of the proof of Proposition
[CSS14, Proposition 4.4 (1)].

Integrability is a local question, therefore we consider E = M × V , with
V some vector space and σ : M → V . We want σ−1(0) to have a manifold
structure. Of course, the first thing that comes to mind is to use the regular
value theorem. However, being a submersion is very restrictive and we want to
relax this hypothesis. An alternative is to use transversality. In fact, picking a
complement V = Im dx0σ⊕B gives us a manifold structure for σ−1(B). How
far is σ−1(B) from being σ−1(0)? The following extra structure controls this
question.

Definition 5.4. Let πF : F → M be a vector bundle and let Φ : E → F
be a vector bundle map over the identity. The section σ : M → E is called
stabilized by Φ if Φ ◦ σ = 0.

Indeed, since Φ ◦ σ = 0, we know that σ(M) ⊂ kerΦ. Accordingly, the
following cochain complex controls how far is σ−1(B) from being equal to
σ−1(0):

Tx0
M Ex0

Fx0
.

dv
x0

σ Φx0 (5.2)
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Definition 5.5. The solution x0 is called infinitesimally stable if the sequence
5.2 is exact at Ex0 .

In [CSS14], the authors prove the following.

Proposition 5.6. Let x0 ∈ σ−1(0). If x0 is infinitesimally stable, the problem
is maximally integrable at x0.

We will use homotopy operators for a suitable L∞-algebra to give a new
proof of this result in Corollary 5.19.

Remark 5.7. A section can be stabilized in different ways. For example, one
can always take F → M an arbitrary vector bundle and Φ = 0. In this case
being infinitesimally stable just means that 0 is a regular value of σ.

5.2 Equivariant deformation problems and L∞-algebras

Definition 5.8. An (analytic) equivariant deformation problem is given by

E x G F

M x G

Φ

σ

where:

i. E → M is an (analytic) vector bundle whose zero section 0M is G-
invariant.

ii. σ ∈ ΓG(E) is an (analytic) G-equivariant section.

iii. πF : F →M is an (analytic) vector bundle.

iv. Φ : E → F is an (analytic) vector bundle map such that Φ ◦ σ = 0.

We denote an (analytic) deformation problem by (M
σ→ E

Φ→ F ) x G.

Example 5.9. Lie algebra structures: Let g be a finite dimensional vector
space. Recall that Ck(g) = Hom(∧kg, g) and that GL(g) acts on Ck(g) by

(η ·A)(x1, . . . , xk) := A−1η(Ax1, . . . , Axk).

Then

C2(g)× C3(g) x GL(g) C2(g)× C4(g)

C2(g) x GL(g)

Φ

Jac
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is an analytic equivariant deformation problem with Jac the Jacobiator and
Φ(µ, η) := δµη, where δµ is the Chevalley-Eilenberg operator

δµη(v1, . . . , v4) =

4
∑

i=1

(−1)i+1µ(vi, η(v1, . . . , v̂i, . . . , v4)

+
∑

1≤i<j≤4

(−1)i+jη(µ(vi, vj), v1, . . . , v̂i . . . , v̂j , . . . , v4).

The space Jac−1(0) = Lie(g) is the space of Lie algebra structures on g.

Equivariant deformation problems and curved L∞-algebras are closely re-
lated. To see this, take a chart ϕ : U ⊂ M → R

n, with x0 7→ 0, such that the
vector bundles E|U ∼= U × A and F |U ∼= U × B are trivialized. Consider the
graded vector space V = g[−1] ⊕ R

n[0] ⊕ A[1] ⊕ B[2], where [i] indicates the
grading. In the PhD thesis [Baa19] the author proved (a more general version)
of the following:

Theorem 5.10 ([Baa19], Theorem 5.25). Let (M
σ→ E

Φ→ F ) x G be an
analytic equivariant deformation problem and let ϕ, U and V be as above.
Then V admits a curved L∞-algebra structure ℓ ∈ Lin(

⊙

V, V )1 such that
there exists an open subset U ′ ⊂ U for which

ϕ : U ′ ∩ σ−1(0) → ϕ(U ′) ∩MC(V, ℓ)

is a bijection.

