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Abstract

With inspiration given by circular complex interval arithmetic, an
algebraic framework for octonionic-closed balls is proposed. More con-
cretely, an addition and two multiplications are defined on octonionic-
closed balls and analyzed. Diverse algebraic properties, such as power-
associativity, inclusion monotonicity and (sub)distributivity of the
multiplications, are explored. Throughout the manuscript, the com-
position structure of the involved octonion algebra plays a key role
in the results. These highlight how interval-like objects behave in
the non-associative setting of octonions, giving rise to rich algebraic
structures with potential applications in generalized interval analysis.

Keywords. octonionic-closed ball, composition algebra, operation, pro-
perty, algebraic structure.

AMS subject classifications. 15A69, 17A75, 08A40.

1 Motivation and structure

Long known for producing bounds on computational errors, as highlighted
by Geréb and Sándor in [10], interval analysis can be found in applications
to: robotics and robust control, [12]; rigorous algebraic computation with
real numbers, in the context of ball arithmetic, in Johansson’s article [13];
solving ordinary differential equations, in Valença’s first work [22] on the sub-
ject. One of the fundamental parts of interval analysis is interval arithmetic,
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which studies, namely, properties of operations on intervals. Within inter-
val analysis, the term “interval” refers originally to a closed interval of real
numbers, as in the pioneering thesis [15] of Moore who analised real-valued
computational errors. The work of Moore was rapidly extended to complex
numbers by Boche, [7], in the form of Cartesian and polar products, and
later on by Hansen, [11], who introduced a generalized interval arithmetic.

In a broad sense, the term “interval” refers to a generalized interval. For
instance, among others, in the works: [17] of Ohta, Gong and Haneda, on
polygon interval arithmetic, it means a polygon in the complex plane; [9]
of Gargantini and Henrici, devoted to circular complex interval arithmetic,
it refers to a closed ball in C. Recent research related to interval analysis
for computation purposes can be found in articles of the journals Reliable

Computing (previously, Interval Computations), [10], and Granular Com-

puting, devoted to the computing paradigm of information with the same
name, [18]. In addition to published articles, books on interval analysis, in
particular containing content on interval arithmetic, were written by: Alefeld
and Herzberger, [2]; Petković and Petković, [19]; Jaulin, Kieffer, Didrit and
Walter, [12]; Moore, Kearfott and Cloud, [16]; Dawood, [8]; Mayer, [14].

Inspired by circular complex interval arithmetic, an arithmetic for closed
balls in❘n was pursued by Beites, Nicolás and Vitória in [4]. More concretely,
the properties of certain operations (an addition, a subtraction, and several
multiplications) on closed balls in ❘n, some of which related either to the
Hadamard product of vectors or to the 2-fold vector cross product when
n ∈ {3, 7}, were studied. In particular, known results for operations on
closed balls in ❈, which can be identified with R

2, were extended to closed
balls in ❘n. With the same motivation, in [5], the cited authors considered
operations on closed balls in ❈n. In the latter reference, the properties
of possible multiplications for closed balls in ❈n, related to the mentioned
products of vectors, were studied. In addition, certain equations involving
the defined multiplications were solved.

In the present work, after some preliminaries in section 2, operations on
octonionic-closed balls are considered – section 3 –, starting with subsection
3.1 where an addition for these closed balls is examined. In subsections 3.2
and 3.3, properties of two possible multiplications for octonionic-closed balls,
both related to the multiplication of the real (non-split) octonion algebra
❖ = (❘8, ∗), are established. In particular, some results are obtained taking
advantage of the underlying structure of composition algebra of ❖. (Anti-
)Commutativity, (power-)associativity, existence of neutral element and re-
ciprocal of each element, and also its square root(s), are studied. Inclusion
monotonicity – the basis for diverse applications of interval arithmetic, [2] –
and the (sub)distributivity of each multiplication relative to the addition are
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analysed. Furthermore, certain algebraic structures are highlighted.

