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Abstract. The purpose of this paper is to extend some useful results, such as

the multiplication being open, previously known for suitable finitely generated

relatively free profinite semigroups, to relatively free profinite semigroupoids
over finite-vertex graphs. This extension is used to give a profinite characteri-

zation of recurrent words over infinite alphabets and to establish new results

about stabilizers in relatively free profinite semigroups and semigroupoids.

1. Introduction

Pseudovarieties of semigroups are considered one of the most fruitful frameworks
of finite semigroup theory (see the recent survey [1]). Several results have shown
the convenience and advantages to enlarge our scope to semigroupoids, profinite
semigroups, and even profinite semigroupoids. From the point of view of Category
Theory, semigroupoids are simply the result of dropping from the definition of
small categories the requirement of existence of local identities. Their exploration
as partial algebras generalizing semigroups was initiated in the decade of 1980
by Tilson [38], with powerful applications in the study of finite semigroups. In
the same decade, building on work of Reiterman and Banaschewski [33, 15], the
first author promoted the development of relatively free profinite semigroups as a
means of giving a proper equational, syntactical, approach to pseudovarieties of
semigroups. Both approaches were afterwards successfully employed in several major
developments of the field [36, 3, 7]. The papers [14, 26] pioneered the combination of
the two approaches, establishing the study of free profinite semigroupoids relatively
to pseudovarieties of semigroupoids. Other relevant examples of this combination
include the papers [34, 12].

Motivation for those studies stems from Eilenberg’s theorem relating varieties of
languages with pseudovarieties of semigroups [19]. In such varieties, only languages
over finite alphabets are considered. This explains the focus given in the literature
to relatively free profinite semigroups generated by finite alphabets. In this context,
close connections are established between the algebraic-topological structure of
free profinite semigroups over a pseudovariety V and the corresponding variety
of languages V. An example, established in [5], is that when V contains all finite
nilpotent semigroups, V is closed under concatenation of languages if and only if the
corresponding relatively free profinite semigroups have open multiplication (i.e., the
product of open sets is open). This result proved useful to understand the structure
of those semigroups by allowing us to think of their elements, often aptly called
pseudowords, as analogous to finite words in some key ways.

Relatively free profinite semigroups over infinite alphabets were also studied, but
they present some significant challenges; they may not be metrizable, while the
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finitely generated ones always are (see, for instance [13]). Here, we present exten-
sions to (non-necessarily finitely generated) relatively free profinite semigroups, over
suitable pseudovarieties, of results previously established in the finitely generated
case only. In fact, we go further, making these generalizations for relatively free
profinite semigroupoids generated by finite-vertex (directed) graphs. Graphs general-
ize alphabets, as we see alphabets as one-vertex graphs with loops representing the
letters. Accordingly, the generalization of pseudowords to relatively free profinite
semigroupoids are called pseudopaths. Most of the aforementioned extensions con-
cern the link between open multiplication (in semigroups and semigroupoids) and
concatenation-closed pseudovarieties (of semigroups and of semigroupoids, respec-
tively). We get complete characterizations for such pseudovarieties (cf. Theorems 4.10
and 4.9), improving what, in the semigroup case, was limited to finite alphabets
only.

Our characterization of open multiplication in semigroupoids via fully factorizable
nets (Corollary 4.3) improves the one from [9, Lemma 3.2], which is limited to
metrizable semigroups. This new characterization is used in the proofs of several
results concerning what we call prefix accessible pseudopaths (i.e., infinite-length
cluster points of prefixes of right infinite paths). One such result is a profinite charac-
terization of recurrent right-infinite paths over finite-vertex graphs (Theorem 6.11).
This is motivated by parallel ongoing work on a profinite approach to the study of
S-adic sequences [10], where we deal with relatively free profinite semigroupoids over
finite-vertex graphs having possibly infinitely many edges (which are not necessarily
metrizable).

The culmination of the paper is Theorem 7.6, which gives a characterization (also
applied in [10]) of stabilizers of prefix accessible pseudopaths for concatenation-closed
pseudovarieties. Fully factorizable nets appear in its proof, in whose preparation we
also get a structural result about stabilizers of free profinite semigroups over equidi-
sivible pseudovarieties (Theorem 7.2 and Corollary 7.3). This overlaps with results
obtained by Rhodes and Steinberg using other methods, cf. [34] and Remark 7.5.
Stabilizers of relatively free profinite semigroups got significant attention in the
literature [34, 24]; they played a role, via stable pairs, in the recently announced
proof that the Krohn-Rhodes complexity is decidable [29, 30].

The paper is organized as follows. After this introduction, Section 2 sets some
basic definitions and notation. This is continued in Section 3, dedicated to relatively
free profinite semigroupoids. Section 4, the core of the paper, contains a systematic
study of links between open multiplication and fully factorizable nets on one hand,
and concatenation-closed pseudovarieties on the other hand. Section 5 revisits
equidivisible pseudovarieties of semigroups [6, 8], extending them to semigroupoids;
this pops up naturally from the study of concatenation-closed pseudovarieties,
and sets the stage for Theorem 7.2, which is critically important for our paper in
preparation [10]. Section 6 is a study of pseudopaths and their prefixes, with an
emphasis on prefix accessible pseudopaths. Section 7 closes the paper with results
about stabilizers.

2. Basic definitions

2.1. Graphs. In this paper, a graph G is a set equipped with a partition into a
set V (G) of vertices and a set E(G) of edges, and endowed with two mappings
α, ω : E(G) → V (G). The mappings α and ω are called the adjacency mappings,
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with α(g) and ω(g) respectively being the source and the range of an edge g. Set
G(x, y) = α−1(x) ∩ ω−1(y), and G(x) = G(x, x), for x, y ∈ V (G), and call G(x, y)
a hom-set and G(x) a local set. Edges in the same hom-set are coterminal. If we
endow G with a Hausdorff topology such that V (G) and E(G) are closed and the
adjacency mappings are continuous, then we say that G is a topological graph. If
this topology is compact, then G is a compact graph. We also include the Hausdorff
property in the definition of compact space.

With the definition of graph given above, the notions of subgraphs, morphisms
of graphs, and products of graphs follow naturally, cf. [38, 14, 26]. More precisely,
a morphism of graphs ϕ : G → H is a map such that ϕ(V (G)) ⊆ V (H) and
ϕ(G(x, y)) ⊆ H(ϕ(x), ϕ(y)) for all x, y ∈ V (G). A morphism ϕ : G→ H is faithful
if the restriction ϕ : G(x, y) → H(ϕ(x), ϕ(y)) is injective for all x, y ∈ V (G); it
is a quotient if its restriction V (G) → V (H) is bijective and all its restrictions
G(x, y) → H(ϕ(x), ϕ(y)) are onto. A graph equivalence on G is an equivalence
relation θ on G that does not identify distinct vertices and only identifies distinct
edges that are coterminal. The natural mapping qθ : G → G/θ induces in G/θ a
graph structure for which qθ is a quotient morphism.

In this paper, we use the term alphabet as a synonym for set. When the context is
clear, we may see an alphabet A as a one-vertex graph whose edges are the elements
of A. For example, the empty set is then seen as the one-vertex graph with no edges.
Likewise a topological space may be viewed as a one-vertex topological graph.

2.2. Semigroupoids. For a graph S, the set of pairs of composable egdes is the set

D(S) = {(s, t) ∈ E(S)× E(S) : α(s) = ω(t)}.

A semigroupoid is a graph S endowed with a mapping m : D(S)→ E(S), called the
composition or multiplication of S, such that, denoting m(s, t) by st, one has:

(i) α(st) = α(t) and ω(st) = ω(s) for every (s, t) ∈ D(S);
(ii) if (s, t) ∈ D(S) and (t, r) ∈ D(S) then (st)r = s(tr).

A local identity at vertex x ∈ V (S) is an edge e ∈ S(x) such that es = te for all
s ∈ ω−1(x) and t ∈ α−1(x). The semigroupoids where each vertex has a (necessarily
unique) local identity are precisely the small categories. We denote by SI the small
category obtained from the semigroupoid S by adjoining at each vertex v a local
identity 1v that is not in S.

Remark 2.1. Frequently in the literature on Semigroup Theory (e.g. [38, 14, 26]),
a pair of edges (s, t) ∈ E(S) × E(S) is defined to be composable when we have
instead ω(s) = α(t). The definition adopted in this paper is instead consistent with
the usual convention in Category Theory for composition of morphisms, and is also
used in our paper [10].

If S is a topological (compact) graph whose multiplication m is continuous, then
we say that S is a topological (compact) semigroupoid. In that case, SI is also a
topological (compact) semigroupoid with the topology defined as follows: first, carry
the topology of V (S) to the set {1v | v ∈ V (S)} of new local identities using the
bijection v 7→ 1v; then equip E(SI) with the coproduct topology of E(S) with
{1v | v ∈ V (S)}. With this topology, E(S) is a clopen subspace of E(SI) and, in
case V (S) is finite, the new local identities are isolated points.

We may see a (topological) semigroup S as a one-vertex (topological) semigroupoid
whose edges are the elements of S, the composition being the semigroup operation
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(and the topology of the space of edges being that of S). This is convenient for dealing
simultaneously with semigroups and semigroupoids. It extends the aforementioned
way of seeing sets as one-vertex graphs. Accordingly, we see the empty set as a
semigroup, as done, for instance, in [36], but not in [2].

A subgraph T of a semigroupoid S is a subsemigroupoid of S if T is a semigroupoid
whose multiplication is a restriction of the multiplication of S. Given a nonempty
subgraph X of the semigroupoid S, the intersection of all subsemigroupoids of S
containing X is a semigroupoid, called the subsemigroupoid of S generated by X.

For semigroupoids S and T , a homomorphism of semigroupoids from S to T is a
morphism of graphs ϕ : S → T such that ϕ(s · t) = ϕ(s) ·ϕ(t) for every (s, t) ∈ D(S).
If the restriction of ϕ to V (S) is injective, then ϕ(S) is a subsemigroupoid of T , but
that may not be the case otherwise [5, Example 3.1]. A homomorphism ϕ : S → T
extends to a homomorphism ϕI : SI → T I , such that ϕI(1v) = 1ϕ(v) for every

v ∈ V (S). Note that ϕI is continuous if ϕ is a continuous homomorphism of
topological semigroupoids. In the absence of confusion, we may denote ϕI also by ϕ.

The free semigroupoid generated by the graph A, denoted A+, is constructed as
follows:

(i) the set of vertices is given by V (A+) = V (A);
(ii) for every x, y ∈ V (A), the set A+(x, y) consists of the finite sequences

a0 · · · an−1, with n > 1 such that (ai, ai+1) ∈ D(A), ω(a0) = y and
α(an−1) = x;

(iii) for (s, t) ∈ D(A+), edge composition is given by concatenation, that is,
(s, t) 7→ st.

The small category (A+)I is denoted A∗. The edges of A+ are the paths over A,
with the local identities of A∗ being the empty paths. For the path a0 · · · an−1 as
above, the number n is its length, and the length of empty paths is zero. A language
over the graph A is a subset of E(A+). If A is a set (viewed as a one-vertex graph)
then A+ and A∗ are simply the free semigroup and the free monoid generated by A,
respectively.

