[vi] Ved,

17 Sep 2025

1

where Fl, F2

A numerical scheme for a fully nonlinear free

boundary problem

Edgard A. Pimentel and Ercilia Sousa

September 17, 2025

Abstract

We propose a numerical method to approximate viscosity solutions of fully
nonlinear free transmission problems. The method discretises a two-layer
regularisation of a PDE, involving a functional and a vanishing parameter.
The former is handled via a fixed-point argument. We then prove that the
numerical method converges to a one-parameter regularisation of the free
boundary problem. Regularity estimates enable us to take the vanishing
limit of such a parameter and recover a viscosity solution of the free trans-
mission problem. Our main contribution is the design of a computational
strategy, based on fixed-point arguments and approximated problems, to
solve fully nonlinear free boundary models. We finish the paper with two

numerical examples to validate our method.
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Introduction

We propose a finite difference method for the free boundary problem

Fi(D%*u) = f in Qn{u>0}
Fy(D%*u) = f in Qn{u<0}
u=g on 0,

(1)

: §(d) — R are uniformly elliptic operators, f € L>(Q) N C(Q),
and g € C(99Q). The domain 2 C R? is an open and bounded set satisfying a
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uniform exterior cone condition.

The free boundary problem (1) describes a discontinuous diffusion process,
with solution-dependent discontinuities taking place at the level of the operator.
This model falls within the scope of the so-called free transmission problems and
was introduced in [18, 17].

Transmission problems were introduced in the mid-1950s by Mauro Picone
[16] and have attracted considerable attention from the mathematical commu-
nity since then. Firstly, this class of problems was studied in the context of
fixed interfaces, where discontinuities occur across a priori known subregions.
In recent years, transmission models have been formulated in the context of free
boundaries. For a comprehensive review of the subject, we refer the reader to
[3].

Fundamental questions concerning the existence of solutions to (1) and their
regularity properties have been studied in the literature. In [18], the authors
establish the existence of viscosity solutions to (1). They suppose the operators
Fy and Fy are (A, A)-elliptic, g € C(99), and f € LP(f2), where d/2 < py < p.
Here, pg is the integrability level above which the Aleksandroff-Bakelman-Pucci
estimate is available for the viscosity solutions to F(D?u) = f. Under a near-
convexity condition for F; and F3, the authors prove the existence of strong
solutions to (1).

The regularity of the solutions to (1) is the subject of [17]. In that paper,
the authors prove that viscosity solutions are in VVliCB MO(Q), with estimates.
Under a density condition on the negative phase, they establish (optimal) Cll.gg -
regularity estimates. Regularity estimates at the intersection of free and fixed
boundaries are the subject of [14].

The computational aspects of (1) remain largely open. Though the numeri-
cal analysis of viscosity solutions has been extensively studied in the literature
(see [2,4,5,7,8,9,10,12, 13, 15, 19], to mention just a few), genuine difficulties
stem from the model under analysis. A fundamental difficulty in the numerical
treatment of (1) concerns the solution-dependent discontinuities of the operator
driving the diffusion process. Among other things, one cannot write (1) as an
equality driven by the maximum operator — as usual in the numerical analy-
sis of the obstacle problem, for example; see [15]. Our main contribution is in
formulating computationally the strategy put forward in [18§].

In brief, the argument in [18] develops as follows. For 0 < ¢ < 1 and



v € C(Q) fixed, define h? : Q — [0,1] as

h?(z) == {max <min <% 1> ,o> * 775} (@),

where 7. is a standard symmetric mollifying kernel. Define the fully nonlinear
elliptic operator F¥ : S(d) x R x Q@ — R as

FY(M,r,z) =er+hl(z)FA (M) + (1 — hl(z))Fo(M). (2)

This auxiliary operator leads to the Dirichlet problem

{F;’(DQU,u,:E) =f in Q 3)

u=g in 09.

In [18], the authors establish a comparison principle for (2), while ensuring the
existence of global barriers for (3). An application of Perron’s method ensures
the existence of a (unique) viscosity solution u? € C(Q) to (3).

To recover a viscosity solution to (1), the authors examine the two-parameter
family (u?)e. The analysis of the functional parameter v depends on a set
BcCC@Q)and amap T : B — C(Q). For 0 < ¢ < 1 fixed, this operator is
given by Tw := u?. The authors prove that 1" has a fixed point, leading to the

existence of a solution to

F'(D*uc,u.,x) = f in Q
Ue = g in 09.

