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Abstract. This paper is the first in a series of three, about (relatively) free

profinite semigroups and S-adic representations of minimal shift spaces. We
associate to each primitive S-adic directive sequence σ a profinite image in
the free profinite semigroup over the alphabet of the induced minimal shift
space X(σ). When this profinite image contains a maximal subgroup of the

free profinite semigroup, we say that σ is saturating. We show that if σ is
recognizable, then it is saturating. Conversely, we use the notion of saturating

sequence to obtain several sufficient conditions for σ to be recognizable: σ

consists of pure encodings; or σ is eventually recognizable, saturating and
consists of encodings; or σ is eventually recognizable, recurrent, bounded and

consists of encodings. For the most part, we do not assume that σ has finite
alphabet rank.
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1. Introduction

This article is the first in a series of three papers linking minimal shift spaces,
via their S-adic representations, with free profinite semigroups (cf. [16, 17] for the
ensuing two papers). Finitely generated free profinite semigroups are completions
of free semigroups by a natural metric. The elements of free profinite semigroups
are called pseudowords. In this first paper, we apply methods relying on a sort
of “algebraic combinatorics on pseudowords” to obtain necessary and sufficient
conditions for a primitive S-adic representation to be recognizable.

S-adic representations of minimal shift spaces are an important subject of symbolic
dynamics, that in the past few decades has received a lot of attention (as seen, for
example, in the books [45, 41] and in the survey [26]). Symbolic dynamics has strong
connections with the theory of automata and formal languages [21, 56, 45, 57, 22, 18].
Free profinite semigroups were involved in major advancements in that theory since
the 1980s [2, 66, 13, 67]. Hence, it is not surprising there has been an emergence
of direct links between symbolic dynamics and free profinite semigroups. The first
time that methods from symbolic dynamics were systematically employed in the
theory of profinite semigroups was in [4], where they were used to establish a strong
decidability property of the pseudovariety of all finite p-groups. Shortly thereafter,
the first author introduced a systematic connection between symbolic dynamics
and free profinite semigroups, allowing him to associate to each irreducible shift
space X a profinite group G(X), naturally realized as a maximal subgroup of the
free profinite semigroup over the alphabet of X [5, 6, 8, 7]. The group G(X), called
the Schützenberger group of X since the paper [6], has dynamical significance: it is
a flow invariant [35]. If X is sofic and non-periodic, then G(X) is a free profinite
group of rank ℵ0 [34]. Besides the sofic case, the computation of G(X) has only
been made for minimal shift spaces; mostly substitutive spaces [7, 11, 46, 47], but
not always [12]. The landscape of possibilities for G(X) when X is minimal seems
rich, and remains largely unexplored.

In the series of three papers here initiated, we go beyond the substitutive case by
systematically expanding to minimal S-adic shift spaces our study of the interplay
between free profinite semigroups and symbolic dynamical systems, specially through
the Schützenberger groups of the latter. Fixing an S-adic representation for a shift
space allows us to see it as a sort of limit of substitutive spaces, thus suggesting a
way to approach spaces that are non-substitutive by adapting what was done for
the substitutive ones. This kind of approach is sketched in [6] to determine the
Schützenberger groups of Arnoux–Rauzy shift spaces.

In this article we focus on connections with the notion of recognizable directive
sequence. Mossé’s celebrated theorem, stating that every aperiodic primitive substi-
tution is recognizable [59, 60], is crucial for the deduction, by the first two authors,
of presentations for G(X) when X is defined by a primitive substitution [11]. Her
theorem was extended and refined by several authors [28, 36, 52]. This led to far-
reaching generalizations by Berthé et. al. [27] concerning primitive directive S-adic
sequences, which, in conjunction with past study of the group G(X), motivated
the work in the present paper. Further generalizations of Berthé et al.’s results
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appear in work by Béal et al. [23]. Also testifying their importance, we mention
that recognizable directive sequences provide representations of S-adic shift spaces
by Bratteli–Vershik systems [27, Theorem 6.5].

At this point, it is convenient to provide some technical context. An S-adic
directive sequence is a sequence σ = (σn)n∈N of substitutions (i.e., homomorphisms
σn : A

+
n+1 → A+

n between free semigroups) defining in a natural way a minimal shift
space X(σ); alternatively, σ is called an S-adic representation of X(σ). Roughly
speaking, σ is recognizable when, denoting by σ(k) the subsequence (σn)n≥k, every

element ofX(σ(k)) has a unique “de-substitution“, via σk, as an element ofX(σ(k+1)),
for every k ∈ N. Quite often, one needs to assume that σ is bounded, meaning that
the sequence of cardinalities Card(An) is bounded; or at least that σ has finite
alphabet rank, meaning that lim inf Card(An) < ∞. One of the most remarkable
results from [27], generalizing Mossé’s theorem, is that if σ = (σn)n∈N is a primitive
directive sequence with finite alphabet rank, such that X(σ) is aperiodic, then σ is
eventually recognizable (i.e., σ(k) is recognizable for some k ∈ N).

The main contribution from this paper is the introduction and exploration of
the notion of saturating directive sequence, and its associated machinery, to obtain
new results about recognizable directive sequences. Briefly speaking, a primitive
directive sequence σ = (σn)n∈N is saturating when some natural realization of
G(X(σ)) is contained in the intersection of the images of the profinite extensions
of the homomorphisms σn; we call such intersection the profinite image of σ. The
profinite image of σ is a group if σ is proper (Theorem 7.9); it is a simple semigroup
if, and only if, all limit words of σ belong to X(σ) (Theorem 7.1).

The next theorem collects several of our main applications of saturation to
recognizability (cf. Theorems 10.10, 10.17, 10.22, and Corollary 10.21); by saying
that σ is an encoding we mean that σn is an injective homomorphism for each
n ∈ N, and by saying that it is pure we mean that it is an encoding such that, for
each n ∈ N, the image of σn is a pure code.

Theorem 1.1. Let σ be an eventually recognizable primitive directive sequence.
The following statements hold:

(i) if σ is recognizable, then it is saturating;
(ii) if σ is pure, then σ is recognizable;
(iii) if σ is saturating and encoding, then σ is recognizable;
(iv) if σ is recurrent, bounded, and encoding, then σ is recognizable.

Other sufficient conditions for recognizability of σ were obtained before. Berthé et
al. showed that σ is fully recognizable (a property stronger than being recognizable)
if X(σ) is aperiodic and for each n ∈ N the homomorphism σn : A

+
n+1 → A+

n satisfies
one of the following conditions: Card(An+1) = 2, the rank of the incidence matrix
of σn is Card(An+1), or σn is rotationally conjugate to a left or right permutative
homomorphism [27, Theorem 4.6]. Bustos-Gajardo et al. showed, again assuming
aperiodicity of X(σ), that σ is recognizable if each term σn appears infinitely often
in σ and is a constant-length encoding, cf. [30, Lemma 3.4 and Theorem 3.6].

Theorem 1.1 links symbolic dynamics and free profinite semigroups. The latter
are applied in the proofs of all four statements included in the theorem, with the
notion of saturating sequence playing a key role in all of them. Concerning the
opposite direction, from symbolic dynamics to free profinite semigroups, we mention
that Theorem 1.1 is used to obtain upper bounds for the rank of the profinite group
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G(X), when X has finite alphabet rank (cf. Corollaries 10.13, 10.14 and 10.15).
Other applications, to the computation of Schützenberger groups of minimal shift
spaces, appear in the two papers following this one [16, 17].

When delving in the proof of Theorem 1.1, the reader will notice our option to
refine the concept of saturation by considering free profinite semigroups relatively to
pseudovarieties of finite semigroups. A pseudovariety of finite semigroups is a class
of finite semigroups that is closed under taking finite products, subsemigroups, and
quotients. This type of class provides one of the main frameworks for the study of
finite semigroups and formal languages, particularly via Eilenberg’s correspondence
theorem [42]. This is enough as motivation to also consider the image GV(X) of G(X)
in the free pro-V semigroup over the alphabet of X, when V is a pseudovariety of
finite semigroups; we say that GV(X) is the V-Schützenberger group of X. Note that
V-Schützenberger groups are an extension of the original notion of Schützenberger
groups, in view of the equality G(X) = GS(X), where S is the pseudovariety of all
finite semigroups. Going back to saturation, the corresponding refinement for the
notion of saturating directive sequence is that of V-saturating directive sequence;
the saturating sequences mentioned in Theorem 1.1 are precisely the S-saturating
sequences. Considering V-saturating sequences, for V other than S, allows for more
clarity in the proof of Theorem 1.1 and enlarges its scope. It also prepares the path
to results about V-Schützenberger groups in the subsequent papers [16, 17].

We proceed by detailing how this paper is organized, highlighting some of the
content spread along it. Preliminaries about symbolic dynamics and profinite
semigroups are respectively given in the two sections following this introduction.
Immediately afterwards, we have a section dedicated to profinite categories. There,
we improve Hunter’s theorem stating that the monoid of continuous endomorphisms
of a finitely generated profinite semigroup is itself a profinite monoid, for the
pointwise topology: we extend it to any category of continuous homomorphisms
between finitely many finitely generated profinite semigroups (cf. Proposition 4.1).
This improvement is necessary for Sections 8 and 9, and for the proofs of Theorem 10.7
and its closely related Theorem 10.22. We also introduce free profinite categories
and some of its properties, also needed for the same latter parts of the paper.

In Section 5 we recapitulate existing results connecting minimal shift spaces with
profinite semigroups, improving some of them and establishing new ones. Part
of the novelty comes from a more systematic consideration in this study of all
pseudovarieties of semigroups containing all finite local semilattices, and of the
corresponding relatively free profinite semigroups.

In Section 6 we introduce the profinite image of an S-adic directive sequence σ,
moreover establishing and studying a natural inverse limit of the profinite images of
the tails σ(n). In Section 7 we relate the algebraic structure of the profinite image
of σ with combinatorial and dynamical aspects of σ. In Section 8 we see that if the
primitive directive sequence σ is bounded, then the profinite image of σ is the image
of primitive continuous homomorphisms between free profinite semigroups, obtained
as cluster points of the sequence of homomorphisms σ0 ◦σ1 ◦ · · · ◦σn. Intuitively, this
approximates even more the bounded case to the case of substitutive shift spaces.
Section 9 further develops the material of the preceding section by, among other
things, associating to each bounded primitive directive sequence a certain set of
continuous idempotent endomorphisms (of finitely generated profinite semigroups),
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which we call kernel endomorphisms. The kernel endomorphisms play a key role in
the ensuing papers [16, 17].

The last section (Section 10) contains the main results of the paper. Here we
introduce and study saturating directive sequences, leading to the deduction of
necessary or sufficient conditions, summarized in Theorem 1.1, for an S-adic directive
sequence to be recognizable.

2. Symbolic dynamics

This section aims to provide some background on symbolic dynamics; the reader
is referred to [45] for a more in-depth introduction, particularly in what concerns
substitutions.

2.1. Basic notions. Let A be an alphabet, that is, a nonempty set whose elements
we call letters. We denote by A∗ the set of all words over A, including the empty
word ε, and we let A+ = A∗ \ {ε}; under the operation of word concatenation,
A∗ is the free monoid on A, and A+ is the free semigroup. The length of a word
w ∈ A∗ is denoted |w|, while the number of occurrences of a letter a ∈ A in w is
denoted |w|a. We are considering w as an element of A{0,...,|w|−1}, and so we let
w[i] be the letter of w in position i, for 0 ≤ i < |w|. For 0 ≤ i ≤ j ≤ |w|, we let
w[i, j) = w[i] · · ·w[j − 1]. Note that w[i, i) = ε. We denote by fac(w) the set of
nonempty factors of w, that is

fac(w) = {w[i, j) : 0 ≤ i < j ≤ |w|}.

Factors of the form w[0, j) are further called prefixes, while those of the form w[i, |w|)
are called suffixes. We make the choice of excluding the empty word from fac(w)
because it will often be more convenient to work with free semigroups rather than
free monoids.

Let AZ be the set of two-sided infinite words over A. Given x ∈ AZ and i ∈ Z,
we let x[i] be the letter of x on position i. If i, j ∈ Z are such that i ≤ j, we may
consider the word x[i, j) = x[i] · · ·x[j − 1]. Observe that x[i, i) = ε. The set

fac(x) = {x[i, j) : i < j}

is the set of nonempty factors of x. Mutatis mutandis, we make similar definitions
for right infinite words and left infinite words, that is elements of AN and AZ

− ,
where N and Z− respectively stand for the set of nonnegative and the set of negative
integers. For x ∈ AZ

− and y ∈ AN, we denote by x · y the element z of AZ such that
z[i] = x[i] if i < 0 and z[i] = y[i] if i ≥ 0.

At this point, we assume that A is finite and we endow it with the discrete
topology, and AZ with the corresponding product topology. The shift map is the
homeomorphism T : AZ → AZ defined by T (x) = (x[i+ 1])i∈Z. A shift space over
the alphabet A is a nonempty closed subset X of AZ that satisfies T (X) = X. Note
that the pair (X,T ) is a topological dynamical system, and so one may apply to
shift spaces terminology from the theory of dynamical systems, such as that of
topological conjugacy, which is the notion of isomorphism for dynamical systems.

We focus primarily on shift spaces that are minimal (for the inclusion order). An
infinite word x ∈ AZ is periodic if it has a finite T -orbit, and aperiodic otherwise; a
shift space is called periodic if it is the orbit of a periodic infinite word, and aperiodic
if it contains no periodic shift space.
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The language of a subset X ⊆ AZ is the subset of A+ defined by

L(X) =
⋃

x∈X

fac(x).

It is well known that for two shift spaces X,Y ⊆ AZ, we have L(X) ⊆ L(Y ) if and
only if X ⊆ Y . The language of a shift space X is both factorial (fac(w) ⊆ L(X) for
every w ∈ L(X)) and extendable (if w ∈ L(X), then awb ∈ L(X) for some a, b ∈ A);
conversely, every nonempty, factorial and extendable language is the language of a
unique shift space. Minimal shift spaces have the simple characterization in terms of
their languages that follows. A language L ⊆ A+ is called uniformly recurrent if it
is factorial, extendable, and for every u ∈ L, there exists n ∈ N such that u ∈ fac(v)
for every v ∈ L with |v| ≥ n. Then, a shift space X is minimal if and only if the
language L(X) is uniformly recurrent.

Consider a semigroup homomorphism σ : A+ → B+. For each x ∈ AZ, the
element σ(x) of BZ is defined by the equality

σ(x) = · · ·σ(x[−2])σ(x[−1]) · σ(x[0])σ(x[1])σ(x[2]) · · · .

2.2. S-adic representations. A common way of defining shift spaces is to use
so-called S-adic representations, which we proceed to introduce.

Let σ = (σn)n∈N be a sequence of homomorphisms of free semigroups σn : A
+
n+1 →

A+
n , where An is a finite alphabet for every n ∈ N. We say that σ a directive sequence.

The alphabet rank of σ is the limit lim infn→∞ Card(An) where Card(S) denotes
the cardinal of a set S. For such a directive sequence σ and natural numbers n ≤ m,
let σn,m be the homomorphism A+

m → A+
n given by the composition

σn,m = σn ◦ · · · ◦ σm−1,

with the convention that σn,n is the identity on A+
n . Consider the factorial language

L(σ) =
⋃

n≥0

⋃

a∈An

fac(σ0,n(a)).

Let X(σ) be the set of elements x of AZ
0 such that fac(x) ⊆ L(σ). The set X(σ) is

a shift space when it is nonempty. We say that a shift space X is represented by the
directive sequence σ, or that σ is an S-adic representation of X, when X = X(σ).

Remark 2.1. One has X(σ) ̸= ∅ precisely when L(σ) is infinite, which happens if
and only if limn→∞ maxa∈An+1

|σ0,n(a)| = ∞ (in some publications, this limit is
part of the definition of directive sequence, e.g. [25]). The inclusion L(X(σ)) ⊆ L(σ)
clearly holds, but it may be strict, even if X(σ) ̸= ∅ (cf. [41, Example 1.4.5]).

Remark 2.2. In the book of Durand and Perrin [41] the terminology directive
sequence is reserved for sequences σ such that L(σ) = L(X(σ)). On the other hand,
our usage is adopted in many other relevant publications (cf. [40, 26, 25, 27]).

Let k ∈ N. We denote by σ(k) the tail sequence given by σ(k) = (σn+k)n∈N.
A proof of the following fact is found in [27, Lemma 4.2].

Lemma 2.3. For every m,n ∈ N such that m ≥ n, the shift space X(σ(n)) is the
smallest one containing the set σn,m(X(σ(m))).

Let φ be a substitution over the alphabet A, by which we mean an endomorphism
of A+. In the special case where σn = φ for all n ∈ N, we denote L(σ) and X(σ)
respectively by L(φ) and X(φ). Assuming moreover that X(φ) ̸= ∅, we say that



PROFINITE APPROACH TO S-ADIC SHIFT SPACES I: SATURATING SEQUENCES. 7

X(φ) is a substitutive shift space. We mention that in some sources the equality
L(φ) = L(X(φ)) is included in the definition of substitution (e.g. [41]).

When studying minimal shift spaces, it is often useful to focus on S-adic repre-
sentations subject to special conditions, some of which we introduce next. We start
with conditions on homomorphisms.

Definition 2.4. A homomorphism φ : A+ → B+ is called:

(i) expansive if |φ(a)| ≥ 2 for every a ∈ A;
(ii) positive if B ⊆ fac(φ(a)) for every a ∈ A, and φ is expansive;
(iii) circular if it is injective and uv, vu ∈ φ(A+) =⇒ u, v ∈ φ(A+) for every

u, v ∈ B+;
(iv) left proper if there is a letter b ∈ B such that φ(a) ∈ bB∗ for every a ∈ A;
(v) right proper if there is a letter b ∈ B such that φ(a) ∈ B∗b for every a ∈ A;
(vi) proper if it is right proper and left proper.

In turn, when we say that a directive sequence σ = (σn)n∈N is circular, right
proper, left proper, proper, or positive, we mean that σn has that property for every
n ∈ N. We also say that σ is encoding if σn is injective for every n ∈ N.

A slightly more subtle notion is that of primitivity.

Definition 2.5. A directive sequence σ = (σn)n∈N is primitive if, for every n ∈ N,
there exists m > n such that σn,m is positive.

In some papers, for instance [26, 55], primitive directive sequences are called
instead weakly primitive. The following theorem is well known within the community
studying minimal shift spaces and their S-adic representations. A proof can be
found in [41, Section 6.4.2].

Theorem 2.6. Let X be a shift space. The following conditions are equivalent:

(i) X is a minimal shift space;
(ii) X = X(σ) for some primitive directive sequence σ;
(iii) X = X(σ) for some proper, primitive and circular directive sequence σ.

Moreover, if σ is a primitive directive sequence, then the equality L(X(σ)) = L(σ)
holds.

Remark 2.7. In [41, Proposition 6.4.5] it is stated that if σ is a primitive directive
sequence, then the equality L(X(σ)) = L(σ) holds under the extra assumption that
the sequence is without bottleneck, that is, Card(An) ≥ 2 for all n ∈ N. We avoid
this extra assumption in Theorem 2.6 because we force positive homomorphisms to
be expansive also when the alphabet in the image has only one letter.

Remark 2.8. Theorem 2.6 is essentially Proposition 6.4.5 from the book of Durand
and Perrin [41], with two notable differences. First, our statement includes periodic
shift spaces because we allow bottleneck (cf. Remark 2.7). Second, in the statement
provided in the book there is no explicit reference to circular homomorphisms; but
the proof found there gives what we write here, since the pertinent homomorphisms
are encodings by return words, well known to be circular encodings (cf. [39, Lemma
17]). In our companion paper [16] one finds a more detailed discussion about the
representation by a proper, primitive and circular directive sequence that follows
from that proof.