We adopt the following conventions for subgraphs X,Y of a semigroupoid S:

• the least subgraph of S containing {xy : (x, y) ∈ D(S) ∩ E(X)× E(Y )} is
denoted XY ;

• X+ denotes the subsemigroupoid of X generated by S, when no confusion
arises with the free semigroupoid generated by X.

Ideals and Green’s relations in semigroups are classical and can be recalled
in many standard textbooks [17, 2, 22, 25, 28]. Ideals and Green’s relations in a
semigroupoid S are defined as in semigroups. For example, a subgraph J is an ideal
when SIJSI = J . We also let x 6R y when xSI ⊆ ySI , in which case we say that
y is a prefix of x. We further write x R y when xSI = ySI . Dually, one has the
relations 6L and L, and the notion of suffix.

2.3. Pseudovarieties. A semigroupoid S is a divisor of a semigroupoid T if there
is a semigroupoid R for which there are a faithful homomorphism R → T and a
quotient homomorphism R → S. In particular, a semigroup S is a divisor of T if
and only if it is a subsemigroup of a homomorphic image of T .

A pseudovariety of semigroups (respectively, semigroupoids) is a class of finite
semigroups (respectively, semigroupoids) closed under taking divisors, finite (pos-
sibly empty) direct products, and, in the case of semigroupoids, finite coproducts.
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The pseudovariety of all finite semigroups is denoted S, while that of all finite
semigroupoids is denoted Sd. As the empty product is allowed, all pseudovarieties
contain the trivial semigroup.

The intersection of a family of pseudovarieties of semigroupoids (semigroups) is a
pseudovariety of semigroupoids (semigroups). For a pseudovariety of semigroups V,
the intersection of all pseudovarieties of semigroupoids containing V is called the
global of V, denoted by gV; another related pseudovariety of semigroupoids is the
class ℓV, called the local of V, of semigroupoids whose local sets are semigroups
from V. If W is a pseudovariety of semigroupoids, then V = S∩W is a pseudovariety
of semigroups and the inclusions gV ⊆ W ⊆ ℓV hold. A pseudovariety of semigroups
is local if gV = ℓV. See [3, 38, 14] for introductions to this notion, explanations for
its motivation, and examples of local and non-local pseudovarieties.

2.4. Profinite semigroupoids. In what follows:

• a finite-vertex graph (semigroupoid) means a graph (semigroupoid) with
only a finite number of vertices;

• finite graphs and semigroupoids are viewed as topological graphs and topo-
logical semigroupoids endowed with the discrete topology;

• a quotient inverse limit of semigroupoids is an inverse limit of semigroupoids
where every connecting homomorphism is a quotient homomorphism.

Let C be a class of compact semigroupoids. A compact semigroupoid is pro-C
if it is an inverse limit of members of C. We use the terms profinite semigroupoid
and profinite semigroup as synonyms for pro-Sd and pro-S, respectively. A compact
semigroupoid S is residually C if, for every u, v ∈ S such that u 6= v, there is a
continuous homomorphism ϕ : S → F , with F ∈ C, such that ϕ(u) 6= ϕ(v).

The next proposition shows that the two properties of being pro-C and being
residually C are closely related. It will be used freely throughout the paper. It is
encapsulated in [26, Theorem 5.1], where the hypothesis that the semigroupoid is
finite-vertex is implicit (see also [26, Theorem 4.1]). Without this hypothesis, the
proposition fails (see the comment following [5, Theorem 3.6]). The aforementioned
theorem [26, Theorem 5.1] is stated for (small) categories instead of semigroupoids,
but, as mentioned in the last section of the same paper, the statements and arguments
hold mutatis mutandis for semigroupoids.

Proposition 2.2. Let S be a finite-vertex compact semigroupoid and V be a pseu-
dovariety of semigroupoids. The following conditions are equivalent:

(i) S is pro-V.
(ii) S is a quotient inverse limit of pro-V semigroups.
(iii) S is residually V.
(iv) For every u, v ∈ S such that u 6= v, there is a continuous quotient homo-

morphism ϕ : S → F , with F ∈ V, such that ϕ(u) 6= ϕ(v).

The next proposition appears in a different form as part of [26, Proposition 10.2].
Alternatively, the arguments used in the proof of [4, Proposition 3.5], for the special
case of semigroups, extrapolate straightforwardly to semigroupoids.

Proposition 2.3. For a pseudovariety of semigroupoids V, let S be a finite-vertex
pro-V semigroupoid and K ⊆ S. Then K is clopen if and only if there is a continuous
quotient homomorphism ϕ : S → T such that T ∈ V and K = ϕ−1ϕ(K).
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3. Relatively free profinite semigroupoids

In this section, we recall the definition of relatively free profinite semigroupoid
and establish some basic facts concerning them; see [26] for further details. Let A
be a finite-vertex graph. Take a pseudovariety of semigroupoids V. A free pro-V
semigroupoid over A is a pair (F, ι) of a pro-V semigroupoid F and a continuous graph
morphism ι : A → F with the following universal property: for every continuous
graph morphism ϕ : A → S where S is a pro-V semigroupoid, there is a unique
continuous homomorphism ϕ̂ : F → S such that ϕ̂ ◦ ι = ϕ (see Diagram 3.1). We
also say that (F, ι) is a relatively free profinite semigroupoid.

A
ι //

ϕ
$$

F

ϕ̂
��

S

(3.1)

It turns out that there is indeed a free pro-V semigroupoid over A, denoted
(ΩAV, ιA), which moreover (by standard categorical arguments) is unique up to
isomorphism. In view of this uniqueness, we may speak about the free pro-V
semigroupoid over A. The subsemigroupoid of ΩAV generated by ιA(A) is denoted
ΩAV and is dense in ΩAV.

From the definition of ΩAV, it follows easily that the restriction of ιA to V (A) is
injective. Moreover ιA is injective whenever V contains a semigroup with at least
two elements, in which case we view A as a subgraph of ΩAV and ιA as the inclusion
mapping.

Remark 3.1. The hypothesis that A is finite-vertex is used in the construction of
ΩAV. See [5] for the difficulties arising when dealing with infinite-vertex graphs.

We have therefore a functor FV from the category of finite-vertex graphs to the
category of pro-V semigroupoids, given by FV(A) = ΩAV for every finite-vertex
graph A, and mapping each graph morphism ϕ : A→ B to the unique continuous
homomorphism FV(ϕ) : ΩAV → ΩBV such that Diagram (3.2) commutes. In the
absence of confusion, we may denote FV(ϕ) simply by ϕ̂.

A
ιA //

ϕ
��

ΩAV

FV(ϕ)=ϕ̂
��

B
ιB // ΩBV

(3.2)

This discussion about free pro-V semigroupoids carries on, mutatis mutandis, for
every pseudovariety of semigroups V and every alphabet A, entailing the existence
of the free free pro-V semigroup over A.

Remark 3.2. When V is a pseudovariety of semigroups and A is an alphabet, one
has ΩAV = ΩAgV.

Bear in mind Remark 3.2, as it allows in many instances an immediate passage
from the context of semigroupoids to that of semigroups.

Remark 3.3. The notation ΩAV, due to Reiterman [33], has a strong presence in
the literature and is related with the interpretation of the elements of ΩAV as a
certain kind of natural transformations called implicit operations [33, 2, 14].

We proceed to highlight some properties of relatively free profinite semigroupoids.
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Lemma 3.4. Let A be a finite-vertex graph and V be a pseudovariety of semi-
groupoids. If ϕ : ΩAV → S is as continuous homomorphism with S ∈ V, then
there is a finite-index graph equivalence θ of A and a continuous homomorphism
ψ : ΩA/θV→ S such that ϕ = ψ ◦ q̂θ.

Proof. Let θ be the graph equivalence relation on A such that, for every pair of
coterminal edges a, b of A, one has a θ b if and only if ϕ ◦ ιA(a) = ϕ ◦ ιA(b).
Since S is finite, the index of θ is finite. Set B = A/θ. Then ϕ ◦ ιA factors as

ϕ ◦ ιA = ψ̂ ◦ qθ for a unique graph morphism ψ : B → S. Since S ∈ V, there is a

unique continuous homomorphism ψ̂ : ΩBV→ S such ψ̂ ◦ ιB = ψ. We then have the
following commutative diagram

A
ιA //

qθ

��

ΩAV

ϕ}}
q̂θ

��

S

B

ψ
@@

ιB
// ΩBV

ψ̂
aa

and so ψ̂ ◦ q̂θ ◦ ιA = ϕ ◦ ιA. As ψ̂ ◦ q̂θ and ϕ are both continuous homomorphisms

and ιA generates the topological semigroupoid ΩAV, it follows that ψ̂ ◦ q̂θ = ϕ. �

Corollary 3.5. Let A be a finite-vertex graph and V be a pseudovariety of semi-
groupoids. Let u, v ∈ ΩAV be such that u 6= v. Then there is a finite-index graph
equivalence θ of A such that q̂θ(u) 6= q̂θ(v).

Proof. As ΩAV is pro-V, there is a continuous homomorphism ϕ : ΩAV→ S, with
S ∈ V, such that ϕ(u) 6= ϕ(v). We then apply Lemma 3.4 to ϕ. �

Let A be a finite-vertex graph. Then we may consider the directed set ΘA of
graph equivalences of A with finite index, ordered by reverse inclusion. For every
ρ, θ ∈ Θ such that ρ ⊇ θ, let qρ/θ be the natural mapping A/θ → A/ρ. Then Θ
is a directed set, and, by functoriality of FV, Diagram 3.3 commutes and we may
consider the inverse limit lim

←−θ∈Θ
ΩA/θV where the homomorphisms of the form

q̂ρ/θ are the connecting morphisms. Hence, there is a continuous homomorphism

q : ΩAV→ lim
←−θ∈Θ

ΩA/θV such that q(u) = (q̂θ(u))θ∈Θ for every u ∈ ΩAV.

ΩAV
q̂θ

))

q̂ρ

uu

ΩA/ρV ΩA/θV.
q̂ρ/θ

oo
(3.3)

Corollary 3.6. Let A be finite-vertex graph and V be a pseudovariety of semi-
groupoids V. Then q : ΩAV→ lim

←−θ∈Θ
ΩA/θV is a continuous isomorphism.

Proof. By Corollary 3.5, the mapping q is injective. Since q̂θ is onto for every θ ∈ Θ,
by compactness it follows that q is onto [21, Section 3.2], whence an isomorphism. �

Let A be a graph. A retraction of A is an onto graph morphism r : A→ B for
which there is a graph morphism s : B → A such that r ◦ s = idB , in which case we
say that B is a retract of A and that s is a section (of r, or of B).
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Example 3.7. If θ is a graph equivalence on A, then the graph morphism qθ : A→ A/θ
is a retraction, with any graph homomorphism s : A/θ → A such that s(a/θ) ∈ a/θ
for every a ∈ E(A) being a section of r.

Let B be a subgraph of the graph A. We say that B is a retract subgraph of A if
there is a retraction r : A→ B admitting the inclusion i : B → A as a section.

Remark 3.8. Let B be a retract subgraph of a finite-vertex graph A. For the
inclusion mapping i : B → A, we may then take a retraction r : A→ B such that
r ◦ i = idB . By functoriality, the equality r̂ ◦ î = idΩBV

holds, whence the continuous

homomorphism î : ΩBV→ ΩAV is injective.

