DARBOUX-LIE DERIVATIVES
ANTONIO DE NICOLA AND IVAN YUDIN

ABSTRACT. We introduce the Darboux-Lie derivative along a vector field of
fiber bundle maps from natural bundles to associated fiber bundles and study
its properties.

1. INTRODUCTION

This article is an accompanying paper to the forthcoming series of articles by
the same authors on the theory of G-structures. In the course of reformulating the
basic notions pertaining to G-structures on manifolds in terms of gauge equivalence
classes of soldering forms, we stumbled upon the absence of a properly developed
calculus of derivatives for such forms and for gauge transformations. A soldering
form [ in this context refers to an isomorphism of vector bundles §: TM —
P XV, where P is a principal G-bundle and V' is a G-module (cf. [1]) and a
gauge transformation is a section of the bundle P x4 .G.

In this article we introduce and study properties of Darboux-Lie and covariant
Darboux-Lie derivatives of fiber bundle morphisms from F(M) to P x¢ N, where
M is a manifold of dimension n, F'is a natural bundle on n-dimensional manifolds,
P is a principal G-bundle over M, and N is a manifold equipped with a smooth
left G-action. The case of soldering forms is covered by F(M) =TM and N =V
and the case of gauge transformations corresponds to F(M) = M and N = .G.
We choose the generality of an arbitrary natural bundle with a shot for future
generalizations to high-order G-structures.

For a fixed G-module W and G-equivariant 1-form, the Darboux-Lie derivative
L5 F(M) — P xg W of the bundle map : F(M) — P xg N is taken along a

G-equivariant vector field X on P. The complete definition, given in Section 4, is
slightly too technical to be fully stated in the introduction.

If P is equipped with a G-principal connection, then the horizontal lift X of
a vector field X on M is G-equivariant. We define the covariant Darboux-Lie
derivative of 3 along X as £, 0.
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We show in the article that various classically known derivatives (covariant, Lie,
Darboux) can be considered as special cases of (covariant) Darboux-Lie deriva-
tives. We also prove various properties, including a characterization of (covariant)
Darboux-Lie derivatives in terms of flows and a suitable Leibniz rule. We conclude
with the proof of the Cartan magic formula for covariant Darboux-Lie derivatives.

The paper is organized as follows. Section 2 contains some preliminary material.
In particular, we fix the notation for principal and associated bundles, and recall
the definition and main properties of natural bundles.

In Section 3, we discuss a metamathematical concept of derivative. This dis-
cussion culminates in the definition of an a-derivative. We show that this no-
tion incorporates Lie derivatives of Janyska-Kolar and of Godina-Matteucci. The
(covariant) Darboux-Lie derivatives are defined in Section 4 as a special case of
a-derivative.

Section 5 demonstrates how classical Lie derivatives of tensor fields and stan-
dard covariant derivatives of sections of vector bundles can be seen as particular
instances of the Darboux-Lie derivative.

In Section 6, we calculate the Darboux-Lie derivative along vertical G-invariant
vector fields on P. This permits to compare covariant Darboux-Lie derivatives
calculated with respect to two G-principal connections on P.

Section 7 is dedicated to establishing various Leibniz rules for the (covariant)
Darboux-Lie derivative with respect to operations like fiber products, tensor prod-
ucts, and compositions of fiber bundle maps.

In Section 8, we derive a Cartan-type magic formula for covariant Darboux-Lie
derivative when applied to differential forms with values in an associated bundle.

In Section 9, we announce some results related to G-structures.

2. PRELIMINARIES

2.1. Principal bundles. Let GG be a Lie group, M a smooth manifold and P a
principal G-bundle. Then there is a unique smooth map

\I P xy P — G
(p,p") = p\P,
such that p(p\p') = p’ for every pair p, p’ in the same fiber of P. This map will be

handy to explicitly write various maps involving principal bundles.
Clearly, p\p = eg. Moreover, for all g € G and (p,p’) € P x P, we have

(1) (p)\p' =g '(0\P), p\®'9) = \P)g. p\p= )"

2.2. Associated bundles. Let N be a manifold equipped with a smooth left G-
action. The associated fiber bundle P xg N over M is defined as the quotient
(P x N)/G, where the group G acts on P x N by (p,y)g = (pg, g~ 'y) for (p,y) €
Px N and g € G. We write [p, y| for the G-orbit of (p,y) in P x N. The projection
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from P xg N to M is defined by sending the orbit [p,y] = { (pg,9 'v) |g € G} to
the common base point of the elements pg, g € G.
One can verify that the following map is both well-defined and smooth:

\Z PXM<PXGN)—>N
(p, [P, y]) = p\IP' 9] := (p\p)y

Notice that p\[p,y] = y. This map is particularly useful for explicit construction
of maps between associated bundles.

2.3. Vector fields and their flows. Given a vector field X on M, we write 72X
for the maximal integral curve of X that passes through z € M at time 0. We
denote its interval of definition by J:¥ C R. The union

D(X):=J I x{z} cRx M

zeM
is the domain of the flow of X and the flow of X is the map
ox: D(X)—> M
(t,2) = 75 (1)
For each t € R, we define the open set
UX:={zxeM|(tz) e DX)},

consisting of points whose integral curves are defined at time ¢. For a fixed t € R,
the flow operator is the map

Ol UX - UY, zw px(t,z),
which is a diffeomorphism. These operators satisfy the usual composition rule:

Pl o ®% = on UXNUL,.

2.4. Natural bundles. A systematic treatment of natural bundles can be found
in [6, Ch. IX]. Here we will just recall the definition of natural bundles and their
properties that will be needed later. It is important to mention that tensor bundles
are instances of natural bundles.

Write M f for the category of smooth manifolds with smooth maps between
them and M f, for its subcategory of manifolds of dimension n with local diffeo-
morphisms between them as morphisms. Denote by &, the embedding of M f,
into M f. One of the possible equivalent definitions of a natural bundle is to say
that a natural bundle is a pair (F,p), where F': Mf, — Mf is a functor and
p: F'— &, is a natural transformation such that

(a) for each M € Mf, the map py: F(M) — M turns F(M) into a fiber bundle
over M;
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(b) for each f: M — N in M, the map F(f): F(M) — F(N) is a fiberwise
diffeomorphism that covers f: M — N, i.e. the commutative diagram

FM) 22 vy

(2) pus l i[pN

is a pull-back square’.
A natural map from a natural bundle (F,p) and to a natural bundle (F’,p’) is a
natural transformation of functors n: F' — F”’ such that p = p’on. It is customary
to refer to a natural bundle just by its functor part F.