A useful operation on directive sequences is that of contraction, which consists in
grouping consecutive homomorphisms in the sequence. More precisely, a contraction
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(also called a telescoping in many sources) of a sequence of homomorphisms σ =
(σn)n∈N is a sequence of the form τ = (σnk,nk+1

)k∈N, for some strictly increasing
sequence (nk)k∈N of natural numbers such that n0 = 0. Note that, if σ is primitive,
then σ has a contraction which is positive; moreover, every contraction of σ is
primitive. As seen next, under a very mild condition1, satisfied by primitive directive
sequences, the shift space X(σ) remains unchanged when passing to a contraction.
The reader should bear this fact in mind.

Lemma 2.9. Let σ = (σn)n∈N be a primitive directive sequence with a contraction
τ = (σnk,nk+1

)k∈N. Suppose that An ⊆ fac(σn(An+1)) for every n ∈ N. Then, the

equalities L(σ(nk)) = L(τ (k)) and X(σ(nk)) = X(τ (k)) hold for every k ∈ N.

Lemma 2.9, whose proof is an easy exercise, does not hold if we drop some
inclusion An ⊆ fac(σn(An+1)) (cf. Exercise 1.27, and its solution, in the book [41]).

2.3. Recognizability. We proceed to give the necessary background on the impor-
tant notion of recognizable directive sequence, following the monograph [41] and the
paper [27].

Let σ : A+ → B+ be a homomorphism, where A and B are finite alphabets.
A σ-representation of a point y ∈ BZ is a pair (k, x), where k ∈ N and x ∈ AZ,
satisfying T kσ(x) = y. We say that it is centered if, additionally, k < |σ(x[0])|.

Definition 2.10 (Dynamical recognizability). Given X ⊆ AZ, we say that σ
is (dynamically) recognizable in X if every y ∈ BZ has at most one centered σ-
representation (k, x) with x ∈ X.

In case X = AZ, we say instead that σ is fully recognizable. Full recognizability
has the following characterization (cf. [41, Proposition 1.4.32]).

Proposition 2.11. A homomorphism is fully recognizable if and only if it is circular.

We say that a directive sequence σ = (σn)n∈N is recognizable if the homomorphism
σn is recognizable in X(σ(n+1)) for every n ∈ N; and eventually recognizable if this
holds only for all but finitely many n ∈ N. One should bear in mind the following
remarkable result of Berthé et al. [27, cf. Theorem 5.2].

Theorem 2.12. Let σ be a primitive directive sequence with finite alphabet rank.
If X(σ) is aperiodic, then σ is eventually recognizable.

There is also a pointwise version of recognizability. Fix x ∈ AZ and a homomor-
phism σ : A+ → B+; define the set of σ-cutting points of x by:

Cσ(x) = {−|σ(x[i, 0))| : i < 0} ∪ {0} ∪ {|σ(x[0, i))| : i > 0}.

The following definition was introduced in a seminal paper by Mossé [59].

Definition 2.13 (Mossé’s recognizability). Let x ∈ AZ and write y = σ(x). We
say that σ is recognizable for x in Mossé’s sense when, for some positive integer ℓ
(called the constant of recognizability), the following holds for every m ∈ Cσ(x) and
n ∈ Z:

y[m− ℓ,m+ ℓ) = y[n− ℓ, n+ ℓ) =⇒ n ∈ Cσ(x).

1This mild condition appears to be implicit in several sources where it is stated that taking
a contraction does not change the shift being represented by the directive sequence (e.g. [27,

Section 5.2] and [41, Section 6.4.1])
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Under mild conditions, dynamical recognizability implies Mossé’s recognizability.

Proposition 2.14 ([27, Theorem 2.5(1)]). Let σ : A+ → B+ be a homomorphism,
X ⊆ AZ be a shift space and x ∈ X be such that L(X) = fac(x). If σ is recognizable
in X, then it is recognizable in Mossé’s sense for x.

In particular, if X is a minimal shift space, then σ is recognizable in Mossé’s
sense for every x ∈ X.

3. Profinite semigroups

We move on to review some elements of semigroup theory, with a focus on
profinite semigroups. We follow the definition of a semigroup as being a nonempty
set endowed with an associative binary operation (in some sources, such as the book
of Rhodes and Steinberg [66], the empty set is considered to be a semigroup).

3.1. Green’s relations. We briefly recall a few standard facts about Green’s
relations; a thorough account may be found in any book covering basic semigroup
theory, for instance [31, 49, 53].

Let S be a semigroup, and S1 be the smallest monoid containing S (obtained by
adjoining to S an identity element, generically denoted 1, if needed). For s, t ∈ S,
write:

• s ≤R t (or say that t is a prefix of s) when sS1 ⊆ tS1;
• s ≤L t (or say that t is a suffix of s) when S1s ⊆ S1t;
• s ≤H t when sS1 ⊆ tS1 and S1s ⊆ S1t;
• s ≤J t (or say that t is a factor of s) when S1sS1 ⊆ S1tS1.

These are quasi-orders known as Green’s quasi-orders. They induce four equivalence
relations, respectively denoted R, L, H and J , called Green’s equivalences. By a
classical theorem of Green, the maximal subgroups (maximal for inclusion) of S
are precisely the H-classes of its idempotent elements. We may write Hs for the
H-class of s and similarly for other Green’s equivalences. For any Green’s relation
K∈ {R,L,H,K}, we may write KS instead of K, whenever we want to emphasise
that we are considering the relation K in the semigroup S; this may be needed when
reasoning with different semigroups at the same time.

In this paper, we deal mostly with compact semigroups: semigroups endowed
with a compact topology for which the multiplication is continuous (we include the
Hausdorff property in the definition of compactness). Note that finite semigroups
equipped with the discrete topology are compact semigroups. In compact semigroups,
all of Green’s relations (quasi-orders and equivalences) are closed; in particular, so
are the equivalence classes of Green’s equivalences. When S is a compact semigroup
which is not a monoid, then S1 is viewed as a compact semigroup by considering
the topological sum of S and of the discrete space {1}.

A useful property of compact semigroups is that they are stable, that is,

(s ≤R t and s J t) =⇒ s R t, (s ≤L t and s J t) =⇒ s L t.

Stable semigroups S enjoy several useful properties:

• Two elements s and t are J -equivalent if and only if there is u such that
s R u L t, if and only if there is v such that s L v R t.

• A J -class J contains an idempotent if and only if each of its L-classes
contains an idempotent; the same holds for R-classes. This is also equivalent
to every element of J being regular, where an element s of S being regular
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means that s ∈ sSs. Whenever J satisfies these equivalent conditions, we
call it a regular J -class. Its maximal subgroups are then isomorphic to one
another, continuously so in the compact case.

• The intersection of every R-class with every L-class contained in the same
J -class is an H-class.

A subset F of a semigroup S is said to be factorial if it is an upset for the
quasi-order ≤J , that is, it is closed under taking factors.

3.2. Pseudovarieties of semigroups. A pseudovariety of semigroups is a class
of finite semigroups closed under taking subsemigroups, homomorphic images, and
finite direct products. Examples include:

• the class S of all finite semigroups;
• the class G of all finite groups;
• the trivial pseudovariety I (with only the one-element semigroup);
• the class A of all finite aperiodic semigroups (semigroups whose subgroups

are trivial);
• the class Sl of all finite semilattices (commutative semigroups whose elements

are idempotent);
• the class CS of finite simple semigroups, that is, semigroups where the

relation J is universal;2

• the class N of finite nilpotent semigroups (a semigroup is nilpotent if it has
a zero 0 and Sk = {0} for some k ≥ 1).

A pseudovariety V is said to be generated by a class C of finite semigroups if V is
the smallest pseudovariety that contains C.

There are several operators of interest on pseudovarieties. For this paper and the
ensuing companions [16, 17], the following are relevant.

• If H is a pseudovariety consisting of finite groups, then the class H of all
finite semigroups whose subgroups belong to H is a pseudovariety. Note
that I = A and G = S.

• Given a pseudovariety of semigroups V, the class LV of all finite semigroups S
such that eSe ∈ V for all idempotents e ∈ S is also a pseudovariety, called
the local of V. (In this paper we need to consider the pseudovarieties LI and
LSl.)

• For two pseudovarieties of semigroups V and W, their semidirect product
V ∗W is the pseudovariety generated by the class of all semidirect products
of the form S ∗R with S ∈ V and R ∈W.

3.3. Relatively free profinite semigroups. This subsection serves to introduce
profinite semigroups, and in particular relatively free profinite semigroups. For more
details on this topic, see [2, 66] and the shorter [8].

Let V be a pseudovariety of finite semigroups. In this paper, we always consider
finite semigroups to be equipped with the discrete topology. A pro-V semigroup
is a compact semigroup S which is also residually V, in the sense that any two
distinct elements x, y ∈ S take distinct values under some continuous homomorphism
φ : S → R where R ∈ V. In particular, members of V are pro-V; we also say that a

2The reader unfamiliar with Semigroup Theory is cautioned that in the literature one finds also

the class of completely simple semigroups, whose intersection with the class of finite semigroups
consists precisely of the finite simple semigroups. Note also that the notion of simple semigroup is
distinct from the classical notion of simple group: as a semigroup, every group is simple.
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pro-S semigroup is profinite. Other such specialized terminology will be introduced
as needed. Let Pro denote the category of profinite semigroups, where morphisms
are continuous semigroup homomorphisms. For each class C of profinite semigroups,
denote by Pro[C] the full subcategory of Pro whose objects are the elements of C.

For each pseudovariety of semigroups V, the category Pro[V] has free objects.
They can be constructed as follows. Given an alphabet A (not necessarily finite), let
ΘV be the set of congruences θ on the free semigroup A+ such that A+/θ belongs
to V. The hypothesis that V is a pseudovariety guarantees that ΘV is a directed set
for the reverse inclusion ⊇, and so we may consider the inverse limit ΩAV of the
system formed by the finite quotients of the free semigroup A+ which belong to V:

ΩAV = lim
←−
θ∈ΘV

A+/θ.

We call ΩAV the free pro-V semigroup. Let ιV : A→ ΩAV be the mapping sending
each letter a of A to (a/θ)θ∈Θ. With respect to this mapping, ΩAV has the following
universal property: for every mapping f : A→ S with S a pro-V semigroup, there
exists a unique continuous homomorphism fV : ΩAV→ S such that fV ◦ ιV = f ; see
the diagram below.

A
ιV //

f
!!

ΩAV

fV

��

S.

Semigroups of the form ΩAV for some pseudovariety of semigroups V are called
relatively free.

If the alphabet A is finite, then the topology of ΩAV is metrizable, for every
pseudovariety V, since ΘV is at most countable in that case. A metric generating
the topology of ΩAV is the following: for u, v ∈ ΩAV such that u ̸= v, their distance,
denoted d(u, v), is given by the equality d(u, v) = 2−r(u,v) where r(u, v) is the
smallest possible cardinal for a semigroup S from V for which there is a continuous
homomorphism φ : ΩAV→ S satisfying φ(u) ̸= φ(v).

On the other hand, ΩAS is not metrizable if A is infinite (cf. [19]).
Let V,W be two pseudovarieties of semigroups with W ⊆ V. For a given set A, the

universal property of ΩAV applied to the mapping ιW : A→ ΩAW gives a continuous
onto homomorphism pV,W : ΩAV→ ΩAW such that pV,W ◦ ιV = ιW (cf. Diagram 1).

We call this the natural projection of ΩAV onto ΩAW.

A
ιV //

ιW
!!

ΩAV

pV,W

��

ΩAW

(1)

Whenever V contains the pseudovariety N of finite nilpotent semigroups, or the
pseudovariety G of finite groups, the mapping ιV extends to an injective homomor-
phism ι+

V
: A+ → ΩAV. In particular, for such a pseudovariety V, we may identify

A+ with the (dense) subspace ι+
V
(A+) ⊆ ΩAV whenever convenient. We denote

by ClV(L) the closure in ΩAV of a language L ⊆ A+ viewed as a subset of ΩAV,
whenever V is a pseudovariety of semigroups containing N or G. These facts reinforce
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our perception that the elements of ΩAV may be seen as generalizations of words,
for which reason they are called pseudowords.

Consider a homomorphism φ : A+ → B+ of free semigroups. Assuming that V

contains N or G, it follows from the universal property of free pro-V semigroups
that for every homomorphism φ : A+ → B+ there is a unique continuous homomor-
phism φV : ΩAV → ΩBV whose restriction to A+ coincides with φ, that is to say,
Diagram (2) is commutative.

ΩAV
φV

// ΩBV

A+ φ
//

?�

OO

B+
?�

OO

(2)

We say that φV is the pro-V extension of φ. By the uniqueness of the pro-V
extension of homomorphisms between free semigroups, the correspondence φ 7→ φV

is functorial; in other words, (φ ◦ ψ)V = φV ◦ ψV whenever φ and ψ are composable
homomorphisms of free semigroups, and the pro-V extension of the identity on A+

is the identity on ΩAV.
Recall that a Stone space is a topological space that is both compact and totally

disconnected. Note that closed subspaces of Stone spaces are also Stone spaces.
For every pseudovariety of semigroups V, a language L ⊆ A+ is said to be V-

recognizable if there are a semigroup S ∈ V and a homomorphism φ : A+ → S such
that L = φ−1(φ(L)). The syntactic semigroup of the language L is the quotient
of A+ by the least congruence saturating L. We have the following alternative
characterization of the notion of V-recognizable language: L is V-recognizable if and
only if the syntactic semigroup of L belongs to V. The following basic result gives a
topological characterization of the same notion, which amounts to the fact that the
topological space ΩAV is the Stone dual of the Boolean algebra of all V-recognizable
subsets of A+.

Theorem 3.1 ([2, Theorem 3.6.1]). Let V be a pseudovariety of semigroups con-
taining N. Then a language L ⊆ A+ over a finite alphabet A is V-recognizable if
and only if ClV(L) is open.

Endow the set N+ of positive integers with the semigroup operation of addition.
For this structure, the length mapping ℓ : A+ → N+, defined by ℓ(u) = |u| is a
semigroup homomorphism. We extend the length homomorphism to pseudowords
in the following way. Let N+ ∪ {∞} be the Alexandroff compactification of N+, and
extend the addition operation on N+ to N+∪{∞} by making∞ an absorbing element
of N+ ∪ {∞}. In this way, N+ ∪ {∞} is a pro-N semigroup (it is in fact a free pro-N
semigroup on the single generator 1). Therefore, provided V contains N, the length
homomorphism ℓ : A+ → N+ extends uniquely to a continuous homomorphism
ℓV : ΩAV→ N+ ∪ {∞}. We use the notation |u| for ℓV(u), for every u ∈ ΩAV. An
element u ∈ ΩAV has infinite length if |u| =∞, and finite length otherwise. Clearly,
infinite-length pseudowords form a closed ideal of ΩAV, a fact included in the next
proposition, whose complete proof can be found in [15, Section 3], which extends
earlier results for the case when A is finite; see e.g. [2].

Proposition 3.2. Let A be an arbitrary alphabet and let V be a pseudovariety of
semigroups containing N. Then the following hold:



PROFINITE APPROACH TO S-ADIC SHIFT SPACES I: SATURATING SEQUENCES. 13

(i) the elements of A+ are isolated points in ΩAV;
(ii) the set {u ∈ ΩAV : |u| =∞} is an ideal of the free pro-V semigroup ΩAV;
(iii) the set ΩAV \A

+ is an ideal of the free pro-V semigroup ΩAV.

Remark 3.3. Since the elements of A+ are isolated points in ΩAV, the equality
ClV(L) ∩A

+ = L holds for every language L ⊆ A+, whenever V ⊇ N.

Remark 3.4. In case A is finite, the equality ΩAV \ A
+ = {u ∈ ΩAV : |u| = ∞}

holds whenever V ⊇ N, since there are only finitely many words of A+ of a given
length. It no longer holds if A is an infinite alphabet: in that case, the topological
closure of A in ΩAV, being compact, contains some element not in A, and any such
element has length 1 by continuity of the length homomorphism.

Let us suppose that V contains the pseudovariety LI, bearing in mind that
LI contains N. In that case, for every nonnegative integer n, every pseudoword
w ∈ (ΩAV)

1 such that |w| ≥ n has a unique prefix of length of n, denoted w[0, n),
and a unique suffix of length n, denoted w[− n,−1] (for further details, we refer to
the discussion in [15, Section 6]).

In the case of the pseudovariety S, we have the following property, which amounts
to saying that in an equality of pseudowords we may cancel equal finite-length
prefixes, or suffixes.

Proposition 3.5. Let A be any alphabet. If x, y, u, v ∈ (ΩAS)
1 are pseudowords

such that xu = yv or ux = vy, and |x| = |y| ∈ N, then x = y and u = v.

Let w be an infinite-length pseudoword on ΩAS, and let x be its prefix of length n,
where n ∈ N. By Proposition 3.5 there is a unique pseudoword u ∈ ΩAS such that
w = xu. We may denote u by x−1w, and sometimes, alternatively, by w(n).

3.4. Codes. Let C be a subset of A+. Recall that C is a code if the subsemigroup
of A+ generated by C is free with basis C.

The code C is called circular if the implication

uv, vu ∈ C+ =⇒ u, v ∈ C+

holds for every u, v ∈ A+. Therefore, an injective homomorphism φ : B+ → A+ is
circular if and only if φ(A) is a circular code.

The code C is called pure if it is closed under extraction of roots, that is, if for
every u ∈ A+ and integer n ≥ 1, the following implication holds:

un ∈ C+ =⇒ u ∈ C+.

Every circular code is pure; the code C = {ab, ba} is an example of a pure code
that is not circular.

It turns out that a finite code C over the alphabet A is pure if and only if the
syntactic semigroup of C+ belongs to the pseudovariety A of all finite aperiodic
semigroups (cf. [63, Theorem 3.1]; see also [53, Chapter 7, Exercise 8]). Hence, pure
codes are often called aperiodic codes.

The property of being closed under root extraction carries through for pro-V
closures of pure codes, in the following sense.

Lemma 3.6. Let C be a finite pure code over a finite alphabet A, V a pseudovariety
containing A, and u an element of ΩAV. If ClV(C

+) ∩ ClV(u
+) ̸= ∅, then u belongs

to ClV(C
+).
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Proof. Take x ∈ ClV(C
+) ∩ClV(u

+). Let (ui)i∈N be a sequence of finite words such
that u = limui and (uni)i∈N be a sequence of powers of u converging to x such
that ni is a positive integer for every i ∈ N. We claim that (uni

i )i∈N converges to x.

Let φ : ΩAV→ S be an arbitrary continuous homomorphism where S ∈ V; because
ΩAV is residually V, we are reduced to showing that there exists j ∈ N such that
φ(uni

i ) = φ(x) for every i ≥ j. Since S is discrete, there exists i1 ∈ N such that
φ(ui) = φ(u) for every i ≥ i1. Likewise, there exists i2 ∈ N such that φ(uni) = φ(x)
for all i ≥ i2. Then, for all i ≥ max{i1, i2}, we find that

φ(uni

i ) = φ(ui)
ni = φ(u)ni = φ(uni) = φ(x).

This concludes the proof of the claim.
Since A ⊆ V and the syntactic semigroup of C+ is in A, it follows that ClV(C

+)
is clopen. Therefore, there exists j ∈ N such that uni

i ∈ ClV(C
+) for all i ≥ j. As

ClV(C
+) ∩A+ = C+, this means that uni

i ∈ C
+ for all i ≥ j. By purity, it follows

that ui ∈ C
+ for all i ≥ j, whence u = limui ∈ ClV(C

+). □

Using this lemma, we deduce the following key property of pure codes.

Proposition 3.7. Let C be a finite pure code over a finite alphabet A and V be a
pseudovariety of finite semigroups containing A. For every subgroup H ⊆ ΩAV, the
following implication holds:

H ∩ ClV(C
+) ̸= ∅ =⇒ H ⊆ ClV(C

+).