2 Preliminaries

The present section is devoted to preliminaries on the octonion algebra ❖,
based on [3] and references therein, and also on octonionic-closed balls, adapt-
ing definitions in [2] and in [1] for the current context.

Consider the usual real vector space ❘8, and its canonical basis denoted
by {e0, . . . , e7}. Let us equip ❘8 with the multiplication ∗ given by

ei ∗ ei = −e0, i ∈ {1, . . . , 7},

being e0 the identity, and the Fano plane

e6

e3

e1

e4

e5

e7

e2

Figure 1: Fano plane for ❖.

where the cyclic ordering of each three elements lying on the same line is
shown by the arrows. Recall that ❖ = (❘8, ∗) is the real (non-split) octonion
algebra.

Moreover, ❖ is a composition algebra since it is endowed with a nonde-
generate quadratic form (the norm) n : ❖→ ❘

+
0 which is multiplicative, i.e.,

for any x, y ∈ ❖,
n(x ∗ y) = n(x)n(y).

The form n being nondegenerate means that the associated symmetric bilin-
ear form

n(x, y) =
1

2
(n(x+ y)− n(x)− n(y))

is nondegenerate. The latter form can also be written as

n(x, y) =
1

2
(x ∗ y + y ∗ x),

where − : x 7→ x is the usual involution of ❖ = (❖, ∗). The norm n(x) and
the trace t(x) of x ∈ ❖ are, respectively, given by

n(x)e0 = x ∗ x = x ∗ x, t(x)e0 = x+ x.
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Now consider ‖ · ‖ : ❖→ ❘
+
0 given by x 7→ ‖x‖ =

√

n(x).

Definition 2.1. Let c ∈ ❖ and let r ∈ R
+
0 . The closed ball in ❖, called

octonionic-closed ball, with center c and radius r is

a = 〈c; r〉 = {x ∈ ❖ : ‖x− c‖ ≤ r}.

The set of closed balls in ❖ is denoted by B, and by B+ or B0 if, respectively,

r ∈ R
+ or r = 0.

Definition 2.2. Let a = 〈c1; r1〉, b = 〈c2; r2〉 ∈ B. The octonionic-closed

balls a and b are equal (a = b) if set-theoretic equality holds, that is, c1 = c2
and r1 = r2; a is contained in b (a ⊆ b) if set-theoretic inclusion is valid.

Definition 2.3. Let ∗B : B×B → B be a binary operation. The operation ∗B
is inclusion monotonic if, for all am, bm ∈ B such that am ⊆ bm, m ∈ {1, 2},
a1 ∗B a2 ⊆ b1 ∗B b2.

Definition 2.4. Let ∗B : B×B → B be a binary operation. The operation ∗B
is power-associative if, for all a ∈ B and for all m, s ∈ N, as ∗B a

m = a
s+m.

3 Operations

The present section is devoted to operations on octonionic-closed balls, and
their properties. We start with an auxiliary result for some of the following
subsections.

Lemma 3.1. Let a = 〈c1; r1〉, b = 〈c2; r2〉 ∈ B. Then a ⊆ b if and only if

‖c1 − c2‖ ≤ r2 − r1. In particular, if a and b are concentric then a ⊆ b if

and only if r1 ≤ r2.

Proof. (⇒) Suppose that a ⊆ b. Assume that ‖c1 − c2‖ =
√

n(c1 − c2) >
r2 − r1. Consider the line passing through c1 and c2. This line intersects
the border of a at a point x such that ‖x − c2‖ = ‖c1 − c2‖ + ‖x − c1‖ >
r2 − r1 + r1 = r2, which leads to the contradiction x /∈ b.

(⇐) Let x ∈ a. Then ‖x− c1‖ =
√

n(x− c1) ≤ r1. Hence, x ∈ b since

‖x− c2‖ =
√

n(x− c1 + c1 − c2) ≤
√

n(x− c1) +
√

n(c1 − c2) ≤ r2.