If i : B → A is not a retraction, then î may not be injective, as seen next.

Example 3.9. Let A be the graph consisting of two vertices x, y and three edges
a, b, c such that a, b ∈ A(x, y) and c ∈ A(y, y). The subgraph B obtained from A by
deleting c is not a retract of A, since any homomorphic image of A must contain a
loop. On the other hand, let V be the class of all finite semigroupoids S such that, for
any triple of edges (s, t, r) of S satisfying α(s) = α(t) and ω(s) = ω(t) = α(r) = ω(r),
the equality s = t holds. As the class V is really defined by a pseudoidentity in the
sense of [38], it is a pseudovariety of semigroupoids. Then ΩBV = B, while the graph
ΩAV is the quotient of A obtained by identifying a with b. Hence, it is impossible
to find an injective graph homomorphism from ΩBV to ΩAV.

When B is a retract subgraph of a finite-vertex graph A, we may see ΩBV
as a closed subsemigroupoid of ΩAV by means of Remark 3.8. If V contains the
pseudovariety Sl of all finite semilattices, then we have the following stronger
property.

Proposition 3.10. Let V be a pseudovariety of semigroupoids, A a finite-vertex
graph, and B a retract subgraph of A. If V contains Sl, then ΩBV is open in ΩAV.

Proof. Consider the two-element semilattice T = {0, 1}, where 0 is a zero. Let
χ : A→ T be the graph morphism defined by

χ(a) =

{
1 if a ∈ E(B),

0 if a ∈ E(A) \ E(B).

As V ⊇ Sl, we may consider the unique continuous homomorphism χ̂ : ΩAV → T
extending χ. We claim that χ̂−1(1) = ΩBV, which shows that ΩBV is open. The
inclusion ΩBV ⊆ χ̂

−1(1) follows from χ̂−1(1) being a closed subsemigroupoid of ΩAV
containing B. For the reverse inclusion, note that every edge of ΩAV having an
element of E(A)\E(B) as factor is mapped by χ to 0, whence ΩAV∩ χ̂

−1(1) ⊆ ΩBV;
as χ̂−1(1) is open and ΩAV is dense in ΩAV, it follows that χ̂−1(1) ⊆ ΩBV. �

Remark 3.11. In the special case where A is a set viewed as a one-vertex graph, any
subset of A is a retract. By Remark 3.2, it immediately follows from the previous
result that if V is a pseudovariety of semigroups containing Sl and A is any alphabet,
then ΩBV is an open subsemigroup of ΩAV for every B ⊆ A.

Moving forward, we focus on pseudovarieties containing the pseudovariety N

of all finite nilpotent semigroups. If A is an alphabet, then ΩAN is the one-point
compactification of the discrete space A+, the semigroup structure of ΩAN extending
A+ by letting the point at infinite be a zero [2, Section 3.7]. If A is singleton, then A+
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is isomorphic to the additive semigroup N+ of positive integers, and ΩAN becomes
the one-point compactification N+ ∪ {∞}, extending N+ with ∞ as a zero for the
semigroup operation.

Example 3.12. Let A be an alphabet with at least two letters. Then the free pro-N
semigroup ΩAN contains one isomorphic copy of N+ ∪ {∞} for each letter a ∈ A,
since {a} ⊆ A is a retract subgraph when {a} and A are viewed as one-vertex
graphs. All of these copies of N+ ∪ {∞} intersect pairwise in the single point {∞},
and thus they are closed but not open in ΩAN. This shows that the conclusion of
Proposition 3.10 fails when V = N.

A proof of the next proposition may be found in [5, Proposition 3.12].

Proposition 3.13. Let A be a finite-vertex graph and V be a pseudovariety of
semigroupoids containing N. The unique homomorphism A+ → ΩAV extending the
mapping ιA : A→ ΩAV is injective, and the elements in its image are isolated points
of ΩAV.

For a subset X of ΩAV, we use the notation ClV(X) for the topological closure of
X in ΩAV. In view of Proposition 3.13, when V is a pseudovariety of semigroupoids
containing N, we regard A+ as a subsemigroupoid of ΩAV which is a discrete dense
subspace of ΩAV. Hence, for such V and A, the following observation arises: for
every language L ⊆ A+, the equality ClV(L) ∩A

+ = L holds. Proposition 3.13 and
these considerations motivate calling edges of ΩAV pseudopaths.

We say that a subgraph F of a semigroupoid S is factorial in S if the inclusion
m−1(F ) ⊆ F × F holds, where m : S × S → S denotes the multiplication mapping
of S.

Corollary 3.14. Let A be a finite-vertex graph and V be a pseudovariety of semi-
groupoids containing N. Then A+ is factorial in ΩAV.

Proof. Take u ∈ E(A+). Let m be the multiplication mapping of ΩAV. By Proposi-
tion 3.13, the set {u} is clopen. Hence, as m is continuous and D(ΩAV) is clopen in
ΩAV because A is a finite-vertex graph, the set m−1(u) is clopen in ΩAV×ΩAV. As
A+×A+ is dense in ΩAV×ΩAV, it follows that m−1(u) is the topological closure of
the intersection m−1(u) ∩A+ ×A+. Such intersection is finite, thus closed, whence
m−1(u) ⊆ A+ ×A+. �

Let V be a pseudovariety of semigroupoids containing N and A be a finite-
vertex graph. Since N+ ∪ {∞} is pro-V, we may consider the unique continuous
homomorphism ℓA : ΩAV→ N+ ∪ {∞} such that ℓA(a) = 1 for all a ∈ E(A). Note
that if u is a path over A, then ℓA(u) = |u|. More generally, for each pseudopath
u ∈ ΩAV, we say that ℓA(u) is the length of u, and use the notation ℓA(u) = |u|. We
extend this to empty pseudopaths of (ΩAV)

I by letting ℓA(u) = 0 whenever u is an
empty pseudopath. Moreover, we say that a pseudopath u ∈ (ΩAV)

I has finite length,
or is a finite-length pseudopath, if ℓA(u) ∈ N; otherwise, that is, when ℓA(u) =∞,
we say that it has infinite length, or that it is an infinite-length pseudopath.

Remark 3.15. As ∞ is a zero of N+ ∪ {∞}, the infinite-length pseudopaths of ΩAV
form an ideal of ΩAV, whenever N ⊆ V, for any finite-vertex graph A. In other
words, the set of finite-length pseudopaths is factorial.

In the case of finite graphs, we have the following stronger property.
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Proposition 3.16. If V is a pseudovariety of semigroupoids containing N and A is
a finite graph, then a pseudopath of ΩAV has finite length if and only if it is in A+.

Proof. The “if” part is trivial. Conversely, take a pseudopath u ∈ ΩAV not in A+.
As A+ is dense in ΩAV, there is a net (ui)i∈I of elements of E(A+) converging to u.
Since u /∈ A+, such net has infinitely many distinct values. Hence, as A is finite, the
net (ℓA(ui))i∈I is unbounded. By continuity of ℓA, it follows that ℓA(u) =∞. �

Remark 3.17. The assumption that A is a finite graph cannot be dropped in the
previous proposition. If V is a pseudovariety of semigroupoids containing N and A
is any finite-vertex graph, then ClV(A) = ℓ−1

A (1). In particular, as the elements of A
are isolated, if A is infinite then there are pseudowords of length 1 not in A+.

What we saw for pseudovarieties of semigroupoids containing N carries on mutatis
mutandis for pseudovarieties of semigroups containing N. For such a pseudovariety of
semigroups V, and an alphabet A, the pseudopaths of ΩAV are called pseudowords,
as they generalize the words in the free semigroup A+.

Given a finite-vertex graph A, let γVA, or simply γ, be the unique continuous

homomorphism ΩAgV→ ΩE(A)V extending the graph morphism A→ E(A) which
collapses all vertices and restricts to the identity on E(A).

Proposition 3.18. Let A be a finite-vertex graph, and V be a pseudovariety of
semigroups. Then γ : ΩAgV→ ΩE(A)V is faithful.

Proposition 3.18 is shown in [3, Proposition 2.3] and [26, Theorem 8.4]. In the
former paper, it is stated under the assumption that A is finite, and in both papers
in the setting of pseudovarieties of categories.

For a set Q, consider the (aperiodic) Brandt semigroup BQ: the underlying
set of BQ is (Q × Q) ∪ {0}, with 0 an element not in Q which is a zero for BQ,
and multiplication of elements of Q × Q given by (p, r) · (s, q) = 0 if r 6= s and
(p, r) · (r, q) = (p, q). If Q and R have finite cardinal n, then BQ ∼= BR, justifying the
notation Bn for a representative of the isomorphism class of BQ. It is well known
that, for a pseudovariety of semigroups V, one has B2 ∈ V if and only if BQ ∈ V for
every finite set Q. Parts of the following proposition are spread in [26].

Proposition 3.19. Let A be a finite-vertex graph, and V be a pseudovariety of
semigroups containing B2. Then the following properties hold.

(i) The image γ(ΩAgV) is an open factorial subset of ΩE(A)V.

(ii) The homomorphism γ is an open mapping whose restriction to E(ΩAgV) is
a topological embedding.

(iii) For all x, y, z ∈ E(ΩAgV), if the equality γ(x) · γ(y) = γ(z) holds, then we
have (x, y) ∈ D(ΩAgV) and xy = z.

Proof. Let us denote by ◦ the composition in ΩAgV. Set Q = V (A). Since BQ ∈ V,

there is a unique continuous homomorphism ϕ : ΩE(A)V → BQ such that ϕ(a) =
(ω(a), α(a)) for every a ∈ E(A).

We claim that the equality

(3.4) ϕ(γ(u)) = (ω(u), α(u))

holds for every edge u of ΩAgV. Suppose first that u is an edge of ΩAgV. Then we
have a factorization in ΩAgV of the form u = a1 ◦ · · · ◦ an for some a1, . . . , an ∈ A.
By induction on n, one obtains ϕ(γ(u)) = (ω(a1), α(an)) = (ω(u), α(u)). Hence (3.4)
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holds for every u ∈ E(ΩAgV). Since ΩAgV is dense in ΩAgV, we then deduce from
the continuity of the mappings ϕ, γ, ω and α the validity of the claim.

In particular, if x, y ∈ E(ΩAgV) are such that γ(x) = γ(y), we obtain from
formula (3.4) that x, y are coterminal. Since γ is faithful by Proposition 3.18, we
actually have x = y. As E(ΩAgV) and ΩE(A)V are compact, this shows that γ

restricts to a topological embedding E(ΩAgV)→ ΩE(A)V.
We claim that the equality

(3.5) γ(E(ΩAgV)) = ϕ−1(BQ \ {0})

holds. By induction on n > 1, we see that, for all a1, . . . , an ∈ E(A), one has
ϕ(a1a2 · · · an−1an) 6= 0 if and only if the composition a1 ◦ a2 ◦ · · · ◦ an−1 ◦ an is
well defined in ΩAgV. This means that ΩE(A)V ∩ ϕ

−1(BQ \ {0}) = γ(E(ΩAgV)).

Since ΩE(A)V and E(ΩAgV) are respectively dense in ΩE(A)V and E(ΩAgV), it then
follows from the continuity of γ and ϕ that the equality (3.5) indeed holds.