For the proof of this proposition, we use the following: in a profinite finite
semigroup S, given s ∈ S, the sequence (sn!)n∈N converges to an idempotent,
denoted sω, which is the unique idempotent in the closed subsemigroup of S
generated by s [18, cf. Proposition 3.9.2]. At some point in the paper we also use
the notation sω−1 for the inverse of sω+1 = sω · s in the maximal subgroup of S
containing the idempotent sω.

Proof of Proposition 3.7. Let u ∈ H. Take h ∈ H ∩ ClV(C
+). Observe that uω =

hω, as H is a subgroup. Since ClV(C
+) is a closed semigroup, it follows that

uω ∈ ClV(C
+) ∩ ClV(u

+). This yields u ∈ ClV(C
+) by Lemma 3.6. □

Let V be a pseudovariety of finite semigroups and C ⊆ A+ be a code. If the
syntactic semigroup of C+ is in V, then we say that C is a V-code. In particular the
finite A-codes are exactly the finite pure codes.

An injective homomorphism σ : A+ → B+ is called an encoding ; equivalently, σ
is injective on A and σ(A) is a code. The encoding σ is pure if σ(A) is a pure code.
We say that an encoding σ : A+ → B+ is a V-encoding if σ(A) is a V-code.

The following theorem may be attributed to Margolis, Sapir and Weil [58]. Since
they did not explicitly state the theorem in this form, we give a short proof for the
sake of completeness.

Theorem 3.8. Let σ : A+ → B+ be a homomorphism and H,K be pseudovarieties
of groups. Suppose that:

(i) H ∗ K ⊆ H;
(ii) σ is a K-encoding.

Then the pro-H extension σH : ΩAH→ ΩBH is injective.
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Proof. We refer the reader to [58] for the definitions of sagittal semigroup and of
unambiguous product of semigroups, which are used in this proof. By [68, Corollary 1
of Theorem 4.9] (which is based on [54, Theorem 3]), we know that the sagittal
semigroup of σ(A) is in K, and by [58, Proposition 2.1], if σ is injective then the

extension σH is injective provided the unambiguous product of every semigroup
of H with the sagittal semigroup of σ(A) is still in H. By [58, Lemma 1.3], such
unambiguous product indeed belongs to H whenever H ∗ K ⊆ H. □

When K is the trivial pseudovariety, then condition (i) in the statement of the
theorem holds trivially, while (ii) means that σ is a pure encoding. Thus, if σ is

pure, then σH is injective for every pseudovariety of groups H.
In Theorem 3.8, condition (i) cannot be omitted. We illustrate this with the

following example.

Example 3.9. Let H be a nontrivial locally finite pseudovariety of groups (locally
finite means that all finitely generated pro-V semigroups are finite). Let A = {a} be
a one-letter alphabet and n be the order of ΩAH. The free pro-H semigroup ΩAH
consists of all powers a

k with k a positive integer, which are all distinct powers,
together with a group of order n. Consider the homomorphism σ : A+ → A+ defined
by σ(a) = a

n. The syntactic semigroup of σ(A+) is Z/nZ, so σ is an H-encoding,

hence also an H-encoding. The unique idempotent e of ΩAH satisfies σH(e) = σH(ea),

whereas e ≠ ea; hence, σH : ΩAH→ ΩAH is not injective. Note however that H ∗ H
is not contained in H.

3.5. Finitely generated profinite semigroups and categories. A profinite
semigroup is called finitely generated when it contains a finite subset which generates
a dense subsemigroup. This subsection collects a number of useful facts on finitely
generated profinite semigroups. The most important one, Theorem 3.10 below, is a
slight generalization of a theorem of Hunter.

Given two profinite semigroups S and R, let Hom(S,R) be the set of continuous
semigroup homomorphisms S → R. The monoid of continuous endomorphisms of a
profinite semigroup S is denoted End(S).

Hunter proved that, when S is finitely generated, the monoid End(S) is a profinite
semigroup for the pointwise topology [50, Proposition 1]. This was rediscovered by
the first author, who moreover observed the equality between the pointwise and
compact-open topologies [8, Proposition 4.13]. The next result is a generalization of
this to general hom-sets Hom(S,R).

Theorem 3.10. Let S and R be finitely generated profinite semigroups. Then, the
compact-open topology on Hom(S,R) agrees with the pointwise topology. Under this
topology, Hom(S,R) is a Stone space.

Before the proof, we need to set up some notation. Let X and Y be two topological
spaces and let F be a set of functions from X to Y . Given a compact subset K
of X and an open subset O of Y , we denote [K,O]F the set of all f ∈ F such that
f(K) ⊆ O; these sets are a subbasis for the compact-open topology on F . When
K runs only over singleton subsets of X, we obtain a subbasis for the pointwise
topology instead.

Proof of Theorem 3.10. Let U be the topological coproduct of S, R, and {0} and
extend the multiplications of S and R by declaring all other products in U to be 0.
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In this way, U becomes a finitely generated profinite semigroup. We extend each
element φ of Hom(S,R) to a continuous endomorphism ξ(φ) of U by mapping
R ∪ {0} to 0. Note that ξ is an injective mapping.

For a compact subset K ⊆ S and an open subset O ⊆ R, we have

ξ([K,O]Hom(S,R)) = [K,O]End(U) ∩ Im(ξ).

This shows that ξ is a topological embedding, both when the compact-open and
pointwise topologies are considered in both the domain and range of ξ. Since the two
topologies coincide on End(U) as observed above, it follows that the two topologies
also coincide on Hom(S,R). Since the image of ξ has complement the union⋃
s∈S [{s}, S ∪ {0}], it is a Stone space as so is End(U) by [50, Proposition 1]. □

For each pair of profinite semigroups S and R, denote by EvalS,R the evaluation
mapping Hom(S,R)×S → R, defined by the formula EvalS,R(φ, s) = φ(s) for every
φ ∈ Hom(S,R) and s ∈ S. We need the following corollary of Theorem 3.10 for
several of our proofs.

Corollary 3.11. Let S and R be finitely generated profinite semigroups. Consider
in Hom(S,R) the pointwise topology. Then the evaluation mapping EvalS,R is
continuous.

Proof. The evaluation mapping EvalS,R is continuous under the compact-open topol-
ogy of Hom(S,R) [29, Corollary X.3.1], which agrees with the pointwise topology
by Theorem 3.10. □

4. Profinite categories

In this paper, a graph is a structure Γ which consists of two disjoint sets V (Γ)
and E(Γ), called the vertex set and the edge set, together with two adjacency
mappings αΓ, ωΓ : V (Γ) → E(Γ), called the domain mapping and range mapping
respectively. The set of composable edges, also called consecutive edges, is the subset
of E(Γ)× E(Γ) given by

D(Γ) = {(u, v) ∈ E(Γ)× E(Γ) : αΓ(u) = ωΓ(v)}.

When the graph Γ is clear from the context, we may simply write V , E, D, α and
ω. We say that u is an edge from α(u) to ω(u). An edge u from a vertex q to the
same vertex q is called a loop at q.

Every small category C is a graph: the set V is the set of objects of C, the
set E is the set of morphisms of C, and the adjacency mappings α, ω : E → V
send a morphism to its domain and codomain respectively. The loops of C are the
endomorphisms of objects of C.

The consolidation of a small category C is the semigroup Ccd = E(C) ⊎ {0}
such that 0 is an element not in E(C), which is a zero of Ccd, with the semigroup
operation on Ccd being the following natural extension of the composition on C:

fg =

{
f ◦ g if (f, g) is a pair of composable edges of C,

0 otherwise.

Green’s relations on the consolidation of C restrict on E(C) to relations which are
called Green’s relations of C.
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A graph homomorphism Γ→ ∆ is a mapping φ : V (Γ) ∪E(Γ)→ V (∆) ∪ E(∆)
which maps vertices to vertices, edges to edges, and satisfies the following equations
for every u ∈ E(Γ):

α∆(φ(u)) = φ(αΓ(u)), ω∆(φ(u)) = φ(ωΓ(u)).

Note that, under these conditions, (φ(u), φ(v)) ∈ D(∆) for all (u, v) ∈ D(Γ). When
Γ and ∆ are categories, we may say that φ is a category homomorphism when φ is a
functor, which means that φ is a graph homomorphism such that φ(uv) = φ(u)φ(v)
whenever (u, v) ∈ D(Γ) and φ(1q) = 1φ(q) whenever q ∈ V (Γ), where 1p stands for
the local identity on object p.

For a graph Γ, a path is a word u ∈ E(Γ)+ such that (u[i], u[i + 1]) ∈ DΓ for
all 0 ≤ i < |u| − 1 (see Figure 1). To each vertex q ∈ V (Γ) we associate an empty
path 1q. In this way, we form the free category over Γ, denoted Γ∗, given by the
following data: one has V (Γ∗) = V (Γ), the set E(Γ∗) is the set of all paths (including
empty paths) in Γ, the relations α(u) = α(u[n − 1]) and ω(u) = ω(u[0]) hold for
every nonempty path u of length n, the empty path 1q is the local identity at q for
every q ∈ V (Γ), and the composition of two consecutive paths u, v is the path uv.

q0 q1
u[0]

oo q2
u[1]

oo · · ·oo qn−1
oo qn

u[n−1]
oo

Figure 1. Path u of length n, seen as a composition of edges u[i]
from qi+1 to qi, for 0 ≤ i < n.

A topological graph is a graph Γ with topologies on V and E such that the
incidence mappings α, ω are continuous; a topological category is a small category,
as an algebraic structure, with topologies on V and E making continuous the
incidence mappings and the category operations (i.e., the composition mapping
and the mapping q ∈ V (C) 7→ 1q ∈ E(C)). We say that a topological graph or
category is compact when both V and E are compact spaces (recall that we include
the Hausdorff property in the definition of compactness).

A graph or category is called finite-vertex when V is finite, and finite when both
V and E are finite. A profinite graph is an inverse limit of finite discrete graphs; a
profinite category is likewise an inverse limit of finite categories. When equipped
with continuous category homomorphisms (i.e., both vertex and edge components
of the homomorphism are continuous), profinite categories form a category in the
usual sense of Category Theory.

Let F be a set of profinite semigroups. Let us say that the category Pro[F ] is
equipped with the pointwise topology if it is equipped with the following topological
structure:

(i) F has the discrete topology;
(ii) each hom-set Hom(S,R), with S,R ∈ F , is endowed with the pointwise

topology;
(iii) the set of morphisms of Pro[F ] is endowed with the coproduct topology of

the spaces of the form Hom(S,R), with S,R ∈ F .

Proposition 4.1. Let F be a set of finitely generated profinite semigroups. When
equipped with the pointwise topology, the category Pro[F ] is a topological category.
If moreover F is finite, then Pro[F ] is a profinite category.
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Proof. Since the topology of the set of objects of Pro[F ] is discrete, the mapping
S 7→ 1S , with domain F , is clearly continuous. For every S,R ∈ F , the set
Hom(S,R) has the compact-open topology, by Theorem 3.10. The composition is
continuous for compact-open topologies (see [29, Proposition X.3.9]). Therefore,
Pro[F ] is indeed a topological category.

A coproduct of finitely many Stone spaces is itself a Stone space. Hence the
morphisms of Pro[F ] form a Stone space by Theorem 3.10. Peter Jones showed
that a finite-vertex topological category whose space of morphisms is a Stone space3

is in fact a profinite category (cf. [51, Theorem 4.1]). Therefore, if F is finite, then
Pro[F ] is profinite. □

Let Cat be the class of all finite categories. Given a graph Γ, we let ΩΓCat denote
the free profinite category on Γ; a description of ΩΓCat may be found in a paper by
the first two authors [9]. It is equipped with an inclusion mapping ι : Γ→ ΩΓCat

with the following universal property: for every profinite category Σ and graph
homomorphism φ : Γ→ Σ, there exists a unique continuous category homomorphism
φ̂ : ΩΓCat→ Σ such that φ̂ ◦ ι = φ. In the present paper, we deal exclusively with
free profinite categories over finite-vertex graphs.

When Γ is finite-vertex, the canonical mapping ι extends to an inclusion mapping
ι∗ : Γ∗ → ΩΓCat which identifies Γ∗ with a dense discrete subcategory of ΩΓCat;
this is similar to how A+ is identified to a dense discrete subset of ΩAV when
V is a pseudovariety of semigroups containing N. The edges of ΩΓCat are called
pseudopaths.

Every (profinite) monoid is viewed as a (profinite) category with only one object.
Therefore, given a finite-vertex graph Γ, we may consider the continuous category
homomorphism

χΓ : ΩΓCat→ (ΩE(Γ)S)
1

which collapses all vertices and maps each b ∈ E(Γ) to the corresponding generator
of ΩE(Γ)S. The next proposition goes back to [3] and is discussed in full generality
in [15, Section 3 and Remark 6.13].

Proposition 4.2. Let Γ be a finite-vertex graph. The following properties hold:

(i) the homomorphism χΓ is a faithful functor;
(ii) one has χ(w) = 1 if and only if w is a local identity;
(iii) the restriction of χΓ to the edges of ΩΓCat that are not local identities is

injective.

Following the property expressed in itens (ii) and (iii) of Proposition 4.2, we may
view the pseudopaths of ΩΓCat that are not local identities as elements of ΩE(Γ)S:

that is, if w is a pseudopath of ΩΓCat that is not a local identity, we may identify
w with χ(w). We already apply this convention in the following statement (for a
proof, see [15, Proposition 3.19]).

Proposition 4.3. Let Γ be a finite-vertex graph. If w is a pseudopath of ΩΓCat

and u, v ∈ ΩE(Γ)S are pseudowords such that the equality w = uv holds in ΩE(Γ)S,

then u and v are consecutive pseudopaths of ΩΓCat, and the equality w = uv also
holds in ΩΓCat.

3Peter Jones used the term Boolean category to refer to a topological category whose underlying

topological space is a Stone space.
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Remark 4.4. Propositions 4.2 and 4.3 allow us to immediately extend to pseudopaths
several definitions, properties and notations that we already introduced for pseu-
dowords. For example, we consider the length of a pseudopath w as just being the
length of w seen as a pseudoword; we know that every pseudopath of infinite length
has a unique finite prefix in ΩΓCat of length n, denoted w[0, n); we may consider
the pseudopath w(n) = (w[0, n))−1w; etc.

From hereon, we apply liberally the generalizations from pseudowords to pseu-
dopaths mentioned in Remark 4.4.

Definition 4.5 (Prefix accessible pseudopaths). Let Γ be an arbitrary graph. A
right-infinite path of Γ is an element w of E(Γ)N such that w[0, n) is a path of Γ,
for every n ∈ N. Let w be a right-infinite path of a finite-vertex graph Γ. A cluster
point in ΩΓCat of the sequence (w[0, n))n is said to be prefix accessible by w.

Let A be an arbitrary alphabet. A right-infinite word w ∈ AN is said to be
recurrent if for every n ∈ N, there is some m > n such that w[0, n) = w[m,m+ n).
Equivalently, w ∈ AN is recurrent when every finite factor of w occurs infinitely
often in w. For a proof of the following proposition, see [15, Corollary 6.14].

Proposition 4.6. Let w be a right-infinite path over a finite-vertex graph Γ. Then
w is recurrent if and only if there is an idempotent pseudopath in ΩΓCat that is
prefix accessible by w.

Let C be a small category. For an edge x of C, the right stabilizer in C is the set

StabC(x) = {y ∈ E : xy = x},

which we denote simply by Stab(x) when C is clear from context. Note that Stab(x)
is a submonoid of the monoid of loops at α(x). Moreover, Stab(x) is a profinite
semigroup when C is a profinite category. Since we view monoids as one-vertex
categories, the definition of right stabilizer applies to a semigroup S as well, by
considering the monoid S1.

When S is a profinite semigroup, there is a unique J -class K(S) which has all
elements of S as factors. The J -class K(S) is frequently called the kernel of S.

Theorem 4.7. Let Γ be an arbitrary finite-vertex graph. For every pseudopath
x ∈ ΩΓCat, the kernel of Stab(x) is a left-zero semigroup.

A proof of Theorem 4.7 may be found in [15, Corollary 7.7], and in the same
paper we find a discussion about other similar results going back to work of Rhodes
and Steinberg [64].

The following characterization of the right stabilizer of an edge of ΩΓCat, extracted
from [15, Corollary 7.8], is used in the proof of Proposition 9.9. We adopt throughout
the paper the topological definition of net and subnet given by Willard [69, Definition
11.2].

Theorem 4.8. Let x be a prefix accessible pseudopath of ΩΓCat, with Γ being a
finite-vertex graph. Then an edge y of ΩΓCat belongs to the kernel of Stab(x) if
and only if there is a net (xi)i∈I of finite-length prefixes of x such that xi → x and
x−1
i x→ y.



20 J. ALMEIDA, A. COSTA, AND H. GOULET-OUELLET

5. Free profinite semigroups and symbolic dynamics

In the 2000s, the first author gave a natural bijection associating to each minimal
shift space X of AZ a regular J -class of ΩAS [7], whenever A is a finite alphabet.
This subsection aims to provide sufficient background on this mapping, which is at
the core of the present paper. When checking the literature, the reader may notice
that the bijection is frequently established in the larger realm of irreducible shift
spaces (cf. [8]), but here we only deal with the case of minimal shift spaces.

For a proof of the next proposition, see [7, Lemma 2.3] or [34, Section 3] (in the
first source, only the pseudovariety S is explicitly mentioned, but the arguments
extend to all pseudovarieties containing N).

Proposition 5.1. For every pseudovariety of semigroups V containing N and every
minimal shift space X ⊆ AZ, the set ClV(L(X)) \ L(X) is contained in a regular
J -class of ΩAV.

For each minimal shift space X ⊆ AZ and pseudovariety V containing N, we
denote by JV(X) the J -class of ΩAV containing ClV(L(X)) \ L(X). Since JV(X) is
a regular J -class, it contains maximal subgroups of ΩAV, and all these maximal
subgroups are isomorphic profinite groups; we denote by GV(X) a profinite group
representing their isomorphism class. We say that GV(X) is the V-Schützenberger
group of X.

The S-Schützenberger group of X is a topological conjugacy invariant [32]. In
fact, it is a flow invariant (flow equivalence is an important relation between shift
spaces that is strictly coarser than topological conjugacy [56, Section 13.6]) with
the same holding for many other pseudovarieties, as seen in the next theorem [35].

Theorem 5.2. Let H be a pseudovariety of groups. If X and Y are flow equivalent
minimal shift spaces, then G

H
(X) and G

H
(Y ) are isomorphic profinite groups.

Recall that if σ is a primitive directive sequence, then X(σ) is a minimal shift
space (Theorem 2.6). We denote the J -class JV(X(σ)) and the profinite group
GV(X(σ)) respectively by JV(σ) and GV(σ). In case φ is a primitive substitution,
we also write JV(φ) and GV(φ) instead of, respectively, JV(X(φ)) and GV(X(φ)).

For a pseudoword w ∈ ΩAV, we denote by fac(w) the set of all words u ∈ A+

such that u is a factor of w, assuming N ⊆ V so that A+ embeds in ΩAV.

Proposition 5.3. Let X be a minimal shift space of AZ and V be a pseudovariety of
semigroups containing LSl. Every infinite-length factor of an element of JV(X) also
belongs to JV(X). More precisely, for every infinite-length pseudoword w ∈ ΩAV,
we have w ∈ JV(X) if and only if fac(w) ⊆ L(X).

This proposition is from [7, Lemma 2.3]; alternatively, it is found in [9, Theorem
6.3] with a very different proof. In the first of these two references only the case
V = S is explicitly mentioned, but the arguments hold whenever V ⊇ LSl.