The particular result for concentric balls is now immediate.
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3.1 Addition

In the current subsection, results related to properties of the operation +B

are established.

Definition 3.2. The binary operation +B : B × B → B, hereinafter called

addition +B, is given by

a+B b = 〈c1; r1〉+B 〈c2; r2〉 := 〈c1 + c2; r1 + r2〉.

Theorem 3.3. The addition +B is commutative and associative. Moreover,

〈0; 0〉 is the neutral element relative to +B.

Proof. Owing to the commutativity and to the associativity of the addition
in ❖, as well as to the commutativity and to the associativity of the addition
in R, it is straightforward to prove that, for all a, b, c ∈ B, a+B b = b+B a

and (a+B b)+B c = a+B (b+B c). Taking into account the neutral elements
of ❖ and R relative to the respective additions, it is also direct to prove that
〈0; 0〉 is the neutral element relative to +B.

Corollary 3.4. (B,+B) is a commutative monoid.

Proof. A direct consequence of Theorem 3.3.

Corollary 3.5. The set of elements of B which possess reciprocal relative

to the addition +B is B0. Furthermore, the reciprocal of a = 〈c1; 0〉 ∈ B0

relative to +B is 〈−c1; 0〉.

Proof. Let e = 〈0; 0〉. Let a = 〈c1; r1〉 ∈ B. Suppose that a′ = 〈c′1; r′1〉 ∈ B
is the reciprocal of a relative to +B. From a +B a

′ = e, we have c′1 = −c1
and r′1 = −r1. Thus, r1 = 0.

Lemma 3.6. Let a, b ∈ B. Then a+B b = {x+ y : x ∈ a ∧ y ∈ b}.

Proof. Let a = 〈c1; r1〉, b = 〈c2; r2〉 ∈ B.
(⊆) Let u ∈ a +B b = 〈c1 + c2; r1 + r2〉. Then ‖u − (c1 + c2)‖ =

√

n(u− (c1 + c2)) ≤ r1 + r2. If r1 + r2 = 0 then the inclusion holds since
u = c1 + c2. If r1 + r2 6= 0 then the inclusion also holds since u = v+ (u− v)
with v = αu+ (1− α)(c1 + c2)− c2 ∈ a, α = r1

r1+r2
, and u− v ∈ b. In fact,

‖v − c1‖ =
√

n(α(u− c1 − c2))

=
√

α2n(u− c1 − c2)

= α
√

n(u− c1 − c2)
= α‖u− (c1 + c2)‖
≤ r1
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and ‖u− v − c2‖ = (1− α)‖u− (c1 + c2)‖ ≤ r2.
(⊇) Let x ∈ a and y ∈ b. Then ‖x − c1‖ =

√

n(x− c1) ≤ r1 and

‖y − c2‖ =
√

n(y − c2) ≤ r2. Observe that

n(x− c1 + y − c2) = n(x− c1) + n(y − c2) + 2n(x− c1, y − c2)
≤ n(x− c1) + n(y − c2) + 2|n(x− c1, y − c2)|
≤ n(x− c1) + n(y − c2) + 2

√

n(x− c1)
√

n(y − c2)

= (
√

n(x− c1) +
√

n(y − c2))
2,

which implies

‖x+ y − (c1 + c2)‖ =
√

n(x− c1 + y − c2)

≤
√

n(x− c1) +
√

n(y − c2)
≤ r1 + r2.

Therefore, x+ y ∈ a+B b = 〈c1 + c2; r1 + r2〉.

Theorem 3.7. The addition +B is inclusion monotonic.

Proof. Let am, bm ∈ B such that am ⊆ bm, m ∈ {1, 2}. By Lemma 3.6,
a1+Ba2 = {x+y : x ∈ a1∧y ∈ a2} ⊆ {x+y : x ∈ b1∧y ∈ b2} = b1+Bb2.

