
DARBOUX-LIE DERIVATIVES

ANTONIO DE NICOLA AND IVAN YUDIN

Abstract. We introduce the Darboux-Lie derivative along a vector field of
fiber bundle maps from natural bundles to associated fiber bundles and study
its properties.

1. Introduction

This article is an accompanying paper to the forthcoming series of articles by
the same authors on the theory of G-structures. In the course of reformulating the
basic notions pertaining to G-structures on manifolds in terms of gauge equivalence
classes of soldering forms, we stumbled upon the absence of a properly developed
calculus of derivatives for such forms and for gauge transformations. A soldering
form β in this context refers to an isomorphism of vector bundles β : TM →
P ×G V , where P is a principal G-bundle and V is a G-module (cf. [1]) and a
gauge transformation is a section of the bundle P ×G cG.
In this article we introduce and study properties of Darboux-Lie and covariant

Darboux-Lie derivatives of fiber bundle morphisms from F (M) to P ×GN , where
M is a manifold of dimension n, F is a natural bundle on n-dimensional manifolds,
P is a principal G-bundle over M , and N is a manifold equipped with a smooth
left G-action. The case of soldering forms is covered by F (M) = TM and N = V
and the case of gauge transformations corresponds to F (M) = M and N = cG.
We choose the generality of an arbitrary natural bundle with a shot for future
generalizations to high-order G-structures.
For a fixed G-module W and G-equivariant 1-form, the Darboux-Lie derivative

£ω

X̃
β : F (M) → P ×GW of the bundle map β : F (M) → P ×G N is taken along a

G-equivariant vector field X̃ on P . The complete definition, given in Section 4, is
slightly too technical to be fully stated in the introduction.

If P is equipped with a G-principal connection, then the horizontal lift XH of
a vector field X on M is G-equivariant. We define the covariant Darboux-Lie
derivative of β along X as £ω

XHβ.
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2 A. DE NICOLA AND I. YUDIN

We show in the article that various classically known derivatives (covariant, Lie,
Darboux) can be considered as special cases of (covariant) Darboux-Lie deriva-
tives. We also prove various properties, including a characterization of (covariant)
Darboux-Lie derivatives in terms of flows and a suitable Leibniz rule. We conclude
with the proof of the Cartan magic formula for covariant Darboux-Lie derivatives.
The paper is organized as follows. Section 2 contains some preliminary material.

In particular, we fix the notation for principal and associated bundles, and recall
the definition and main properties of natural bundles.
In Section 3, we discuss a metamathematical concept of derivative. This dis-

cussion culminates in the definition of an α-derivative. We show that this no-
tion incorporates Lie derivatives of Janyška-Kolář and of Godina-Matteucci. The
(covariant) Darboux-Lie derivatives are defined in Section 4 as a special case of
α-derivative.
Section 5 demonstrates how classical Lie derivatives of tensor fields and stan-

dard covariant derivatives of sections of vector bundles can be seen as particular
instances of the Darboux-Lie derivative.
In Section 6, we calculate the Darboux-Lie derivative along vertical G-invariant

vector fields on P . This permits to compare covariant Darboux-Lie derivatives
calculated with respect to two G-principal connections on P .

Section 7 is dedicated to establishing various Leibniz rules for the (covariant)
Darboux-Lie derivative with respect to operations like fiber products, tensor prod-
ucts, and compositions of fiber bundle maps.
In Section 8, we derive a Cartan-type magic formula for covariant Darboux-Lie

derivative when applied to differential forms with values in an associated bundle.
In Section 9, we announce some results related to G-structures.

2. Preliminaries

2.1. Principal bundles. Let G be a Lie group, M a smooth manifold and P a
principal G-bundle. Then there is a unique smooth map

\ : P ×M P → G

(p, p′) 7→ p\p′,

such that p(p\p′) = p′ for every pair p, p′ in the same fiber of P . This map will be
handy to explicitly write various maps involving principal bundles.
Clearly, p\p = eG. Moreover, for all g ∈ G and (p, p′) ∈ P ×M P , we have

(1) (pg)\p′ = g−1(p\p′), p\(p′g) = (p\p′)g, p′\p = (p\p′)−1.

2.2. Associated bundles. Let N be a manifold equipped with a smooth left G-
action. The associated fiber bundle P ×G N over M is defined as the quotient
(P ×N)/G, where the group G acts on P ×N by (p, y)g = (pg, g−1y) for (p, y) ∈
P×N and g ∈ G. We write [p, y] for the G-orbit of (p, y) in P×N . The projection
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from P ×G N to M is defined by sending the orbit [p, y] = { (pg, g−1y) | g ∈ G} to
the common base point of the elements pg, g ∈ G.
One can verify that the following map is both well-defined and smooth:

\ : P ×M (P ×G N) → N

(p, [p′, y]) 7→ p\[p′, y] := (p\p′)y

Notice that p\[p, y] = y. This map is particularly useful for explicit construction
of maps between associated bundles.