Remark 5.4. The hypothesis in Proposition 5.3 that V contains LSl is necessary
to guarantee that ClV(A

∗uA∗) is open when u ∈ A+, a property crucially used
in the proof. The reason why ClV(A

∗uA∗) is then open is that A∗uA∗ is an LSl-
recognizable language [61, Theorem 5.2.1], which entails the desired topological
property by Theorem 3.1. Proposition 5.3 fails if V = LI, for example; indeed, if
X ⊆ AZ is any minimal shift space, then e = eue for every idempotent e ∈ ΩALI
and word u ∈ A+, entailing fac(e) = A+.
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Corollary 5.5. Let X be a minimal shift space of AZ. If V,W are pseudovarieties
of semigroups such that LSl ⊆W ⊆ V, then p−1

V,W(JW(X)) = JV(X).

Proof. Take u ∈ JW(X). Since pV,W is onto, we may consider û ∈ ΩAV such that
u = pV,W(û). Because V,W contain LSl, we know that fac(u) = fac(û). Since both u
and û are infinite pseudowords, it follows from Proposition 5.3 that û ∈ JV(X). □

The property stated in the next proposition is new in its full generality. The
special case of the so called pseudovarieties closed under concatenation is treated
in the last section of the paper [9]. We point out that the proof of the proposition
uses the property, first shown independently in the papers [9, 48], that ClS(L) is
factorial in ΩAS whenever L is a factorial subset of A+.

Proposition 5.6. Let X be a minimal shift space of AZ. If the pseudovariety of
semigroups V contains LSl, then the equality

JV(X) = ClV(L(X)) \A+

holds.

Proof. Recall that ClV(L(X)) \ A+ ⊆ JV(X) by definition of JV(X). Conversely,
let u ∈ JV(X). By Corollary 5.5, there is û ∈ JS(X) such that u = pS,V(û). Since
L(X) is a factorial subset of A+, the topological closure of ClS(L(X)) is factorial in
ΩAS, by [9, Proposition 2.4]. Because JS(X) intersects ClS(L(X)), it follows that
û ∈ ClS(L(X)). As pS,V restricts to the identity on A+, and by continuity of pS,V,
we conclude that u ∈ ClV(L(X)). □

Remark 5.7. By Proposition 5.6, if X is a minimal shift space of AZ and V is a
pseudovariety of semigroups containing LSl, then ClV(L(X)) is factorial in ΩAV, as
the finite factors of elements of JV(X) belong to L(X) by Proposition 5.3. But one
may have a pseudovariety V containing LSl and a shift space X not minimal such
that ClV(L(X)) is not a factorial subset of ΩAV (cf. [35, Example 3.4]).

Recall that if V contains the pseudovariety LI, then every infinite-length pseu-
doword w ∈ ΩAV\A

+ has a well-defined right infinite prefix −→w ∈ AN and left-infinite
suffix ←−x ∈ AZ

− (see Section 3.3). Consider the mapping ˛hffl : ΩAV \ A
+ → AZ de-

fined by ˛hffl(x) =←−x ·−→x . The next result shows that this mapping characterizes the
H-classes of JV(X); it was originally proved by the first author [6, Theorem 3.3]
(see also [9, Lemma 6.6]).

Lemma 5.8. Let X be a minimal shift space and V be a pseudovariety of semigroups
containing LI. Then, for every u, v ∈ JV(X), the equality ˛hffl(u) = ˛hffl(v) holds if and
only if u H v. More precisely, for every u, v ∈ JV(X) we have −→u = −→v if and only if
u R v, and ←−u =←−v if and only if u L v.

It follows that the mapping ¯̨
hffl(u/H) = ˛hffl(u), with u ∈ JV(X), is well defined. For

an element x ∈ AZ, let

x(−∞, 0) = · · ·x[−2]x[−1] ∈ AZ
− , x[0,∞) = x[0]x[1] · · · ∈ AN.

Lemma 5.8 says in particular that the mapping ¯̨
hffl is a bijection between the H-classes

of JV(X) and the following set:

{y(−∞, 0) · x[0,∞) : x, y ∈ X}.

The next result locates the maximal subgroups in JV(X).
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Proposition 5.9 ([10, Lemma 5.3]). Let X be a minimal shift space and V be a
pseudovariety of semigroups containing LSl. An H-class H of JV(X) contains an

idempotent if and only if ¯̨hffl(H) ∈ X. Moreover, every element of X is of the form
˛hffl(e) for a unique idempotent e of JV(X).

According to the following corollary, the shape of the J -class JV(X) is independent
of the pseudovariety V, provided LSl ⊆ V.

Corollary 5.10. Let V,W be pseudovarieties of semigroups such that LSl ⊆ W ⊆ V.
Let X be a minimal shift space of AZ. The following properties hold:

(i) If H is an H-class of JV(X), then the set pV,W(H) is an H-class of JW(X).

(ii) If K is an H-class of JW(X), then the set p−1
V,W(K) is an H-class of JV(X).

Proof. Note that ˛hffl(pV,W(u)) = ˛hffl(u) for every u ∈ ΩAV. The corollary now follows
immediately from Corollary 5.5. □

We apply again Proposition 5.9 to show the following lemma.

Lemma 5.11. Let X be a minimal shift space of AZ and V be a pseudovariety of
semigroups containing LSl. Let u, v ∈ ΩAV and x, y ∈ A∗ be such that |x| = |y|.

(i) If xu ∈ JV(X) and xu = yv, then we have x = y and u = v.
(ii) If ux ∈ JV(X) and ux = vy, then we have x = y and u = v.

Proof. Suppose that xu = yv ∈ JV(X). As V contains LI, every pseudoword of ΩAV
of length at least n has a unique prefix and a unique suffix of length n, whenever
n ∈ N. In particular, we have x = y. Since x has finite length and xu has infinite
length, both u, v and have infinite length, whence u, v ∈ JV(X) by Proposition 5.3.
As ΩAV is stable, it follows that u L xu = xv L v. Also because x has finite length,
we have

x · −→u = −→xu = −→xv = x · −→v ,

thus −→u = −→v . We deduce from Lemma 5.8 that u H v.
By Green’s Lemma, the mapping Hu → Hxu sending each element w in the H-

class Hu to xw is a bijection (see [66, Lemma A.3.1]). In particular, since u, v ∈ Hu,
it follows from the equality xu = xv that u = v. This shows (i), and the proof of (ii)
follows by symmetry of arguments. □

Remark 5.12. When V = S, Lemma 5.11 is a special case of Proposition 3.5. While
Proposition 3.5 still holds if we replace S by many other pseudovarieties V [15,
Proposition 6.4], it does not hold for all V containing LSl (cf. [14, Proposition 6.2]).

The following proposition is used in the proof of Theorem 10.17.

Proposition 5.13. Let X be a minimal shift space and V be a pseudovariety of
semigroups containing LSl. Let e, f be idempotents in JV(X). Let n be a positive
integer. The following conditions are equivalent:

(i) the equality ˛hffl(e) = Tn(˛hffl(f)) holds;
(ii) one has pe = fp for some word p of length n;
(iii) one has pe H fp for some word p of length n.

Moreover, if p is a word of length n such that pe H fp, then pe and fp belong to
JV(X), and the equalities p = f [0, n) = e[− n,−1] and pe = fp hold.
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Proof. (ii)⇒(iii). This implication is trivial.

(iii)⇒(i). From pe H fp we get, on one hand, the equalities −→pe =
−→
fp =

−→
f ,

whence

(3) e[0,∞) = f [n,∞);

and, on the other hand, the equalities ←−e =←−pe =
←−
fp, thus

(4) e(−∞,−1] = f(−∞, n− 1].

Combining (3) and (4), we obtain ˛hffl(e) = Tn(˛hffl(f)).
(i)⇒(ii). Assuming that ˛hffl(e) = Tn(˛hffl(f)), we have e[ − n,−1] = f [0, n). Set

p = e[ − n,−1], and consider the factorization f = pt. By Proposition 5.3, the
infinite-length pseudoword t belongs to JV(X), and so f L t because profinite
semigroups are stable. As f is idempotent, we then have t = tf .

Consider the infinite-length pseudoword g = tp. Since f = f2 = ptpt = pgp, we
know that g ∈ JV(X) by Proposition 5.3. Note that pg = fp. Hence, it suffices to
show that g = e to conclude the proof of the implication (i)⇒(ii). We first check that
g is idempotent: indeed, as pt = f and t = tf , we have g2 = tptp = tfp = tp = g.
Then, it follows from the equality pg = fp and the already established implication
(iii)⇒(i) (with g playing the role of e in that implication) that

˛hffl(g) = Tn(˛hffl(f)) = ˛hffl(e).

This implies g H e by Lemma 5.8, which means that g = e as g, e are idempotents.
We have therefore established the chain of equivalences (i)⇔(ii)⇔(iii). It remains

to justify why the last sentence in the proposition is valid. Suppose that pe H fp
for a word p of length n. Then in fact we have pe = fp, as we already proved the
implication (iii)⇒(ii). Note that f is a prefix of pe, whence p = f [0, n), by the
unicity of the prefix of length n in any infinite-length pseudoword of ΩAV. Similarly,
p is the suffix e[− n,−1] of e. Let t be such that e = tp. Then e = e2 = tpe. Since
pe is an infinite-length factor of e, it follows from Proposition 5.3 that pe ∈ JV(X).
Similarly, we have fp ∈ JV(X). □

6. Profinite images of directive sequences

In this section, we consider a directive sequence σ = (σn)n∈N, with σn : A
+
n+1 →

A+
n , and a pseudovariety of semigroups V containing N.
Recall that σV

n : ΩAn+1V → ΩAn
V and σV

m,n : ΩAm
V → ΩAn

V are the unique

continuous homomorphisms extending σn : A
+
n+1 → A+

n and σm,n : A
+
m+1 → A+

n ,

respectively, and that σV
m,n = σV

m ◦ · · · ◦ σ
V
n−1 (cf. Subsection 3.3).

Definition 6.1. The V-image of σ, denoted ImV(σ), is the intersection
⋂

n∈N

Im(σV

0,n).

By a profinite image of σ we mean a set of the form ImV(σ) for some pseudovariety V.

Remark 6.2. Since the sequence of sets Im(σV
0,n) is a chain for the reverse inclusion,

we have

ImV(σ) =
⋂

k∈N

Im(σV

0,nk
)

for every strictly increasing sequence (nk)k∈N of nonnegative integers.
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Remark 6.3. The set ImV(σ) is a closed subsemigroup of ΩA0
V; indeed, ImV(σ) is

a nonempty compact space by the finite intersection property of compact spaces.

We next register that a contraction does not change the V-image.

Lemma 6.4. If τ is a contraction of σ, then ImV(τ ) = ImV(σ).

Proof. Let (nk)k∈N be a strictly increasing sequence of natural numbers with n0 = 0
such that τ = (σnk,nk+1

)k∈N. Set τk = σnk,nk+1
for each k ∈ N. As τ0,k = σ0,nk

, we

have ImV(τ ) =
⋂
k∈N

Im(σV
0,nk

), and so ImV(τ ) = ImV(σ) in view of Remark 6.2. □

The next lemma is used in several subsequent proofs.

Lemma 6.5. Consider the following sets:

(i) the set C of cluster points, in the space ΩA0
V, of sequences (wn)n∈N of

pseudowords such that wn ∈ Im(σV
0,n) for every n ∈ N;

(ii) the set D of cluster points, in the space ΩA0
V, of sequences (wn)n∈N of

words such that wn ∈ Im(σ0,n) for every n ∈ N.

Then the equalities ImV(σ) = C = D hold.

Proof. We first establish the inclusion C ⊆ ImV(σ). Let w ∈ C. Take a strictly
increasing sequence (nk)k∈N of positive integers and a sequence (wk)k∈N of elements
of ΩA0

V converging to w such that wk ∈ Im(σV
0,nk

) for each k ∈ N. Fix r ∈ N.

If k ≥ r, then nk ≥ r and so the inclusion Im(σV
0,nk

) ⊆ Im(σV
0,r) holds. Hence,

w = limk≥r wk is in the closed subspace Im(σV
0,r). Since r is arbitrary, this shows

that w ∈ ImV(σ).
We next prove the inclusion ImV(σ) ⊆ D. Let w ∈ ImV(σ). Let n be a positive

integer. Since w is in the topological closure of σ0,n(A
+
n ), there is un ∈ (An)

+ such
that d(w, σ0,n(un)) <

1
n
. Then we have σ0,n(un)→ u. This yields ImV(σ) ⊆ D.

Finally, since Im(σ0,n) ⊆ Im(σV
0,n), the inclusion D ⊆ C is trivial. This establishes

the lemma. □

There is a natural relationship between profinite images of σ relative to compa-
rable pseudovarieties.

Proposition 6.6. Let V, W be pseudovarieties of semigroups such that N ⊆ W ⊆ V.
The following equality holds:

ImW(σ) = pV,W(ImV(σ)).

Proof. As σW
0,n ◦ pV,W = pV,W ◦ σ

V
0,n, we clearly have Im(σW

0,n) = pV,W(Im(σV
0,n)) and

so we immediately obtain

pV,W(ImV(σ)) ⊆
⋂

n∈N

pV,W(Im(σV

0,n)) = ImW(σ).

Conversely, let w ∈ ImW(σ). For each n ∈ N, we may take vn ∈ Im(σV
0,n) such

that w = pV,W(vn). Let v be a cluster point of the sequence (vn)n. By continuity,
we get w = pV,W(v). On the other hand, we have v ∈ ImV(σ) by Lemma 6.5. This
establishes the inclusion ImW(σ) ⊆ pV,W(ImV(σ)), thus concluding the proof. □

Denote by ΛV(σ) the set of pseudowords of ΩA0V that are cluster points of some
sequence (wn)n∈N such that wn ∈ σ0,n(An) for every n ∈ N. A standard argument,
which we include here for the sake of completeness, yields the following fact.
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Lemma 6.7. The set ΛV(σ) is a closed subspace of ImW(σ).

Proof. By Lemma 6.5, the set ΛV(σ) is contained in ImW(σ). Since ImW(σ) is
closed in ΩA0V, what we want to show is that ΛV(σ) is a closed subspace of ΩA0V.

Let (wn)n∈N be a sequence of elements of ΛV(σ) converging to a pseudoword w.
For every positive integer k, let rk ∈ N be such that d(w,wrk) <

1
2k . We recursively

build a strictly increasing sequence (nk)k≥1 of positive integers, together with a
sequence (ak)k≥1 of letters such that ak ∈ Ank

, as follows:

• n1 = 1 and a1 is some element of A1;
• if k > 1, then nk ∈ N and ak ∈ Ank

are chosen such that nk > nk−1 and
d(wrk , σnk

(ak)) <
1
2k (such nk and ak must exist by the definition of the set

ΛV(σ), to which wrk belongs).

Then we have d(w, σnk
(ak)) ≤ d(w,wrk) + d(wrk , σnk

(ak)) <
1
2k + 1

2k = 1
k

for every
k ≥ 1. It follows that limσnk

(ak) = w, whence w ∈ ΛV(σ). This proves that ΛV(σ)
is a closed subspace of ΩA0V. □

We next establish some properties of the set ΛV(σ) in the case in which we focus:
the case where σ is primitive.

Proposition 6.8. Let σ be a primitive directive sequence. The following properties
hold:

(i) ΛV(σ) ⊆ JV(σ) ∩ ImV(σ);
(ii) ImV(σ) = ΛV(σ) · ImV(σ) = ImV(σ) · ΛV(σ);
(iii) ΛV(σ) is contained in a regular J -class of the semigroup ImV(σ).

Proof. (i). Since the set σ0,n(An) is contained in L(σ) for every n ∈ N, we clearly
have ΛV(σ) ⊆ ClV(L(σ)). Moreover, the fact that σ is primitive also ensures that
limn→∞ min{|σ0,n(a)| : a ∈ An} = ∞. Therefore, and in view of Lemma 6.7, we
have indeed ΛV(σ) ⊆ JV(σ) ∩ ImV(σ).

(ii). We show the equality ImV(σ) = ΛV(σ) · ImV(σ).
The inclusion ΛV(σ) · ImV(σ) ⊆ ImV(σ) clearly holds as ΛV(σ) ⊆ ImV(σ) and

ImV(σ) is a semigroup. Conversely, let w ∈ ImV(σ). Then, by Lemma 6.5, we
have w = limσ0,nk

(uk) for some strictly increasing sequence (nk)k∈N of positive
integers and a sequence (uk)k∈N such that uk ∈ (Ank

)+ for every k ∈ N. Since
σ is primitive, for each k ∈ N we may choose some r(k) ∈ N such that the
word wk = σnk,nr(k)

(ur(k)) has length at least two. Moreover, we may build the

sequence (r(k))k∈N so that it is strictly increasing. For such a sequence, we have
limk→∞ σ0,nk

(wk) = limk→∞ σ0,nr(k)
(ur(k)) = w.

For each k ∈ N, since |wk| ≥ 2, there are ak ∈ Ank
and sk ∈ (Ank

)+ such that
uk = aksk. Let (a, s) be an accumulation point in ΩA0

V × ΩA0
V of the sequence

(σ0,nk
(ak), σ0,nk

(sk))k. Since limσ0,nk
(ak)σ0,nk

(sk) = limσ0,nk
(uk) = w, we have

w = as by continuity of the multiplication. Note also that (a, s) ∈ ΛV(σ)×ImV(σ) by
the definition of ΛV(σ) and by Lemma 6.5. Therefore, we have w ∈ ΛV(σ) · ImV(σ).
This concludes the proof of the equality ImV(σ) = ΛV(σ) · ImV(σ). The proof of
the equality ImV(σ) = ImV(σ) · ΛV(σ) is entirely similar.

(iii). Let a, b ∈ ΛV(σ). Then there are strictly increasing sequences (nk)k∈N and
(mk)k∈N of positive integers such that

a = limσ0,nk
(ak) and b = limσ0,mk

(bk)
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for some sequences (ak)k∈N and (bk)k∈N for which we have ak ∈ Ank
and bk ∈ Bmk

for every k ∈ N. Since σ is primitive, for each k ∈ N we may choose some r(k) > k
such that nr(k) > mk and fac(σmk,nr(k)

(Anr(k)
)) ⊇ Amk

. Moreover, the sequence

(r(k))k∈N may chosen to be strictly increasing. Going on with such a choice, we
have, for each k ∈ N, a factorization

σmk,nr(k)
(anr(k)

) = pkbksk

with pk, sk ∈ (Ank
)∗, and with at least one of the words pk, sk being nonempty.

By compactness, we may extract from the sequence (σ0,mk
(pk), σ0,mk

(sk))k∈N a

subsequence (σ0,mki
(pki), σ0,mki

(ski))i∈N converging in (ΩA0
V)1 × (ΩA0

V)1 to some

pair (p, s). We then have

(5) a = lim
i∈N

σ0,nr(ki)
(anr(ki)

) = lim
i∈N

(
σ0,mki

(pki) · σ0,mki
(bki) · σ0,mki

(ski)
)
= pbs.

Note that p, s ∈ ImV(σ) ∪ {ε} by Lemma 6.5. This shows that a ≤J b in ImV(σ).
Since a, b are arbitrary elements of ΛV(σ), we then get a J b in ImV(σ). Going back
to (5), and taking a = b, we get a = pas. Since ps = limσ0,mk

(pksk) and pksk ≠ ε
for every k ∈ N, at least one of the pseudowords p, s is not the empty word. Without
loss of generality, assume that p ≠ ε. From a = pas, we obtain a = pkask for every
k ∈ N, whence a = pωasω, which in turn yields a ≤J pω. On the other hand, for
some c ∈ ΛV(σ) we have pω ≤J c in ImV(σ), by the already shown item (ii). But
we already proved that all elements of ΛV(σ) are J -equivalent in ImV(σ). Joining
all pieces, we see that pω J a in ImV(σ). This shows that a is regular in ImV(σ),
concluding the proof that ΛV(σ) is contained in a regular J -class of the profinite
semigroup ImV(σ). □

The set ΛV(σ) is used in the proof of several results, starting with the next one.