One defines a natural vector bundle as a natural bundle (F,p) such that each
pyv: F(M) — M is a vector bundle and for each f: M — N in Mf, the map
F(f): F(M) — F(N) is a morphism of vector bundles. Similarly, one defines
natural principal bundles.

One of the key features of natural bundles is the existence of canonical lifts of
vector fields. However, a clear statement and proof of the existence of canonical
lifts for non-complete vector fields are difficult to find in the literature. For the
sake of rigor, we include the following proposition.

Proposition 2.1. Let (F,p) be a natural bundle on Mf,. For every M € Mf,
there is a unique well-defined map
F:X(M)— X(F(M))
X — F(X)

such that for each X € X(M)

(1) the vector field F(X) is a lift of X (called the canonical lift of X );

(ii) for allx € M and y € F(M), the intervals JX and Ji ) coincide;
(iii) for each t € R, the image of the embedding F(U} — M): F(UX) — F(M)

coincides with Ut]:(X) and the diagram

F(®Y)

F(UY) F(U%)

(3> FUX—M) l

lF(UXt<—>M)
o
Ut]—'(X) F(X) U]—'(X).

commutes.

Proof. Let M € Mf, and X € X(M). The tricky point is that the family of
diffeomorphisms F(®%) is not a 1-parameter group on F(M). Indeed, for a fixed

INatural transformations with this property are known as Cartesian natural transformations
in Category Theory.
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t, the map F(®%) is a diffeomorphism between F(U;X) and F(UY,), but F(U})
and F(U*) are not open subsets of F(M) for a general natural bundle F. To
overcome this peculiarity we use the fact that every natural bundle is isomorphic
to an associated bundle of a suitable jet bundle.

For M € Mf, and k > 1, write invJ¥(R™, M) for the space of invertible k-jets
at 0 of smooth maps from R" to M. Denote by GF the subspace of inv.J§(R™, R")
consisting of jets that have value 0 at 0. Then G¥ is a Lie group under composition
of jets and invJ¥(R", M) is a principal G¥-bundle.

Given a smooth map ¢: R® — M write j%(1) for the k-th jet of 1 at 0. Given
a local diffeomorphism f: M — N, we define

invJE(R™, f): invJF(R™, M) — invJi(R™ N)
o) = 55 (f o).

This turns the functor inv.J¥(R™, —) into a natural principal G*-bundle on M f,,.

One can check that for every manifold N equipped with a smooth GX-action the
functor invJ§(R™, —)x g N is a natural bundle. It was proved in [2] that every
natural bundle is isomorphic to a natural bundle of the form invJ§(R™, —)x g N.

Now, let k be a natural number and N a manifold equipped with a smooth
left. GE-action such that F is isomorphic to H = inv.J§(R", —)xg N. We will
show that there is H: X(M) — X(H(M)) that satisfies the properties stated in
the proposition with F' and F replaced by H and #, respectively. Then F(X) is
obtained from H(X) via a natural isomorphism between F'(M) and H(M). The
stated properties for F follow from the corresponding properties for H, since the
isomorphisms are natural.

To get a vector field H(X) on H(M), we construct its flow on H(M). Write o,

for the embedding of UX into M. Define the open subsets U, of H(M) by
U= {["(®),v] € H(M) | Im(y) < U}
and the diffeomorphisms Pt ﬁt — ﬁ_t by
([ (¢), ) = [* (@ 0 ), y].

It is easy to check that @' is a local flow. We define #(X) as the unique vector
field on H (M) such that ®, () = ®!(z) for all z € U,. Write p for the canonical
projection from H (M) to M. Thus p([5*(x),y]) = 1(0) for all [j*(v),y] € H(M).
Then for all z € M and [j*(¢),y] € H(M), N Uy, we get

PPy (175 (), yD) = p([7* (DY 0 ¥), y]) = (P 0 )(0) = P ().

Thus H(X) is a lift of X. Moreover, U, C UX) | which implies that Userit}x U, C
D(H(X)). Thus, for every x € M and z € H(M), the interval JHY) contains the
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interval JX. But, since H(X) is a lift of X, also J*) ¢ JX. Thus JI*X) = JjX
as claimed. We also conclude that UtH 0 = U, for all ¢ € R.

It is clear that if ¢': R® — U then o;01': R® — M has its image in U;X. Also
for every ¢: R™ — M with Im(¢)) C U;* there is a unique ¢': R — U;* such that
1) = oy 01)’. This shows that U,, and hence also UtH(X), is the image of H(o;). The
commutativity of the diagram (3) follows from a straightforward computation. [

Let n: F/ — F be a natural map between natural bundles on M f, and M €
Mf,. Then for every X € X(M), the vector fields F'(X) and F(X) are ny-
related. To see this, let z € M and y € F'(M),. We have

, d
Tnaa(F(X)y) = — | 1m (% x)v)
()
d
I(X)nM(y) = dt (I)B-'(X)(UM(y))'
t=0

For ¢ € R, write o for the embedding UX — M. Then F'(0y) is a diffeomorphism

between F’(U;X) and U™ ¢ F'(M). Denote by y; the unique element of F'(Uy)
such that F'(o;)(y:) = y. Using the commutativity of (3) and the naturality of
N, WE get

M (R x)y) = Mt (R xy © F'(00) () = maa (F(0—1) © F'(Dlx) ()
=F(o)o F(‘I)t )0, (ye)) = q)t F(x)© F(ov)(nu, (yr))
= Ol (x) (M (F'(00) () = Plr(xy (M (y))-
Thus (4) implies that
(5) T (F'(X)y) = F(X i)
i.e. the vector fields F'(X) and F(X) are ny-related.

3. DERIVATIVES

We start with a discussion of what one might expect from a notion of derivative.
Given a map h between two smooth manifolds, the tangent map T'h captures the
first-order behavior of h. The drawback of Th is that it retains h inside it. A
metamathematical idea of a derivative of h would be Th with A stripped out and
only the first-order information retained. It is evident how to do this in the case
of R-valued smooth functions. Namely, given a smooth function f: M — R the
derivative df : TM — R is determined by

(Tef)(X) = df (X) —
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In other words df = dt o Tf. The key point of the definition is the existence
of the canonical nowhere zero 1-form dt on R. More generally, let N be an n-
dimensional manifold and w: TN — R" a 1-form on NN such that w,: T,N — R"
is an isomorphism for every y € N. Then for a smooth map h: M — N, one can
define its derivative as woTh. Notice that a form w with the above property exists
if and only if N is a parallelizable manifold. For this reason we call such a form a
parallelization form.