Remark 5.11. The curved L∞-algebra (V, ℓ) is determined by the Taylor
series at x0 of: the section σ, the actions of G on M and on E, the Lie bracket
on g, and the vector bundle map Φ [Baa19, Theorem 5.2.4]. Moreover, if we
choose different trivializations we get isomorphic curved L∞-algebras.

In particular, the Maurer-Cartan equation MC : Rn → A is given by

MC(v) =
∑

k≥0

1

k!
dk0 σ̃(v,

k· · ·, v),

with σ̃ : Rn → A the local description of the section. Accordingly

σ(x0) = 0 ⇔ MC(0) = 0 ⇔ (V, ℓ) is an L∞-algebra.
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5.3 Homotopy operators and integrability

Let (M
σ→ E

Φ→ F ) x G be an analytic deformation problem, with σ(x0) = 0,
and let (V, ℓ) be the L∞-structure associated to it by Theorem 5.10. The
chart ϕ : U ⊂ M → R

n gives an equivalence between integrability of the
problem at x0 and smoothness of an open neighbourhood 0 ∈ W ∩MC(V, ℓ)
of the Maurer-Cartan elements. We will use the algebraic structure on V to
construct an explicit smooth structure on W ∩MC(V, ℓ). Indeed, Theorem 4.9
tells us how the cohomology H1(V, ℓ) controls formal Maurer-Cartan elements
ut. Letting

ut =
∑

k

uk
k!
tk,

we showed that the coefficients of ut can be built recursively by solving the
infinite sequence of cohomological equations

ℓ1(uk+1) +Obsk(u[[t]]) = 0.

Now, by Proposition 2.8, the vanishing of H1(V, ℓ) = 0 gives us homotopy
operators h2 : B → A and h1 : A → R

n. They provide explicit solutions for
the coefficients of ut.

Proposition 5.12. Let u0 = 0 and u1 ∈ ker ℓ1. If H1(V, ℓ) = 0 then ut =
∑

k

uk
k!
tk ∈ R

n[[t]], given by

uk+1 := −h1(Obsk(ut)),

is a formal Maurer-Cartan element.

Remark 5.13. When (V, ℓ) is a differential graded Lie algebra, a similar re-
currence has recently been used to construct formal Maurer-Cartan elements,
in the context of perturbative quantum mechanics [LS24].

Our objective now is to use these explicit solutions to prove that ut con-
verges for small values of t and u1. To see this, take a norm ‖·‖ on R

n. By the
equation 4.2 we get that

‖uk+1‖
(k + 1)!

≤ ‖h1‖
k+1
∑

i=2

‖ℓi‖
i!

∑

~ri+1=k+1

‖ur1‖
(r1)!

· · · ‖uri+1
‖

(ri+1)!
. (5.3)

Lemma 5.14. Suppose that there exists α > 0 satisfying

∞
∑

i=1

‖ℓi‖
i!

≤ α.
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Then, for every k we have that

‖uk‖
k!

≤ ‖u1‖k(‖h1‖α)k−1Ck,

with

Ck =
k
∑

i=2

∑

~ri=k

Cr1 · · ·Cri .

Proof. If ‖h1‖α ≤ 1 then the result follows by Inequality 5.3. For ‖h1‖α ≥ 1,
the proof is by strong induction. By Proposition 5.12 we know that

u2 = −h1 ◦ ℓ2(u1, u1),

and letting C1 = C2 = 1 the base cases holds. Assume now that the result
holds for every p ≤ k − 1. By Inequality 5.3, we conclude that

‖uk‖
k!

≤ (‖u1‖‖h1‖α)k
k
∑

i=2

(

1

‖h1‖‖α‖

)i
∑

~ri=k

Cr1 · · ·Cri .

But

(

1

‖h1‖‖α‖

)i

≤ 1

‖h1‖‖α‖
for all i and the result follows.

5.4 Integrability of N-strict L∞-algebras

Definition 5.15. We say that an L∞-algebra is N -strict if ℓk = 0 for all
k ≥ N .