Finally, they take the limit ¢ — 0. Regularity estimates for the family (ue)o<e<1
ensure the existence of u € C(Q) such that u. — u, as ¢ — 0, through a
subsequence, if necessary. The stability of viscosity solutions implies that u
solves (1) in the viscosity sense.

We propose a numerical method for (1) by discretising (3). Indeed, for
0 < h < 1 we consider a dicrete approximation of , denoted with Qj and

examine the method

F;’(D,%ugyh(x),u;h(:v),:v) — f(x) in Qp

ugh(x) —g(x) on 00, )

g,h(ug,h(x)v T) = {

where D% is a discrete approximation of the Hessian matrix, and ug 4, is a grid



function. We start by establishing the existence of a unique solution to
g,h(u:,h(x)v z) =0 in Q. (5)

Then, for N € N depending only on h, we design a subset B;, C RY and a
map T : By, — RY. Properties of (5) allow us to apply Schauder’s Fixed Point

Theorem to ensure the existence of u. p solving
Ggffzh (ua,h(x)u z)=0 in Q. (6)

Once the existence of a solution to (6) is available, we examine the numerical
method described by Ggf,;h’. We use a centred differences discretisation of the
Hessian to ensure the monotonicity of the method. Also, we combine global
barriers with a discrete version of the comparison principle to establish stability
of GZ}Z". Finally, the regularity of the operator F yields consistency of the
method with (3).

Monotonicity, stability and consistency build upon convergence results in the
literature to ensure that u. j, — u. locally uniformly, as h — 0, where u. € C (ﬁ)
solves (3) in the viscosity sense; see [2, Theorem 2]. As in the continuous case,
we rely on regularity estimates available for the solutions to (3). As a result,
the family of numerical solutions (u.)o<c«1 converges locally uniformly to a

viscosity solution to (1). Our main result is the following theorem.

Theorem 1 (Convergence of the numerical scheme). Suppose Assumptions A1-
A4, to be detailed further, are in force. Fiz 0 < e < 1. There exists 0 < hg < 1
such that, if h € (0,hg), then (6) has a unique solution uep. In addition,
as h = 0, ucn, — ue locally uniformly in €2, where u. is the unique viscosity
solution to (3). Finally, we have ue — u, as € — 0, where u solves (1) in the

viscosity sense.

Remark 1 (Main assumptions). Among our main assumptions, we require the
domain € to satisfy a uniform exterior cone condition. This is critical for the
existence of viscosity solutions to (1); see [18]. We further assume Fy and F; are
operators of the Isaacs type. This is a natural assumption in the study of fully
nonlinear elliptic equations; see [6, Remark 1.5]. For simplicity, we suppose the
sets of matrices governing F; and F5 satisfy a diagonal dominance condition.

However, this assumption can be completely relaxed; see, for instance, [10].

Remark 2 (Non-uniqueness and a selection criteria). We recall that the unique-



ness of solutions to (1) remains as an open problem. Therefore, the numerical
approximation designed by Theorem 1 can be used to select families of solutions

to (1), provided they retain improved qualitative properties.

Remark 3 (Fixed-point analysis). One of the main contributions of the present
paper is the analysis of a fixed-point argument leading to the existence of a
(unique) solution to (6). Our strategy appears robust and can be adapted to
a wider latitude of problems. We first mention the numerical treatment of
mean-field game systems. In addition, it can simplify the numerical analysis
of poliharmonic problems, once they are written in the form of a system of
Poisson equations [1]. Finally, we believe it could be useful in the computational

treatment of p-Poisson equations, provided one can write A,u = f as

{div (mDu) = f in Q

|Dul? = mr2 in Q.

The remainder of this manuscript is organised as follows. Section 2 gath-
ers preliminary material used throughout the paper. We detail our numerical
method and present the proof of Theorem 1 in Section 3. Numerical examples

validating our method are the subject of Section 4.

2 Preliminaries

We start with the main assumptions used in the paper. First, we impose a

uniform exterior cone condition on the domain 2.

A 1 (Domain’s geometry). We suppose Q C R satisfies a uniform exterior
cone condition. That is, there exists r,0 > 0 such that, for every x € 050, one

can find a cone Cy of opening 0 centred at the origin, such that
((x + Cp) N B.(x)) C R\ Q.

Next, we detail our assumption on the uniform ellipticity of the operators
F1 and Fg.