Of course, w o Th depends on the choice of the parallelization form w. For
example, in the case N is a Lie group H, there are two natural choices for w: either
left-invariant or right-invariant Maurer-Cartan form. In this case the resulting
derivative is called left (right) Darboux derivative, respectively.

Another standard example of a derivative is the covariant derivative of a section
s: M — PxgV, where P is a principal G-bundle with a fixed principal connection
and V' is a G-module. In [5], Janyska and Koldi developed a general theory of Lie
derivatives that includes as special cases the usual Lie derivatives and covariant
derivatives.

Below, we introduce the notion of a-derivatives that captures the idea of deriv-
ative explained above. For this, we use the following auxiliary construction.

Let M; and M, be smooth manifolds and A: M; — My a smooth map. For a
pair of vector fields X; € X(M;), X2 € X(Ms), we call the map

£(X1,X2)h: M1 — TM2

the Trautman lift of h. Alternatively (cf. [6, Lemma 47.2]), we have

5 d

(6) (E(Xl,XQ)h)Z‘ = 7 CD)_(Z oho CI)tX1<x)‘
t=0

Remark 3.1. The map ﬁN( X1,X»)h was initially introduced by Trautman in [7] with-
out a specific name. It was later referred to as the “generalized Lie derivative” in
a series of articles by Kolar and his coauthors, with the main results summarized
in [6, Ch. XI]. However, we have chosen to deviate from this terminology because
“generalized Lie derivatives” do not align with our concept of a derivative and
never specialize to Lie derivatives. Instead, they serve as an intermediate step in
the construction of Lie derivatives.

The Trautman lift is particularly useful when h : F; — F5 is a map of fiber
bundles over a manifold M and X, X, are lifts of the same vector field on M. In

this case, the values of £~( X1,x2)h lie in the vertical subbundle VF, of the tangent
bundle TF5.

Definition 3.2. Let h: F; — F5 be a bundle morphism over M and (X;, X3) a
pair of lifts of the same vector field on M to F; and to F5, respectively. For a
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vector bundle E over M and a vector bundle map a: VF, — E that covers the
projection Fy — M, we denote the composite

« O E(Xl,Xg)h: F1 — F
by L, x, I and call it the a-derivative of h along (X1, Xo).

Remark 3.3. The a-derivative carries all the first-order information about h pro-
vided that, for each base point z € M and each y € F,,, the map

(7) o, : V,Fs = E,

is injective.

A potential issue arises if the images of o, vary with the choice of y inside
the same fiber Fy,. In that case, the a-derivative may contain more than just
differential information: it might even allow one to recover the actual values of h
in the fiber.

To avoid this, one can assume that, for each x € M, the image of «, is the
same for all y € Fy,. Imposing injectivity and this independence of the image
ensures that Im o forms a vector subbundle of E. Thus, the notion of a-derivative
fully aligns with the intended philosophy of a derivative if and only if a induces a
fiberwise isomorphism onto a subbundle of E. Of course, by replacing F with this
subbundle, nothing is lost.

In all instances we are aware of where the a-derivative specializes to a previously
studied derivative (e.g., Lie or covariant derivative), the corresponding choice of
« is a fiberwise isomorphism onto E. We have nevertheless not imposed this
assumption in the definition, since doing so would prevent a clean formulation of
the Leibniz rule for a-derivatives.

A family of suitable choices of o can be obtained using vertical splittings. A
vertical splitting for a fiber bundle Fy over M is an isomorphism of vector bundles
B: VFy — Fy x ) E over Fy for some vector bundle E over M. Then a = pry, 0 8
is a vector bundle map from VF, to E that covers the projection Fy — M such
that the maps «, are isomorphisms.

If Fy is a vector bundle on its own, then the inverse of the vertical lift

VIFQI Fs <y Fo — VF,

d
(u,v) = —|  (u+ovt)
dt|,_,

is an example of vertical splitting. The composite pr, o VII;Q1 is called the wvertical

projection and is denoted by vprg,. The vprg, -derivative L\(/;?Q)h is called the
Lie derivative of h with respect to X; and X5 in [6, Section 47.7]. This derivative
was introduced by Janyska and Kolar in [5].

Now, we return to the context of a general fiber bundle Fy, but assume that

F, = M with the projection map id,;. In this setup h: M — F5 is just a section
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of Fo. If X5 € X(F,) is a projectable vector field lifting X € X(M) and 3: VFy —
Fy xy E is a vertical splitting, then the (pr, o 3)-derivative of h along (X, X»)
was called the (restricted) Lie derivative of h with respect to Xs by Godina and
Matteucci in [3,4].

The Lie derivatives of Janyska-Kolar and of Godina-Matteucci can be further
specialized to get classical Lie and covariant derivatives.

Ezample 3.4 (Lie derivative). Suppose F' is a natural bundle and F a natural
vector bundle on Mf,,. Given M € M f,, a vector field X € X(M) and a smooth
map h: F(M) — E(M), the Lie derivative Lxh of h along X is the vprp -
derivative of h along (F(X),E(X)). It coincides with the Lie derivative defined in
textbooks in the case both F'(M) and E(M) are tensor bundles over M.

Ezample 3.5 (Covariant derivative). If E is a vector bundle equipped with a linear
connection then the covariant derivative Vxs of a section s: M — E is the vpry-
derivative of s along (X, XV), where XV is the horizontal lift of X € X(M)
(see [6, Section 47.5]).

Despite the generality of a-derivatives, it is still possible to obtain some results
for them. Namely, we will show that there is a version of Leibniz rule for an
a-derivative of a composition.

We start with the Leibniz rule for the Trautman lift of a composition. The
following proposition follows directly from the definition of the Trautman lift.

Proposition 3.6. Let M, My, Ms be manifolds and X; € X(M;), i = 1, 2, 3.
For any smooth maps hy: My — My, hy: My — M3, we have

(8) Lx, x5 (ha 0 hy) = Thy o Lx, xph1 + (Lx,.x5h2) 0 b1

Notice that the vector field X, is not present on the left-hand side of (8) and
thus can be chosen arbitrarily on the right-hand side.
The above proposition immediately implies the following result.

Corollary 3.7. Let ¥y, ¥y and F3 be fiber bundles over a manifold M and
hi: F1 — Fs, hy: Fy — F3 fiber bundle maps. Suppose a: VF3 — E is a vector
bundle map covering the projection from ¥3 to M. Write hio for the composite
of a with the restriction of Thy to VFs. It is a vector bundle map covering the
projection from Fy to M. For every triple (X1, Xo, X3) € X(F1) x X(F3) x X(F3)
of projectable vector fields lifting the same vector field on M, we get

a h3a «a
(9) E(Xl,Xg)(hQ O hl) — ;C()2<17X2)h/1 + (E(XQ,Xg)h2) O h/l.