Theorem 6.9. Let V be a pseudovariety of semigroups containing N, and let σ be
a primitive directive sequence. The set JV(σ) ∩ ImV(σ) is a regular J -class of the
semigroup ImV(σ).

Proof. By Proposition 6.8, the set ΛV(σ) is contained in a regular J -class J of
ImV(σ). We also know by Proposition 6.8 that ΛV(σ) ⊆ JV(σ), and so we already
know that J ⊆ JV(σ) ∩ ImV(σ).

Conversely, let u be an element of JV(σ) ∩ ImV(σ). By Proposition 6.8, there
are idempotents e ∈ J and f ∈ J such that u = eu = uf . In particular, it suffices
to show that e ∈ u ImV(σ) to get u ∈ J .

As u and e belong to the same J -class of the stable semigroup ΩA0
V, the equality

u = eu yields the existence of some pseudoword x such that ux = e. We may assume
that x = fxe, because e and f are idempotents and u = uf . Under such assumption,
the pseudowords x and e belong the same L-class of ΩA0V. Therefore, the equality

uHx = He

holds by Green’s Lemma (cf. [66, Lemma A.3.1]), where Hs denotes the H-class in
ΩA0

V of the pseudoword s.
From the equalities x = fxe and e = ux, and from e JΩA0

V
f , we obtain

f RΩA0
V
x LΩA0

V
e, by stability of ΩA0

V; on the other hand, since e, f ∈ J , there

is w ∈ ImV(σ) such that f RImV(σ) w LImV(σ) e. This implies that w ∈ Hx, thus
uw ∈ He. Since He is a profinite group with identity e, it follows that (uw)ω = e.
That is, for the pseudoword z = w(uw)ω−1, we have e = uz. Since u,w ∈ ImV(σ),



PROFINITE APPROACH TO S-ADIC SHIFT SPACES I: SATURATING SEQUENCES. 27

the pseudoword z belongs to ImV(σ). This shows that indeed e ∈ u ImV(σ), which, as
already noted, yields u ∈ J . This establishes the inclusion JV(σ)∩ ImV(σ) ⊆ J . □

Corollary 6.10. Let V be a pseudovariety of semigroups containing N, and let σ
be a primitive directive sequence. The inclusion ImV(σ) ⊆ JV(σ) holds if and only
if the profinite semigroup ImV(σ) is simple.

Proof. By Theorem 6.9, the intersection JV(σ)∩ImV(σ) is a J -class of the semigroup
ImV(σ). Therefore, the J -relation of ImV(σ) is universal in ImV(σ) if and only if
the inclusion ImV(σ) ⊆ JV(σ) holds. □

In the next example we see that ImV(σ) may not be contained in JV(σ).

Example 6.11. Let σ be the primitive substitution on the alphabet A = {a, b, c}
defined by

σ : a 7→ ac, b 7→ bcb, c 7→ ba,

and consider the constant directive sequence σ = (σ, σ, . . .). Let w be any cluster
point in ΩAS of the sequence σ2n(a). Note that w ∈ ΛS(σ), and so we have
w ∈ JS(σ) ∩ ImS(σ). Since σ2(a) = acba, the pseudoword w starts and ends with
a, thus a

2 is a factor of w2. On the other hand, since a
2 is not a factor of any of

the words σ2n(a), we also know that a2 is not a factor of w. Therefore the element
w2 of ImS(σ) does not belong to JS(σ).

We proceed to see how the V-images of the tails of a directive sequence are related
with each other.

Lemma 6.12. The equality ImV(σ
(k)) = σV

k,k+n

(
ImV(σ

(k+n))
)

holds for all k, n ∈
N.

Proof. As σ(k+n) = (σ(k))(n), it is enough to show the lemma for the case k = 0.
Since σV

0,n(Im(σV
n,n+r)) = Im(σV

0,n+r) for every r ∈ N, one clearly has

σV

0,n(ImV(σ
(n))) = σV

0,n

(
⋂

r∈N

Im(σV

n,n+r)

)
⊆
⋂

r∈N

Im(σV

0,n+r)

for each r ∈ N. This establishes the inclusion σV
0,n(ImV(σ

(n))) ⊆ ImV(σ).

Conversely, let u ∈ ImV(σ). For each r ∈ N, let ur ∈ ΩAr
S be such that

u = σV
0,r(ur). By compactness of ΩAn

V, there is a strictly increasing sequence

(rm)m∈N of integers greater than n such that the sequence (σV
n,rm

(urm))m∈N converges

to some pseudoword w of ΩAn
V. It follows that w ∈ ImV(σ

(n)) by Lemma 6.5.
From the continuity of σV

0,n, we then get

σV

0,n(w) = lim
m→∞

σV

0,n(σ
V

n,rm
(urm)) = lim

m→∞
σV

0,rm(urm) = u.

This shows ImV(σ) ⊆ σ
V
0,n(ImV(σ)

(n)), concluding the proof of the lemma. □

The proof of the next lemma is very similar to that of the previous lemma.

Lemma 6.13. The equality ΛV(σ
(k)) = σV

k,k+n(ΛV(σ
(k+n))) holds for all k, n ∈ N.

Proof. It suffices to consider the case k = 0.
Let a ∈ ΛV(σ

(n)). Then a is a cluster point in ΩAn
V of a sequence (σn,k(ak))k>n

such that ak ∈ Ak for every k > n. As σ0,k(ak) = σ0,n(σn,k(ak)), it then follows
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by continuity of σV
0,n that σV

0,n(a) is a cluster point of the sequence (σ0,k(ak))k>n.

Hence σV
0,n(a) ∈ ΛV(σ), thus showing the inclusion σV

0,n(ΛV(σ
(n))) ⊆ ΛV(σ).

Conversely, let a ∈ ΛV(σ). We may pick a strictly increasing sequence (mr)r∈N of
integers greater than n and a sequence (ar)r∈N such that ar ∈ Amr

, for every r ∈ N,
and a = limσ0,mr

(ar). By compactness of ΩAn
V, the sequence (σn,mr

(ar))r∈N has

a subsequence (σn,mrs
(ars))s∈N converging in ΩAn

V to a pseudoword b. Note that

b ∈ ΛV(σ
(n)). By continuity of σV

0,n, we have

σV

0,n(b) = lim
s→∞

σV

0,n(σn,mrs
(ars)) = lim

s→∞
σ0,mrs

(ars) = a.

This establishes the inclusion ΛV(σ) ⊆ σ
V
0,n(ΛV(σ

(n))), finishing the proof. □

Lemma 6.12 allows us to consider the following inverse system of onto continuous
homomorphisms of pro-V semigroups:

F = {σV

n,m : ImV(σ
(m))→ ImV(σ

(n)) | m,n ∈ N, m ≥ n}.

Similarly, Lemmas 6.13 and 6.7 yield the following inverse system of onto continuous
functions between compact spaces:

G = {σV

n,m : ΛV(σ
(m))→ ΛV(σ

(n)) | m,n ∈ N, m ≥ n}.

We denote the inverse limits lim
←−
F and lim

←−
G respectively by ImV(σ

(∞)) and

ΛV(σ
(∞)). By compactness, these sets are nonempty [43, Theorem 3.2.13], with

ImV(σ
(∞)) moreover being a pro-V semigroup and ΛV(σ

(∞)) a closed subspace
of ImV(σ

(∞)). The corresponding projections ImV(σ
(∞)) → ImV(σ

(n)) are onto
continuous homomorphisms [43, Theorem 3.2.15], which we denote by σV

n,∞, for
every n ∈ N.

The next proposition is deduced from Proposition 6.14 with routine arguments.

Proposition 6.14. Let σ be a primitive directive sequence. The following properties
hold:

(i) ImV(σ
(∞)) = ΛV(σ

(∞)) · ImV(σ
(∞)) = ImV(σ

(∞)) · ΛV(σ
(∞));

(ii) the set ΛV(σ
(∞)) is contained in a regular J -class of ImV(σ

(∞)).

Proof. (i): Let u ∈ ImV(σ
(∞)). For each n ∈ N, consider the set

Yn = {(v, w) ∈ ΛV(σ
(∞))× ImV(σ

(∞)) | σn,∞(v) · σn,∞(w) = σn,∞(u)}.

As σn,∞(u) ∈ ΛV(σ
(n)) · ImV(σ

(n)) by Proposition 6.8, the set Yn is nonempty in

view of the surjectivity of the canonical projections ImV(σ
(∞))→ ImV(σ

(n)) and
ΛV(σ

(∞)) → ΛV(σ
(n)). By continuity of σn,∞, the set Yn is a closed subspace of

ΛV(σ
(∞))× ImV(σ

(∞)). Moreover, if m,n ∈ N are such that n ≤ m, then we have
Ym ⊆ Yn. Hence, by compactness, the intersection Y =

⋂
n∈N

Yn is nonempty. Let
(v, w) ∈ Y . We then have σn,∞(vw) = σn,∞(u) for every n ∈ N, that is to say,

vw = u. This establishes the equality ImV(σ
(∞)) = ΛV(σ

(∞)) · ImV(σ
(∞)). The

equality ImV(σ
(∞)) = ΛV(σ

(∞)) · ImV(σ
(∞)) follows by symmetric arguments.

(ii). It is folklore, whose proof is an easy exercise, the fact that in a inverse
limit S = limi∈I Si of compact semigroups, and for all elements s = (si)i∈I and
t = (ti)i∈I of S, one has s J t if and only if si J ti for every i ∈ I; and that s is
regular if and only if si is regular for every i ∈ I (e.g., cf. [64, Propositions 9.1 and
9.3] or [2, Corollary 5.6.2]). With this on hand, the second item follows immediately
from Proposition 6.8. □
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Denote by JV(σ
(∞)) the regular J -class of ImV(σ

(∞)) containing the set ΛV(σ
(∞)).

Corollary 6.15. Let σ be a primitive directive sequence. Then the following hold,
for every n,m ∈ N, with n ≤ m:

(i) σV
n,∞(JV(σ

(∞))) ⊆ JV(σ
(n)) ∩ ImV(σ

(n)).

(ii) σV
n,m

(
JV(σ

(m)) ∩ ImV(σ
(m))

)
⊆ JV(σ

(n)) ∩ ImV(σ
(n)).

Proof. In view of the definition of the inverse limits ImV(σ
(∞)) and ΛV(σ

(∞)),
it suffices to note that ΛV(σ

(∞)) and ΛV(σ
(n)) are respectively contained in the

J -classes JV(σ
(∞)) and JV(σ

(n)), for every n ∈ N (cf. Proposition 6.8 (i).) □

Corollary 6.16. Let σ be a primitive directive sequence. There is a sequence (en)n∈N

of idempotent pseudowords satisfying en ∈ JV(σ
(n))∩ ImV(σ

(n)) and en = σV
n,m(em)

for every n,m ∈ N such that n ≤ m.

Proof. We may take an idempotent e in the regular J -class JV(σ
(∞)) and consider,

for each k ∈ N, the idempotent ek = σV

k,∞(e). By the definition of the inverse limit

ImV(σ
(∞)), this immediately yields the equality en = σV

n,m(em) for every n,m ∈ N
such that n ≤ m. The remaining of the statement follows from Corollary 6.15 (ii). □

7. Simple profinite images of directive sequences

Consider a directive sequence σ = (σn)n∈N, with σn : A
+
n+1 → A+

n for each n ∈ N.
In this section, we investigate more systematically necessary and sufficient conditions
for ImV(σ) to be a simple profinite semigroup (cf. Corollary 6.10). It turns out that
being left or right proper is such a sufficient condition (cf. Theorems 7.6 and 7.9).

A limit word of σ is an element of
⋂
n≥1 σ0,n(A

Z
n). For a discussion about the

significance of this notion, see the introductory paragraphs of Section 4 from [27].

Theorem 7.1. Let σ be a primitive directive sequence. Let V be a pseudovariety of
semigroups containing LSl. The following statements are equivalent:

(i) the profinite semigroup ImV(σ) is simple;
(ii) the inclusion ImV(σ) ⊆ JV(σ) holds;
(iii) all limit words of σ belong to X(σ).

Proof. (i)⇔(ii). This equivalence holds by Corollary 6.10.
(ii)⇒(iii). Suppose that ImV(σ) ⊆ JV(σ). Let x be a limit word of σ. Take k ∈ N.

We want to show that x[−k, k] ∈ L(σ). For each n ∈ N, take xn ∈ A
Z
n such that

x = σ0,n(xn). Let w be a cluster point in ΩA0
V of the sequence (σ0,n(xn[−1, 0]))n∈N.

Since σ is primitive, the word x[−k, k] is a factor of σ0,n(xn[−1, 0]) for every
sufficiently large n. Therefore, x[−k, k] is also a factor of w. Note that w ∈ ImV(σ),
by Lemma 6.5. By the assumption ImV(σ) ⊆ JV(σ), all finite-length factors of w
belong to L(σ), by Proposition 5.3. In particular, we have x[−k, k] ∈ L(σ), for
every k ∈ N. This means that x ∈ X(σ).

(iii)⇒(ii). Suppose that all limit words of σ belong to X(σ). Let u ∈ ImV(σ).
By Lemma 6.5, we know that there is a strictly increasing sequence (nk)k∈N of
positive integers and a sequence (uk)k∈N of words, with uk ∈ (Ank

)+, such that
σ0,nk

(uk)→ u. In particular, the pseudoword u has infinite length.
Let v be a finite-length factor of w. We claim that v ∈ L(σ). Note that the

set (ΩAV)
1v(ΩAV)

1 is clopen, as V contains LSl. Hence, taking subsequences, we
may suppose that v is a factor of σ0,nk

(uk) for every k ∈ N. Since σ is primitive,
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we may further assume that all words in σ0,nk
(Ank

) have length greater than that
of v. Therefore, for each k ∈ N, we may take letters ak, bk ∈ Ank

such that v is a
factor of σ0,nk

(akbk). If v is a factor of σ0,nk
(ak) or of σ0,nk

(bk) for some k, then
v ∈ L(σ) and the claim is proved. Therefore, we may as well suppose that for
every k ∈ N there is a factorization v = skpk such that sk is a nonempty suffix
of σ0,nk

(ak) and pk is a nonempty prefix of σ0,nk
(bk). In fact, again by taking

subsequences, we are reduced to the case where (sk, pk) has constant value (s, p).
Repeating the process of taking subsequences, we may as well suppose that the
sequence (σ0,nk

(ak), σ0,nk
(bk))k≥1 converges in ΩA0V×ΩA0V to some pair (α, β) of

elements of ΛV(σ). Note that s is a finite-length suffix of α and p is a finite-length
prefix of β. Consider the element x of AZ

0 such that, for every positive integer n,
the words x[−n,−1] and x[0, n) are respectively the suffix of length of n of α and
the prefix of length n of β. Then we have v = x[− |s|, |p|). Therefore, to show that
v ∈ L(σ), it suffices to show that x is a limit word of σ.

Let r ∈ N. As α, β ∈ ImV(σ), we may take infinite-length pseudowords α′, β′ ∈
ΩAr

V such that α = σV
0,r(α

′) and β = σV
0,r(β

′). Let y be the element of AZ
r such

that, for every positive integer n, the words y[−n,−1] and y[0, n) are respectively
the suffix of length of n of α′ and the prefix of length n of β′. Then σ0,r(y[−n,−1])
and σ0,r(y[0, n)) are respectively a suffix of length at least n of α and a prefix of
length at least n of β. This shows that x = σ0,r(y). Since r is an arbitrary element
of N, we conclude that x ∈

⋂
r∈Z

σ0,r(A
Z
r ), that is to say, that x is a limit word of σ.

By assumption, we therefore have x ∈ X(σ), establishing the claim that v ∈ L(σ).
Since v is an arbitrary finite-length factor of u, by Proposition 5.3 we deduce

that u ∈ JV(σ). This establishes the inclusion ImV(σ) ⊆ JV(σ). □

Remark 7.2. In view of item (iii) in Theorem 7.1, the choice of V plays no role in
the statement of the theorem. More precisely, one has ImS(σ) ⊆ JS(σ) if and only
if ImV(σ) ⊆ JV(σ), when V is a pseudovariety of semigroups containing LSl. This
equivalence also follows directly from Corollary 5.5 and Proposition 6.6.

Denote by facn(w) the set of factors of length n of a pseudoword w, for each n ∈ N.

Definition 7.3. We say that the directive sequence σ is stable if for every n ∈ N and
every a, b ∈ An, the inclusion fac2(σn(ab)) ⊆ L(σ

(n)) holds. It is called contraction
stable if it has a contraction which is stable.

In other words: σ is contraction stable if and only if there exists a strictly
increasing sequence (nk)k∈N such that n0 = 0 and for all k ≥ 1, and all u ∈ A2

nk+1

(equivalently, all u ∈ A+
nk+1

), every factor of length two of σnk,nk+1
(u) belongs to

L(σ(nk)). Note that a contraction of a contraction stable directive sequence is also
contraction stable (cf. Lemma 2.3).

Example 7.4. Set A = {a, b}. Consider the Prouhet-Thue-Morse substitution

τ : a 7→ ab, b 7→ ba.

Then we have τ(A2) ⊆ L(τ), and so the constant primitive directive sequence
τ = (τ, τ, τ, . . .) is stable.

The following theorem improves a similar result that the second author obtained
for the special case of primitive substitutive directive sequences [33, Lemma 3.12].

Theorem 7.5. Let σ be a primitive directive sequence. Let V be a pseudovariety of
semigroups containing LSl. The following statements are equivalent:
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(i) σ is contraction stable;
(ii) ImV(σ

(k)) is a simple semigroup, for every k ≥ 0;
(iii) ImV(σ

(∞)) is a simple semigroup.

Proof. (i)⇒(ii). If σ is contraction stable, then so is σ(k) for every k ≥ 0. Therefore,
it suffices to show that the inclusion ImV(σ) ⊆ JV(σ) holds, which, by Corollary 6.10,
means that the semigroup ImV(σ) is simple.

Let u ∈ ImV(σ). By Lemma 6.5, we may take a strictly increasing sequence
(nk)k∈N of positive integers and a sequence (uk)k∈N of words, with uk ∈ (Ank

)+,
such that σ0,nk

(uk) → u. If |uk| → 1, then u ∈ ΛV(σ), and so u ∈ JV(σ) by
Proposition 6.8. Therefore, we may as well assume that |uk| ≥ 2 for every k ∈ N.
Let w be a finite-length factor of u = limσ0,nk

(uk). Since V contains LSl, by taking
subsequences, we may further assume that w is a factor of σ0,nk

(uk) for every k ∈ N.
Because σ is primitive, there is k0 ∈ N such that, for every k > k0 and every letter
a that is a factor of uk, we have |σ0,nk

(a)| > |w|. Hence, for every k > k0, there
are letters ck, dk ∈ Ank

such that w is a factor of σ0,nk
(ckdk). Since σ is stable,

we have σnk
(ckdk) ∈ L(σ

(nk)). It follows that σ0,nk
(ckdk) ∈ L(σ) (cf. Lemma 2.3),

whence w ∈ L(σ). Since w is an arbitrary finite-length factor of u, we conclude that
u ∈ JV(σ) by Proposition 5.3. This establishes the inclusion ImV(σ) ⊆ JV(σ).