For example, any nilpotent L∞-algebra is N -strict [Man22, Section 10.5].
Given an N -strict L∞-algebra, and any norm, let

αℓ =

N
∑

i=1

‖ℓi‖
i!

.

Theorem 5.16. Let (V, ℓ) be an N -strict L∞-algebra such that H1(V, ℓ) = 0.
Then, for every u1 ∈ ker ℓ1 with

‖u1‖ <
1

12‖h1‖αℓ
,

there exists a deformation ut : [0, 2) →MC(V, ℓ) ⊂ R
n of 0 by Maurer-Cartan

elements, such that ∂t=0ut = u1.
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Proof. Let ut be given as in Proposition 5.12. By Lemma 5.14 we know that

‖uk‖
k!

≤ ‖u1‖k(‖h1‖αℓ)
k−1Ck.

Moreover, the numbers Ck are the super-Catalan numbers (see Proposition
A.5) and by the asymptotic growth A.6 we know that, for k ≫ 1

‖uk‖
k!

≤ 1

‖h1‖αℓ
(6‖u1‖‖h1‖αℓ)

k.

Therefore, there exists a constant M > 0 such that

‖ut‖ ≤M +
1

‖h1‖αℓ

∑

k≫1

(6‖u1‖‖h1‖αℓt)
k+1

,

and ut converges. Finally, since ut is analytic by construction and the twisting
of an L∞-algebra is analytic by Proposition 3.10, then MC(ut) is an analytic
map. Thus MC(ut) = 0 if and only if ∂kt=0MC(ut) = 0 for all k. We conclude
that ut : [0, 2) →MC(V, ℓ) takes values in the Maurer-Cartan elements.

Let

Bh1,ℓ :=

{

v ∈ ker ℓ1 | ‖v‖ < 1

12‖h1‖αℓ

}

,

and define

ψ : Bh1,ℓ → C∞([0, 2),Rn)

v 7→ vt

the map that associates to each cocycle v the path vt given by Theorem 5.16.

Lemma 5.17. For every s ∈ [0, 1] and v ∈ Bh1,ℓ we have that ψ(sv)(t) =
ψ(v)(st).

Proof. Let vt = ψh(v)(t) and (sv)t = ψh(sv)(t). Denote their coefficients by
vk and (sv)k respectively. We claim that (sv)k+1 = sk+1vk. Indeed, by Propo-
sition 5.12 and definition 4.2 it is easy to see that this holds. Consequently

ψh(v)(st) =
∑

k≥0

vk(st)
k =

∑

k≥0

(sv)kt
k = ψ(sv)(t).

Theorem 5.18. Let Ψ : Bh1,ℓ →MC(V, ℓ) be given by Ψ(v) = ψ(v)(1). Then
Ψ is smooth. In fact, there exists an open subset 0 ∈ U ⊂ Bh1,ℓ such that
Ψ : U ⊂ ker ℓ1 →MC(V, ℓ) ⊂ R

n is an embedding.
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Proof. By Theorem 5.16 and the previous lemma we can compute

∂s=0Ψ(sv) = ∂s=0Ψh(v)(s) = v,

and then d0Ψ exists and is the identity, which implies the result.

Corollary 5.19. Let (M
σ→ E

Φ→ F ) x G be an analytic deformation problem
with (V, ℓ) the associated L∞-structure described by Theorem 5.10. Assume
that (V, ℓ) is N -strict. If H1(V, ℓ) = 0, the problem is maximally integrable
at x0. In fact, around x0, σ

−1(0) has the smooth parametrization given by
ϕ−1 ◦Ψ : U ⊂ ker ℓ1 →M .

Proof. The map ϕ−1 ◦Ψ : U ⊂ ker ℓ1 → σ−1(0) ⊂M gives an embedding. The
same argument as the one given at the end of the alternative proof of Theorem
2.6 proves that this embedding parametrizes, locally, all the possible zeros of
σ.