4. DARBOUX-LIE DERIVATIVES

The peculiarity of a-derivative is that it is defined along pairs of vector fields
on fiber bundles. This is a striking contrast with classical derivatives that are
defined along vector fields on the base manifold. The utility of a-derivative, as
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demonstrated by Examples 3.4 and 3.5, lies in the fact that usual derivatives can
be expressed in terms of a-derivative. Thus a-derivatives provide a framework to
introduce new types of derivatives. By specializing the notion of a-derivative, we
introduce the notion of Darboux-Lie derivative taken along invariant vector fields
on a principal bundle over the base manifold. We accompany this notion by the
notion of covariant Darboux-Lie derivative taken along vector fields on the base
manifold, but additionally depending on the choice of a principal connection.

Let G be a Lie group, P a principal G-bundle and N a manifold equipped
with a smooth left G-action. We will identify V(P x¢ N) with P x T'N via the
isomorphism

v: V(P xg N) = PxgTN

(10) d d

D O (0)] = [7p<o> a

il e rO\e) )]

t=0

where vp is a vertical curve in P and vy is an arbitrary curve in IV, both defined

on the same open interval containing 0. N
Suppose X is a G-invariant vector field on the principal G-bundle P. Write Xy

for the vector field on P x g N, whose flow is given by CID}N p,y] = [@%p, y|. Notice

that the vector fields X and Xy are both projectable and correspond to the same
vector field X on M.

Let F' be a natural bundle on M f,. Recall that F(X) is the canonical lift of
X to F(M), whose existence is proved in Proposition 2.1. For a fiber bundle map
h: F(M) — P x¢g N, we denote the Trautman lift ‘E’(F(X)J?N)h by £ zh.

Let V be a G-module. For a G-equivariant 1-form w: TN — V define

id Xgw: PxgTN —PxgV
p, Y] = [p,w(Y)].
It is clear that id X qw is a vector bundle map covering the projection PxoN — M.

Definition 4.1. Let F be a natural bundle on M f,,, M an n-dimensional smooth
manifold, P a principal G-bundle, and N a smooth manifold equipped with a G-
action. Suppose w: TN — V is a G-equivariant 1-form and X € X(P)“. For a
bundle map h: F(M) — P xg N, the Darbouz-Lie derivative

LLh: F(M) — P xgV
of h along X with respect t0~w is the a-derivative E?}'(X),)?N)h with o = (idxgw)ov,
Le. £2h = (id xgw)ovo £zh.

Definition 4.2. If P is additionally equipped with a G-principal connection, we
define the covariant Darbouz-Lie derivative L3V h of h along X € X(M) with
respect to w to be £54h, where X1 is the horizontal lift of X to P.
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If N is a G-module V', then there is the canonical G-equivariant parallelization
form vpry, := pry 0 vl‘_/1 on V', where
viy: VeV ->TV

d
(v,w) = —|  (v+wt).
dt|,_,

t—
Remark 4.3. If v is a curve in V, then vpry, (7(0)) coincides with the derivative of
v(t) at 0 as it is usually defined in standard Calculus courses.

Another interesting case is when N coincides with GG considered with the conju-
gation action. In this case, we can take w to be the left-invariant Maurer-Cartan
form on G, defined by

wpo: TG — g= TeG
T,G > Z w— (T.L,) ' (2).
In these two cases we will skip w in £ and write £ 3h instead of £§)th or £°§Mch.

Similarly, we write LY for E}Pr"’vh and for LV h.
The Darboux-Lie derivatives £;i( can be expressed in terms of flows.

Proposition 4.4. Let h: F(M) — P xg N be a fiber bundle map over M. For
alzeM,pe P, andy € F(M),

(1) £5it) = o 5

0<q>§p>\h<@;<x><y>>)} e PxgV.

Proof. From (6), we get

£5h(y) = i . q)}(iv oho®%x(y)
d _ .
=5 (05 X 1d)[@%p, (PLp)\M(P%x)(y))]
0
d
- at . [p, ((I)%p)\h(@}(x) (v))]-
Now the result follows from £%h = (id xgw)owvo f)?h O]

5. EXAMPLES AND RELATION TO OTHER DEFINITIONS

Many known derivatives can be expressed in terms of Darboux-Lie derivative.

First we consider the case of Lie derivatives as defined in Example 3.4. Let F
be a natural bundle and F a natural vector bundle. Then E is isomorphic to, and
thus can be replaced by, the functor invJ§(R™, —)x iV for a suitable G}-module
V. For X € X(M), denote by X¢ the canonical lift of X to invJ¥(R™ M). Then
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X¢is G*-invariant, and X¢ coincides with the canonical lift £(X) of X to E(M).
Hence for h: F(M) — E(M) = invJ§(R", M) x gV

(12) Lxh = LG5 00 = £3:7h.

5.1. Covariant derivative. Let M be a manifold and F an m-dimensional vector
bundle on M. For an m-dimensional vector space W, we denote by L(W, E) the
bundle of W-frames in E, thus L(W, E) is the set of maps f: W — E that induce
an isomorphism between W and FE, for some x € M depending on f. The set
L(W, E) is a principal GL(W)-bundle over M and E is canonically isomorphic to
the associated bundle L(W, E) X gy W via the evaluation map

evg: L(W, E) X GL(W) W — FE
[fw] = flw).
Let V be a linear connection on E. For a vector field X on M, denote its horizontal

lift to £ by XV. We get an induced connection on the principal GL(W)-bundle
L(W, E), for which the horizontal lift X* of X has the flow

@'y L(W,E) — L(W, E)
[ (we o (f(w))).

We can express the covariant derivatives from Example 3.5 in terms of covariant-
Darboux-Lie derivative.

Proposition 5.1. Let V be a linear connection on E. If h: M — E is a section
of a vector bundle E, then for every X € X(M)

(13) Vxh=evpoLY(evy' oh).
Proof. As we already explained in Example 3.5, we have
Vxh = L’v;rf(v h = vprg o EN(XVXV)h =pryovlzto ;CN(X7XV)h.