3.2 Multiplication ∗B,r
In the current subsection, results related to properties of the operation ∗B,r
are established.

Definition 3.8. The binary operation ∗B,r : B × B → B, hereinafter called

multiplication ∗B,r, is given by

a ∗B,r b = 〈c1; r1〉 ∗B,r 〈c2; r2〉 := 〈c1 ∗ c2 + r1c2 + r2c1; r1r2〉.

Despite the fact that commutativity, anti-commutativity and associativ-
ity do not hold, ∗B,r satisfies the subsequent properties.

Theorem 3.9. The neutral element relative to ∗B,r is 〈0; 1〉.

Proof. Let a = 〈c; r〉 ∈ B. Then we get

〈c; r〉 ∗B,r 〈0; 1〉 = 〈c; r〉 = 〈0; 1〉 ∗B,r 〈c; r〉.

Assuming that 〈u; s〉 is another neutral element relative to ∗B,r, it is straight-
forward that 〈u; s〉 = 〈u; s〉 ∗B,r 〈0; 1〉 = 〈0; 1〉.
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Corollary 3.10. (B, ∗B,r) is a unital magma.

Proof. A straightforward consequence of Theorem 3.9.

Corollary 3.11. The set of elements of B which possess reciprocal relative

to the multiplication ∗B,r is {〈c; r〉 ∈ B+ : c + re0 6= 0}. Furthermore, the

reciprocal of 〈c; r〉 ∈ B+ relative to ∗B,r is 〈−r−1(c+ re0)
−1 ∗ c; r−1〉.

Proof. Let a = 〈c; r〉 ∈ B. Suppose that a
′ = 〈u;α〉 ∈ B is the right

reciprocal of a relative to ∗B,r. From 〈c; r〉 ∗B,r 〈u;α〉 = 〈0; 1〉 we get α = r−1

whenever r 6= 0 and, demanding c+ re0 6= 0,

c ∗ u+ αc+ ru = 0 ⇔ (c+ re0) ∗ u = −αc ⇔ u = −α(c+ re0)
−1 ∗ c.

Now suppose that a′′ = 〈v; β〉 ∈ B is the left reciprocal of a relative to ∗B,r.
From 〈v; β〉 ∗B,r 〈c; r〉 = 〈0; 1〉, through a similar reasoning, we arrive at the
left reciprocal 〈−r−1c ∗ (c + re0)

−1; r−1〉 of a relative to ∗B,r. Finally, as
(c+ re0)

−1 = c+re0
n(c+re0)

, observe that (c+ re0)
−1 ∗ c = c ∗ (c+ re0)

−1.

Let a = 〈c; r〉 ∈ B. We define the powers of a 6= 〈0; 0〉 relative to ∗B,r by

a
0 = 〈0; 1〉 and a

k = a
k−1 ∗B,r a for k ∈ N.

Denote e0 by c∗0 and c∗(k−1) ∗ c by c∗k for k ∈ N. If a = 〈0; 0〉 then, for all
k ∈ N, ak = 〈0; 0〉.
Theorem 3.12. The multiplication ∗B,r is power-associative.

Proof. Let a = 〈c; r〉 ∈ B. On the one hand, we have

a
2 ∗B,r a = 〈c ∗ c+ 2rc; r2〉 ∗B,r 〈c; r〉

= 〈(c ∗ c) ∗ c+ 3rc ∗ c+ 3r2c; r3〉
= 〈c ∗ (c ∗ c) + 3rc ∗ c+ 3r2c; r3〉
= 〈c; r〉 ∗B,r 〈c ∗ c+ 2rc; r2〉
= a ∗B,r a2.