Then (3.5) implies that γ(E(ΩAgV)) is open and factorial in ΩE(A)V, i.e. prop-

erty (i) is proved. Hence, as γ restricts to a topological embedding E(ΩAgV) →
ΩE(A)V, the map γ is open, which concludes the proof of property (ii).

It only remains to establish property (iii). Let x, y, z ∈ E(ΩAgV) be such that
γ(x) · γ(v) = γ(z). Applying ϕ, we get from (3.4) the equality

(ω(x), α(x)) · (ω(y), α(y)) = (ω(z), α(z)),

which holds in BQ; this forces α(x) = ω(y), which means that (x, y) ∈ D(ΩAgV).
Moreover, from our hypothesis we get γ(x ◦ y) = γ(z). Since γ is injective on
E(ΩAgV), we deduce that x ◦ y = z. �

Let L ⊆ A+ be a language over a graph A. Let C be a class of semigroupoids. We
say that L is C-recognizable if and only if there is a semigroupoid homomorphism
ϕ : A+ → F , with F ∈ C, such that L = ϕ−1(ϕ(L)).

Remark 3.20. If V is a pseudovariety of semigroupoids and A is an alphabet, then a
language L ⊆ A+ is V-recognizable if and only if it is (S ∩ V)-recognizable.

The study of profinite semigroups is strongly motivated by the next theorem,
established by the first author in the case of pseudovarieties of semigroups and
finite alphabets [2, Theorem 3.6.1]. The general case for pseudovarieties of finite
semigroupoids and arbitrary finite-vertex graphs (possibly with infinitely many
edges) is established in [26, Theorems 10.3 and 10.4], again under the guise of
pseudovarieties of categories (cf. Section [26, Section 11]).

Theorem 3.21. Let V be a pseudovariety of semigroupoids containing N. Let L be
a language over a finite-vertex graph A. The following conditions are equivalent:

(i) L is V-recognizable;
(ii) ClV(L) is open;
(iii) L = K ∩ E(A+) for some clopen subgraph K of ΩAV.

Using Remark 3.20, one can see that the analogous result for semigroups is the
special case of one-vertex graphs.

A common operation performed on recognizable languages is that of concatenation.
In the semigroupoid case, this operation maps two languages L,K ⊆ E(A+) to the
language LK ⊆ E(A+) consisting of all paths of the form uv for u ∈ L and v ∈ K
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such that (u, v) ∈ D(A+). We can deduce the following simple fact from the above
theorem.

Corollary 3.22. Let A be a finite-vertex graph and V be a pseudovariety of semi-
groupoids containing N. If the set of V-recognizable languages over A is closed under
concatenation, then ΩBV is open in ΩAV for every finite retract B of A.

Proof. Let B be a finite retract subgraph of A. Clearly E(A+) is V-recognizable,
and so are all singletons {a} for a ∈ E(A) by Proposition 3.13. It follows that
E(A∗)aE(A∗) = E(A+)aE(A+) ∪ E(A+)a ∪ aE(A+) ∪ {a} is V-recognizable for
every a ∈ E(A). Since E(B) is finite, the set

E
(
(A \B)+

)
= E(A+) \

⋃

b∈E(B)

E(A∗)bE(A∗)

is also V-recognizable. Moreover, the equality

E(B+) = E(A+) \ E
(
A∗(A \B)+A∗

)

holds, and so, the language E(B+) ⊆ A+ is V-recognizable. Since ΩBV is the
topological closure of B+ in ΩAV, it follows from Theorem 3.21 that ΩBV is open
in ΩAV. �

We note that the condition of Corollary 3.22 is sufficient but not necessary. Indeed,
the conclusion holds for all pseudovarieties containing Sl by Proposition 3.10, but
not all such pseudovarieties are such that V-recognizable languages are closed under
concatenation.

4. Open multiplication and concatenation-closed pseudovarieties

In this section we characterize when multiplication in a relatively free profinite
semigroupoid, over a finite-vertex graph, is an open mapping. We rely on a general,
purely topological result that has nothing to do with algebraic operations.

We say that a mapping between topological spaces is open if it maps open sets to
open sets [27, 21, 40]. Some authors call such mappings strongly open [23, 39]. The
following result seems to be folklore. The proof presented here is based on an idea of
Kelley [27, Lemma 5, page 70]. Nevertheless, we emphasize that we adopt Willard’s
definition of subnet [40, Definition 11.2], rather than Kelley’s. More explicitly, a
subnet of (xi)i∈I is a net (xij )j∈J where the mapping j 7→ ij is increasing and
cofinal.

Proposition 4.1. Let f : X → Y be a mapping between two topological spaces.
Then the following conditions are equivalent:

(i) the mapping f is open;
(ii) for every open subset U of X, every net in Y converging to some point

of f(U) must have points in f(U);
(iii) for every x ∈ X, every net (yi)i∈I in Y converging to f(x) has a subnet

(yij )j∈J such that yij = f(xj) for all j ∈ J , where (xj)j∈J is a net in X
converging to x.

Proof. (i)⇒(iii). Suppose first that f is an open mapping and let x be an element
of X and (yi)i∈I be a net in Y converging to f(x). Let Nx be the set of all
neighborhoods of x and consider the set

J = {(i, N) ∈ I ×Nx : yi ∈ f(N)}
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ordered by (i, N) 6 (h,M) if i 6 h and N ⊇ M . For each (i, N) ∈ J , we choose
x(i,N) ∈ N such that yi = f(x(i,N)).

Note that, for every N ∈ Nx, since f is an open mapping, f(N) is a neighborhood
of y = f(x). Hence, as (yi)i∈I converges to y, there exists iN ∈ I such that iN 6 i
implies (i, N) ∈ J . It follows that the set J is directed and so the onto function
λ : J → I given by projection on the first component defines a subnet (yλ(j))j∈J of
(yi)i∈I . Note that yλ(j) = f(xj) for all j ∈ J .

Finally, let N ∈ Nx. Set j0 = (iN , N). For every j = (i,M) ∈ J we have xj ∈M ,
and so j0 6 j implies xj ∈ N . Hence, the net (xj)j∈J indeed converges to x.

(iii)⇒(ii). Assume (iii) and let U be an open subset of X. Let x ∈ U and let
(yi)i∈I be a net converging to f(x). By (iii), there is a subnet (yij )j∈J of (yi)i∈I
such that yij = f(xj) for all j ∈ J , where (xj)j∈J is a net converging to x. Since U
is a neighborhood of x, there exists j0 ∈ J such that xj ∈ U for every j > j0. In
particular f(xj0) is an element of the net (yi)i∈I which belongs to f(U).

(ii)⇒(i). Assume (ii). Let U be an open subset of X. Let (yi)i∈I be a net of
elements of Y \ f(U) converging to an element y of Y . From (ii), we get y /∈ f(U).
This shows that Y \ f(U) is closed. �

Definition 4.2. Let S be a topological semigroupoid. We say that a convergent
net (wi)i∈I in E(S) is fully factorizable if, for every factorization limwi = uv, there
is a subnet (wij )j∈J such that wij = ujvj for all j ∈ J , where (uj , vj)j∈J is a net in
D(S) converging to (u, v).

Corollary 4.3. Let S be a topological semigroupoid. Then the multiplication in S
is open if and only if every convergent net in S is fully factorizable.

Proof. It suffices to apply to the multiplication mapping D(S)→ S the equivalence
(i)⇔(iii) in Proposition 4.1. �

The following result provides several alternative characterizations of when mul-
tiplication in a relatively free profinite semigroupoid is an open mapping. Most
importantly, it relates the open multiplication property with closure of V-recognizable
languages under concatenation.

Theorem 4.4. Let A be a finite-vertex graph and V be a pseudovariety of semi-
groupoids containing N. The following conditions are equivalent.

(i) The set of V-recognizable languages over A is closed under concatenation.
(ii) The multiplication in ΩAV is open.
(iii) For every finite retract B of A, the multiplication in ΩBV is open.
(iv) For every retract B of A, the multiplication in ΩBV is open.

Proof. (i)⇒(ii). Let K,M be clopen subsets of ΩAV. By Theorem 3.21, the languages
L = K∩A+ and N =M∩A+ are V-recognizable. Therefore, by hypothesis, LN is V-
recognizable, and so, by Theorem 3.21, the set ClV(LN) is clopen. Since A is dense in
ΩAV, the equalities L = K ∩A+ and N =M ∩A+ yield the equalities ClV(L) = K
and ClV(N) = M . Therefore, KM = ClV(LK) is clopen. We showed that the
product of two clopen sets of ΩAV is always clopen. Since ΩAV is zero-dimensional,
this establishes that the multiplication in ΩAV is open.

(ii)⇒(i). By Theorem 3.21, if K,L ⊆ A+ are V-recognizable, then ClV(K) and
ClV(L) are open subsets of ΩAV. Hence, by our assumption that the multiplication
in ΩAV is open, the set ClV(K) ClV(L) is open. Since the equalities ClV(K) ClV(L) =
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ClV(KL) and ClV(KL)∩A
+ = KL hold (the former by continuity of multiplication,

and the latter because V contains N), it follows from Theorem 3.21 that KL is
V-recognizable.

(i)⇒(iii). By the above, we may assume that (ii) also holds. Let B be a finite
retract of A. Every finite retract of A is isomorphic to a retract subgraph of A,
so we may as well suppose that B is a retract subgraph of A. Let mB and mA

denote the multiplication mappings of ΩBV and ΩAV respectively. It then suffices
to observe that the equality mB(K) = mA(K) holds for every subset K of D(ΩBV),
which implies that mB is an open mapping since ΩBV is an open subset of ΩAV by
Corollary 3.22.

(iii)⇒(ii). Since ΩAV is zero-dimensional, it suffices to show that, for arbitrary
clopen subsets K and L, the product KL is open. By Proposition 2.3, we may take
a continuous quotient homomorphism ϕ : ΩAV→ S, with S ∈ V, such that, for some
subsets P and Q of S, one has K = ϕ−1(P ) and L = ϕ−1(Q).

By Lemma 3.4, for some finite retract B of A there are continuous quotient
homomorphisms η : ΩAV → ΩBV and ψ : ΩBV → S such that ϕ = ψ ◦ η and
η(A) = B.

ΩAV

η

��

ϕ

  
ΩBV

ψ
// S

As η is onto, we have

ψ−1(P ) = ηη−1ψ−1(P ) = η(ψ ◦ η)−1(P ) = ηϕ−1(P ) = η(K),

and, similarly, ψ−1(Q) = η(L). The equalities η(K) = ψ−1(P ) and η(L) = ψ−1(Q)
yield that η(K) and η(L) are open subsets of ΩBV. Noting that η(K)η(L) = η(KL),
as η is a quotient homomorphism, it then follows from our hypothesis that η(KL) is
also open. Therefore, by continuity of η, to conclude the proof it suffices to establish
the equality KL = η−1η(KL).