Hence, for every x € M, we get by (6)

d
Vxh(x) =vprg (%

vy onoah(x))

(14) p =0
=vprg | — @;{tv oho® (1)) ).
dt|,_g
On the other hand
(15) LY (evz' oh) = (id x vpry)ovo E(X’XVIEI/)(GVE‘I oh),

where v: V(L(W, E) x¢ W) = L(W, E) x¢ TW is given by (10). By (6), we get

d
i, (@XH oevg oho @&) ().

(16) Lx ximyevi' o h)(x) =
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Write ¢(t) for ® (). Observe that h(®%(z)) € Eyy and @' py f: W S Eq is a
frame at ¢(t). Thence

evi! (h (2 (2))) = [@uf, (Rhuf) ™" o ho @ ()],
Plug in this into (16) and using the definition of X, we get
5 d

Lixxgylevg oh)(@) = | [f(®kuf) ™" o ho @y (x)].
t=0

Applying (10) and (15), we get

LY (ev5t o h)(z) = [f, vpry <%
Therefore
(17)  evg (LY (evg oh)(z)) = f <Ver <% (®Luf)toho @&(@)) :

Write é(t) for h(®% (x)). We have é(t) € E.y). Since O f(w) = o (f(w)) for
all w e W, we get

(@ f) oo @) )]

t=0

t=0

(P [)THE() = f71 (PR (E(1))) -

Therefore
d

(18)  evg (LY (evg' oh)(z)) = f (Vprw (% (@5 oho Cbg((m)))) :

It is left to check that the right hand sides of (14) and (18) coincide, i.e. that

f{vpr 4 ! (<I>_t oho®! (x)) = vpr 4

W\dt|,_, XY X P\ at

Let y(t) be the curve f~H(®5 o ho ®(x))) in W. Then the last equation can be
written as

t=0

O oho @3(@))) |

t=0

Fovm (0 = vore (5 (700

t=0
or, equivalently, as

S (vpry (1(0))) = vprg (T (7(0))) -

Hence, we only have to ensure that f o vpry, = vpry oT'f. Every element of TW
can be written as %‘tzo (wo + wyqt) for suitable wy, w; € W. We get

d
(wo —+ U)lt)) = f [e) pI‘2 o Vl‘;/l (— ('LUQ + wlt))
dt|,_,

= f(pra(wo, wr)) = f(w1)

d
f ovpry, <%

t=0
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and, using that f is linear,

g (77 (G| ) =povig! (G| (fwo)+ slune)

= pry (f(wo), f(w:)) = f(w).
Hence the result. O

6. DARBOUX-LIE DERIVATIVES WITH RESPECT TO VERTICAL
RIGHT-INVARIANT VECTOR FIELDS

Write g for the Lie algebra of the group GG. For each section a of P xg g, we
denote by X the vertical vector field on P whose flow is given by

dlup = pexp((p\a(z))t), forx e M,p€ P,.

It is a G-invariant vector field on P. Conversely, one can show that if X is a
G-invariant vertical vector field on P then it coincides with X, where

a: M — P Xgg

t
0p\<1> gp] :

d
T +— p,a

for an arbitrary p € P,.
Let V be a G-module. The induced action of 4(0) € g on v € V is defined by

(19 (000 = vpry (5 Ov(t)v) .

Fora € I'(M,P x¢g) and h: F(M) — P xgV, we definea-h: F(M) — P xgV
by

a-h(y) = [p, (P\a(z))(P\L(y))],

where y € F(M), x is the base point of the fiber of y and p is an arbitrary point
in the fiber P,.

Proposition 6.1. Let V be a G-module. For every a € I'(M, P Xg @) and every
map h: F(M) — P xg 'V of fiber bundles over M, we have £xah = —a - h.

Proof. et v € M,y € F(M), and p € P,. From Proposition 4.4, it follows that

P\L£xah(y) = vpry (i (‘I’txap)\h(y)) :

dt

0

Applying the definition of ®%., we get

d
P\Exeh(s) = vony

<pexp<<p\a<x>>t>>\h<y>) |

0



DARBOUX-LIE DERIVATIVES 15

As for every g € G and 2z € (P Xg V)., we have (pg)\z = ¢ '(p\z), the above
formula can be rewritten in the form

e xehly) = vy (] es(=0raloNohi)).

By (19), we get p\£Lxah(y) = —(p\a(x))(p\h(y)). Hence £xah = —a - h. O

When the target bundle is P x4 .G instead of P X V' the resulting formula is
more interesting. To state the result, we need additional notation. For h: F(M) —
P x¢ .G, we deviate from the standard conventions and denote by h~! the map
from F(M) to P x¢g .G given by h™(y) = [p, (p\h(y))~!], where p € P lies over
the same point in M as y.

Further, for a € I'(M, P x¢ g), we define Ady(a): F(M) — P X g by

Adp(a)(y) = [p, Adp\n) (P\a(2))],
forallz € M,y € F(M), and any p € P,.

Proposition 6.2. For everya € I'(M,P xgg) and h: F(M) — P xg .G, we have
£xah =aopy — Ady-1(a), where py: F(M) — M is the bundle projection.

Proof. Write x, for the conjugation action of G on itself, i.e. h*, g = hgh™! for all
h,g€ G. Letx € M, p € P, and y € F(M),. By the same chain of arguments as
in the proof of Proposition 6.1, we get

P\ Lxahly) = warc (i expl=(p\a(o)t) % <p\h<y>>) |

dt
For any b € g and g € G, we have exp(—bt) *. g = exp(—bt)gexp(bt). Next
d
w —_—
me | o

Therefore with b = p\a(z) and g = p\h(y), we get
P\Exah(y) = —Adp\ne)-1 (P\a(z)) + (p\a(z)).
This proves the proposition. O

| _
exp(—bt)gexp(bt)> =29 Lexp(—bt)g exp(bt)
0

— —Ad,i(b) +b.

0

More generally, for a G-equivariant V-valued 1-form w on N, we define %, : g X
N — V by

d
(20) bk, z=w (% exp(bt)z) :
Then adapting the first part of the proof of Proposition 6.1, we get
(21) P\L%:h(y) = —(p\a(x)) * (P\L(Y)),

0
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for all y € F(M). This equation can be rewritten as
(22) L%ah = —ak,h,
for a suitably defined *,,.

In the case P is equipped with two G-principal connections, we can compare the

corresponding covariant Darboux-Lie derivatives £Y and £Y. Write X7 and X*
for the horizontal lifts of the vector field X € X(M) to P with respect to these

connections. Then X# — X is a vertical vector field on P and there is a unique

section a € I'(M, P x¢ g) such that X — XH = X If V is a G-module and
h: F(M) — P XV is a vector bundle map, Proposition 6.1 implies that

(23) LYh—LYh = —a-h.
If h: F(M) — P x¢ .G is a fiber bundle map, Proposition 6.2 implies that
(24) LYh — LSh = a0 par — Ady-1(a),

where py: F(M) — M is the projection of the fiber bundle F(M).