A 2 (Uniform ellipticity). Fiz 0 < X < A. We suppose the operators F1 and Fy
are (A, A)-uniformly elliptic. That is, for every M, N € S(d), we have

AN < F(M) = F(M + N) < AN,



provided N > 0.

We suppose that F; and F; are operators of Isaacs type, driven by symmetric

matrices satisfying a diagonal dominance condition.

A 3 (Diagonal dominance). For i = 1,2, we suppose

F;(M) := sup inf Tr (A, ;M) ,

acABEB
} \d
where Afx,ﬂ = (a;’kﬁ’z)j s s a negative semi-definite matriz satisfying
d
a,B,i a,B,i
a7 = D0 |
Gok=1

J#k
foreveryj=1,....d, a € A, and B € B, for every i =1,2.
A 4 (Data of the problem). We suppose f € L>®(Q)NC(Q) and g € C(09).

Once our assumptions have been stated, we recall preliminary facts about

the discretisation used in the paper. Define (NZ;L as
Q= {z e R |dist(2,Q) > h}.

For 0 < h < 1, consider a uniform discretisation of Q of grid size h, denoted by
ﬁh. Consider the Dirichlet problem

2u, Du,u, ) = in Q
{F(D ,Du,u,z) = f -

u=g on 0f2,

where F : S(d) x R x R x Q — R is a (), A)-elliptic operator. We propose a

numerical approximation of (7) in Qp, of the form

{Fh(DlzzuhaDhuhauhaiU) =f in Q,NQ ®)

u=g on Q\ Q.

In (8), Fu(:,-,-,x) accounts for the restriction of G to Qn N Q, whereas Div
and Dpv stand, respectively, for a discrete approximation of the Hessian and

the gradient of the function v. The unknown wuy, : Qn > Riisa grid function



satisfying (8) in Q. The discretization (8) is written as

Fh(D%uh,Dhuh,uh,x) —f n ﬁhﬂﬂ

u—g on Q\ €. ©)

Gh (uh,x) = {
Remark 4 (Extended domain). We prescribe (8) and (9) in the extended do-
main €, to account for the geometry of 9. Since we work with a uniform grid
of size h, it might be the case that in a vicinity of 92 the grid size skips bound-
ary points. Therefore, by prescribing v = ¢ in (NZ;L \ 2, one ensures the boundary
data is verified as h — 0. Although we prescribe (8) and (9) in the extended

domain, in the remainder of the paper, we work in Qj, for ease of presentation.

For completeness, we include the definitions of monotone, stable and consis-

tent numerical schemes.

Definition 1 (Monotonicity). The numerical method (Gp)o<h<1 1S monotone
if, for every 0 < h < 1, and every up, vy : Qn — R satisfying up(z) = vp(z),

for some x € Qp,, with u, < vy, we have
Gnr(vn(z),z) < Gulun(z), ).

Definition 2 (Stability). The numerical method (Gr)o<n«1 is stable if there
exists C > 0 such that

sup max |up(z)| < C.
0<h<1z€Q

The constant C' > 0 is allowed to depend on the data of the problem, but not on
the grid size 0 < h < 1.

To define consistency, it is useful to recall the notion of upper and lower

envelopes associated with a function G : S(d) x R x R x 2 — R. Set

G(M,p,r,x) = (10)

F(M,p,r,x) — f(x) if xeQ
r—g(x) if e 0.

Definition 3 (Upper and lower envelopes). We define the upper envelope G*
of (10) as
G*(M,p,r,xg) = limsup G(M, p,r, ).

Tr—rTo

The lower envelope G associated with (10) is

G.«(M,p,r,x¢) = liminf G(M,p, r, x).

Tr—rTo



Now, we define the consistency of a numerical method in terms of the en-

velopes associated with the Dirichlet problem it approximates.

Definition 4 (Consistency). The numerical method (Gp)o<h<h, S consistent
with (7) if

lim sup Grle(y) +&,y) < G*(D*¢(x), Dp(x), (), )
Yy—T

£—0

and
lim inf G (p(y) +&,y) > Gu(D?p(x), Dp(x), (), ),

y%x
£—0

whenever ¢ € C*(Q) and x € Q.

In the sequel, we recall a characterisation of convergence for numerical meth-
ods approximating viscosity solutions. It relies on the monotonicity, stability
and consistency of the numerical method; see the seminal work of Barles and

Souganidis [2].