Let w ∈ η−1η(KL). We may consider u ∈ η(K) and v ∈ η(L) such that η(w) = uv.
Since V contains N, we may take advantage of the inclusions A+ ⊆ ΩAV and
B+ ⊆ ΩAV. In particular, as A+ is dense in ΩAV, we may pick a net (wi)i∈I of
elements of A+ converging in ΩAV to w. Since lim η(wi) = uv, it follows from
Corollary 4.3 that there is a net (uj , vj)j∈J converging in ΩBV×ΩBV to (u, v) and
a subnet (η(wij ))j∈J of (η(wi))i∈I such that η(wij ) = ujvj for all j ∈ J . Recall
that η(A) = B, whence η(A+) = B+. In particular we have ujvj = η(wij ) ∈ B

+

for every j ∈ J . By Corollary 3.14, the graph B+ is factorial in ΩBV. Therefore,
uj and vj belong to B+ for every j ∈ J . Again by the equality η(A) = B, for each
j ∈ J the paths wij and η(wij ) have the same length, and so we may consider a
factorization wij = u′jv

′
j , with u′j , v

′
j ∈ A

+, such that η(u′j) = uj and η(v′j) = vj .
Let (u′, v′) be a cluster point of the net (u′j , v

′
j). By continuity of the multiplication

of ΩAV and of the mapping η, we respectively get w = u′v′ and η(u′) = u, η(v′) = v.
Since u ∈ η(K), we then have ϕ(u′) = ψ(u) ∈ ψη(K) = P , and so, as ϕ−1(P ) = K,
we see that u′ ∈ K. Similarly, one also has v′ ∈ L. Hence, the equality w = u′v′

yields w ∈ KL. This establishes the equality KL = η−1η(KL), which concludes the
proof that (iii) implies (ii).
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(iii)⇒(iv). Let B be some retract of A. Let C be a finite retract of B. Every retract
of B is a retract of A, and so, by the assumption that (iii) holds, the multiplication
in ΩCV is open. We have already shown that the equivalence (iii)⇔(i) holds. Since
C is an arbitrary finite retract of B, applying that equivalence to B instead of A,
we get that the multiplication in ΩBV is open.

(iv)⇒(iii). This implication is trivial. �

For pseudovarieties of semigroupoids of the form gV, we also have the following
sufficient condition for the multiplication in the semigroupoid ΩAgV to be open.

Proposition 4.5. Let A be a finite-vertex graph and V be a pseudovariety of
semigroups containing B2. If the multiplication in ΩE(A)V is an open mapping, then

the multiplication in ΩAgV is also an open mapping.

Proof. LetmA andmE(A) be the multiplication in ΩAgV and in ΩE(A)V, respectively.

Assume that mE(A) is an open mapping and let U be an open subset of D(ΩAgV).
We wish to show that mA(U) is open.

The function γ × γ : ΩAgV × ΩAgV → ΩE(A)V × ΩE(A)V, which maps each

(x, y) ∈ ΩAgV × ΩAgV to (γ(x), γ(y)), is an open mapping by Proposition 3.19. In
particular, and since D(ΩAgV) is open in ΩAgV×ΩAgV, the set (γ× γ)(U) is open
in ΩE(A)V × ΩE(A)V. By the assumption that mE(A) is an open mapping, and by

commutativity of Diagram 4.1, it then follows that γ(mA(U)) is open in ΩE(A)V.

D(ΩAgV)

γ×γ|

��

mA // ΩAgV

γ

��

ΩE(A)V × ΩE(A)V
mE(A)

// ΩE(A)V

(4.1)

Proposition 3.19 yields that γ is a homeomorphism onto its image. Therefore, the
set mA(U) is open in ΩAgV. �

The pseudovariety gN itself fails the equivalent conditions in Theorem 4.4. For
instance, if A is a finite alphabet with at least two letters then, for every a ∈ A, the
two languages {a} and A+ are N-recognizable, but their concatenation is not.

Let LSl be the pseudovariety consisting of all finite semigroups S such that, for
every idempotent e of S, the semigroup eSe belongs to Sl.

Example 4.6. Let B be the graph with only two vertices v, w and two edges x, y ∈
B(v, w), for which the semigroupoid ΩBgV is finite, whence it has open multiplication,
for any choice of pseudovariety of semigroups V. Thus, to show that the converse
of Proposition 4.5 fails, it suffices to choose a pseudovariety V containing B2 such
that the multiplication in ΩE(B)gV = ΩE(B)V is not open. For this purpose, we
take V = LSl. It amounts to straightforward syntactic calculations to show that the
language x+y+ is LSl-recognizable but x+y+x+y+ is not (cf. [32]). Hence, the set

of LSl-recognizable languages of
(
E(B)

)+
is not closed under concatenation and,

therefore, multiplication in ΩE(B)LSl is not open by the proof of [5, Lemma 2.3].

We say that a pseudovariety of semigroups V is concatenation-closed if for
every finite alphabet A, the set of V-recognizable languages over A is closed under
concatenation (which means that the associated variety of languages according to
Eilenberg’s correspondence [19, 32] is closed under concatenation). We adopt the
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same definition for pseudovarieties of finite semigroupoids, where finite alphabets
are replaced with finite graphs.

For the semigroup case, the following characterization of concatenation-closed
pseudovarieties can be found in a paper of Chaubard, Pin and Straubing [16], as a
special case of a far more general result about the so-called varieties of stamps. This
equivalence is closely related to earlier work of Straubing, who showed the validity
of its natural counterpart for pseudovarieties of monoids [37]. The pseudovariety of
all finite aperiodic semigroups is denoted A. We refer to [36] for the definition of the
Mal’cev product V©m W of pseudovarieties of semigroups V,W. Bear in mind that V

and W are both contained in V©m W.

Theorem 4.7. Let V be a pseudovariety of semigroups. Then V is concatenation-
closed if and only if the equality A©m V = V holds.

Remark 4.8. If V is a concatenation-closed pseudovariety of semigroupoids, then the
pseudovariety of semigroups W = V ∩ S is concatenation-closed (cf. Remark 3.20).
Therefore, if V is a concatenation-closed pseudovariety of semigroupoids, then we
have A©m W = W by Theorem 4.7, whence A ⊆ V, and in particular N ⊆ V.

We can now deduce easily from Theorem 4.4 the following characterization of
concatenation-closed pseudovarieties of semigroupoids.

Theorem 4.9. Let V be a pseudovariety of semigroupoids. Then, the following
conditions are equivalent:

(i) V is concatenation-closed;
(ii) for every finite-vertex graph A, the set of V-recognizable languages over A

is closed under concatenation;
(iii) V ⊇ N and the multiplication in ΩAV is open for every finite-vertex graph A;
(iv) V ⊇ N and the multiplication in ΩAV is open for every finite graph A.

Proof. The implication (ii)⇒(i) is trivial. If V is concatenation-closed, then V

contains N by Remark 4.8, and so the implication (i)⇒(iii) follows immediately from
Theorem 4.4. The implication (iii)⇒(iv) is trivial. Finally, the implication (iv)⇒(ii)
also follows directly from Theorem 4.4. �

We next proceed to deduce the companion of Theorem 4.9 for pseudovarieties of
semigroups.

Theorem 4.10. Let V be a pseudovariety of semigroups. Then, the following
conditions are equivalent:

(i) V is concatenation-closed;
(ii) for every alphabet A, if K,L ⊆ A+ are V-recognizable, then so is KL ⊆ A+;
(iii) V ⊇ N and the multiplication in ΩAV is open for every alphabet A;
(iv) V ⊇ N and the multiplication in ΩAV is open for every finite alphabet A;

Proof. The implication (ii)⇒(i) is trivial.
To show the implication (i)⇒(iv), observe that, assuming that (i) holds, then

in view of Theorem 4.7, we know that V contains A, and in particular it contains
N. On the other hand, note that if A is an alphabet and V is a pseudovariety of
semigroups, then we have ΩAV = ΩAgV. Hence, (iv) follows from the implication
(i)⇒ (ii) in Theorem 4.4.

The chain (iv)⇒(iii)⇒(ii) also follows clearly from Theorem 4.4. �
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Corollary 4.11. Let V be a pseudovariety of semigroups. Then V is concatenation-
closed if and only if gV is concatenation-closed.

Proof. Since S ∩ gV = V, the “if” part of the corollary is immediate by Remark 4.8.
Conversely, suppose that V is concatenation-closed. Then we have V = A©m V,
by Theorem 4.10, thus V contains A. In particular, we have B2 ∈ V. Let A be a
finite-vertex graph. Also by Theorem 4.10, the multiplication in ΩE(A)V is open. It

then follows from Proposition 4.5 that the multiplication in ΩAgV is open. Since A is
an arbitrary finite-vertex graph, Theorem 4.9 then implies that gV is concatenation-
closed. �

The preceding corollary suggests the following problem, left open.

Problem 4.12. If V is a concatenation-closed pseudovariety of semigroups, which
pseudovarieties of semigroupoids in the interval (gV, ℓV] are concatenation-closed?

While this problem is vacuous for local concatenation-closed pseudovarieties, there
are many non-local pseudovarieties of interest, such as the complexity pseudovarieties
Cn for n > 1, cf. [36, Section 4.16] or [35].

We highlight the following result which will be used in subsequent proofs.

Corollary 4.13. For every alphabet (respectively, finite-vertex graph) A and every
concatenation-closed pseudovariety of semigroups (respectively, semigroupoids) V,
every convergent net in ΩAV is fully factorizable.

Proof. Combine Corollary 4.3 with, respectively, Theorems 4.10 and 4.9. �

The proofs of both parts of the next proposition follow the same lines of reasoning,
employed in previous works, to establish the corresponding special cases pertaining
to pseudovarieties of semigroups and finite alphabets; see respectively [5, Proposi-
tion 2.4] and [18, Lemma 3.8]. The second part is an application of Theorem 4.9.

Proposition 4.14. Let A be a finite-vertex graph. Consider a pseudovariety of
semigroupoids V containing N. Let L ⊆ A+ be a factorial language. Suppose that at
least one of the following conditions holds:

(i) L is V-recognizable;
(ii) V is concatenation-closed.

Then the closure ClV(L) is a factorial subset of ΩAV.

Proof. Let w ∈ ClV(L). Take u, v ∈ ΩAV such that w = uv. We wish to show that
u, v ∈ ClV(L).

Case (i). As L is V-recognizable, by Theorem 3.21 the closure ClV(L) is an open
subset of ΩAV. As A+ is dense in ΩAV, we may take a net (ui, vi)i∈I of elements of
D(A+) converging in ΩAV × ΩAV to (u, v). Since limuivi = w and ClV(L) is open,
there is k ∈ I such that i > k implies uivi ∈ ClV(L). Take i > k. Since the elements
of A+ are isolated points of ΩAV, we have uivi ∈ L. As L is factorial, it follows that
ui, vi ∈ L for every i > k. This yields u, v ∈ ClV(L).

Case (ii). Let (wi)i∈I be a net in L converging to w. By Corollary 4.13, there is a
net (uj , vj)j∈J in ΩAV×ΩAV converging to (u, v), and a subnet (wij )j∈J of (wi)i∈I
such that wij = ujvj for each j ∈ J . Since uj and vj are factors in ΩAV of wij , a
member of A+, they both belong to A+ by Corollary 3.14. As L is factorial in A+,
it follows that uj , vj ∈ L for every j ∈ J , thus u, v ∈ ClV(L). �
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5. Equidivisible pseudovarieties of semigroupoids

A semigroupoid S is said to be equidivisible [31] if whenever we have edges
u, v, x, y ∈ S such that uv = xy, there is an edge t ∈ SI such that at least one of
the following conditions holds:

• ut = x and v = ty;
• xt = u and y = tv.