7. LEIBNIZ RULE

In future articles, we will need the expressions for £ ¢(s-3), where s € I'(M, Px¢
G) and B € QY(M,P xg V), and for £z(a A 3), where 3 is as before and o €
QY M, P xg g). This section aims to explore the Leibniz rule for the Darboux-Lie
derivative with respect to some binary operations.

Notice that the map s - 3 can be described as the composition

TM 5 M xy TM 225 P s ((Gx V) = PxgV

and a A S as the composition

NTM > TM@TM 225 P xg(g@ V) — P xq V.

Thus in both cases we have a composition of
e a natural map 7y : F(M) — Fy(M) % F5(M), where x* is either x or ®;
e a suitably defined product hy * he: Fy(M) % Fo(M) — P X¢g (N7 * Ny) of
h1Z Fl(M> — P Xa Nl and hz: FQ(M) — P Xa NQ,
e the map from P X (N7 x Ny) — P X N3 induced by a map Ny * Ny — Nj.
Below we develop a machinery to deal with Darboux-Lie derivatives of composi-
tions of the above type.
Applying Proposition 3.6 and (5), we conclude that for every natural map
ny: F' (M) — F(M) and for h: F(M) — P xg N

Lz(hom) =Tho Lipx)Fooymm + (£3h) o = (£3h) o nar.
Hence
(25) f")i((honM) = (£“)i(h) o Ns-
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7.1. Darboux-Lie derivative of a product. Suppose F; and F; are natural
bundles. Define the natural bundle F} x Fy by (F} x F3)(M) = F1(M) X Fo(M).
Given hy: Fi(M) — P xg Ny and hy: Fo(M) — P X N3, define

hy X ha: (F1 X Fy)(M) — P xg (N1 X Na)
(y1,92) = [p, (P\h1(y1), P\h2(y2))],

where y; € Fi(M),, yo € Fo(M),, p € P, for some x € M. Let wi: TNy — V)
and wy: TNy — V5 be G-equivariant 1-forms with values in G-modules V; and V5.
Define wy X wy: T (N7 X No) — V1 @ V4 by

d
w1 X Woy (%

) (’h(t)mz(t))) = (W1(11(0)), w2(12(0))) -

By Proposition 4.4, we get for X € X(P)% over X € X(M)

p\dgw)}lm(hl Xar ha) (Y1, 12) =

d
=Wy X W (E ‘b}p\(hl XM hz)(q)?}l()()yl, @5(}()?/2))
0
d
= i (] (o 88 1), Bt 008 3 )
0

DLp\hg 0 B, ) (?h)))

d
DLp\hy o Oy (?h)) ; wz(%
0

B d
— A\

— (p\£}1h1(yl)ap\£}2h2(y2)> '

Hence

(26) £§1Xw2<h1 XM h2) = £°§h1 XM GE}Q}ZQ

7.2. Darboux-Lie derivative of a tensor product. For natural vector bundles
E,, E5, we define the natural vector bundle F; ® FEy by (Fy ® Eo)(M) = E1(M) ®
Ey(M). Given two vector bundle maps hy: Ey(M) — P Xg Vi and hy: Ey(M) —
P x5 Vs, we define
h1 ® hy: (E1 @ Ey)(M) — P xg (Vi @ V)
Y1 @ y2 = [, (P\h1(y1)) @ (P\h2(y2))];

where y; € Ey(M),, y2 € Ey(M),, p € P, for some x € M. We have for all x € M,
y1 € E1(M)y, y2 € Ex(M),

q’f&@&)(}() (11 ®y2) = q)tgl(X)(yl) ® ‘I)tgz(X)(y2)~
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By Proposition 4.4, we get for X € X(P)% over X € X(M)
P\L5(h1 @ ha)(n @ y2) =

d
= VDI, v, <E L\ (h @ ho)(PF, (xyy1 ® ‘I"}Q(X)m))
0

d
= VPIy e, %

Given curves v;: [ — Vj and v5: [ — V5, we have

d
VPTy, oV, %

Py Db 01) © Fp\ B (1) ) |

1(t) ® w<t>) — vpry, (31(0)) © 12(0)

+71(0) @ vpry, (12(0)).

Therefore

(27) P\L (71 ® ha) (1 ®@ y2) = (P\£ h1(y1)) @ (P\D2(y2))
+ (P\h1(y1)) ® (P\£ gha(y2))-

Thence

(28) £)~((h1®h2) = £)~(h1®h2+h1®£)~(h2.

7.3. Darboux-Lie derivative of a composition. In this subsection we deal
with the Darboux-Lie derivative of (id X f)oh, where h: F(M) — P xgN and f
is a G-equivariant map from N to N’. Suppose w': TN’ — V' is a G-equivariant
1-form with values in a G-module V’. By Proposition 4.4, for h: F(M) — P xg N
and every r € M,y € F(M), and p € P,

A xe on) = (5
= (% i Lp\(h o Pl (y)))

. f*w/
= p\£)~( h(y).

W\l xq f)ohe <1>zc(x><y>>)

Hence
(29) £4((d xg f)oh) = ££<N.

The ability to write the above formula is the reason we don’t require w to be a
parallelization form in the definition of ,,5‘31{., since even if w’ is a parallelization
form its pull-back f*w’, in general, is not.

Formula (29) becomes more useful if there is a relation between f*w’ and a
G-equivariant 1-form w: TN — V, where V is a G-module. The vector space
Homg (V,V’) has the G-module structure defined by (ga)(v) = ga(g~'v) for all
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g € G, @ € Homg(V,V’) and v € V. Now, assume that there is a G-equivariant
map ¢: N — Homg(V, V') such that

(30) (f*w/)z = QO(Z> O Wy
for each 2 € N. Let z € M, y € F(M), and p € P,. Denote the curve ®Lp\(h o
®% xy(y) by 7. By Proposition 4.4, we get

(81) P\LLhly) = o' (1(0) = e(P\A() (@ (1(0))) = e(P\h(y)) (P\L5D(Y))-
Hence

(82)  £5((d xa f)oh)(y) = £5h(y) = ((id X ¢) h(y)) (£5h(y),

where we define an action of I'(M, P xg Homg(V, V') on I'(M, P xg V') by

(Y(s))(x) = [p, P\ (2))(p\s(2))],

for all ¢» € T'(M, P xg Homg(V, V")), s e (M, P xg V), z € M and p € P,.