Remark 5.20. In fact, we can also obtain the results of this section when (V, ℓ)
satisfies a weaker condition than N -strictness. It is enough that ℓ|⊙kV0

= 0
for all k ≥ N . For example, this condition is satisfied for the L∞-algebras
controlling simultaneous deformations of associative algebras and their mor-
phisms (see [FMY09, Corollary 6.5]), and of Lie algebras and their morphisms
(see [FMY09, Corollary 8.5] and [FZ15, Lemma 2.6]).

A Appendix: Combinatorics

In this appendix we collect some results which are useful in dealing with the
coefficients of the higher order derivatives of the Maurer-Cartan equation.

A.1 Super-Catalan numbers

We will now study the sequence of numbers

Ck =

k
∑

i=2

∑

r1+···+ri=k

Cr1 · · ·Cri ,

with initial condition C1 = 1. Let S be a non-empty set.

Definition A.1. A word of length n in S is a sequence w = w1 . . . wn, with
wi ∈ S. The alphabet generated by S is the free monoid generated by the words

Alf(S) = 〈w1 . . . wm | m ∈ N and wj ∈ S〉,
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with multiplication given by concatenation

v · w := v1 . . . vnw1 . . . wm,

and identity given by the empty word.

We call an element w ∈ Alf(S) a word and denote its length by |w| = n.
If |w| = 1 we call it a letter.

Definition A.2. A bracketing of a word w ∈ Alf(S) is obtained by expressing
w as the product of 2 or more non-empty words w = u1 . . . uk, unless w is a
letter, and then inductively bracketing each ui, until we get letters.

Example A.3. Let 1 2 3 ∈ Alf(N). The possible bracketings are given by

(1)((2)(3)), ((1)(2))(3) and (1)(2)(3).

Definition A.4. The super-Catalan k-number, denoted by Ck, is given by the
number of different ways of bracketing a word w ∈ Alf(S) with |w| = k.

By the previous example C3 = 3. Indeed, the super-Catalan numbers
satisfy the following recursive formula:

Proposition A.5. Let Ck be the super-Catalan k-number. Then

Ck =
k
∑

i=2

∑

r1+···+ri=k

Cr1 · · ·Cri .

Proof. The proof is by strong induction. Clearly the only bracketings of 1 and
1 2 are (1) and (1)(2), i.e. C1 = C2 = 1. Accordingly

C3 = C1C2 + C2C1 + C1C1C1 = 3,

and the base case follows. Suppose the result holds for 1 ≤ p ≤ k− 1 and take
the word w ∈ Alf(N) given by

w = 1 2 · · · k.

Fix 2 ≤ i ≤ k and a partition r1 + . . .+ ri = k. Decompose w by

w = u1u2 · · ·ui,

with |ui| = ri. All the possible bracketings of this decomposition are given by
the product of all the possible bracketings of each of the factors, i.e. the number
of bracketings of this decomposition is Cr1 · · ·Cri . The number i controls
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in how many different words can be decomposed w, i.e. from 2 to k. The
partitions r1+ . . .+ ri = k give all the possible decomposition into i words of a
word with k letters. Since this covers all the possible decomposition of w into
smaller words, we get a bijection between the number of bracketings and the
formula above.

The following asymptotic growth can be found at the Online Encyclopedia
of Integer Sequences (OEIS,A001003, 2025)[OEI].

Proposition A.6. The super-Catalan numbers have the asymptotic growth

Ck ∼W
(3 +

√
8)k

k3/2
,

where W =
1 +

√
2

27/4
√
π

.

A.2 Partitions of a number

Let k, i ∈ N with i < k.

Definition A.7. An i-partition of k is a sequence (r1, . . . , ri) ∈ N
i such that

r1+· · ·+ri = k. We denote it by ~ri = k or ~ri when there is no risk of confusion.
An ordered i-partition of k is a partition ~ri such that r1 ≤ · · · ≤ ri.

Definition A.8. The multinomial coefficient of k associated with ~ri is defined
to be

(

k

~ri

)

:=

(

k

r1, . . . , ri

)

=
k!

r1! · · · ri!
.