The following definition was introduced by the first two authors [6]: a pseudova-
riety of semigroups V is equidivisible when ΩAV is equidivisible for every finite
alphabet A. Every pseudovariety of semigroups contained in the pseudovariety CS

of all finite completely simple semigroups is an equidivisible pseudovariety, as every
completely simple semigroup is equidivisible [31]. For other pseudovarieties, several
characterizations are given in [8, Theorem 6.2], with some appearing in earlier
work [6]. We highlight some of these characterizations in the following theorem. We
recall that LI is the pseudovariety of all finite semigroups S such that, for every
idempotent e, one has eSe = e. Note that LI contains N.

Theorem 5.1. The following conditions are equivalent for a pseudovariety of
semigroups V not contained in CS:

(i) V is equidivisible;
(ii) for every alphabet A, the semigroup ΩAV is equidivisible;
(iii) the equality LI©m V = V holds.

Moreover, the pseudovariety LI is the least equidivisible pseudovariety of semigroups
not contained in CS.

By Theorem 4.10, a pseudovariety of semigroups V is concatenation-closed if and
only if A©m V = V. Since LI ⊆ A, Theorem 5.1 entails the following corollary.

Corollary 5.2. Every concatenation-closed pseudovariety of semigroups is equidi-
visible.

Analogously, let us say that a pseudovariety of semigroupoids V is equidivisible if
the semigroupoid ΩAV is equidivisible for every finite graph A. The next proposition
shows that the assumption that the graph is finite in this definition can be weakened.

Proposition 5.3. A pseudovariety of semigroupoids V is equidivisible if and only
if, for every finite-vertex graph A, the semigroupoid ΩAV is equidivisible.

To establish this proposition we use the following lemma, whose proof relies on a
routine compactness argument, given here for the reader’s convenience.

Lemma 5.4. If the profinite semigroupoid S is a quotient inverse limit of equidivis-
ible profinite semigroupoids, then S is equidivisible.

Proof. Take S = lim
←−i∈I

Si with underlying quotient inverse system

{πj,i : Sj → Si | i 6 j; i, j ∈ I}

of continuous semigroupoid homomorphisms such that Si is an equidivisible profinite
semigroupoid for every i ∈ I. We denote by πi the induced projection S → Si.

Let u, v, x, y ∈ E(S) be such that uv = xy. As Si is equidivisible for every i ∈ I,
the set I is the union of the following two sets:

I1 = {i ∈ I | ∃t ∈ SIi (α(πi(x)), α(πi(u))) : πi(u)t = πi(x) and πi(v) = tπi(y)},

I2 = {i ∈ I | ∃t ∈ SIi (α(πi(y)), α(πi(v))) : πi(u) = tπi(x) and πi(v)t = πi(y)}.
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At least one these sets is cofinal in I. Hence, without loss of generality, we may
assume that I = I1 up to taking a subnet. Then, for every i ∈ I, since πi is a
quotient homomorphism (cf. [21, Section 3.2]), the following set is nonempty:

Ti = {τ ∈ S
I(α(x), α(u)) : πi(uτ) = πi(x) and πi(v) = πi(τy)}.

Let T =
⋂
i∈I Ti. Note that τ ∈ T if and only if uτ = x and v = τy. Therefore, to

establish the lemma it suffices to show that T is nonempty.
For every i, j ∈ I such that i 6 j, it follows from the equality πj,i ◦ πj = πi that

Tj ⊆ Ti. Let F be a finite subset of I. Since I is directed, there is k ∈ I such that
i 6 k for every i ∈ F . Hence Tk is a nonempty subset of

⋂
i∈F Ti. Since (Ti)i∈I is a

family of closed subsets of the compact space SI , we deduce that the intersection⋂
i∈I Ti is nonempty. As remarked, this shows that S is equidivisible. �

Proof of Proposition 5.3. By Corollary 3.6, the profinite semigroupoid ΩAV is a
quotient inverse limit lim

←−
ΩAi

V such that Ai is finite for every i ∈ I. Since, by

hypothesis, ΩAiV is equidivisible for every i ∈ I, it follows from Lemma 5.4 that
ΩAV is equidivisible. �

Remark 5.5. Note that if the pseudovariety of semigroups V is such that gV is
equidivisible, then V is also equidivisible in view of the equality ΩAgV = ΩAV for
every alphabet A (see Remark 3.2).

The following proposition is a simple application of Proposition 3.19.

Proposition 5.6. Let V be a pseudovariety of semigroups containing B2. Then V

is equidivisible if and only if gV is equidivisible.

Proof. The “if” part of the proposition is given by Remark 5.5.
Conversely, suppose that V is equidivisible. Let u, v, x, y be pseudopaths of ΩAgV

such that uv = xy. Since γ(uv) = γ(xy) and ΩE(A)V is equidivisible, there is

t ∈ ΩE(A)V such that at least one of the following conjunctions holds: γ(u) · t = γ(x)
and γ(v) = t · γ(y); or γ(x) · t = γ(u) and γ(y) = t · γ(v). Without loss of generality,
we assume the former. Since we are assuming that V contains B2, it follows from
Proposition 3.19 that the image of γ is a factorial subset of ΩE(A)gV, and so we have
t = γ(s) for some pseudopath s. Moreover, also by Proposition 3.19, the equalities
γ(x) · γ(s) = γ(u) and γ(y) = γ(s) · γ(v) yield the factorizations xs = u and y = sv
in ΩAV. Hence ΩAV is indeed equidivisible for every every finite-vertex graph A. �

At this point, it is natural to ask the following question, which we leave as an
open problem.

Problem 5.7. If V is an equidivisible pseudovariety of semigroups, which semi-
groupoid pseudovarieties in the interval (gV, ℓV] are equidivisible?

We close this section by proving the semigroupoid counterpart of Corollary 5.2.
This also establishes a connection between Problems 5.7 and 4.12.

Corollary 5.8. Every concatenation-closed pseudovariety of semigroupoids is equidi-
visible.

In the proof of this corollary, we use the following lemma.

Lemma 5.9. Let S be a compact semigroupoid with open multiplication, and let T
be a subsemigroupoid of S such that T is factorial and dense in S. Then S is
equidivisible if and only if T is equidivisible.



20 J. ALMEIDA, A. COSTA, AND H. GOULET-OUELLET

Proof. It is clear that every factorial subsemigroupoid of an equidivisible semi-
groupoid is itself equidivisible.

Let S and T be as in the statement, with T equidivisible. Let u, v, x, y be edges
of S such that uv = xy. Since T is dense in S, there is a net (ui, vi)i∈I of elements
of T 2 converging in S2 to (u, v). As S is fully factorizable (Corollary 4.3), there is
a subnet (uij , vij )j∈J of (ui, vi)i∈I and a net (xj , yj)j∈J converging to (x, y), such
that the equality uijvij = xjyj holds for every j ∈ J . Since T is factorial, both xj
and yj belong to T , for every j ∈ J . As T is moreover equidivisible, the set J is the
union of the following two sets:

J1 = {j ∈ J | ∃t ∈ T : uij t = xj and vij = tyj},

J2 = {j ∈ J | ∃t ∈ T : uij = xjt and tvij = yj}.

At least one these sets is cofinal in J . Hence, without loss of generality, we may
assume that J = J1 up to taking a subnet. Then, for each j ∈ J , choose tj ∈ T
such that uij tj = xj and vij = tjyj . Let t be a cluster point of the net (tj)j∈J . By
continuity of the multiplication, we obtain ut = x and v = ty. This shows that S is
equidivisible. �

Proof of Corollary 5.8. Let V be a concatenation-closed pseudovariety of semi-
groupoids. Let A be a finite-vertex graph. We know by Theorem 4.9 that V contains
N and that the multiplication in ΩAV is an open mapping. Recall that A+ is dense
in ΩAV and (by Corollary 3.14) factorial in ΩAV. Hence, as A+ is an equidivisible
semigroupoid, the result now follows immediately from Lemma 5.9. �

6. Prefix accessible pseudowords and pseudopaths

In this section, we establish some properties of prefix accessible pseudopaths
(Definition 6.6), occasionally with the help of fully factorizable nets, via some of
the main results established in Section 4. In the preliminaries leading to that, we
extend some known properties about finite-length prefixes of pseudowords over
finite alphabets to pseudowords over arbitrary alphabets, and, more generally, to
pseudopaths over arbitrary finite-vertex pseudopaths.

We start by establishing conditions for the existence and uniqueness of prefixes of
any given finite length. In the following statement, we refer to the pseudovariety Kn

of all finite semigroups in which all products of n factors are left zeroes.

Proposition 6.1. Let A be a finite-vertex graph and fix an integer n > 1. Let V be
a pseudovariety of semigroupoids containing Kn and N. If w ∈ ΩAV is a pseudopath
of length at least n, possibly infinite, then there exists a unique pseudopath u ∈ ΩAV
of length n and such that u is a prefix of w.

Proof. Let (wi)i∈I be a net of paths in A+ converging to w in ΩAV. By continuity
of the length homomorphism ℓA : ΩAV→ N ∪ {∞}, we may assume that |wi| > n
for all i ∈ I. Let ui, vi ∈ A

∗ be such that wi = uivi and |ui| = n. By taking a subnet,
we may furthermore assume that the net (ui, vi)i∈I converges in ΩAV × (ΩAV)

I to
some pair (u, v). Note that w = uv by continuity of multiplication, and that |u| = n
by continuity of ℓA. Therefore, u is a prefix of length n of w.

To prove uniqueness, suppose there is another factorization w = st where |s| = n,
s ∈ ΩAV and t ∈ (ΩAV)

I . By Corollary 3.5, if u 6= s then there exists a finite graph
B and a continuous quotient homomorphism ϕ : ΩAV→ ΩBV such that ϕ(A) = B
and ϕ(u) 6= ϕ(s). Since ϕ(A) ⊆ B we must have ℓB(ϕ(a)) = ℓA(a) = 1 for every
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edge a of A. Therefore we have ℓB ◦ ϕ = ℓA; in other words, ϕ preserves length. In
particular, both pseudopaths ϕ(u) and ϕ(s) have length n. As B is finite, ϕ(u) and
ϕ(s) are in fact words in B+, of length n, by Proposition 3.16.

It is well known that for every finite alphabet C, the finite semigroup ΩCKn
may be viewed as the set of all nonempty words of length at most n over the
alphabet C, multiplication consisting in concatenating the words and taking the
prefix of length n if the result is longer than n [2, Section 5.2]. It follows that the
natural projection π : ΩBV → ΩE(B)Kn is injective on paths over B of length at
most n. This leads to a contradiction: ϕ(u) and ϕ(s) are distinct paths over B
with length n, while the above description of the operation in ΩE(B)Kn entails the
equalities π(ϕ(u)) = π(ϕ(uv)) = π(ϕ(st)) = π(ϕ(s)). Thus, the equality u = s must
hold. �

For a set X, let w = w0w1w2 · · · be an element of XN, with wn ∈ X for all
n ∈ N. Given an interval I of N, we may denote by wI the (possibly infinite)
sequence (wi)i∈I . A right-infinite path over a graph A is an element w of E(A)N

such that w[0, n) is a path over A, for every n ∈ N. Proposition 6.1 leads to the
following definition, where K is the semigroup pseudovariety

⋃
n>1 Kn. It follows

from standard results in semigroup theory [2, Proposition 3.7.1] that K consists of
all finite semigroups whose idempotents are left zeros, and in particular N ⊆ K ⊆ A.