Proposition 1 (Convergence of the numerical method). Let (Gp)o<n<«1 be
a monotone and stable numerical method. Let (up)o<n<1 be a family of grid

functions such that up : Q, — R solves
Gh(up(z),2) =0

for every x € Qp. (Gh)o<h<1 is consistent with (7), then up — u locally

uniformly in Q, where u € C(Q) is a viscosity solution to (7).

For the proof of Proposition 1, we refer the reader to [2, Theorem 2]. We
conclude this section with a discussion on the solvability of G (up,z) = 0, as

outlined in [15]. Consider an Euler operator of the form
S(p7 hu Uh, JI) = Up — th(uhu :E)u

where 0 < p < 1 is a small parameter related to h through a (CFL) condition.
The latter depends on the ellipticity of F', the dimension d and the data of the
problem. Under a CFL condition, one proves that S is a contraction, which
ensures the existence of a unique fixed point in an appropriate Banach space.
This is tantamount to the existence of a (unique) solution to Gj = 0. This

strategy is implemented in our numerical examples; see Section 4.



3 A finite difference method

We propose a numerical method based on the strategy implemented to prove the
existence of solutions to (1); see [18, Theorems 1 and 2|. For 0 < h < 1, denote

with Qj, a discrete approximation of Q. Let N(h) stand for the cardinality of

Rde(

Q). When useful, we identify O, with a point in ). We also consider an

enumeration for the points in €, given by
dx N(h
(z1,@2,...,xN(n)) € RS (),

Fix 0 < ¢ < 1 and let v : Q) — R. Notice that v(Q;,) € R¥N™); for simplicity,

we sometimes write

v = (vl,...,vN(h)) = (U(:Cl),...,v(xN(h))) ;

where we have used the enumeration of the points in . We define hy : Qp — R

h?(z) == max (min (%f 1) ,0) .

Consider the operator I, : R % R x ), — R given by

as

Fo (M, x) = er + hi(z) Fy (M) + (1 = h(2)) Fa (M) — f ().

We denote the discretisation of the Hessian with

d
Diw(a) = (02, wi@) .
,)=
where (¢ + hew) + wn @ — heo) — 2un(z)
wp(x + he;) +wp(x — he;) — 2wp(x
Bimlwh(x) = e
and
9 _ —2wp(x) +up(x + esh — ejh) + wi(x — esh + ejh)
Tq mj’LUh(I) T 2
© 2h
wp(z + e;h) +wp(x — e;h) + wp(z + ejh) + wp(x — ejh)
+ 252 .

Working under the Assumption A3, we obtain

Fy(Djun(z)) < Fy(Djwp(x))



whenever wy, < up. We study the numerical method given by

2 (D*up,up,x) — f(z)  if xeQy

: (11)
up(z) — g(x) if ey,

G;h(uh, x) = {

where the unknown uy : Q;, — R is a function whose image u, () has cardi-
nality N(h). As before, uy(,) € RYN™) and we write

(u,l“ uy, ... ,uiv(h)) = (un(z1),un(x2), ..., un(zNm)) ,

using once again the enumeration of the points in Qj,. We proceed by verifying

that G ; is monotone for every 0 < ¢,h < 1 and every v € RN (™),

Proposition 2 (Monotonicity). Suppose Assumptions A3 and A4 hold. Then
G? ), is monotone for every 0 < e,h <1 and every v € RN,

Proof. Let up,wy, : Q — R be such that uy,(x) = wy,(x) for some x € Qy,, with
up < wyp, in Qp,. We must verify that G}__f)h(uh,x) > G}__f)h(wh,x).
If x € 99y, we have

G (un, x) = un(x) — g(x) = wn(z) = g(z) = G ), (wp, ),

and the inequality follows.

Otherwise, suppose x € ,. Then
G2y (un, @) = F2)(D*up, un, ) 2 F2)(D*wn, wh, 2) = GLj, (w, @),

and the result follows. O

We continue with the stability analysis for G¢ ;,. To that end, we introduce

barrier functions w and w and consider their restrictions to €2y,.

Proposition 3 (Discrete global barriers). Suppose Assumptions A3 and A4
hold true. There exist w,w : Q — R such that

cn(w(e),x) <0 <Gy (w(x), )

for every 0 < e < 1, v e RN and z € Qp, for all 0 < h < 1.

Proof. We detail the case of w, as the remaining one is completely analogous.