(ii)⇒(i). Suppose that property (ii) holds for σ. Then the same property holds for
σ(n) for every n ∈ N, as (σ(n))(k) = σ(n+k) for every n, k ∈ N. Therefore, to establish
the implication (ii)⇒(i), it suffices to establish the inclusion fac2(σ0,n(A

2
n)) ⊆ L(σ)

for some positive integer n.
Suppose, on the contrary, that we have fac2(σ0,n(A

2
n)) ⊈ L(σ) for every positive

integer n. Then, for each n ≥ 1, we may take letters an, bn ∈ An and a word
wn ∈ A

2
0 \ L(σ) such that σ0,n(anbn) ∈ A

∗wnA
∗. Let (α, β, w) be a cluster point

in (ΩA0V)
3 of the sequence (σ0,n(an), σ0,n(bn), wn)n≥1. Note that w is a factor of

αβ. Moreover, since A0 is a finite alphabet, one must have w = wm for infinitely
many integers m. Therefore, αβ has a finite-length factor (namely w) not in L(σ).
This implies that αβ /∈ JV(σ) by Proposition 5.3. On the other hand, we have
α, β ∈ JV(σ) ∩ ImV(σ) by Proposition 6.8. It follows that αβ ∈ ImV(σ) \ JV(σ),
which contradicts the assumption that ImV(σ) is simple. To avoid the contradiction,
we indeed must have fac2(σ0,n(A

2
n)) ⊆ L(σ) for some positive integer n.

(iii)⇒(ii). Immediately after defining the inverse limit ImV(σ
(∞)) = lim

←−
ImV(σ

(k)),

we observed that ImV(σ
(k)) is a homomorphic image of ImV(σ

(∞)), for every natu-
ral number k. This gives the implication, as the homomorphic image of a simple
semigroup is also simple.

(ii)⇒(iii). Any inverse limit of profinite simple semigroups is a simple profinite
semigroup (folklore, cf. [64, Corollary 9.2]). □

A semigroup S is said to be right simple if the relation R on S is the universal
relation (cf. [66, Section A.1]).

Theorem 7.6. Let σ be a primitive directive sequence. Let V be a pseudovariety of
semigroups containing LSl. The following statements are equivalent:

(i) σ has a left proper contraction;
(ii) ImV(σ

(k)) is a right simple semigroup for every k ≥ 0;
(iii) ImV(σ

(∞)) is a right simple semigroup.

Before showing Theorem 7.6, we state the following lemma used in its proof.
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Lemma 7.7. Let V be a pseudovariety of finite semigroups that is contained in LSl.
Consider a finite alphabet A. Let u, v ∈ ΩAV. If x is a finite-length factor of uv,
then either x is a factor of u, or of v, or x = sp for some suffix s of u and some
prefix p of v. In particular, if x is a finite factor of uwv and w ∈ ΩAV \A

+, then x
is a factor of uw or of wv.

This lemma, whose proof is an easy exercise, is subsumed into Lemma 8.2 of
the paper [20]. The statement in [20] is made for the pseudovariety S of all finite
semigroups, but the proof given there holds for all pseudovarieties containing LSl.

Proof of Theorem 7.6. (ii)⇒ (iii). An inverse limit of right simple finite semigroups
is itself a right simple semigroup (folklore, cf. [64, Corollary 9.2]).

(iii) ⇒ (ii). The homomorphic image of a right simple semigroup is right simple.
(i) ⇒ (ii). Note that σ has a left proper contraction if and only σ(k) has a left

proper contraction, for every k ≥ 0. Therefore, it suffices to show that ImV(σ) is
right simple. We may as well assume that σn is left proper for every n ∈ N, thanks
to Lemma 6.4.

For each n ∈ N, let bn ∈ An be such that σn(An+1) ⊆ bnA
∗
n. By compactness of

ΩA0V, we may pick a strictly increasing sequence (nk)k∈N of positive integers such
that (σ0,nk

(bnk
))k∈N converges to some pseudoword β of ΩA0V. Note that β ∈ ΛV(σ).

Hence, β is a regular element of the semigroup ImV(σ) by Proposition 6.8, and so
we may select an idempotent e that is R-equivalent in ImV(σ) to β. In particular,
the equality β = eβ holds.

We claim that

(6) ∀z ∈ ImV(σ), z = ez.

Let u ∈ ImV(σ). By Lemma 6.5, there is a strictly increasing sequence (mk)k∈N of
positive integers such that u = limσ0,mk

(uk) for some sequence (uk)k∈N of words.
By taking a subsequence of (mk)k∈N, we may as well assume that mk > nk for
every k ∈ N. For each k ∈ N, let sk ∈ (Ank

)∗ be a word such that σnk,mk
(uk) =

bnk
sk. Further taking subsequences, we may assume that the sequence (σ0,nk

(sk))k
converges to some pseudoword s ∈ ΩA0

V. We then have

u = limσ0,mk
(uk) = limσ0,nk

(bnk
)σ0,nk

(sk) = βs = eβs = eu.

This establishes the claim that (6) holds.
We proceed to show that ImV(σ) ⊆ JV(σ). In what follows, bear in mind

that e ∈ JV(σ), as e is R-equivalent to an element of ΛV(σ), namely β, and
ΛV(σ) ⊆ JV(σ) by Proposition 6.8.

Let us continue with the arbitrary element u of ImV(σ) we were considering. If
limk→∞ |uk| = 1, then u ∈ ΛV(σ), and so u ∈ JV(σ) by Proposition 6.8. Therefore,
we may as well assume that |uk| ≥ 2 for every k ∈ N. Let w be a finite-length
factor of u = limσ0,mk

(uk). By taking subsequences, we may further assume that
w is a factor of σ0,mk

(uk) for every k ∈ N. Because σ is primitive, there is k0 ∈ N
such that, for every k > k0 and for every factor z of length one of uk, we have
|σ0,mk

(z)| > |w|. Hence, for every k > k0, there are letters ck, dk ∈ Amk
such that

ckdk is a factor of uk and w is a factor of σ0,mk
(ckdk). Let (γ, δ) be a cluster point

of the sequence (σ0,mk
(ck), σ0,mk

(dk))k>k0 . Note that γ, δ ∈ ΛV(σ), and that w is a
factor of γδ.

By Proposition 6.8, there is some idempotent f in JV(σ) ∩ ImV(σ) such that
γ = γf . Since γδ = γfδ, the word w is a factor of γf = γ or of fδ by Lemma 7.7.
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On the other hand, we know that f = ef by (6). Since e J f , it follows from
profinite semigroups being stable that e R f ; whence e = fe as f is idempotent.
Therefore, since δ = eδ again by (6), we have fδ = feδ = eδ = δ. Hence w is a
factor of γ or of δ. As both γ and δ belong to JV(σ), we deduce that w ∈ L(σ).
Since w is an arbitrary finite-length factor of u, we conclude that u ∈ JV(σ) by
Proposition 5.3. This establishes the inclusion ImV(σ) ⊆ JV(σ), which means that
ImV(σ) is simple, by Theorem 6.9. Going back to the equality u = eu, it now
follows from the stability of the profinite semigroup ImV(σ) that u is in the R-class
of ImV(σ) containing e. Since u is an arbitrary element of ImV(σ), this establishes
that ImV(σ) is a right simple semigroup.

(ii) ⇒ (i). Since σ has a left proper contraction if and only if every tail of σ
has a left proper contraction, it suffices to show that there is a positive integer
n such that σ0,n is left proper. Suppose that, on the contrary, for every positive
integer n the homomorphism σ0,n is not left proper. Then, for each n ≥ 1, there
are letters an, bn ∈ A0, with an ̸= bn, and cn, dn ∈ An such that the words σ0,n(cn)
and σ0,n(dn) respectively start with an and bn. Let (γ, δ, a, b)n≥1 be a cluster point

in ΩA0V of the sequence (σ0,n(cn), σ0,n(dn), an, bn)n≥1. We have (a, b) = (am, bm)
for infinitely many integers m, and so a and b are distinct letters of A0. Moreover,
the pseudowords γ and δ respectively start with a and b. If two elements of ΩA0

V

are R-equivalent, then they have the same finite-length prefixes. Hence, γ and δ are
not R-equivalent. But this contradicts our assumption that ImV(σ) is right simple.
Therefore, there is indeed a positive integer n such that σ0,n is left proper. □

Combining Theorems 7.5 and 7.6, we instantly get the following fact, thus avoiding
a direct combinatorial proof of it.

Corollary 7.8. Let σ be a primitive directive sequence. If σ has a left proper
contraction, then it is stable.

We end this section with the analog of Theorem 7.6 for proper directive sequences.

Theorem 7.9. Let σ be a primitive directive sequence. Let V be a pseudovariety of
semigroups containing LSl. The following statements are equivalent:

(i) σ has a proper contraction;
(ii) ImV(σ

(k)) is a group for every k ≥ 0;
(iii) ImV(σ

(∞)) is a group.

Proof. (i)⇒(ii). This implication follows from Theorem 7.6 and its dual, because a
semigroup is a group if and only if it is both left and right simple [66, Lemma A.3.1].

(ii)⇒(iii). Any inverse limit of profinite groups is a profinite group.
(iii)⇒(i). By Theorem 7.6 and its dual, σ is simultaneously left proper and right

proper, which means that it is proper (indeed, if σn,m and σr,s are respectively left
proper and right proper, then σn,k is proper, for every n,m, r, s, k ∈ N such that
n < m < r < s < k). □

8. The case of bounded directive sequences

Let us say that the directive sequence σ = (σn)n∈N, with σn : A
+
n+1 → A+

n , is
bounded when the set {An : n ∈ N} of its alphabets is finite.

Remark 8.1. A directive sequence has finite alphabet rank if and only if it has some
contraction that is, up to relabeling of its alphabets, bounded. Moreover, if σ′ is
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a contraction of σ, the relabeled directive sequence σ′′ obtained from σ′ may be
chosen, by not relabeling A0, such that X(σ) = X(σ′′) and ImV(σ) = ImV(σ

′′) for
every pseudovariety of semigroups V containing N.

For technical reasons, related with the convenience of using finite-vertex profinite
categories, we mostly prefer to work directly with bounded directive sequences,
although they have the same expressive power of directive sequences with finite
alphabet rank, as seen in the previous remark.

A way of thinking about the directive sequence σ is to visualize it as a left-infinite
path

(7) A+
0

σ0←− A+
1

σ1←− A+
2

σ2←− A+
3

σ3←− · · ·

over the graph Γ(σ) whose vertices are the free semigroups A+
n and where the

arrows from A+
k to A+

l are the homomorphisms from A+
k to A+

l . Note that σ being
bounded means that Γ(σ) has a finite number of vertices.

From hereon, let V be a pseudovariety of finite semigroups containing the pseu-
dovariety N of finite nilpotent semigroups. Consider the following set of finitely
generated profinite semigroups:

FV(σ) = {ΩAn
V : n ∈ N}.

Let CV(σ) denote the category Pro[FV(σ)], consisting of continuous homomorphisms
between elements of FV(σ). Closely associated to the left-infinite path (7) in Γ(σ),
we also have the following left-infinite path

(8) ΩA0
V

σV

0←− ΩA1
V

σV

1←− ΩA2
V

σV

2←− ΩA3
V

σV

3←− · · · ,

which is a path in the graph CV(σ).
The set FV(σ) is finite precisely when σ is bounded. Therefore, assuming that σ

is bounded, as we shall always do in this section from hereon, the category CV(σ) is
a finite-vertex profinite category (cf. Proposition 4.1).

Let us say that a continuous homomorphism ψ : ΩAV → ΩBV is primitive
when every element of B is a factor of every element of ψ(A). In particular, if
φ : A+ → B+ is a primitive substitution, then its extension φV : ΩAV→ ΩBV is a
primitive homomorphism.

Lemma 8.2. The set of primitive homomorphisms between elements of FV(σ) is a
closed subspace of CV(σ).

Proof. Let (φi)i∈I be a net of primitive homomorphisms between elements of FV(σ)
converging in CV(σ) to a homomorphism φ from ΩAV to ΩBV. Since the space
of vertices in the category CV(σ) is a finite discrete space, we may assume that
φi is always a homomorphism from ΩAV to ΩBV. Let a ∈ A and b ∈ B. As φi
is primitive, we have φi(a) ≤J b for every i ∈ I. Since ≤J is a closed relation in
ΩBV and we are dealing with the pointwise topology of CV(σ), we conclude that
φ(a) ≤J b for every a ∈ A and b ∈ B. This means that φ is primitive, concluding
the proof. □

Definition 8.3. Let σ = (σn)n∈N be a bounded directive sequence, and let V be a
pseudovariety of semigroups containing N. A V-compression of σ is a cluster point
of the sequence

(
σV
0,n

)
n∈N

, in the profinite category CV(σ).
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A V-compression ξ of σ must be a continuous homomorphism from ΩAk
V to

ΩA0
V, for some k ≥ 0. If σ is primitive, then ξ is primitive, by Lemma 8.2.

Example 8.4. Let σ : A+ → A+ be a substitution. Consider the constant directive
sequence σ = (σ, σ, . . .). Then (σV)ω is a V-compression of σ, for every pseudovariety
of semigroups V containing N.

The next theorem says, in particular, that when the directive sequence σ is
bounded primitive, the profinite semigroup ImV(σ) is generated by elements of
JV(σ). A similar result, concerning primitive directive sequences of substitutions over
a constant alphabet, appeared in earlier work by the first author [6, Theorem 3.7].

Theorem 8.5. Let ξ : ΩBV → ΩA0
V be a V-compression of a bounded directive

sequence σ. The equality Im(ξ) = ImV(σ) holds. If, moreover, σ is primitive, then
the inclusion ξ(B) ⊆ JV(σ) holds.

Proof. We first only assume that σ is bounded. We may take a subnet
(
σV
0,ni

)
i∈I

of
(
σV
0,n

)
n∈N

such that ξ = limi∈I σ
V
0,ni

in CV(σ) and Ani
= B for all i ∈ I, as the

profinite category CV(σ) has a discrete vertex space.
Let u ∈ ΩBV. Since we are dealing with the pointwise topology of CV(σ), we

have ξ(u) = limi∈I σ
V
0,ni

(u). This implies that ξ(u) ∈ ImV(σ) by Lemma 6.5, thus
establishing the inclusion Im(ξ) ⊆ ImV(σ).

Conversely, let w ∈ ImV(σ). Then, for each i ∈ I, there is ui ∈ ΩBV such that
w = σV

ni
(ui). Let u be a cluster point of the net (ui)i∈I . By continuity of the

evaluation mapping EvalΩBV,ΩA0
V
, seen in Corollary 3.11, it follows that w = ξ(u),

thus establishing the inclusion ImV(σ) ⊆ Im(ξ).
Finally, assume that, moreover, σ is primitive. When u ∈ B, from the equality

ξ(u) = limi∈I σ
V
0,ni

(u) we get ξ(u) ∈ ΛV(σ) by the definition of ΛV(σ). It then
follows from Proposition 6.8 that ξ(B) ⊆ JV(σ). □

Corollary 8.6. Let σ be a primitive directive sequence with finite alphabet rank n.
The profinite semigroup ImV(σ) is generated by a finite subset of JV(σ) with at most
n elements.

Proof. We may as well suppose that σ is bounded with alphabet rank n (cf. Re-
mark 8.1). We may pick an alphabet B such that Card(B) = n and B = Ak for
infinitely many values of k. Then, by compactness of the category CV(σ), there exists
a V-compression ξ : ΩBV→ ΩA0

V of σ. By Theorem 8.5, the profinite semigroup
ImV(σ) is generated by the set ξ(B), and this set is contained in JV(σ). □

Example 8.7. Let σ : A+ → A+ be a substitution. Consider the constant directive
sequence σ = (σ, σ, . . .). Then the equality ImV(σ) = Im((σV)ω) holds (cf. Exam-
ple 8.4), and so ImV(σ) is generated by Card(A) elements of JV(σ).

A finitely generated profinite semigroup S is said to have rank k, if k is the
smallest positive integer n such that S is generated, as a profinite semigroup, by n
elements.

Corollary 8.8. Let σ be a primitive directive sequence with finite alphabet rank n.
If σ is contraction stable, then ImV(σ) is an n-generated simple profinite semigroup
whose maximal subgroups have rank at most n2 − n+ 1.
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Proof. If σ is contraction stable, then ImV(σ) is a profinite simple semigroup, by
Theorems 7.5 and 7.1. Moreover, ImV(σ) is n-generated, by Corollary 8.6. Therefore,
ImV(σ) is a continuous homomorphic image of ΩnCS, the n-generated free profinite
semigroup over the pseudovariety CS of finite simple semigroups. The first author
showed that the maximal subgroups of ΩnCS are free profinite groups of rank
n2 − n + 1 (cf. [1, Theorem 3.3]). In every continuous homomorphic image S of
ΩnCS, the image of a maximal subgroup of ΩnCS is a maximal subgroup of S.
Hence, the maximal subgroups of ImV(σ) have rank at most n2 − n+ 1. □

9. Models and kernel endomorphisms for bounded directive sequences

When arguing about a V-compression ξ = limi∈I σ
V
0,ni

, where the limit of
the net is being taken in CV(σ), it will be convenient to keep track of the path(
σV
0 , σ

V
1 , . . . , σ

V
ni−1

)
of the graph CV(σ), which originates the homomorphism σV

0,ni

by multiplication of its edges. Further abstracting, for the sake of clarity of thought,
we are lead to Definition 9.1 below. In what follows, for any mapping ψ and element
x of the domain of ψ, we may denote ψ(x) by ψx.

Definition 9.1 (Model of directive sequence). Let σ be a bounded directive
sequence.

• A V-model of σ is a triple ψ = (Γ, ψ, x) consisting of:
(i) a finite-vertex graph Γ;
(ii) a continuous category homomorphism ψ : ΩΓCat→ CV(σ);
(iii) a prefix accessible pseudopath x of ΩΓCat such that ψx[n] = σV

n for all
n ∈ N.

• A standard V-model of σ is any V-model of σ of the form ψ = (CV(σ), ψ, x)
such that ψ restricts to the identity on the graph CV(σ).

Remark 9.2. Every bounded directive sequence σ = (σn)n∈N has a standard V-model.
Indeed, the graph Γ = CV(σ) is finite because σ is bounded; the identity mapping on
Γ extends to a unique continuous homomorphism of categories ψ : ΩΓCat→ CV(σ);
and any cluster point x in ΩΓCat of the sequence of finite paths

(σV

0 , . . . , σ
V

n−1)n≥1

over Γ is a prefix accessible pseudopath that satisfies x[n] = σV
n , for every n ≥ 0.

Proposition 9.3. Let σ be a bounded directive sequence. Let ξ be a morphism of
the category CV(σ). The following conditions are equivalent:

(i) ξ is a V-compression of σ;
(ii) ξ = ψx for some V-model (Γ, ψ, x);
(iii) ξ = ψx for some standard V-model (CV(σ), ψ, x).

Proof. (iii)⇒ (ii): This implication is trivial.
(ii)⇒ (i): Consider a V-model (Γ, ψ, x). For each n ∈ N, let xn be the prefix of

length n of x. Note that

ψxn
= ψx[0] ◦ · · · ◦ ψx[n−1] = σV

0 ◦ · · · ◦ σ
V

n−1 = σV

0,n.

Since x is a prefix accessible pseudopath, there is a net (xni
)i∈I converging in ΩΓCat

to x. Then
ψx = limσV

0,ni

is a V-compression of σ.
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(i)⇒ (iii): Suppose that ξ = limi∈I σ
V
0,ni

, where the limit of the net is being taken
in CV(σ). Let ψ be the unique continuous homomorphism of profinite categories
ΩCV(σ)Cat→ CV(σ) extending the identity on CV(σ). For each n ∈ N, consider the
following path in the graph CV(σ):

xn = (σV

0 , σ
V

1 , . . . , σ
V

n−1).

We then have ψxn
= σV

0,n. By compactness, we may consider a cluster point x of the

net (xni
)i∈I in ΩCV(σ)Cat. Note that x is a prefix accessible pseudopath of ΩCV(σ)Cat,

whence (CV(σ), ψ, x) is a standard V-model of σ. Moreover, by continuity of ψ, we
must have ψx = ξ. □

Corollary 9.4. Let σ be a bounded directive sequence. If (Γ, ψ, x) is a V-model
of σ, then ImV(σ) = Im(ψx).