Definition 6.2. Let w be a pseudopath of ΩAV, where V is a pseudovariety of
semigroupoids containing K.

• If |w| > n, where n ∈ N, we call the unique pseudoword u of length n such
that w ∈ u(ΩAV)

I the prefix of length n of w, cf. Proposition 6.1.
• If |w| =∞, we denote by −→w the right-infinite path over the graph ClV(A)

whose finite-length prefixes are those of w, cf. Remark 3.17. (Note that if A
is finite then ClV(A) = A.)

It goes without saying that there is a dual of Definition 6.2 where prefixes are
replaced by suffixes, and where K is replaced by its “dual” pseudovariety, denoted D,
which consists of all finite semigroups where idempotents are right zeros. It is worth
mentioning that LI is the least pseudovariety containing K and D.

Let V be a pseudovariety of semigroupoids containing N. We say that V is left
finitely cancelable if the following condition holds: for every finite-vertex graph A,
if the pseudopaths x, y, u, v ∈ (ΩAV)

I are such that the equality xu = yv holds in
ΩAV and |x| = |y| ∈ N, then x = y and u = v. We may then denote v by x−1w, or
by w(k) where w = xu and k = |x|. The dual notion of right finitely cancelability is
defined in an analogous way. Finally, say that V is finitely cancelable if it is both
right and left finitely cancelable.

Proposition 6.3. Every equidivisible pseudovariety of semigroupoids containing N

is finitely cancelable.

Proof. Let V be an equidivisible pseudovariety of semigroupoids containing N and
let A be a finite-vertex graph. Take pseudopaths x, y, u, v ∈ (ΩAV)

I such that
xu = yv and |x| = |y| ∈ N. By equidivisibilty, the equality xu = yv entails the
existence of t ∈ (ΩAV)

I such that at least one of the following conjunctions holds:
xt = y and u = tv; or x = ty and ut = v. We then get |x|+ |t| = |y| or |x| = |t|+ |y|.
As we are assuming |x| = |y|, it follows that t is an empty path, whence x = y and
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u = v. This establishes that V is left finitely cancelable. With similar arguments, we
deduce that V is right finitely cancelable. �

Replacing semigroupoids by semigroups and finite-vertex graphs by alphabets, we
obtain corresponding definitions of left and right finitely cancelable pseudovariety
of semigroups, and thus of finitely cancelable pseudovariety of semigroups. The
arguments used in Proposition 6.3 also establish the following proposition.

Proposition 6.4. Every equidivisible pseudovariety of semigroups containing N is
finitely cancelable.

Remark 6.5. Finitely cancelable pseudovarieties of semigroups are defined in [9]
almost as here, the essential difference being that only finite alphabets are considered
there. It is an easy exercise (not necessary for the remaining of the paper) to show
that the two definitions are equivalent for all pseudovarieties of semigroups containing
N, using the isomorphism ΩAV → lim

←−θ∈Θ
ΩA/θV from Corollary 3.6 and the fact

that the canonical projections ΩAV → ΩA/θV preserve length. Hence we can say
that Proposition 6.4 of this paper coincides with Proposition 6.4 from paper [9],
where only finite alphabets are considered. See also Proposition 6.2 from [9] for a
complete characterization of right finitely cancelable pseudovarieties of semigroups.

Definition 6.6 (Prefix accessible pseudopaths). Consider a finite-vertex graph
A and a pseudovariety of semigroupoids V containing N. Let PaV(w) denote the
set of all cluster points in ΩAV of the sequence (w[0, n])n∈N. An element of a set
of the form PaV(w) for some right-infinite path w is said to be a prefix accessible
pseudopath.

Note that a prefix accessible pseudopath has infinite length. In fact, if w is a
right-infinite path over the finite-vertex graph A, then the set PaV(w) is given by
the equality

PaV(w) = {x ∈ ClV({w[0, n] : n ∈ N}) : |x| =∞}.

Remark 6.7. For all pseudovarieties of semigroupoids U and V such that N ⊆ V ⊆ U,
the fact that the natural projection pU,V : ΩAU→ ΩAV restricts to the identity on
A+ entails the equality PaV(w) = pU,V(PaU(w)).

The next proposition shows that the set PaV(w) is an R-class under mild condi-
tions on V. Its proof makes use of Corollary 4.13.

Proposition 6.8. Let w be a right-infinite path over the finite-vertex graph A.
Consider a pseudovariety of semigroupoids V containing N. Then the following
properties hold:

(i) The set PaV(w) is contained in an R-class of ΩAV.
(ii) If V contains K, then the R-class of ΩAV containing PaV(w) is the set of

infinite-length prefixes of elements of PaV(w).
(iii) If V is concatenation-closed, then PaV(w) is an R-class of ΩAV.

Proof. (i). Let u, v ∈ PaV(w). Then, there is a net (ui, vi)i∈I of pairs of finite-length
prefixes of w converging in ΩAV×ΩAV to (u, v). Fix i ∈ I. Since all finite prefixes of
w are 6R-comparable elements of A+, and since u, v are infinite-length pseudowords,
there is ki ∈ I such that ki 6 j implies uj 6R vi. Because 6R is a closed relation in

(ΩAV)
I , we obtain u 6R vi for every i ∈ I, and consequently u 6R v. By symmetry,

we also have v 6R u, thus showing that PaV(w) is contained in an R-class of ΩAV.
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(ii). Assume that V contains K, and denote by R the R-class of ΩAV containing
PaV(w), whose existence was established in the previous paragraph. Let p ∈ ΩAV
be an infinite-length prefix of an element v ∈ PaV(w). Then, as V contains K,
we have the equality −→v = −→p . From v ∈ PaV(w), we get, for every n ∈ N, that
v ∈ w[0, n] · ΩAV, thus p 6R w[0, n]. Since the relation 6R is closed in ΩAV, and v
is a cluster point of the sequence (w[0, n])n∈N, we deduce that p 6R v. This shows
that p ∈ R. To see that, conversely, every element of R is an infinite-length prefix
of some element of PaV(w), recall that the elements of PaV(w) have infinite length,
and that the set of infinite-length pseudopaths of ΩAV is an ideal (Remark 3.15).

(iii). Assume that V is closed under concatenation. Note in particular that V

contains A (see Remark 4.8) and thus also K. Then, by the already established
property (ii), to prove that the set PaV(w) is an R-class of ΩAV it suffices to show
that it is closed under taking infinite-length prefixes. Let p ∈ ΩAV be an infinite-
length prefix of an element v ∈ PaV(w). Take s ∈ (ΩAV)

I such that v = ps, and let
(vi)i∈I be a net of finite prefixes of w such that v = limi∈I vi. By Corollary 4.13, we
may find a subnet (vij )j∈J of (vi)i∈I and a net (pj , sj)j∈J of composable pseudopaths

converging to (p, s) in ΩAV × (ΩAV)
I such that pjsj = vij for every j ∈ J . Since,

by assumption, vij ∈ A
+, it follows from Corollary 3.14 that pj , sj ∈ A

+, for every
j ∈ J . Then, the equality vij = pjsj also yields that pj is a finite prefix of w, for
every j ∈ J . As p has infinite length, it follows that p ∈ PaV(w), thus establishing
that PaV(w) is closed under taking infinite-length prefixes. As already remarked,
this concludes the proof. �

Without the assumption that V is concatenation-closed, it may happen that
PaV(w) is not an R-class of ΩAV, as seen in the next example. There, we use the fact
that, for every profinite semigroup S and s ∈ S, the sequence (sn!)n∈N converges in
S to an idempotent, denoted sω (see, for instance, [11, Proposition 3.9.2]).

Example 6.9. Consider the alphabet A = {a, b} and the equidivisible pseudovariety
V = LI. Let w be the constant sequence aaaaa · · · ∈ AN. We clearly have aω ∈ PaLI(w).
On the other hand, in ΩALI the equality a

ω = a
ω
ba
ω holds, thus a

ω and a
ω
b are

R-equivalent elements of ΩALI. But a
ω
b /∈ PaLI(w), since the suffix of length 1 of

any cluster point in ΩALI of the sequence (an)n>1 is clearly the letter a.

The following proposition is used in our parallel work [10].

Proposition 6.10. Let A be a finite-vertex graph and w be a right infinite path
over A. Consider a left finitely cancelable pseudovariety of semigroupoids V contain-
ing N. For every y ∈ PaV(w) and k ∈ N, we have y(k) ∈ PaV(w[k,∞)).

Proof. Set u = w[0, k). We may take a net (yi)i∈I of finite prefixes of w that
converges to y in ΩAV. Since y has infinite length, we may as well suppose that
u is a prefix of yi, for every i ∈ I. For each i ∈ I, let zi = u−1yi. Note that zi
is a prefix of w[k,∞) and lim |zi| = ∞. By taking subnets, we may suppose that
the net (zi)i∈I converges to some pseudopath z in ΩAV. Therefore, z belongs to
PaV(w[k,∞)). Finally, we have uz = limuzi = lim yi = y, thus z = u−1y = y(k). �

For an alphabet A, an element w of AN is said to be recurrent if for every n ∈ N,
there is some m > n such that w[0, n) = w[m,m + n). Equivalently, w ∈ AN is
recurrent when every finite factor of w occurs infinitely often in w.
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As an application of Proposition 6.8, we proceed to deduce the following charac-
terization of recurrent right-infinite paths, the main result of the present section.
This characterization is necessary for showing one the main theorems in [10].

Theorem 6.11. Consider a finite-vertex graph A. Let w be a right-infinite path
over A. The following statements are equivalent:

(i) w is recurrent;
(ii) PaSd(w) contains an idempotent;
(iii) PaV(w) contains an idempotent for all pseudovarieties of semigroupoids V

containing N;
(iv) PagLSl(w) contains an idempotent.

For the proof, we require the following lemma.

Lemma 6.12. Let A be a finite-vertex graph, V be a pseudovariety of semigroupoids
containing LSl and u, v ∈ A+. Then the set uE

(
(ΩAV)

I
)
vE

(
(ΩAV)

I
)

is clopen in

ΩAV.

Proof. It is well known that, if D is a finite alphabet and x, y ∈ D+, then the
languages xD∗ and D∗yD∗ are LSl-recognizable in D+ [32, Theorem 5.2.1]. By the
equality

uD∗vD∗ = uD∗ ∩


 ⋃

w∈D|u|

D∗wvD∗


 ,

it follows that uD∗vD∗ is also LSl-recognizable in D+.
By Theorem 3.21, since ClV

(
uE(A∗)vE(A∗)

)
= uE

(
(ΩAV)

I
)
vE

(
(ΩAV)

I
)
, it

suffices to show that the language uE(A∗)vE(A∗) is V-recognizable in A+. Let B
be the alphabet whose letters are the edges of A that are factors in A+ of u or
v. Take an extra letter c not in B, and consider the alphabet C = B ∪ {c}. Let
ϕ : A+ → C+ be the homomorphism fixing the edges of B and sending all other
edges of A to c. Since ϕ−1(uC∗vC∗) = uE(A∗)vE(A∗) it follows from the preceding
paragraph that uE(A∗)vE(A∗) is V-recognizable in A+, which completes the proof
of the lemma. �

Proof of Theorem 6.11. First, let us prove the implication (i)⇒(ii). Let u ∈ PaSd(w)
and take a net (ui)i∈I of finite prefixes of w converging to u. Assuming that w is
recurrent, for each i ∈ I there is a path vi such that uiviui is a prefix of w. Taking
subnets, we may assume that (vi)i∈I converges to some pseudopath v ∈ ΩASd.
Note that uvu = limuiviui belongs to PaSd(w). By Proposition 6.8(i), there exists
t ∈ (ΩASd)

I such that u = uvut. Observe that uv and t are loops at α(u). By
induction, we obtain u = (uv)kutk for every k ∈ N, thus u = (uv)ωutω. Since the
pseudovariety Sd is concatenation-closed, it then follows from Proposition 6.8(iii)
that the idempotent (uv)ω belongs to PaSd(w).