On the other hand, we get

(a2 ∗B,r a) ∗B,r a = 〈(c ∗ c) ∗ c+ 3rc ∗ c+ 3r2c; r3〉 ∗B,r 〈c; r〉
= 〈((c ∗ c) ∗ c) ∗ c+ 4r(c ∗ c) ∗ c+ 6r2c ∗ c+ 4r3c; r4〉

and

a
2 ∗B,r a2 = 〈c ∗ c+ 2rc; r2〉 ∗B,r 〈c ∗ c+ 2rc; r2〉

= 〈(c ∗ c) ∗ (c ∗ c) + 4r(c ∗ c) ∗ c+ 6r2c ∗ c+ 4r3c; r4〉.

As a2 ∗B,r a = a ∗B,r a2 and (a2 ∗B,r a) ∗B,r a = a
2 ∗B,r a2, invoking [1], the

result follows.
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Theorem 3.13. Let a = 〈c; r〉 ∈ B. Relative to the multiplication ∗B,r, for
all k ∈ N, ak = 〈∑k

j=1

(

k
j−1

)

rj−1c∗(k+1−j); rk〉.

Proof. Let a = 〈c; r〉 ∈ B. We use induction on k. The equality obviously
holds for k = 1. Suppose that it is true for k. Then we have

a
k+1 = a

k ∗B,r a
= 〈

∑k
j=1

(

k
j−1

)

rj−1c∗(k+1−j); rk〉 ∗B,r 〈c; r〉
= 〈

∑k
j=1

(

k
j−1

)

rj−1c∗(k+2−j) +
∑k

j=1

(

k
j−1

)

rjc∗(k+1−j) + rkc; rk+1〉
= 〈

∑k
j=1

(

k
j−1

)

rj−1c∗(k+2−j) +
∑k−1

j=1

(

k
j−1

)

rjc∗(k+1−j) + (k + 1)rkc; rk+1〉
= 〈c∗(k+1) +

∑k
j=2(

(

k
j−1

)

+
(

k
j−2

)

)rj−1c∗(k+2−j) + (k + 1)rkc; rk+1〉
= 〈c∗(k+1) +

∑k
j=2

(

k+1
j−1

)

rj−1c∗(k+2−j) + (k + 1)rkc; rk+1〉
= 〈

∑k
j=1

(

k+1
j−1

)

rj−1c∗(k+2−j) +
∑k+1

j=k+1

(

k+1
j−1

)

rj−1c∗(k+2−j); rk+1〉
= 〈

∑k+1
j=1

(

k+1
j−1

)

rj−1c∗(k+2−j); rk+1〉.

Theorem 3.14. Let a = 〈0; r〉 ∈ B. The square roots of a relative to the

multiplication ∗B,r are given by a
1/2 = 〈−2

√
re0;

√
r〉.

Proof. Let a = 〈0; r〉 ∈ B. Let b = 〈v; s〉 ∈ B such that a = b
2. As

〈0; r〉 = 〈v ∗ v + 2sv; s2〉, we have

s2 = r and v ∗ v + 2sv = 0.

Thus, s =
√
r. It is clear that v = 0 is a solution of v ∗ v + 2sv = 0.

When v 6= 0, as any two elements of ❖ generate an associative subalgebra,
v ∗ v + 2sv = 0 leads to v ∗ (v ∗ v−1) + 2sv ∗ v−1 = 0, that is, v = −2se0.

Theorem 3.15. The multiplication ∗B,r is not inclusion monotonic.

Proof. Let a1 = 〈e1; 1〉, a2 = 〈e3; 1〉, b1 = 〈e2; 3〉, b2 = 〈e3; 1〉 ∈ B. As
‖e1 − e2‖ =

√

n(e1 − e2) =
√
2 ≤ 2 and ‖e3 − e3‖ =

√

n(e3 − e3) = 0 ≤ 0
then, by Lemma 3.1, am ⊆ bm, m ∈ {1, 2}. However, as ‖ − 2e2 − 2e3‖ =
√

n(−2e2 − 2e3) = 2
√
2 6≤ 2, then, again by Lemma 3.1,

a1 ∗B,r a2 = 〈e1 − e2 + e3; 1〉 6⊆ b1 ∗B,r b2 = 〈e1 + e2 + 3e3; 3〉.