The permutation group σ ∈ Si acts on partitions ~ri by

(σ · r)j = rσ(j).

Two partitions that are on the same orbit are called equivalent. Let Si,~r be the
isotropy of the Si action on ~ri and Si(~r) its orbit. Denote by # the cardinality
of a set. Then

#Si(~r) =
i!

#Si,~r
. (A.1)

We want an explicit description for #Si(~r). To do so, notice that every parti-
tion ~ri can be decomposed as

ra1
+

b1· · ·+ ra1
+ · · ·+ ras

+
bs· · ·+ ras

= k, (A.2)

with ra1 < · · · < ras
and b1 + · · · + bs = i. We call it the factorization of ~ri

into repeated factors and denote it by ~rb1,...,bs . The following lemma follows
by construction.
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Lemma A.9. Let ~ri be a i-partition of k and ~rb1,...,bs its factorization into
repeated factors. Then #Si,~r = b1! · · · bs!.

By Equation A.1 and Lemma A.9 we know that

#Si(~r) =
i!

b1! · · · bs!
. (A.3)

B Appendix: Higher order derivatives

In this Appendix we prove a formula which is used in Proposition 4.2 to find
obstructions in terms of higher order derivatives of the Maurer-Cartan equa-
tion; it is also used in Proposition 4.5 to prove that those obstructions are
cohomological.

Let (V, ℓ) be an L∞-algebra with domain of convergence Dℓ and take
smooth paths ut, vt : I → Dℓ ⊂ V0.

Proposition B.1. For every k ∈ N the following formula holds

∂kt ℓ
ut

1 (vt)

= ℓut

1 (∂kt vt) +
k
∑

i=1

k−i
∑

j=0

∑

~ri=k−j

(

k

~ri

)

1

i!j!
ℓut

i+1(∂
r1
t ut ⊙ · · · ⊙ ∂rit ut ⊙ ∂jt vt).

(B.1)

Proof. The proof is by induction. The case k = 1 follows from corollary 3.11.
Assume that the result is true for k. Then

∂k+1
t ℓut

1 (vt) = ∂t∂
k
t ℓ

ut

1 (vt)

= ∂tℓ
ut

1 (∂kt vt) +

k
∑

i=1

k−i
∑

j=0

∑

~ri=k−j

(

k

~ri

)

1

i!j!
∂tℓ

ut

i+1(∂
r1
t ut ⊙ · · · ⊙ ∂rit ut ⊙ ∂jt vt).

(B.2)

By Corollary 3.11, and after a careful verification, we have that B.2 can be
written as

ℓut

1 (∂k+1
t vt) +

k+1
∑

m=1

k+1−m
∑

n=0

∑

~pm=k+1−n
p1≤...≤pm

C~pm,n ℓ
ut

m+1(∂
p1

t ut ⊙ · · · ⊙ ∂pm

t ut ⊙ ∂nt vt),

for some coefficients C~pm,n to be determined. Notice that in the previous
formula we are considering the sum over ordered partitions ~pm. On the other
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hand, by the symmetry of the r1, . . . , ri factors on the Equation B.1, we get
that, for k + 1, the Equation B.1 is alternatively given by

∂k+1
t ℓut

1 (vt) = ℓut

1 (∂k+1
t vt)

+

k+1
∑

m=1

k+1−m
∑

n=0

∑

~pm=k+1−n
p1≤...≤pm

(

k + 1

~pm

)

#Sm(~p)

m!n!
ℓut

m+1(∂
p1

t ut ⊙ · · · ⊙ ∂pm

t ut ⊙ ∂nt vt),

with #Sm(~p) given by A.1. Accordingly, for the induction step we need to
show that

C~pm,n =

(

k + 1

~pm

)

#Sm(~p)

m!n!
.