10



For xz € Qp,, set

_ Ca | 2 2
’LU((E) = Cl — m |£L'| 2 Cl - m,

where L > 0 is such that Q@ C Bp. Choose C; > 0 large enough such that

w > ||9HLoo((9Q). For x € 09}, such a choice ensures
cn(@(@), ) =w(z) — g9(x) = |9/l L (p0) — 9(x) = 0.

For x € Qy, we get

@) = (- ) + o) (S 1d)
+ (1= h¥(x))Fy (_A(;? Id> — f(z)

2 ||9||Loo(asz) +C2 = f().

By choosing C2 > || f||~(q) one completes the argument. By setting w :=

w,
one finishes the argument. O

The stability is the subject of the next proposition. Here, the discrete global

barriers play a central role.

Proposition 4 (Stability). Suppose Assumptions A3 and A4 hold true. Let
0<h<1andu:Qn — R be a solution to G;h(uh,x) = 0. There exists a
constant C' > 0 such that

sup max |up(z)| < C.
0<h<1z€Qy

Moreover, C' > 0 depends only on the dimension d, the ellipticity constants A
and A, ||f||L°°(Q) and ||g||L°°(8£2)‘
Proof. To prove the proposition, it suffices to verify that

w(z) < up(xr) <w(z)

for every x € Qy,, for every h € (0,1). We verify the second inequality, as the
first one follows from an entirely analogous reasoning.

We claim that u;, < W in Q. Suppose otherwise; there exists x € Qj, such
that w(x) < up(z). If z € 9Qp,, we have

0= G p(un(z), 2) = un(x) — g(z) > w(x) - g(x) = GZ,(w(2), z),

11



which is a contradiction to G ;,(W(z),z) > 0. Suppose z € €. In this case,
suppose without loss of generality that = is a maximum point for u;, —w. That

is,

up(z) —W(x) > un(y) —w(y)

for every y € Q. Then

un () — un(y) > w(z) —w(y). (12)
Hence,

Y (un(x),2) = FY ), (Dyup(2), up(z), x)
> Fg’)h(D%E(x),E(x), x)
= G{ p(W(x), ),

where the strict inequality follows from (12). Because uy, is a solution to G, =

0, the former inequality yields a contradiction and proves the proposition. [

We proceed with a fixed-point analysis. Our goal is to show there exists
up, : Qn, — R such that
Gg,};z(uh(x)vx) =0

for every x € Q.
For the barriers w,@ : Q — R and fized 0 < h < 1, denote with B;, the set

By, = {w e RVN® | Z.:11111%(}0 w(z;) < w, < i_lr?.aj)\cf(h)ﬁ(xi)} . (13)

Define also T}, : By, — RV ags follows. For v € By, Tv is the unique solution
to GZ; = 01in Q. It is clear that By, is closed and convex. We continue with

the properties of the map T

Proposition 5 (Properties of the map T'). Let 0 < h < hg be fized and define
By, asin (13). Then T(By) C By,. Additionally, T is continuous and precompact.

Proof. For the sake of clarity, we split the proof into three steps. First, we
address the invariance of Bj, under the map 7.

Step 1 - Let v € By,. Then T'v is the unique solution to G¢ ;, = 0. Proposition
4 ensures that w(x) < Tw(z) < W(z), for every z € Qy,. Hence,

min = w(z;) <Tv(z;) < max w(z,)

J=leoN(R) =1, N (h)

12



for every i = 1,..., N(h). We conclude that Tv € By,.

Step 2 - To verify that T is continuous, we let (vy)nen and suppose there
exists v € By, such that v, — vs, as n — 0o. We claim that Tv, — Tv, as
n — 00.

Indeed, denote with u ;, the unique solution to Ggfh. The sequence (up)neN
is uniformly bounded, because of Proposition 4. Compactness in RN (") ensures
the existence of a subsequence (un, )xen, converging to a function @ € By. Now,
take z € Q. If z € 9Qy,, we have

0= G5 (un, (), 2) = un, () — g(z) = U(z) — g(2). (14)
If x € Qp, we have
0= G (un, (), ) = 2™ (2)Fy(Dyu(2)) + (1 = he>(2)) B (Dju(x))  (15)
Combining (14) and (15), one obtains
G5 (u(z),z) =0
for every x € Q. The uniqueness of solutions to Gg",‘; = (0 implies that

TVoo =u = lim Tv,,
n— o0

independently of the subsequence (un, )ren, ensuring the continuity of 7.