Theorem 3.16. The multiplication ∗B,r is distributive with respect to the

addition +B.
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Proof. Owing to the distributivity of ∗ with respect to the addition in ❖,
and to the distributivity of the multiplication with respect to the addition
in R, it is straightforward to prove that, for all a, b, c ∈ B, a ∗B,r (b+B c) =
(a ∗B,r b) +B (a ∗B,r c) and (b+B c) ∗B,r a = (b ∗B,r a) +B (c ∗B,r a).
Corollary 3.17. (B,+B, ∗B,r) is a ringoid.

Proof. A straightforward consequence of Theorem 3.16.

3.3 Multiplication ∗B,c
In the current subsection, results related to properties of the operation ∗B,c
are established.

Definition 3.18. The binary operation ∗B,c : B × B → B, hereinafter called

multiplication ∗B,c, is given by

a ∗B,c b = 〈c1; r1〉 ∗B,c 〈c2; r2〉 := 〈c1 ∗ c2; r1‖c2‖+ r2‖c1‖+ r1r2〉.

Despite the fact that commutativity, anti-commutativity and associativ-
ity do not hold, ∗B,c satisfies the subsequent properties.

Theorem 3.19. The neutral element relative to ∗B,c is 〈e0; 0〉.
Proof. Let a = 〈c; r〉 ∈ B. Then we get

〈c; r〉 ∗B,c 〈e0; 0〉 = 〈c ∗ e0; r‖e0‖〉 = 〈c; r〉 = 〈e0; 0〉 ∗B,c 〈c; r〉.

Assuming that 〈u; s〉 is another neutral element relative to ∗B,c, it is straight-
forward that 〈u; s〉 = 〈u; s〉 ∗B,c 〈e0; 0〉 = 〈e0; 0〉.
Corollary 3.20. (B, ∗B,c) is a unital magma.

Proof. A straightforward consequence of Theorem 3.19.

Corollary 3.21. The set of elements of B which possess reciprocal relative to

the multiplication ∗B,c is B0\{〈0; 0〉}. Furthermore, the reciprocal of 〈c; 0〉 ∈
B0\{〈0; 0〉} relative to ∗B,c is 〈c−1; 0〉 = 〈 c

‖c‖2
; 0〉.

Proof. Let a = 〈c; r〉 ∈ B. Suppose that a
′ = 〈u;α〉 ∈ B is the right

reciprocal of a relative to ∗B,c. From 〈c; r〉∗B,c〈u;α〉 = 〈e0; 0〉 we get c∗u = e0,
which implies c 6= 0 and u 6= 0, and

r‖u‖+ α‖c‖+ rα = 0 ⇔ r = α = 0.

The former equality also implies u = c−1 = c
n(c)

. It is straightforward to see

that 〈c−1; 0〉 is also the left reciprocal of a relative to ∗B,c.
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Let a = 〈c; r〉 ∈ B. We define the powers of a 6= 〈0; 0〉 relative to ∗B,c by

a
0 = 〈e0; 0〉 and a

k = a
k−1 ∗B,c a for k ∈ N.

Denote e0 by c∗0 and c∗(k−1) ∗ c by c∗k for k ∈ N. If a = 〈0; 0〉 then, for all
k ∈ N, ak = 〈0; 0〉.

Theorem 3.22. The multiplication ∗B,c is power-associative.

Proof. Let a = 〈c; r〉 ∈ B. On the one hand, we have

a
2 ∗B,c a = 〈c ∗ c; r2 + 2r‖c‖〉 ∗B,c 〈c; r〉

= 〈(c ∗ c) ∗ c; r3 + 3r2‖c‖+ 3r‖c‖2〉
= 〈c ∗ (c ∗ c); r3 + 3r2‖c‖+ 3r‖c‖2〉
= 〈c; r〉 ∗B,c 〈c ∗ c; r2 + 2r‖c‖〉
= a ∗B,c a2.