The implications (ii)⇒(iii) is immediate in view of Remark 6.7, while the impli-
cation (iii)⇒(iv) is trivial.

It remains only to establish the implication (iv)⇒(i). Assume that e is an
idempotent in PagLSl(w). Let u be a finite prefix of w, so that e = ut for some

t ∈ ΩAgLSl. Let K = uE
(
(ΩAgLSl)

I
)
uE

(
(ΩAgLSl)

I
)
, which is a clopen subset

of ΩAgLSl by Lemma 6.12. Since e is idempotent, we have that e = utut ∈ K.
As e ∈ PagLSl(w), it follows that there is a finite prefix of w in K, which, by
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Corollary 3.14, must be of the form uxuy for some x, y ∈ A∗. Therefore, as uxu is a
prefix of w with x ∈ A∗, we conclude that w is recurrent. �

Remark 6.13. In this paper, we opted to work primarly in the framework of pseu-
dovarieties of semigroupoids instead of pseudovarieties of categories, as the former
encompasses more relevant situations. Concerning the study of profinite objects,
the category framework is the preferred one in [26], while the semigroupoid one is
preferred in [14]. But as discussed in both papers, the two perspectives are closely
related. In particular, denoting by Cat the pseudovariety of all finite categories,
and recalling that Sd denotes the pseudovariety of all finite semigroupoids, the
corresponding free objects are related by the equality ΩACat = (ΩASd)

I , for every
finite-vertex graph A as it is easy to see that the profinite category (ΩASd)

I is free
over the graph A. Hence, it is reasonable to define PaCat(w) as being PaSd(w).

In particular, Theorem 6.11 has the following immediate corollary. This is crucially
used in our companion paper [10], where we opt to work with Cat instead of Sd for
the sake of a somewhat more straightforward presentation.

Corollary 6.14. Consider a finite-vertex graph A. Let w be a right-infinite path
over A. Then w is recurrent if and only if PaCat(w) contains an idempotent.

7. Stabilizers

Consider a semigroupoid S. The right stabilizer of an edge x of S is the set

Stab(x) = {y ∈ E(SI) : xy = x}.

Note that Stab(x) is a submonoid of the local monoid SI(x). If moreover S is a
topological semigroupoid, then Stab(x) is a closed submonoid of the topological
monoid SI(x).

Following the terminology from [24], when studying a subsemigroupoid T of a
semigroupoid S, we designate as an internal L-chain of T a set C of elements of T
such that, for all x, y ∈ C, one has x 6L(T ) y or y 6L(T ) x. This terminology serves
the purpose of avoiding confusion between the relations 6L(S) and 6L(T ). If C = T
then we simply say that T is an internal L-chain. Likewise, we say that an element
x of T is internally regular if it is regular in T , that is, if x ∈ xTx.

We need the following fact.

Lemma 7.1. Let S be a semigroupoid and x an edge of S. If S is equidivisible, then
Stab(x) is an internal L-chain.

Proof. Let T = Stab(x) and let y, z ∈ T . As xy = xz and S is equidivisible, there is
t ∈ S such that either xt = x and z = ty, or xt = x and y = tz. In particular, t ∈ T
and either z 6L(T ) y or y 6L(T ) z. �

Our focus is on stabilizers in equidivisible relatively free profinite semigroups and
semigroupoids.

Theorem 7.2. Let V be an equidivisible pseudovariety of semigroups and A be an
arbitrary alphabet. Let x be a pseudoword of ΩAV. Then the monoid Stab(x) is an
internal L-chain and its internally regular elements are idempotents.

Proof. By Theorem 5.1, the semigroup ΩAV is equidivisible. Hence, by Lemma 7.1,
the monoid Stab(x) is an internal L-chain. Let y be an internally regular element
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of Stab(x). We wish to show that y is idempotent. For the simple case where V is
contained in CS, see [9, Lemma 9.2].

Assume that V is not contained in CS. By Theorem 5.1, we must have V = LI©m V.
By Proposition 6.4, ΩAV is finitely cancelable. In [9], the definition of “finitely
cancelable” is extended in a natural way to all finitely generated compact semigroups,
subsuming the case of relatively free profinite semigroups over finite sets. It is shown
in [9, Theorem 9.1] that if S is a finitely generated profinite equidivisible semigroup
that is finitely cancelable, and s ∈ S, then every internally regular element of Stab(s)
must be idempotent. This settles the theorem in the case where A is finite.

Assume next that A is an arbitrary alphabet, not necessarily finite. Suppose
that y 6= y2. By Corollary 3.5 there is a finite alphabet B and a continuous onto
homomorphism η : ΩAV → ΩBV such that η(y) 6= η(y2). On the other hand, we
clearly have η(Stab(x)) ⊆ Stab(η(x)). In particular, η(y) is an internally regular
element of Stab(η(x)). From the established case of finite alphabets, it follows that
η(y) = η(y)2, a contradiction. To avoid the contradiction, we must have y = y2. �

Corollary 7.3. Let V be an equidivisible pseudovariety of semigroups and A be
a finite-vertex graph. Let x be a pseudopath of ΩAgV. Then the internally regular
elements of Stab(x) are idempotent. If moreover V contains B2, then Stab(x) is an
internal L-chain.

Proof. Consider the natural mapping γ : ΩAgV→ ΩE(A)V. Let y be an internally
regular element of Stab(x). Then γ(y) is an internally regular element of Stab(γ(x)).
It then follows from Theorem 7.2 that γ(y) = γ(y2). As γ is faithful (Proposi-
tion 3.18), this establishes that y is idempotent. If moreover V contains B2, then by
Proposition 5.6 the pseudovariety gV is equidivisible, and so Stab(x) is an internal
L-chain by Lemma 7.1. �

Next, we make use of the following classical notion: the kernel of a semigroup S
is the minimal nonempty two-sided ideal, provided such an ideal exists. When it
exists, the kernel consists of internally regular elements. It is well known that every
compact semigroup has a kernel (cf. [36, Corollary 3.1.15]).

Corollary 7.4. Let A be a finite-vertex graph and V be an equidivisible pseudovariety
of semigroups. Let x be a pseudopath of ΩAgV. Then the kernel of Stab(x) is a
left-zero semigroup.

Proof. Since the kernelK of Stab(x) exists and consists of internally regular elements,
it follows from Corollary 7.3 that K is a band and an internal L-chain. Since the
kernel of a profinite semigroup is completely simple, we conclude that K is in fact
an R-trivial band. �

Remark 7.5. Building on the work of Elston about expansions of semigroups [20],
Rhodes and Steinberg also obtained sufficient conditions for a pseudovariety of
semigroups V to satisfy the property that, for every finite alphabet A and every
x ∈ ΩAV, the semigroup Stab(x) is an L-chain of ΩAV (a condition weaker than being
an internal L-chain) whose internally regular elements are idempotent [34, Theorem
13.1]. These sufficient conditions hold in particular when V = S or V = A [34,
Corollary 13.2]. The approach of Rhodes and Steinberg is rather sophisticated and
different from the one we used to deduce Theorem 7.2. In the same vein, they also
gave sufficient conditions on a profinite monoid M , satisfied in particular for free
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profinite monoids, guaranteeing that for all x ∈ M , the stabilizer Stab(x) is an
R-trivial band [34, Corollaries 14.4 and 14.5].

The next theorem is the main result of the section. It plays a crucial role in our
companion paper [10].

Theorem 7.6. Let A be a finite-vertex graph and V be a concatenation-closed
pseudovariety of semigroups. Let x be a prefix accessible pseudopath of ΩAgV. Then
a pseudopath y of ΩAgV belongs to the kernel of Stab(x) if and only if there is a
net (xi)i∈I of finite-length prefixes of x such that xi → x and x−1

i x→ y.

Proof. In what follows, one should bear in mind that V ⊇ A ⊇ N (cf. Theorem 4.10),
that gV is concatenation-closed (cf. Corollary 4.11), and that V and gV are both
equidivisible pseudovarieties (cf. Corollaries 5.2 and 5.8).

Take a pseudopath y ∈ ΩAgV for which there is a net (xi)i∈I of finite-length
prefixes of x such that xi → x and x−1

i x→ y. Let yi = x−1
i x. Since x = xiyi, taking

limits we get x = xy, thus y ∈ Stab(x). Let z ∈ Stab(x). Since

xiyi = x = xz = xiyiz,

canceling (by Proposition 6.3) the finite-length prefix xi we obtain yi = yiz. Taking
limits, we see that y = yz, and so y indeed belongs to the kernel of Stab(x).

Conversely, suppose that y belongs to the kernel of Stab(x). Since x is prefix
accessible, we know that −→x is a right-infinite path over A and that there is some net
(xi)i∈I of finite-length prefixes of x such that xi → x. Set zi = x−1

i x, for each i ∈ I.
Up to taking a subnet, we may assume that the net (zi)i∈I converges to an element
z ∈ ΩAgV. By the first part of the proof, z belongs to the kernel of Stab(x). As
limxi = x = xy, it follows from Corollary 4.13 that there are nets (x′j)j∈J and

(y′j)j∈J in ΩAgV such that limx′j = x, lim y′j = y and a subnet (xij )j∈J of (xi)i∈I
satisfying xij = x′jy

′
j for every j ∈ J . Note that for every j ∈ J , since xij is a prefix

of the right-infinite path −→x over A, it follows from Corollary 3.14 that x′j and y′j
are paths over A, with x′j being moreover a prefix of x.

Consider the pseudopath yj = y′jzij . Then we have

x = xijzij = x′jy
′
jzij = x′jyj ,

whence yj = (x′j)
−1x. Moreover, we have

lim
j∈J

yj = lim
j∈J

y′jzij = yz = y,

since y and z both belong to the kernel of Stab(x), which is a left-zero semigroup
by Corollary 7.4. Since (x′j)j∈J is a net of finite-length prefixes of x converging to x,
this concludes the proof of the theorem. �

In light of Remark 6.13, we immediately extract from Corollary 7.4 and Theo-
rem 7.6 the following corollaries. These results are used in our related work [10].

Corollary 7.7. Let A be a finite-vertex graph. Let x be a pseudopath of ΩACat.
Then the kernel of Stab(x) is a left-zero semigroup.

Corollary 7.8. Let A be a finite-vertex graph. Let x be a prefix accessible pseudopath
of ΩACat. Then a pseudopath y of ΩACat belongs to the kernel of Stab(x) if and
only if there is a net (xi)i∈I of finite-length prefixes of x such that xi → x and
x−1
i x→ y.
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