Step 3 - It remains to verify that T is precompact. Let (Tv,)nen C T(Bp).
Once again, stability (Proposition 4) ensures that (Tv,)nen is a uniformly
bounded subset of RV(") . Clearly, it admits a convergent subsequence, and

the proof is complete. O

A corollary of Proposition 5 is the existence of uj, € By, satisfying
G (un(z),2) = 0 (16)

fo every x € Q.

Corollary 1. Let 0 < h < hg be fized and define By, as in (13). There exists
up, € By, satisfying (16) for every x € Q.

Proof. The corollary follows from Proposition 5 combined with Schauder’s Fixed

Point Theorem; see, for instance [11, Theorem 3, Section 9.2.2]. O

13



The previous corollary ensures that, for every 0 < g, h < 1, there exists
up, : Q, — R such that (16) is satisfied. Our first goal is to take the limit h — 0.
Since we have already verified that G is monotone and stable, it remains to

prove it is consistent with (3).

Proposition 6 (Consistency of Gt}). Let GY, be defined as in (11). Sup-
pose assumptions A8 and A4 are in force. For u € C(Q), the method Gz, is

consistent with

FY(D%*u,u,x) = f in (17)
u=g i ON.
Proof. Let ¢ € C°°(2) and fix x € Q. We aim to prove that
limsup G214 (0 (y) + &,9) < G* (D*p(x), (), ) . (18)
=
£—0

For ease of presentation, we split the proof into two cases.

Case 1 - Suppose z € Q. In that case, the points y approaching = are also in

the interior €. Hence,

G2 (p(y) + & y) = ele(y) + &) + heTE(y) Fi (D} (o(y) +€))
+ (1 = hE5(y)) R (D7 (9(y) + ).

We also know that
Di(¢(y) +€) = D*p(x) + O(h?)  and  Di(p(y) +€) = Dep(z) + O(h).
As a consequence, the continuity of Fy, Fy, and h¥*¢ ensure that

limsup GZ1 (o (0) +€,) = £¢(2) + 2 (@) i (D(z)
y—x

£—0
+ (1 - h#(2)) F2(D*p(x))
< G*(D*p(x), o(z), z).

We proceed with the case z € 99Q.

Case 2 - Suppose now that x € 9€). In this case, we can consider that either the
approaching points satisfy y € Qj or y € 9Qy,; this is due to the limit superior

operation.

14



Let y € 0Q2. Then

G () + &) = o) + € — g(y) — @(x) — g(x) < G*(D*¢(), o(), ),

as h — 0, y = z and £ — 0. Hence, the desired inequality follows. Now, let
y € Qp. As before, we obtain

lim sup Grle(y) + &, y) < G (D*¢(x), Do(x), p(z),z) .
y—x
£—0

In any case, (18) is verified, and the method is consistent with (17). O
In the sequel, we present the proof of Theorem 1.

Proof of Theorem 1. Let (uen)o<h<1 be the family of solutions to
G5 (uep(z),2) =0

in Q. Combine Corollary 1 and Proposition 6 with Proposition 1 to conclude

that u. 5, — u., where u. is a viscosity solution to

gue + h¥s F1(D?u;) + (1 — h¥<)Fy(D?u.) = f in Q
Ue = ¢ on Of).

Arguing as in [18, Theorem 1], one concludes that u. — w locally uniformly in

Q, where u is a viscosity solution to (1). (]

4 Numerical examples

In this section, we present two illustrative examples demonstrating the conver-
gence of the numerical method in both one-dimensional and two-dimensional
settings.

The approximate solution of problem (1) is obtained through an iterative
process based on problem (7) with a small parameter €. For a fixed ¢ > 0,
we begin with an initial guess v; and proceed by solving the 7,4, numerical

problems iteratively

G:,nh(uz7x):07 n=1...,Nnaz- (19)

15



At each iteration step n, given v,,, we compute the solution u}. We then update
the iteration by setting v,41 < uj and the problem is solved again using the
new value v,,11. After n,,q, iterations, we obtain the numerical solution, which

is an approximate solution to the problem
Gsuy’;l(uh(x), x) =0.