On the other hand, we get

(a2 ∗B,c a) ∗B,c a = 〈(c ∗ c) ∗ c; (r + ‖c‖)3 − ‖c‖3〉 ∗B,c 〈c; r〉
= 〈((c ∗ c) ∗ c) ∗ c; (r + ‖c‖)4 − ‖c‖4〉

and

a
2 ∗B,c a2 = 〈c ∗ c; (r + ‖c‖)2 − ‖c‖2〉 ∗B,c 〈c ∗ c; (r + ‖c‖)2 − ‖c‖2〉

= 〈(c ∗ c) ∗ (c ∗ c); (r + ‖c‖)4 − ‖c‖4〉.

As a2 ∗B,c a = a ∗B,c a2 and (a2 ∗B,c a) ∗B,c a = a
2 ∗B,c a2, invoking [1], the

result follows.

Theorem 3.23. Let a = 〈c; r〉 ∈ B. Relative to the multiplication ∗B,c, for
all k ∈ N, ak = 〈c∗k; (‖c‖+ r)k − ‖c‖k〉.

Proof. Let a = 〈c; r〉 ∈ B. We use induction on k. The equality obviously
holds for k = 1. Suppose that it is true for k. Then we have

a
k+1 = a

k ∗B,c a
= 〈c∗k; (r + ‖c‖)k − ‖c‖k〉 ∗B,c 〈c; r〉
= 〈c∗k ∗ c; ((r + ‖c‖)k − ‖c‖k)‖c‖+ r‖c‖k + r((r + ‖c‖)k − ‖c‖k)〉
= 〈c∗(k+1); (r + ‖c‖)k(r + ‖c‖)− ‖c‖k+1〉
= 〈c∗(k+1); (r + ‖c‖)k+1 − ‖c‖k+1〉.
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Theorem 3.24. Let a = 〈c; r〉 ∈ B. The square roots of a relative to the

multiplication ∗B,c are given by

a
1/2 =























〈0;√r〉 if c = 0;

〈v;
√

‖c‖+ r −
√

‖c‖〉,
with ‖v‖ = ‖c‖1/2 and t(v) = 0, if c = −‖c‖e0 6= 0;
〈

± c+‖c‖e0√
t(c)+2‖c‖

;
√

‖c‖+ r −
√

‖c‖
〉

otherwise.

Proof. Let a = 〈c; r〉 ∈ B. Let b = 〈v; s〉 ∈ B such that a = b
2. Hence,

〈c; r〉 = 〈v ∗ v; (‖v‖+ s)2 − ‖v‖2〉,

and we have c = v ∗ v and r = (‖v‖+ s)2 − ‖v‖2. From the first equality, we
obtain ‖v‖2 = ‖c‖, which, from the second equality, leads to s =

√

‖c‖+ r−
√

‖c‖. If c = 0, then s =
√
r. Now consider c 6= 0. As v ∈ ❖ is a solution of

the quadratic equation x∗x−t(x)x+n(x)e0 = 0, we have t(v)v = c+‖c‖e0. If
c = −‖c‖e0 then t(v) = 0 and since c = v∗v = −v∗v = −n(v)e0, every v ∈ ❖
with ‖v‖ = ‖c‖1/2 satisfies 〈v;

√

‖c‖+ r −
√

‖c‖〉2 = a. If c 6= −‖c‖e0 then
v lies in the linear subspace generated by c+‖c‖e0 6= 0. So, v = α(c+‖c‖e0)
with α ∈ R \ {0}, and we get

‖c‖ = n(v) = α2n(c+ ‖c‖e0) = α2(2‖c‖2 + 2‖c‖n(c, e0)).

Thus, α = ± 1√
t(c)+2‖c‖

.