Thus, we need to find which summands of B.2 contribute to each coefficient
C~pm,n and to determine that contribution. The strategy is the following:

1. Fix 1 ≤ m ≤ k + 1; 0 ≤ n ≤ k + 1 − m and an ordered partition
p1 + · · ·+ pm = k + 1− n.

2. Find all possible 1 ≤ i ≤ k, 0 ≤ j ≤ k − i and ordered partitions
r1 + · · ·+ ri = k − j such that

∂t ℓ
ut

i+1(∂
r1
t ut⊙· · ·⊙∂rit ut⊙∂jt vt) = ℓut

m+1(∂
p1

t ut⊙· · ·⊙∂pm

t ut⊙∂nt vt)+· · · .
(B.3)

Denote by S(m,n, ~pm) the set of all ordered partitions ~ri = k−j satisfying
B.3.

3. Take ~ri ∈ S(m,n, ~pm). Use the Corollary 3.11 to find the number of
times that ℓut

m+1(∂
p1

t ut ⊙ · · · ⊙ ∂pm

t ut ⊙ ∂nt vt) appears in the expression

∂t ℓ
ut

i+1(∂
r1
t ut ⊙ · · · ⊙ ∂rit ut ⊙ ∂jt vt). Explicitly, if we denote this number

by A~ri , we have that

∂t ℓ
ut

i+1(∂
r1
t ut ⊙ · · · ⊙ ∂rit ut ⊙ ∂jt vt)

= A~ri · ℓut

m+1(∂
p1

t ut ⊙ · · · ⊙ ∂pm

t ut ⊙ ∂nt vt) + · · · . (B.4)

On the other hand, by the Equation B.2, the coefficient of the partition

~ri in B.2 is
1

i!j!
·
(

k
~ri

)

. Hence, letting C~ri,j be the contribution of ~ri to

C~pm,n, we conclude that

C~ri,j =
A~ri

i!j!
·
(

k

~ri

)

.
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4. Notice that if ~ri ∈ S(m,n, ~pm) then ~ri ·σ also contributes to C~pm,n for all
σ ∈ Si. Moreover, A~ri·σ = A~ri and the coefficients of the partitions ~ri · σ
in B.2 are all equal. Hence, the contribution of all the possible partitions
~ri · σ to C~pm,n is given by

#~ri :=
∑

σ∈Si

C~ri·σ,j = #Si(~r) · C~ri,j .

Accordingly, we need to find #Si(~r).

5. Finally, we need to show that

∑

(i,j,~ri)∈S(m,n,~pm)

#~ri = C~pm,n =

(

k + 1

~pm

)

#Sm(~p)

m!n!
.

Let us now elaborate each of the previous steps:

1. Take m,n, ~pm and let

b1pa1
+ · · ·+ bspas

= k + 1− n,

be its factorization into repeated factors (see A.2). Thus, by the Equation
A.3, we conclude that

(

k + 1

~pm

)

#Sm(~p)

m!n!
=

1

b1! · · · bs!n!

(

k + 1

~pm

)

. (B.5)

2. By the Corollary 3.11, we have four possible situations for ~ri = k − j
satisfying B.3:

(a) pa1
= 1 and ~ri is obtained by subtracting 1 to p1:

~rm−1 = (p2, . . . , pm),

so (m− 1, n, ~rm−1) ∈ S(m,n, ~pm).

(b) pa1
> 1 and ~ri is obtained by subtracting 1 to p1:

~rm = (p1 − 1, p2, . . . , pm),

so (m,n,~rm) ∈ S(m,n, ~pm).

(c) ~ri is obtained by subtracting 1 to pad
, for each 2 ≤ d ≤ s: define

1 ≤ q(d) ≤ m by

q(d) = b1 + · · ·+ bd−1 + 1.
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We need to consider all the

~rm = (p1, . . . , pq(d) − 1, . . . , pm),

so (m,n,~rm) ∈ S(m,n, ~pm).

(d) j = n− 1, forcing
~rm = ~pm,

so (m,n− 1, ~rm) ∈ S(m,n, ~pm).

These four cases cover all possible elements (i, j, ~ri) ∈ S(m,n, ~pm).

3. Recall that A~ri is defined by Equation B.4. Using Corollary 3.11 it follows
that A~ri , in each of the previous four cases, is given by:

(a) A~ri = 1 and then

C~ri,j =
1

(m− 1)!n!