Next we give several examples of N, N', w, w’ and f for which there exists a
map ¢ satisfying (30).
Example 7.1. Take N =V, N = V' f:V — V' a linear G-equivariant map,
w = vpry, and ' = vpry,. In this case f*w' = f ow. Hence ¢: V — Homg(V, V')
is the constant map that sends each v € V into f and (32) becomes
(33) £3((d xq [) o h)(y) = (id X f)(£zh(y))-

Example 7.2. Take N = G xV, N =V and f: G xV — V to be the action
of G on V. We equip N with the form w := wyc X vpry, and N’ with the form
W' :=vpry. Fix g € G and v € V. Every element of T{,,)(G x V) is of the form
%’0 (gexp(at),v + ut) for suitable a € g and u € V. We get

* d a d a a
(34) fru (% ) (ge™, v —i—ut)) = vpry, (E ) (ge™v + ge tut))

= g(av) + gu = g(av + u).
Notice that

a= % Oexp(at) = (T.L,)™" % Ogexp(at) = wmc (% OgeXp(at)>
and
B d
U = Vpry <E O(U+Ut>> :
Hence
(35) (Ware X vpry) (% (ge™,v + “t)) = (a,u).
0

Now (34) and (35) imply that for all (g,v) € G x V
(f*w)gw) = (9, v) © (Warc)g X (VPIY o),
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where
(36) p: GxV — Homg(gd V) V)
(g,v) = ((a,u) — glav +u)).

Example 7.3. Let H be a Lie group equipped with a left G-action by Lie automor-
phisms. Take N = H x H, N' = H and f: H x H — H the multiplication map.
Write wy for the Maurer-Cartan form on H. It is G-equivariant, since G acts
on H by automorphisms. The Maurer-Cartan form on the direct product H x H
coincides with wy X wy.

For hy, ho € H and aq, ay € h =T, H, we have

d d
f*wH (a . (h16@1t7 hge@t)) = Wy (% ) h1h2h;16“1th26a2t)
d ast
dt |, ;

pr exp(Ad,-1(a1)t) exp(ast)
o 2

= Adh;1(a1) + Q9.

Hence (f*wp)n, n, = p(h1, ha) o (wg X wi)py.ny, Where
(37) ¢: Hx H— Homg(h P b, h)
(hl, hg) —> ((al, CLQ) — Adhgl(al) + az).

7.4. Synthesis. The aim of this subsection is to obtain rather general Lie-type
formulas by combining the results already obtained in this section. We will treat
the special cases in examples.

Let Fi, F, be natural bundles and hy: F1 (M) — PxgNy, hy: Fo(M) — PxgNs
morphisms of fibred manifolds over M. Suppose wi: TNy — Vi, wo: TNy — V5,
w: TN — V are G-equivariant forms, f: N; x N, — N is a G-equivariant map,
and ¢: N; X Ny — Homg (V] & V5, V) is a smooth map such that

(fw)z = @(z) o (w1 X wa)s.
Let n: F — F; x F5 be a natural bundle map. Define
hl Xfm hgi F(M) — P XgN

to be the composition (id X¢g f) o (hy Xas ha) 0 s

Fix y € F(M). Then ny(y) = (y1,y2) for suitable y; € Fi(M), yo € Fo(M).
Using (25) and (32), we get
(38)

£5 (e X g ha)(y) = £5((id X f) o (hy Xar ha) 0 1ar) (y)

= £2((id X f) o (h1 xar h2)) (Y1, y2)
= (id x ©)((h1 xar h2) (Y1, y2) ) (L7 (ha X ar h2) (Y1, y2))-
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By definition of Ay X s ho, we have

(h1 X a1 h2)(y1,92) = [P, (P\P1(y1), P\ha(y2))]-
Hence

(id x@ @) ((h1 Xar h2)(y1,92)) = [P, e(P\P1 (Y1), P\ 2 (y2))].
By (26), we have
£27 (ha X1 ha)(yr1,y2) = [0, (P\ELL ha(y1), P\LZ ha(y2))]-
Thence (38) becomes
£‘}%(h1 Xt h2)(y) = [P, (p\h1(y1), P\h2(y2))
(P\LEL P (y1), P\NLL ha(y2))].

Ezample 7.4. Suppose s € I'(M, P xX¢ .G) and B: F(M) — P xgV, where V is
a G-module. We define ny: F(M) — M xp F(M) to be Z — (x,Z) for every
xr € M and Z € F(M),. Write f for the action map G x V. — V. Then s- 3
defined at the beginning of the section coincides with s X, 8. Taking ¢ defined
by (36) and applying (39), we get for z € M, p € P, and Z € T, M

P\£x(s-P)(2) = e(P\s(x), pP\F(2))(P\£ 35(x), P\ £ 35(Z))
= (P\s(x)) ((P\£35(2))(P\B(2)) + P\ L 3(Z)) -

(39)

Hence
(40) fg(s-ﬂ)zs-(fis-ﬁ—l-f;(ﬁ).

If P is equipped with a G-principal connection and X € X(M), then we get the
following property for the covariant Darboux-Lie derivative

(41) LX(s-B)=s-(Lxs B+ LYB).

Ezample 7.5. Now let sy, so € T'(M, P X .G). Notice that the multiplication map
pg: G x .G — .G is G-equivariant. Define ny,: M — M X M by ny(x) = (z, ).
We write s - sy for s1 X, S2. Taking ¢ defined by (37) and applying (39), we
get for all x € M and p € P,,

P\L (51 52)(2) = @(p\s1(x), P\s2(2)) (P\ £ g51(x), p\ £ g 52(2))
= Adpsent (P\Lgs1(2)) + (P\Lgsa(2)).
Thus with appropriate definitions for s;' and Ads2_1, we get
(42) L5(s1-82) = Adsgl (£)~(51) + £ 359.
In the case P is equipped with a G-principal connection, this implies

(43) /J)v((sl . 82) = Adsz—l(ﬁz—sl) + ;C)V(SQ.
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Now we turn our attention to the Leibniz rule involving tensor product. Let Fjy,
E5 be natural vector bundles and hy: E1(M) — P Xg Vi, hy: Ex(M) — P Xg V3
morphisms of vector bundles, f: V; ® Vo, — V a homomorphism of G-modules,
and n: F — F; ® Ey a natural transformation of natural vector bundles. Write
hy @, he for the composition (id X f) o (h1 ® ha) o N