Proof. This follows from combining Theorem 8.5 with Proposition 9.3. □

The following may be convenient to deal with tails of a directive sequence, as it
often occurs. Recall that if x is a pseudopath with prefix u of finite length k, then
x(k) is the unique pseudopath w such that x = uw.

Lemma 9.5. Let σ be a bounded directive sequence. Let k ∈ N. If (Γ, ψ, x) is a
V-model of σ, then (Γ, ψ, x(k)) is a V-model of σ(k).

Proof. For every infinite-length pseudopath x, and every n ∈ N, the equality
(x(k))[n] = x[k + n] holds. If moreover x is a prefix accessible pseudopath, then x(k)

is also a prefix accessible pseudopath [15, Proposition 6.10]. □

Remark 9.6. If (Γ, ψ, x) is a standard V-model of σ, then (Γ, ψ, x(k)) may not be a
standard V-model of σ(k): indeed, the graph CV(σ

(k)) may have less vertices than
the graph Γ = CV(σ).

Definition 9.7 (Kernel endomorphism of a directive sequence). Let σ be a bounded
directive sequence. A V-kernel endomorphism for σ is an endomorphism of ΩAα(y)

V

of the form ψy for some V-model (Γ, ψ, x) and some element y of the kernel of the
right stabilizer StabΩΓCat

(x).

Lemma 9.8. Every V-kernel endomorphism for σ is an idempotent continuous
homomorphism. Moreover, if ξ is a V-compression of σ, then ξ = ξ ◦ ζ for some
V-kernel endomorphism ξ for σ.

Proof. If (Γ, ψ, x) is V-model of σ, and y is an element of the kernel of Stab(x),
then y is idempotent by Theorem 4.7, and so ψy is an idempotent endomorphism.

Moreover, if ξ is a V-compression of σ, then ξ = ψx for some V-model (Γ, ψ, x)
of σ, by Proposition 9.3. For y in the kernel of Stab(x), set ζ = ψy. Then we have
ξ = ψxy = ψx ◦ ψy = ξ ◦ ζ. □

Proposition 9.9. Let V be a pseudovariety of semigroups containing N and let σ be
a bounded primitive directive sequence. Suppose that ζ : ΩBV→ ΩBV is a V-kernel
endomorphism for σ. Then the following hold:

(i) ζ is primitive;
(ii) the set ζ(B) is contained in a regular J -class of the semigroup Im(ζ);
(iii) the profinite semigroups Im(ζ) and ImV(σ

(∞)) are isomorphic.
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Proof. By definition of V-kernel endomorphism, there is a V-model (Γ, ψ, x) of σ
and some loop y in the kernel of Stab(x) such that ξ = ψy. By Theorem 4.8, there

is a net (xi)i∈I of finite-length prefixes of x such that xi → x and x−1
i x→ y. Since

the space of vertices of the category ΩΓCat is discrete, we may as well assume that
x−1
i x is a loop at α(y) = ω(y).

For every i ∈ I, the triple (Γ, ψ, x−1
i x) is a V-model of σ(|xi|) by Lemma 9.5,

whence ψx−1
i x is a V-compression of σ(|xi|) (cf. Proposition 9.3). Therefore, by

Lemma 8.2, the continuous endomorphism ψx−1
i x is primitive for every i ∈ I, and so

is ζ = limψx−1
i x. This establishes item (i) in the statement.

Note that, since ζ is primitive by (i), every element of Im(ζ) admits every element
of ζ(B) as a factor. Hence, to prove item (ii), it suffices to show that the semigroup
has Im(ζ) has a unique maximal J -class, which is regular. Since, by Proposition 6.14,
the semigroup ImV(σ

(∞)) has that property, item (ii) follows immediately from
item (iii), which we proceed to show.

Consider the set M = {|xi| : i ∈ I}. For each n ∈ M , let Ψn denote the
continuous endomorphism ψx−1

i x : ΩBV → ΩBV when i ∈ I is such that xi is the

prefix of x with length n. Since ψx−1
i x is a V-compression of σ(|xi|), by Lemma 8.5

the equality Im(Ψn) = ImV(σ
(n)) holds for every n ∈M .

As lim |xi| = ∞, the set M is cofinal in N, and so the profinite semigroup
ImV(σ

(∞)) = lim
←−n∈N

ImV(σ
(n)) is isomorphic to the inverse limit lim

←−n∈M
ImV(σ

(n)).

Consider the mapping Ψ: Im(ζ)→
∏
n∈M ImV(σ

(n)) defined by Ψ(u) = (Ψn(u))n∈M
for every u ∈ Im(ζ). Note that Ψ is a continuous homomorphism, as all the mappings
Ψn are continuous homomorphisms. In view of the remark made in the preceding
paragraph, to prove item (iii) in the statement of the proposition, it suffices to show
that Im(Ψ) = lim

←−n∈M
ImV(σ

(n)) and that Ψ is injective.

Let n ∈M , and take i ∈ I such that n = |xi|. Let m ∈M be such that m > n,
and take j ∈ I such that |xj | = m. Then we have xj = xiz for a path z of length
m− n, with ψz = σV

n,m. Since

xiz(x
−1
j x) = xj(x

−1
j x) = x = xi(x

−1
i x),

canceling the finite-length prefix xi we obtain z(x−1
j x) = x−1

i x (cf. Proposition 3.5

and Remark 4.4). Therefore, for every u ∈ Im(ζ), we have

σV

n,m(Ψm(u)) = ψzψx−1
j x(u) = ψx−1

i x(u) = Ψn(u).

This shows that the inclusion Im(Ψ) ⊆ lim
←−n∈M

ImV(σ
(n)) holds.

We claim that Ψn = Ψn ◦ ζ for every n ∈M . Letting i ∈ I be such that |xi| = n,
one has

xi(x
−1
i x)y = xy = x = xi(x

−1
i x),

thus (x−1
i x)y = x−1

i x by cancellation of the finite-length prefix xi. As Ψn = ψx−1
i x

and Ψy = ζ, this establishes the claim that Ψn = Ψn ◦ ζ. Therefore, we have

Ψn(Im(ζ)) = Im(Ψn) = ImV(σ
(n)) for every n ∈ N. This entails the equality

Im(Ψ) = lim
←−n∈M

ImV(σ
(n)), by well known properties of the continuous mappings

involving inverse systems of compact spaces [43, Theorem 3.2.14].
It remains to show that Ψ is injective. Let u, v ∈ Im(ζ) be such that Ψ(u) = Ψ(v).

Then we have Ψn(u) = Ψn(v) for every n ∈ N. This is the same to say that
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ψx−1
i x(u) = ψx−1

i x(u) for every i ∈ I. Since we are endowing Hom(ΩBV,ΩBV) with

the pointwise topology, we get

ζ(u) = ψy(u) = lim
i∈I

ψx−1
i x(u) = lim

i∈I
ψx−1

i x(v) = ψy(v) = ζ(v).

But ζ is idempotent (cf. Lemma 9.8), and so it restricts to the identity on Im(ζ).
Hence we have u = v. This establishes the injectivity of Ψ and finishes the proof of
item (iii) of the proposition. □

In the setting of Proposition 9.9 we denote by JV(ζ) the regular J -class of
ΩBV containing the set ζ(B). If φ : B+ → B+ is a primitive substitution, then
we know that the J -class JV(φ) is ≤J -maximal among the regular J -classes of
ΩBV, whenever V contains LSl (cf. Proposition 5.3). Hence, as ζ is a primitive
continuous endomorphism of ΩBV, it is natural to ask whether the J -class JV(ζ)
is also ≤J -maximal among the regular J -classes of ΩBV. The following example
shows that that may not be the case.

Example 9.10. Consider the sequence of substitutions σn over the alphabet A =
{a, b} defined by

σn : a 7→ ab
n, b 7→ a.

Note that σ = (σn)n∈N is a bounded primitive directive sequence. Let V, (Γ, ψ, x),
y, xi and yi be as in the statement and proof of Proposition 9.9. Then, ab|xi| is a
prefix of ψyi(a), so that abω is a prefix of ψy(a). Hence, bω is an idempotent which
lies strictly ≤J -above ψy(a) provided V contains Sl. Thus, for such V, the J -class

of ψy(a) is not ≤J -maximal among the regular J -classes of ΩAV.

10. Saturating directive sequences

We saw in Section 7 that when σ has a proper contraction directive sequence,
then the V-image of σ is a closed subgroup of the free pro-V semigroup over the
alphabet of X(σ). It is natural to ask for necessary and sufficient conditions under
which this subgroup is a maximal subgroup of that free pro-V semigroup. In this
section, we investigate that question in a more general framework, assuming only
that σ is primitive, not necessarily having a proper contraction. In the process, we
establish a strong link with the notion of recognizable directive sequence.

This section is divided in into three subsections. In the first one, we lay the
foundations for our framework by introducing the notion of V-saturating directive
sequence (V a pseudovariety). We give a straightforward proof that primitive
directive sequences consisting of pure encodings are S-saturating (Theorem 10.5),
and study the case where σ is recurrent and consists of encodings that may not be
pure (Theorem 10.7). In the second subsection, we see how the recognizability of σ
is sufficient for σ to be S-saturating (Theorem 10.10), and in the last subsection we
see cases where it is a necessary condition (Theorem 10.17), leading to new classes
of recognizable directive sequences (Corollary 10.21 and Theorem 10.22).

10.1. The notion of S-saturating directive sequence. In what follows, σ is
a directive sequence (σn)n∈N with σn a homomorphism from A+

n+1 to A+
n . The

following definition is the cornerstone upon which this entire section is built.

Definition 10.1. Let σ be a primitive directive sequence and V be a pseudovariety
containing N. We say that σ is V-saturating if ImV(σ) contains a maximal subgroup
of JV(σ).
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Remark 10.2. If σ is primitive and has a proper contraction, then σ is S-saturating
if and only if ImV(σ) is a maximal subgroup of JV(σ), by Theorem 7.9.

In the next proposition we see several equivalent alternatives for Definition 10.1.

Proposition 10.3. Let σ be a primitive directive sequence and V be a pseudovariety
containing N. The following conditions are equivalent:

(i) σ is V-saturating;
(ii) ImV(σ) contains an H-class of JV(σ);
(iii) JV(σ) ∩ ImV(σ) is a union of H-classes of JV(σ);
(iv) if p, q, r are elements of ΩA0

V such that the relations p R q L r hold in
ΩA0V, and p and r belong to JV(σ) ∩ ImV(σ), then so does q.

Proof. Let J = JV(σ)∩ImV(σ) and recall that J is a regular J -class of the semigroup
ImV(σ), by Theorem 6.9.

The implication (i)⇒ (ii) holds because every maximal subgroup of a semigroup
is an H-class of that same semigroup.

For (ii)⇒ (iii), suppose that H is an H-class of JV(σ) contained in ImV(σ). Take
h ∈ H. Let s ∈ J . Since H ⊆ J , by Theorem 6.9 there are u, v ∈ ImV(σ) such that
uhv = s. By Green’s Lemma (cf. [66, Lemma A.3.1]), applied to ΩA0

V, we deduce
that uHv is the H-class of s in ΩA0

V. Note that uHv ⊆ ImV(σ), as H ⊆ ImV(σ)
and u, v ∈ ImV(σ). As s is an arbitrary element of J , we conclude that J is a union
of H-classes of JV(σ).

We proceed to show (iii)⇒ (iv). For each Green’s relation symbol K, denote by
K′ the corresponding Green’s relation in ImV(σ), that is, K′ = KImV(σ). Take p, q, r
as in (iv). Since J is a J ′-class by Theorem 6.9, there is t ∈ J such that p R′ t L′ r.
Hence, q lies in the same H-class of JV(σ) as t. Since t belongs to ImV(σ), it follows
from (iii) that q also belongs to ImV(σ).

For (iv)⇒ (i), take an idempotent e ∈ J . In (iv) we may take p = r = e and q an
arbitrary element in the maximal subgroup He, and then conclude that q ∈ J . □

Before proceeding, it is worth noting the following simple observation.

Proposition 10.4. If σ is V-saturating and W is a pseudovariety such that LSl ⊆
W ⊆ V, then σ is also W-saturating.

Proof. Suppose that ImV(σ) contains a maximal subgroup H of JV(σ). Then
ImW(σ) contains pV,W(H) by Proposition 6.6. Moreover, the set pV,W(H) is a
maximal subgroup of JW(σ) by Corollary 5.10. Hence, σ is W-saturating. □

Let σ = (σn)n∈N be a directive sequence. We say that σ is pure if σn is a pure
encoding for all n ∈ N.

Theorem 10.5. Let σ be a primitive directive sequence. If σ is pure, then it is
S-saturating.

Proof. There is a maximal subgroup H of JS(σ) such that H ∩ ImS(σ) ̸= ∅, by
Theorem 6.9. Let n ∈ N. In particular, we have H ∩ Im(σS

0,n) ̸= ∅. The homomor-
phism σ0,n is pure, as every composition of pure homomorphisms remains pure. In
other words, the set C = σ0,n(An) is a pure code. Since Im(σS

0,n) = ClS(C
+), it

follows from Proposition 3.7 that H ⊆ Im(σS
0,n). As n is arbitrary, this shows that

H ⊆ ImS(σ), thereby establishing that σ is S-saturating. □
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Example 10.6. Recall the primitive substitution over A = {a, b, c} considered in
Example 6.11:

σ : a 7→ ac, b 7→ bcb, c 7→ ba,

Set C = σ(A). No element of C is a prefix or a suffix of some element of C, that
is, C is a bifix code (cf. [24]). Using a GAP package [37], one may check that the
syntactic semigroup of C+ is aperiodic. Hence, σ is a pure encoding, and so the
directive sequence σ = (σ, σ, . . .) is S-saturating by Theorem 10.5. Denote by σ̂
the unique continuous endomorphism σS : ΩAS → ΩAS extending σ. Recall that
ImS(σ) = Im(σ̂ω) (cf. Example 8.7).

We may easily compute the table of first and last letters of the images of σ̂ω

(Table 1). From Proposition 10.3, it follows that JS(σ) ∩ ImS(σ) is the union of

ℓ first letter of σ̂ω(ℓ) last letter of σ̂ω(ℓ)

a a a

b b b

c b c

Table 1. First and last letters of the images of σ̂ω

six H-classes of ΩAS, of which σ̂ω(a), σ̂ω(ab), σ̂ω(ac), σ̂ω(ba), σ̂ω(b), σ̂ω(ca) are
representative elements. As seen in Example 6.11, the pseudoword σ̂ω(a2) is not in
JS(σ) ∩ ImS(σ), and therefore the H-class of σ̂ω(a) is not a group.

We say that a directive sequence σ = (σn)n∈N is recurrent if, seen as a right-
infinite word over the alphabet {σn : n ∈ N}, it is a recurrent right-infinite word.

Theorem 10.7. Let σ be a bounded primitive directive sequence. Suppose moreover
that σ is recurrent and encoding. If there is k ∈ N such that σ(k) is S-saturating,
then σ is S-saturating.

Proof. Let k be a positive integer such that σ(k) is S-saturating. By Corollary 6.16,
we may take idempotent pseudowords g ∈ JS(σ) ∩ ImS(σ) and h ∈ JS(σ

(k)) ∩
ImS(σ

(k)) such that g = σV

0,k(h). We want to show that the maximal subgroup of

ΩA0
S to which g belongs is contained in ImS(σ).

Because σ is recurrent, Proposition 4.6 yields an S-model (Γ, ψ, e) of σ where e
is an idempotent. Let z be the prefix of length k of e and consider the idempotent
f = e(k)z = z−1ez.

Note that ImS(σ) = Im(ψe) by Corollary 9.4. Since (Γ, ψ, z−1e) is an S-model of
σ(k) by Lemma 9.5, we have

ImS(σ
(k)) = Im(ψz−1e) = Im(ψf ),

where the first equality holds by Corollary 9.4 and the second because z−1e R f .
On the other hand, the equalities zf · z−1e = e, zf = ez yield zf R e and so

Im(ψzf ) = Im(ψe) = ImS(σ).

As f is idempotent, the homomorphism ψf restricts to the identity on Im(ψf )
which can be factored as in the following commutative diagram of restricted mappings,
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which, for simplicity, are indicated simply by adding a vertical bar:

Im(ψf )
ψf |=id

//

ψz| ��

Im(ψf )

Im(ψzf ).

ψ
z−1e

|

??

In view of the aforementioned equalities Im(ψf ) = ImS(σ
(k)) and Im(ψzf ) = ImS(σ),

it follows that ψz restricts to a continuous isomorphism from ImS(σ
(k)) onto ImS(σ),

and that ψz−1e restricts to a continuous isomorphism from ImS(σ) onto ImS(σ
(k)).

In what follows, bear in mind that the equality

ψz−1e(g) = h

holds: indeed, one has g = ψz(h) as ψz = σV

0,k, and h ∈ ImS(σ
(k)) = Im(ψf ),

whence h = ψf (h) = ψz−1e(ψz(h)) = ψz−1e(g).

Since σ(k) is S-saturating, by Proposition 10.3 we know that ImS(σ
(k)) contains

the maximal subgroup H of JS(σ
(k)) to which the idempotent h belongs. As ψz−1e

restricts to an isomorphism from ImS(σ) to ImS(σ
(k)), the maximal subgroup G

of ImS(σ) containing the idempotent g is such that ψz−1e(G) = H. Let K be the
maximal subgroup of ΩA0S containing g. Then, as K ⊇ G and H is a maximal
subgroup, we must have

ψz−1e(G) = H = ψz−1e(K).

Hence, to show that σ is S-saturating, it suffices to show that the restriction of
ψz−1e to K is injective. The reader may wish to look at Figure 2 while checking the
proof.

Figure 2. Illustration of the proof of Theorem 10.7

Let u ∈ K be such that ψz−1e(u) = h. Note that limun! = uω = g. Since
g ∈ Im(ψz), in particular we obtain

limun! ∈ Im(ψz).

As the set ψz(Ak)
+ is a recognizable language by Kleene’s theorem [53, Theorem

3.2], and the equality Im(ψz) = ClS(ψz(Ak)
+) holds by continuity of ψz, we know

that the set Im(ψz) is clopen by Theorem 3.1. Hence, there is a positive integer m



PROFINITE APPROACH TO S-ADIC SHIFT SPACES I: SATURATING SEQUENCES. 43

such that um ∈ Im(ψz). Let K ′ = K ∩ Im(ψz). Since K ′ is a closed subgroup, the
closed subsemigroup ψ−1

z (K ′) of ΩAk
S contains a closed subgroup K ′′ such that

ψz(K
′′) = K ′ [66, Proposition 3.1.1]. As um ∈ K ′, we may take v ∈ K ′′ such that

um = ψz(v).
We claim that K ′′ ⊆ H. On one hand we have ψz(h) = g ∈ K ′ = ψz(K

′′),
and on the other hand, as σ is encoding, the homomorphism ψz is injective by
Theorem 3.8. Therefore, we must have h ∈ K ′′, which establishes the claim K ′′ ⊆ H
by maximality of H.

In particular, we have v ∈ H. On the other hand, we also have

h = hm = ψz−1e(u
m) = ψz−1e(ψz(v)) = ψf (v).

Since H ⊆ ImS(σ
(k)) and ψf restricts to the identity on ImS(σ

(k)), it follows that

v = h, thus um = ψz(v) = ψz(h) = g. But every closed subgroup of ΩA0
S is

torsion-free by [65, Theorem 1], and so u = g. This proves that the restriction of
ψz−1e to K is injective, thereby establishing that σ is S-saturating. □

The next proposition and the ensuing corollary, which are not necessary for the
sequel, shed additional light on Theorem 10.7.

Proposition 10.8. Let σ = (σn)n∈N be a primitive directive sequence. Let k,m ∈ N,
with k ≤ m, be such that σV

k,m is injective. If σ(k) is V-saturating, then σ(m) is
V-saturating.