To solve each of the numerical problems in (19), we discretize de second order
derivatives as described at the beginning of Section 3. This leads to a nonlinear
system given by

Gth(uﬁ)i,xi) =0, z; €Qy,

where uj ; are the solutions at the interior points to be determined. This oper-
ator also depends on boundary points. However, since their values are known,
they are not treated as unknowns in the system. To obtain the approximate
solution over the discrete domain, the resulting nonlinear system of equations
must be solved. For each fixed v,,, we apply an Euler map, that is, starting from

e ey 1 . . .
an initial guess u;"", a number of iterations are performed according to

nm+1l _  nm Un n,m _
up’; =wu’; —st_’h(uh_’i L Ti), m=1,..., Mmaz.
Therefore for each v, we obtain the numerical solution w, "™** which approxi-

mates the solution uj. For clarity, the algorithm is presented below.

Algorithm 1 Numerical scheme

Input: Set €, the number of points N and the uniform grid size h.
Set source term f(x)
Set stability parameter p = 0.05h% and ¢ = 1.2h
Set number of outer iterations nya.x and inner steps mmax

Define nonlinear operators Fi, Iy and he(v) to build F}, (M, up)

Ce . 1,1
Initialize solution v := vy and set u,’" = vy

for n =1 to nyax do
for m =1 to mpax do
nm+1l _  nm U, n,m
Up, = Uy, —p(Fs_’h(M,uh )= 1)
Enforce boundary conditions of u
end for
— nvmmaa:
Un+1 = Uy,
n+1,1 _
Uy, = Un+1
end for
Output: Numerical solution uy ™" ™
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Example 1 (One-dimensional problem). We consider a one-dimensional prob-
lem defined in [—1, 1], discretized using a uniform grid with N = 250 points.
The source term is defined according to the exact solution of the problem which
iS Uegact (1) = —22 /2 for < 0 and Uegqet(z) = 22/2 for & > 0, see Figure 1(a).

This profile corresponds to different concavities on either side of the origin.

05 05
0 e 5 0
05 : ‘ : 05
-1 05 0 05 1 -1 05 0 05 1
X X
(a) (b)
10
_8
B
©
x
o
=
E!
102
0 10 20 30 40 50
Iteration
(c)
Fig. 1: One-dimensional example: (a) Exact solution (——) versus approximate
solution (—); (b) Approximate solution wuy "™, for n = 1,...,55; (c) Plot of
n,m
the error [[u;™"™*" — Uegact||oo for n=1,..., Npaz.

To define the operator F?, (M, x;) we define the two nonlinear operators /'y
and F5 as

Fi(M) = max(—3M,—2M),  Fy(M) = max(—M, —2M).

The numerical method consists in two iterative processes. An outer loop
that updates the function v and consequently the regularization function h.(v),

and an inner loop that applies explicit updates to solve the nonlinear discrete

17



system. This second loop mimics a pseudo-time-stepping procedure to reach a
steady-state solution of the underlying nonlinear partial differential equation.
See Figure 1(b), to visualize a couple of iterations of the outer loop.

The value of ¢ is set to 1.2h, where h denotes the mesh size. The second order
derivative is approximated using the centered finite difference approximation
and to ensure stability of the explicit Euler method, which is used to iteratively
solve the nonlinear system, the parameter p is choosen as p = 0.05h2. Dirichlet
boundary conditions are imposed using the known values u(—1) = —0.5 and
u(1) = 0.5.

The algorithm tracks convergence by computing the maximum error with
respect to the exact solution at each outer iteration |[u) ™" — tegact||oo, 1 =
1,..., Nmaz- A semilogarithmic plot (z is ploted in linear scale and y is ploted

in a logarithmic scale) illustrates the convergence behavior, displayed in Figure

1(c).

Example 2 (Two-dimensional problem). For the two-dimensional problem the
domain is [—1, 1] x [-1, 1] and we build a source term for the problem with the
smooth exact solution Uegzqet(x,t) = sin(max) cos(my). The domain is discretized
using N = 250 points in each direction. The problem depends on ¢ and this is
chosen as € = 1.2h where h is the mesh size in both directions. The numerical
method initializes with a smooth guess and iterates in two levels as described
previously. The outer iterations update the v function and consequently the
he(v). The inner iterations apply explicit Euler updates to solve the nonlinear
discrete system, for a fixed v. Then the solution enters as the new v and also
as the new guess for the Euler iteration.

At each inner step, the boundary conditions are enforced using the Dirichlet
boundary conditions. The second derivatives are approximated using central
finite differences on the interior nodes. After each outer iteration, the maximum
difference between the numerical and exact solution is recorded.

We show the exact solution, the convergence history, and the pointwise error

at Figure 2.
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