Theorem 3.25. The multiplication ∗B,c is inclusion monotonic.

Proof. Let am = 〈am; rm〉, bm = 〈bm; sm〉 ∈ B such that am ⊆ bm, m ∈
{1, 2}. We aim to prove that a1 ∗B,c a2 ⊆ b1 ∗B,c b2. From Lemma 3.1,
‖am − bm‖ ≤ sm − rm, m ∈ {1, 2}. We also have

a1 ∗B,c a2 = 〈a1 ∗ a2; r2‖a1‖+ r1‖a2‖+ r1r2〉

and
b1 ∗B,c b2 = 〈b1 ∗ b2; s2‖b1‖+ s1‖b2‖+ s1s2〉.

As

‖a1 ∗ a2 − b1 ∗ b2‖
= ‖(a1 − b1) ∗ b2 + b1 ∗ (a2 − b2) + (a1 − b1) ∗ (a2 − b2)‖
≤ ‖a1 − b1‖‖b2‖+ ‖b1‖‖a2 − b2‖+ ‖a1 − b1‖‖a2 − b2‖
≤ (s1 − r1)‖b2‖+ ‖b1‖(s2 − r2) + (s1 − r1)(s2 − r2)

11



and

−‖bm‖ ≤ −‖am‖+ ‖am − bm‖ ≤ −‖am‖+ sm − rm,m ∈ {1, 2},

we obtain ‖a1 ∗ a2 − b1 ∗ b2‖ ≤ β − α, where β = s2‖b1‖+ s1‖b2‖+ s1s2 and
α = r2‖a1‖+r1‖a2‖+r1r2. Once again by Lemma 3.1, the result follows.

Theorem 3.26. The multiplication ∗B,c is subdistributive with respect to the

addition +B.

Proof. Let a = 〈a; r1〉, b = 〈b; r2〉, c = 〈c; r3〉 ∈ B. Lemma 3.1 allows to
arrive at

a ∗B,c (b+B c) = 〈a; r1〉 ∗B,c 〈b+ c; r2 + r3〉
= 〈a ∗ (b+ c); (r2 + r3)‖a‖+ r1‖b+ c‖+ r1(r2 + r3)〉
⊆ 〈a ∗ b+ a ∗ c; r2‖a‖+ r1‖b‖+ r1r2 + r3‖a‖+ r1‖c‖+ r1r3〉
= a ∗B,c b+B a ∗B,c c.

Thus, left subdistributivity holds. An analogous reasoning leads to the right
subdistributivity.
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[10] Geréb, G., Sándor, A., Polyarc bounded complex interval arithmetic,
arXiv (2024), arXiv:2402.06430 [math.NA].

[11] Hansen, E. R., A generalized interval arithmetic, In Nickel, K. (Edi-
tor) Interval Mathematics. Lecture Notes in Comput. Sci. (pp. 7-18),
Springer, 1975.

[12] Jaulin, L., Kieffer, M., Didrit, O., Walter, E., Applied Interval Analysis,
Springer, 2001.

[13] Johansson F., Ball arithmetic as a tool in computer algebra. In Gerhard
J, Kotsireas I (Editors). Maple in mathematics education and research
(pp. 334-336), Springer, 2020.

[14] Mayer, G., Interval analysis and automatic result verification, De
Gruyter, 2017.

[15] Moore, R. E., Interval arithmetic and automatic error analysis in digital
computing. PhD Thesis, Stanford University, 1963.

[16] Moore, R. E., Kearfott, R. B., Cloud, M. J., Introduction to Interval
Analysis, SIAM, 2009.

[17] Ohta, Y., Gong, L., Haneda, H., Polygon interval arithmetic and design
of robust control systems, In 29th IEEE Conference on Decision and
Control (pp. 1065-10672), 1990.

13



[18] Pedrycz (Editor), W., Granular Computing, Springer-Verlag, 2001.
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