Proof. The intersection JV(σ
(m)) ∩ ImV(σ

(m)) is a regular J -class of ImV(σ
(m)),

by Theorem 6.9, and so it contains a maximal subgroup G of ImV(σ
(m)).

Since ImV(σ
(m)) = σV

k,m(ImV(σ
(m)) by Lemma 6.12, and σV

k,m is injective, we

know that σV

k,m restricts to a continuous isomorphism ImV(σ
(m)) → ImV(σ

(k)).

Therefore, σV

k,m(G) is a maximal subgroup of ImV(σ
(k)). Moreover, the inclusion

σV

k,m(G) ⊆ JV(σ
(k)) holds by Corollary 6.15. Since we are assuming that σ(k)

is V-saturating, the group σV

k,m(G) is in fact a maximal subgroup of ΩAk
V, by

Proposition 10.3.
Let H be the maximal subgroup of ΩAm

V containing G. Since σV

k,m(G) is a

maximal subgroup of ΩAk
V, we necessarily have σV

k,m(G) = σV

k,m(H), whence

G = H by injectivity of σV

k,m. This shows that the maximal subgroup H of ΩAm
V

is contained in ImV(σ
(m)), thus establishing that σ(m) is V-saturating. □

We say that a directive sequence σ = (σn)n∈N is eventually V-saturating if there
is k ∈ N such that σ(m) is V-saturating for every m ≥ k.

Corollary 10.9. Let σ be a bounded primitive encoding directive sequence. Then σ
is eventually S-saturating if and only if there is k ∈ N such that σ(k) is S-saturating.

Proof. Suppose that there is k ∈ N such that σ(k) is S-saturating. Let m ∈ N be
such that k ≤ m. Since σ is an encoding directive sequence, the homomorphism
σk,n is injective. Hence, σS

k,n is injective by Theorem 3.8. Applying Proposition 10.8,

we deduce that σ(m) is S-saturating for every integer m such that m ≥ k. We have
therefore established the “if” part of the corollary. The “only if” part is trivial. □

We do not know for which pseudovarieties V we may replace S by V in the
statement of Theorem 10.7, even when σ is eventually S-saturating.
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10.2. Recognizable directive sequences. In earlier work, the first two authors
showed that every primitive aperiodic proper substitution σ : A+ → A+ is such
that Im((σS)ω) is a maximal subgroup of ΩAS (cf. [11, Lemma 6.3], see also [11,
Theorem 5.6]). An essential ingredient of the proof is Mossé’s theorem stating
that every primitive aperiodic substitution is recognizable. Therefore, the following
theorem may be considered a generalization to the S-adic setting of the result of
the two first authors.

Theorem 10.10. Let σ be a primitive directive sequence. If σ is recognizable, then
it is S-saturating.

For the proof of this theorem we need the next couple of lemmas. The first one
is included in [27, Lemma 3.5] (also in [41, Proposition 6.4.16]).

Lemma 10.11. Let σ = (σn)n∈N be a primitive directive sequence. Let n,m ∈ N,
with n < m. The substitution σn,m is recognizable in X(σ(m)) if and only if, for

every integer k such that n ≤ k ≤ m, the substitution σk is recognizable in X(σ(k)).

In [18, Proposition 4.4.17] one finds a proof of the following lemma.4

Lemma 10.12. Let A be a finite alphabet. Let u, v ∈ ΩAS. If (wn)n∈N is a sequence
of elements of ΩAS such that limwn = uv, then there are sequences (un)n∈N and
(vn)n∈N of elements of (ΩAS)

1 respectively converging to u and v and such that
wn = unvn for every n ∈ N.

We may now proceed to show Theorem 10.10.

Proof of Theorem 10.10. By Corollary 6.16, we may consider a sequence (ek)k∈N

of idempotents such that ek ∈ JS(σ
(k)) ∩ ImS(σ

(k)) and ek = σS

k,l(el) for every

k, l ∈ N such that k ≤ l. Set zk = ˛hffl(ek) for each k ∈ N. Note that zk ∈ X(σ(k)) by
Proposition 5.9. Since σS

0,k(ek) = e0, we have

σ0,k(zk) = z0.

Denote by H the maximal subgroup of ΩA0S containing e0. We wish to show the
inclusion H ⊆ ImS(σ).

Fix s ∈ H. By Proposition 5.6, we may write s as a limit

s = lim
n→∞

tn, tn ∈ L(σ).

Since s = e0se0, it follows from Lemma 10.12 that we may choose for every n ∈ N a
factorization tn = pnsnqn in (A0)

∗ such that

e0 = lim
n→∞

pn = lim
n→∞

qn, s = lim
n→∞

sn,

with the limits being taken in (ΩA0
S)1.

Take an arbitrary positive integer k. By Lemma 10.11, the composite σ0,k is

recognizable in X(σ(k)). Since X(σ(k)) is minimal, it is generated by the sequence
zk. Hence, σ0,k is recognizable in Mossé’s sense for zk by Proposition 2.14; let
ℓk be the corresponding constant of recognizability. Denote z0 by z. Because
˛hffl(H) = ˛hffl(e0) = z and for every x ∈ (A0)

+ the sets of the form x(ΩA0
S)1 and

4In [18, Proposition 4.4.17] it is used the notation Â∗ instead of (ΩAS)1, and the assumption
that A is finite is implicit in the statement, since it is done globally in an early point of the chapter.

Indeed, Â∗ denotes there the free profinite monoid generated by A, which is equal to (ΩAS)1, see

the last paragraph in [18, Section 4.4]. See also [18, Section 4.12] for early references to this lemma.
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(ΩA0
S)1x are clopen subsets of ΩA0

S, there is a positive integer Nk such that the
following relations hold whenever n > Nk:

(9) z[−ℓk, 0) ≥L pn, z[0, ℓk) ≥R sn, z[−ℓk, 0) ≥L sn, z[0, ℓk) ≥R qn.

Take n > Nk. Since pnsnqn ∈ L(σ) and the minimal shift space X(σ) is generated
by z, there are integers j1 < j2 < j3 < j4 such that

z[j1, j2) = pn, z[j2, j3) = sn, z[j3, j4) = qn.

Consider the set C = Cσ0,k
(zk) of σ0,k-cutting points of zk, and bear in mind the

equality σ0,k(zk) = z. It follows from (9) that

z[j2 − ℓk, j2) = z[−ℓk, 0), z[j2, j2 + ℓk) = z[0, ℓk),

that is, z[j2 − ℓk, j2 + ℓk) = z[−ℓk, ℓk), and so, since 0 ∈ C, by recognizability we
conclude that j2 ∈ C. Similarly, we conclude that j3 ∈ C. Hence, as sn = z[j2, j3),
we have sn ∈ σ0,k(A

+
k ). Since n is an arbitrary integer greater than N , it follows

that s ∈ Im(σS

0,k). As k is arbitrary, this shows that s ∈ ImS(σ). We have therefore

established the inclusion H ⊆ ImS(σ), and so σ is S-saturating. □

We next apply Theorem 10.10, together with other results, to deduce upper
bounds on the rank of V-Schützenberger groups.

Corollary 10.13. Let σ be a contraction stable, recognizable, primitive directive
sequence, with finite alphabet rank n. Let V be a pseudovariety of semigroups
containing LSl. Then the rank of the Schützenberger group GV(σ) is at most n2−n+1.
If moreover σ has a proper contraction, then the rank of GV(σ) is at most n.

Proof. By Corollary 5.10, it suffices to establish the result for the case V = S.
Since σ is contraction stable, the profinite semigroup ImS(σ) is contained in

JS(σ), by Theorems 7.1 and 7.5. As σ is recognizable, it follows from Theorem 10.10
that σ is S-saturating, and so the maximal subgroups of ImS(σ) are actually maximal
subgroups of JS(σ). All maximal subgroups of ImS(σ) have rank at most n2−n+1
by Corollary 8.8. If σ moreover has a proper contraction, then ImS(σ) is a profinite
group by Theorem 7.9, and its rank is at most n by Corollary 8.6. □

We next see how Corollary 10.13 extends to the important class of minimal
shift spaces of finite topological rank. A minimal shift space is said to be of finite
topological rank when it can be represented by a Bratteli-Vershik diagram with a
uniformly bounded number of vertices per level; and if the least such bound among
all such representations is n, then it is said to have finite topological rank n; see [41,
Chapter 6] for details. A minimal shift space X has finite topological rank at most n
if and only if it is topologically conjugate to X(σ) for some proper, recognizable,
primitive directive sequence σ of alphabet rank at most n (this result is from [38],
as attributed in [44, Theorem 1.1]).

Corollary 10.14. Let X be a minimal shift space of finite topological rank n. Then,
for every pseudovariety V containing LSl, the Schützenberger group GV(X) is a
profinite group of rank at most n.

Proof. By Corollary 5.10, it suffices to establish the result for the case V = S.
By [38, Proposition 4.6], there exists a proper, recognizable, primitive directive

sequence σ with alphabet rank at most n and such that X is topologically conjugate
to X(σ). Since the S-Schützenberger group of a minimal shift space is a topological
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conjugacy invariant by Theorem 5.2, we have GS(X) ∼= GS(σ). The result now
follows immediately from Corollary 10.13. □

Relaxing the hypothesis in Corollary 10.13, we obtain the following.

Corollary 10.15. Let σ be a primitive directive sequence with finite alphabet rank n.
Let V be a pseudovariety of semigroups containing LSl. If σ is recognizable, then
the Schützenberger group GV(σ) is a profinite group of rank at most n2.

Proof. Under the same assumptions on σ, Donoso et al. showed that X(σ) has
topological rank at most n2 [38, Proposition 4.7]. Combining this result with
Corollary 10.14, we get that GV(σ) has rank at most n2. □

We do not know if the converse of Corollary 10.14 holds:

Problem 10.16. Let X be a minimal shift space.

(i) Suppose that GS(X) is finitely generated. Does X necessarily have finite
topological rank?

(ii) Is it true that, if H is a nontrivial pseudovariety of groups such that G
H
(X)

is finitely generated, then GS(X) is finitely generated?

10.3. Sufficient conditions for recognizability. The purpose of this section is
to give conditions under which saturating directive sequences are recognizable. In
other words, we are proposing a partial converse to Theorem 10.10.

Theorem 10.17. Let σ be an encoding directive sequence. Let V be a pseudovariety
of semigroups containing LSl. Assume that Im(σ0,n) is V-recognizable for every n ∈ N.
If σ is V-saturating and eventually recognizable, then σ is recognizable.

Proof. Using an argument of reductio ad absurdum, let us suppose that the hypothesis
in the statement holds but σ is not recognizable.

Let m ∈ N be such that σ(m) is recognizable. Take n ∈ N such that n > m. By
the assumption that σ is not recognizable and by Lemma 10.11, the homomorphism
σ0,n is not recognizable in X(σ(n)). Therefore, letting A = A0, there is an element

in AZ with two distinct centered σ0,n-representations in X(σ(n)), which means that

there are xn, zn ∈ X(σ(n)) and ℓn ∈ N such that

(10) σ0,n(xn) = T ℓnσ0,n(T
n(zn))

with 0 ≤ ℓn < |σ0,n(zn[n])| and (0, xn) ̸= (ℓn, T
n(zn)).

Despite the statement mentioning the pseudovariety V, for most of the proof
we work with the pseudovariety S of all finite semigroups. By Proposition 5.9 we
may take the unique idempotents en and fn of JS(σ

(n)) such that ˛hffl(en) = xn and
˛hffl(fn) = zn. Note that both σS

0,n(en) and σS
0,n(fn) belong to JS(σ) and that the

following equalities hold:

(11) ˛hffl(σS

0,n(en)) = σ0,n(xn) and ˛hffl(σS

0,n(fn)) = σ0,n(zn).

Denote by rn the prefix of length ℓn of σ0,n(zn[n]), cf. Figure 3. Let

p′n = zn[0, n), pn = σ0,n(p
′
n)rn.

Then pn is a prefix of σ0,n(zn[0, n]) and suffix of σ0,n(xn[− n
′, 0)) for some n′ ∈ N,

as illustrated by Figure 3. Hence, pn is a prefix of the idempotent σ0,n(fn), and a
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suffix of the idempotent σ0,n(en), in view of (11). Moreover, we have

T |pn|(˛hffl(σS

0,n(fn))) = T |rn|T |σ0,n(zn[0,n))|(σ0,n(zn))

= T ℓnσ0,n(T
n(zn))

= σ0,n(xn)

= ˛hffl(σS

0,n(en)),

with the second last equality holding by (10). Therefore, the equality

(12) pnσ
S

0,n(en) = σS

0,n(fn)pn

holds by Proposition 5.13.

rn

· · · · · ·

· · · · · ·

· · · · · ·

σ0,n(xn[0])

σ0,n(zn[n])

length ℓn

Figure 3. The bi-infinite word σ0,n(xn) = T ℓnσ0,n(T
n(zn)). The

black cutting point marks the boundary of its left and right infinite
parts.

Suppose that ℓn = 0, that is to say pn = σ0,n(p
′
n). Then the equality (12)

becomes

σS

0,n(p
′
nen) = σS

0,n(fnp
′
n).

As by hypothesis σ is an encoding directive sequence, the homomorphism σ0,n is
injective, and so σS

0,n is injective by Theorem 3.8. It follows that p′nen = fnp
′
n,

thus xn = Tn(zn) by Proposition 5.13. But this contradicts (0, xn) ̸= (ℓn, T
n(zn)).

Therefore, ℓn must be positive.
By compactness of ΩAS, the sequence (pn, σ

S
0,n(en), σ

S
0,n(fn))n>m has some subse-

quence converging in (ΩAS)
3 to a triple (p, e, f). Bear in mind that, by Lemma 6.5,

the pseudowords e, f are idempotents in JS(σ) ∩ ImS(σ), as σS
0,n(en) and σS

0,n(fn)
are, for every n ∈ N, idempotents in the closed space JS(σ). Note that lim |pn| =∞,
and so the pseudoword p has infinite length. As pn ∈ L(σ) for every n > m, it
follows that p ∈ JS(σ). Since pn is a prefix of the idempotent σS

0,n(fn) for each

n > m, and the relation ≤R is closed in ΩAS, we know that p is a prefix of f .
Similarly, p is a suffix of e. By stability, we obtain f R p L e. It follows that
pS,V(f) R pS,V(p) L pS,V(e). Note that the idempotents pS,V(f) and pS,V(e) belong
to JV(σ) ∩ ImV(σ) by Corollary 5.5 and Proposition 6.6. Since σ is V-saturating,
we deduce that pS,V(p) ∈ ImV(σ) by Proposition 10.3.

Set B = Am. Since ImV(σ) ⊆ ImV(σ
V
0,m), we have pS,V(p) ∈ ClV (σ0,m(B+)). Be-

cause σ0,m(B+) is V-recognizable, as assumed in the statement, the set ClV (σ0,m(B+))
is clopen by Theorem 3.1. Note also that, since the continuous mapping pS,V restricts
to the identity on A+, the pseudoword pS,V(p) is a cluster point of the sequence

(pn)n in the space ΩAV. Hence, there is k ∈ N such that k > m and pk ∈ σ0,m(B+).
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Take q ∈ B+ such that pk = σ0,m(q). The equality (12) then entails

σS

0,m

(
q · σS

m,k(ek)
)
= σS

0,m

(
σS

m,k(fk) · q
)
.

But σS
0,m is injective (by Theorem 3.8), and so the equality q ·σS

m,k(ek) = σS

m,k(fk) ·q

holds. Since ˛hffl(σS

m,k(ek)) = σm,k(xk) and ˛hffl(σS

m,k(fk)) = σm,k(zk), we then deduce
from Proposition 5.13 that

σm,k(xk) = T |q|(σm,k(zk))

and that q is a nonempty prefix of a word of the form σm,k(zk[0, l)), with l > 0
(see Figure 4). Hence, we may consider the integer

l0 = min{l ∈ N : |σm,k(zk[0, l))| ≥ q}.

Letting d = |σm,k(zk[0, l0))| − q we see that (d, T l0−1(zk)) is a centered σm,k-

representation of σm,k(xk). Since σ(m) is recognizable, we know that σm,k is

recognizable in X(σ(k)) by Lemma 10.11. Therefore, we must have d = 0, thus
q = σm,k(zk[0, l0)).

· · ·

σm,k(xk[−1])

· · ·

σm,k(xk[0])

· · ·

σm,k(zk[−1])

· · ·

σm,k(zk[0])

· · · · · ·

q

Figure 4. Location of q in the infinite word ˛hffl(σS

m,k(ek)) = σm,k(xk).

We have therefore σ0,k(zk[0, l0)) = σ0,m(q) = pk = σ0,k(zk[0, k))rk. In particular,
we must have l0 > k, as |rk| = ℓk ̸= 0. It follows that σ0,k(zk[k]) is a prefix of rk.
But this contradicts the fact that |rk| = ℓk < |σ0,k(zk[k])| by choice of rk and ℓk.

This concludes the argument by reductio ad absurdum, and therefore we proved
that σ must be recognizable. □

In the special case where V is of the form H for some extension-closed pseudovariety
of groups H, the previous theorem can be specialized as follows.

Corollary 10.18. Let σ be an eventually recognizable primitive directive sequence.
Let H be an extension-closed pseudovariety of groups such that σn is an H-encoding
for every n ∈ N. Then the following conditions are equivalent:

(i) σ is recognizable;
(ii) σ is S-saturating;
(iii) σ is H-saturating.

The proof of the corollary requires the next lemma.

Lemma 10.19. Let H be an extension-closed pseudovariety of groups. Let L ⊆ A+

be an H-recognizable language and σ : A+ → B+ be an H-encoding. Then σ(L) is
H-recognizable.
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Proof. Observe that σH : ΩAH→ ΩBH is injective by Theorem 3.8 (ii) and its image
is clopen by [19, Corollary 5.7]. By assumption, the closure of L in ΩAH is clopen.

Hence, the closure of σ(L) in ΩBH, which is equal to σH(L), is clopen and, therefore,
σ(L) is H-recognizable by Theorem 3.1. □

Remark 10.20. An alternative proof of this lemma is obtained by combining [62,
Proposition 4.3] with [54, Theorem 3].

Proof of Corollary 10.18. The implication (i) ⇒ (ii) is Theorem 10.10, while the
implication (ii) ⇒ (iii) is given by Proposition 10.4. It remains to establish the
implication (iii)⇒ (i).

Assume that (iii) holds. By Lemma 10.19, the composition of two H-encodings
is again an H-encoding. Therefore, under our assumptions, the image of σ0,n is

H-recognizable, for all n ∈ N. Since LSl ⊆ A ⊆ H, we can apply Theorem 10.17 to
conclude that (i) holds. □

The case H = I in Corollary 10.18 is precisely the pure case. Since GA(σ) is the
trivial group, condition (iii) holds trivially in that case. We deduce the following.

Corollary 10.21. Let σ be an eventually recognizable primitive directive sequence.
If σ is pure, then σ is recognizable.

The following result gives yet another sufficient condition for recognizability.

Theorem 10.22. Let σ be a bounded primitive directive sequence. If σ is eventually
recognizable, recurrent, and encoding, then it is recognizable.

Proof. By Theorem 10.10, the assumption that σ is eventually recognizable entails
that it is eventually S-saturating. Theorem 10.7 then yields that σ is S-saturating.
Finally, as each σn is an S-encoding, Corollary 10.18 shows that σ is recognizable. □

Although the statements of Corollary 10.21 and Theorem 10.22 concern only
symbolic dynamics, their proofs use the connection with profinite semigroups in
crucial ways. For instance, the proof of Theorem 10.22 relies indirectly on the fact
that closed subgroups of free profinite semigroups are torsion-free [65, Theorem 1]
(needed in the proof of Theorem 10.7). This raises the question of whether or
not proofs of purely dynamical and combinatorial character can be given for those
results.
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