Fixw € M,y € E(M),, and p € P,. Then ny;(y) can be written as Y . y1,,®%2;
for suitable elements y,; € Ei(M), and y; € Ea(M),. Using (25) and (33), we
get

Lz(h1 @y he)(y) = £5((d xg f) o (h1 ® ha) o nar)(y)
£5((id x¢ f) o (b1 @ h2)) (nu(y))

(id x@ f) (£ (71 © ha) (N (y))) -

Applying (27), we get
P\Lz(h ® ha) (nu(y)) = Z(P\fihl(yl,z‘) ® p\ha(y2,1)

+ p\h1(y14) @ P\L gha(ya:))-

Thence
£5(hy @1y h2)(y) = [0, F(P\Lgha (Y1) ® P\ha(y2,))]

i€l

(44)
+ [p, fF(P\P1(y1,4) @ P\ L gha(y2:))]-

Example 7.6. Let o € Q' (M, P x¢g g) and 8 € QY (M, P x5 V), where V is a
G-module. Define a A 8 € Q*(M, P xg V) by

(@A B 21, Z2) = a(Zh) - B(Z2) — a(Z2) - B(Z4).
Alternatively, it can be written as the composition (id X f) o (a ® [3) oy, where

v N*TM — TM @ TM
Zl/\Zzi—>Zl®ZQ—Z2®Zl

and f: g®V — V is the action of g on V. Notice that f is G-equivariant. Thence
aAfB=a®y, [ Applying (44), we get

P\Ex(aAB)(Z1, Z2) = (P\£3(Z1))(P\B(Z2)) + (p\a(21))(P\ £ 5 5(%2))
— (P\L3a(22))(P\B(Z1)) — (P\(22)) (\ £ 5 5(Z1)).

Hence

(45) Lyzanp)=LzanB+an £30.
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Remark 7.7. More generally we can take o € Q¥(M, P xg g) and 8 € QY M, P x¢
V). Then a A B can be defined as o ®y,, 5, where f is the same as above and

v AFFTM — AFTM @ A'TM
Zy N N Ly = Z Zoy N+ N Zok) @ Zges1) N+ N Zo (k)

O'ESh)C ¢

where Shy; is the set of all (k, ¢)-shuffles. As expected, for every X e X(P)% one
gets

(46) £)~((Oz/\ﬁ):£)~(oz/\ﬂ+oz/\£)~(,3.
In the case P is equipped with a G-principal connection and X € X(M), this
implies

(47) LY (aAB)=LYaAB+aALYp.

8. CARTAN MAGIC FORMULA
Suppose V is a covariant derivative on a vector bundle E Then the exterior
covariant derivative d¥ of 3 € QF(M, E) is given by

k
dVB(Xo, ..., X) = Z(— YV (B(Xoy -y Xjy ooy Xi))

+Z D)™8(1X5, X5), Xoy - Xay oo, Xy, X).

1<J

In the special case when V is a covariant derivative on P Xg V' induced by a
G-principal connection on P, we get

VXj(B(X(J?"'a)?j?"'an)) :EY(J(ﬂ(XOa?)?Ja?Xk))
Indeed, let s € (M, P x¢ V) and X¥ the horizontal lift of X to P. Then X{/ it

the V-horizontal lift of X to P xV and by the definition of covariant Darboux-Lie
derivative

LY (5)(@) = Loxxp (3)(@) = vpry (% "

byl 050 84(2) ) = (Vxs)(o),

Hence
k
d¥B(Xo, ... Xx) = > (—1VLY (B(Xo,..., X}, .., X))
(48) 7=0
+ 3 (D)MB(XL X)X, X X X,

1<J
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Let Yi,..., Yy and Z be vector fields on M. The section 5(Y3,...,Ys) of PxgV
is the composition of /\9?:1 Y;: M — AFTM and B: A\*TM — P xg V. Write Z
for the canonical lift of Z to A¥T'M. Applying Proposition 3.6, we get

Ezu(BoN_Y;) =TBoL ,z(N_,Y))+ (E(Zzg)ﬁ) o NP Y.
Applying id x¢ vpry to the both sides, we obtain
LY (BoN_Y;) =0 5(2,2)“?:1 Vi) + (Liz zm)P) o Nt Y5

Now L, z, is the usual Lie derivative £ of tensor fields and L,z ., u, is the covariant
(2,2) (2,2y})

Darboux-Lie derivative EV. Hence

L7(Bo N1 Y))=BoLz(A_Y)) + (L78) o Ny Y)
49 i
) =D AN ) S Y
Taking Xo = Z and X; =Y; for 1 <i <k in (48), we get

JICV ZY&,,%;;Y]C))

M»

iZdv/B(}/lv"'va) = ‘CZ(/B(S/hv

J:1

+Z(_l)jﬁ([z,yj],m,...,}A@,...,k)

_Z H—]ﬁ 27 ]] }/17"'72’"'7}/;}7"'7Yk)

= (LYB)(V1,....Ys) —d¥(izB)(Y1,..., Yr).

Hence we obtain the Cartan magic formula for covariant Darboux-Lie derivative

(50) LB = iz(d7B) +d¥ (izB).

9. FUTURE WORK ON (G-STRUCTURES

The principal motivation for introducing the covariant Darboux—Lie derivative
was its anticipated application to the theory of G-structures. Recall that a G-
structure on an n-dimensional manifold M is a reduction of the structure group
of TM to G < GL,(R). This can be described in several equivalent ways:

— by choosing an open covering of M such that the transition maps of T'M
with respect to this covering take values in G,

— by specifying a principal G-subbundle of the frame bundle L(R"™, T'M);

— by giving an isomorphism T'M = P x4V, for a suitable principal G-bundle
P and G-module V.
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The last formulation is particularly suited for analytic treatments, in contrast
with the more geometric viewpoint of describing the structure as a subbundle?.
It should be noted that two distinct isomorphisms 3, 8': TM — P Xg V may
determine the same G-structure. In fact, we will formally verify that 8 and [’
define the same G-structure if and only if there is s € I'(M, P X¢ .G) such that
[ = s- . Thus a G-structure on M can be described as a gauge equivalence class
(0] of soldering forms f: TM — P xg V. We conclude this section by announcing
two results that will be proved in forthcoming work. Suppose P is equipped with
a fixed G-principal connection.

Proposition 9.1. A wvector field X € X(M) is an infinitesimal automorphism of
a G-structure [3] on M if and only if LY.3 = a - 3 for some a € (M, P x¢ g).

Proposition 9.2. A G-structure [3] is torsion-free if and only if d¥ 3 = a A B3 for
some a € Q' (M, P x¢ g).
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