(

k

p2, · · · , pm

)

.

(b) A~ri = 1 and then

C~ri,j =
1

m!n!

(

k

p1 − 1, p2, · · · , pm

)

.

(c) We have two cases:

i) If paq(d)−1
+ 1 = paq(d)

then A~ri = bq(d)−1 + 1. Thus

C~ri,j =
bq(d)−1 + 1

m!n!

(

k

p1, · · · , paq(d)
− 1, · · · , pm

)

.

ii) If paq(d)−1
+ 1 < paq(d)

then A~ri = 1. Thus

C~ri,j =
1

m!n!

(

k

p1, · · · , paq(d)
− 1, · · · , pm

)

.

(d) A~ri = 1 and then

C~ri,j =
1

m!(n− 1)!

(

k

p1, · · · , pm

)

.

4. Using the equation A.3, with respect to the previous cases, we have that:
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(a)

#Si(~r) =
(m− 1)!

(b1 − 1)!b2! · · · bs!
,

and then

#~ri =
1

(b1 − 1)!b2! · · · bs!n!

(

k

p2, · · · , pm

)

.

(b)

#Si(~r) =
m!

(b1 − 1)!b2! · · · bs!
,

and then

#~ri =
1

(b1 − 1)!b2! · · · bs!n!

(

k

p1 − 1, · · · , pm

)

.

(c) i)

#Si(~r) =
m!

b1 · · · (bq(d)−1 + 1)!(bq(d) − 1)! · · · bs!
.

ii)

#Si(~r) =
m!

b1 · · · (bq(d) − 1)! · · · bs!
.

In both cases we get that

#~ri =
1

b1! · · · (bq(d) − 1)! · · · bs!n!

(

k

p1, · · · , paq(d)
− 1, · · · , pm

)

(d)

#Si(~r) =
1

m!(n− 1)!

(

k

p1, · · · , pm

)

,

and then

#~ri =
1

b1! · · · bs!(n− 1)!

(

k

p1, · · · , pm

)

.

5. We are going to compute

∑

(i,j,~ri)∈S(m,n,~pm)

#~ri,
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where ~pm = b1pa1 + · · · + bspas
= k + 1 − n, with pa1 > 1 and n > 0.

The other cases follow by similar computations. By 2. the possible triples
(~ri, i, j) ∈ S(~pm,m, n) are the cases b), c) and d). Hence

∑

(i,j,~ri)∈S(m,n,~pm)

#~ri =
1

(b1 − 1)!b2! · · · bs!n!

(

k

p1 − 1, · · · , pm

)

+

s
∑

d=2

1

b1! · · · (bq(d) − 1)! · · · bs!n!

(

k

p1, · · · , paq(d)
− 1, · · · , pm

)

+
1

b1! · · · bs!(n− 1)!

(

k

p1, · · · , pm

)

(∗)
=

1

b1! · · · bs!n!

(

m
∑

q=1

(

k

p1, · · · , pq − 1, · · · , pm

)

+ n

(

k

p1, · · · , pm

)

)

=
1

b1! · · · bs!n!

(

k + 1

p1, · · · , pm

)

.

Equality (∗) is obtained using that

b1

(

k

p1 − 1, · · · , pm

)

= b1

(

k

pa1 − 1,
b1· · ·, pa1 , · · · , pas

,
bs· · ·, pas

)

=

b1
∑

q=1

(

k

p1, · · · , pq − 1, · · · , pm

)

,

and similar arguments for bq(d). By Equation B.5 it follows that

∑

(i,j,~ri)∈S(m,n,~pm)

#~ri =

(

k + 1

~pm

)

#Sm(~p)

m!n!
= C~pm,n.

References

[Baa19] A. G. Baarsma. Deformations and L∞-algebras of Fréchet type.
PhD thesis, Utrecht University, 2019. Available at https://dspace.
library.uu.nl/handle/1874/386311.

[BCR98] J. Bochnak, M. Coste, and M.-F. Roy. Real algebraic geometry.
Transl. from the French., volume 36 of Ergeb. Math. Grenzgeb., 3.
Folge. Berlin: Springer, rev. and updated ed. edition, 1998.

33



[Cra04] M. Crainic. On the perturbation lemma, and deformations. Preprint,
arXiv:math/0403266 [math.AT] (2004), 2004.

[CSS14] M. Crainic, F. Schätz, and I. Struchiner. A survey on stability and
rigidity results for Lie algebras. Indag. Math., New Ser., 25(5):957–
976, 2014.

[Del86] P. Deligne. Letter to J. Millson and W. Goldman. https:

//publications.ias.edu/sites/default/files/millson.pdf,
1986.

[DMZ07] M. Doubek, M. Markl, and P. Zima. Deformation theory (lecture
notes). Arch. Math. (Brno), 43(5):333–371, 2007.

[Dri14] V. Drinfeld. A letter from Kharkov to Moscow. EMS Surv. Math.
Sci., 1(2):241–248, 2014.

[FMY09] Y. Frégier, M. Markl, and D. Yau. The L∞-deformation complex of
diagrams of algebras. New York J. Math., 15:353–392, 2009.

[FN57] A. Frölicher and A. Nijenhuis. A theorem on stability of complex
structures. Proc. Natl. Acad. Sci. USA, 43:239–241, 1957.

[FZ15] Y. Frégier and M. Zambon. Simultaneous deformations of alge-
bras and morphisms via derived brackets. J. Pure Appl. Algebra,
219(12):5344–5362, 2015.

[Ger63] M. Gerstenhaber. The cohomology structure of an associative ring.
Ann. Math. (2), 78:267–288, 1963.

[Ger64] M. Gerstenhaber. On the deformation of rings and algebras. Ann.
Math. (2), 79:59–103, 1964.

[Hin01] V. Hinich. DG coalgebras as formal stacks. J. Pure Appl. Algebra,
162(2-3):209–250, 2001.

[KS58] K. Kodaira and D. C. Spencer. On deformations of complex analytic
structures. I, II. Ann. Math. (2), 67:328–401, 1958.

[KS60] K. Kodaira and D. C. Spencer. On deformations of complex ana-
lytic structures. III: Stability theorems for complex structures. Ann.
Math. (2), 71:43–76, 1960.

[Kur62] M. Kuranishi. On the locally complete families of complex analytic
structures. Ann. Math. (2), 75:536–577, 1962.

34



[LS93] T. Lada and J. Stasheff. Introduction to sh Lie algebras for physi-
cists. Int. J. Theor. Phys., 32(7):1087–1103, 1993.

[LS24] A. S. Losev and T. V. Sulimov. Maurer-Cartan methods in pertur-
bative quantum mechanics. Theor. Math. Phys., 221(3):2155–2164,
2024.

[Lur11] J. Lurie. Derived algebraic geometry X: Formal moduli problems.
available at the author’s webpage.http://people.math.harvard.
edu/~lurie/papers/DAG-X.pdf, 2011.

[Man22] M. Manetti. Lie methods in deformation theory. Springer Monogr.
Math. Singapore: Springer, 2022.

[NR64] A. Nijenhuis and R. W. jun. Richardson. Cohomology and defor-
mation of algebraic structures. Bull. Am. Math. Soc., 70:406–411,
1964.

[NR66] A. Nijenhuis and R. W. jun. Richardson. Cohomology and deforma-
tions in graded Lie algebras. Bull. Am. Math. Soc., 72:1–29, 1966.

[OEI] OEIS Foundation Inc. (2025). Entry A001003 in The On-Line En-
cyclopedia of Integer Sequences. https://oeis.org/A001003.

[Pri10] J. P. Pridham. Unifying derived deformation theories. Adv. Math.,
224(3):772–826, 2010.

[Qui69] D. Quillen. Rational homotopy theory. Ann. Math. (2), 90:205–295,
1969.

[SS79] M. Schlessinger and J. Stasheff. Deformation theory and rational
homotopy type. University of North Carolina preprint. Updated
version at arXiv:1211.1647, 1979.

35