2.3. Vector fields and their flows. Given a vector field X on M , we write γXx
for the maximal integral curve of X that passes through x ∈ M at time 0. We
denote its interval of definition by JX

x ⊂ R. The union

D(X) :=
⋃

x∈M

JX
x × {x} ⊂ R×M

is the domain of the flow of X and the flow of X is the map

ϕX : D(X) →M

(t, x) 7→ γXx (t).

For each t ∈ R, we define the open set

UX
t := {x ∈M | (t, x) ∈ D(X)},

consisting of points whose integral curves are defined at time t. For a fixed t ∈ R,
the flow operator is the map

Φt
X : UX

t → UX
−t, x 7→ ϕX(t, x),

which is a diffeomorphism. These operators satisfy the usual composition rule:

Φt
X ◦ Φs

X = Φt+s
X on UX

s ∩ UX
s+t.

2.4. Natural bundles. A systematic treatment of natural bundles can be found
in [6, Ch. IX]. Here we will just recall the definition of natural bundles and their
properties that will be needed later. It is important to mention that tensor bundles
are instances of natural bundles.

Write Mf for the category of smooth manifolds with smooth maps between
them and Mfn for its subcategory of manifolds of dimension n with local diffeo-
morphisms between them as morphisms. Denote by En the embedding of Mfn
into Mf . One of the possible equivalent definitions of a natural bundle is to say
that a natural bundle is a pair (F, p), where F : Mfn → Mf is a functor and
p : F → En is a natural transformation such that

(a) for each M ∈ Mfn the map pM : F (M) →M turns F (M) into a fiber bundle
over M ;
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(b) for each f : M → N in Mfn the map F (f) : F (M) → F (N) is a fiberwise
diffeomorphism that covers f : M → N , i.e. the commutative diagram

(2)

F (M)
F (f)

//

pM

��

F (N)

pN

��

M
f

// N

is a pull-back square1.

A natural map from a natural bundle (F, p) and to a natural bundle (F ′, p′) is a
natural transformation of functors η : F → F ′ such that p = p′ ◦η. It is customary
to refer to a natural bundle just by its functor part F .
One defines a natural vector bundle as a natural bundle (F, p) such that each

pM : F (M) → M is a vector bundle and for each f : M → N in Mfn the map
F (f) : F (M) → F (N) is a morphism of vector bundles. Similarly, one defines
natural principal bundles.
One of the key features of natural bundles is the existence of canonical lifts of

vector fields. However, a clear statement and proof of the existence of canonical
lifts for non-complete vector fields are difficult to find in the literature. For the
sake of rigor, we include the following proposition.

Proposition 2.1. Let (F, p) be a natural bundle on Mfn. For every M ∈ Mfn
there is a unique well-defined map

F : X(M) → X(F (M))

X 7→ F(X)

such that for each X ∈ X(M)

(i) the vector field F(X) is a lift of X (called the canonical lift of X);

(ii) for all x ∈M and y ∈ F (M)x the intervals JX
x and J

F(X)
y coincide;

(iii) for each t ∈ R, the image of the embedding F (UX
t →֒ M) : F (UX

t ) → F (M)

coincides with U
F(X)
t and the diagram

(3)

F (UX
t )

F (Φt
X)

//

F (UX
t →֒M)

��

F (UX
−t)

F (UX
−t →֒M)

��

U
F(X)
t

Φt
F(X)

// U
F(X)
−t .

commutes.

Proof. Let M ∈ Mfn and X ∈ X(M). The tricky point is that the family of
diffeomorphisms F (Φt

X) is not a 1-parameter group on F (M). Indeed, for a fixed

1Natural transformations with this property are known as Cartesian natural transformations
in Category Theory.
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t, the map F (Φt
X) is a diffeomorphism between F (UX

t ) and F (UX
−t), but F (U

X
t )

and F (UX
−t) are not open subsets of F (M) for a general natural bundle F . To

overcome this peculiarity we use the fact that every natural bundle is isomorphic
to an associated bundle of a suitable jet bundle.

For M ∈ Mfn and k ≥ 1, write invJk
0 (R

n,M) for the space of invertible k-jets
at 0 of smooth maps from R

n to M . Denote by Gk
n the subspace of invJk

0 (R
n,Rn)

consisting of jets that have value 0 at 0. Then Gk
n is a Lie group under composition

of jets and invJk
0 (R

n,M) is a principal Gk
n-bundle.

Given a smooth map ψ : Rn → M write jk(ψ) for the k-th jet of ψ at 0. Given
a local diffeomorphism f : M → N , we define

invJk
0 (R

n, f) : invJk
0 (R

n,M) → invJk
0 (R

n, N)

jk0 (ψ) 7→ jk(f ◦ ψ).

This turns the functor invJk
0 (R

n,−) into a natural principal Gk
n-bundle on Mfn.

One can check that for every manifold N equipped with a smooth Gk
n-action the

functor invJk
0 (R

n,−)×Gk
n
N is a natural bundle. It was proved in [2] that every

natural bundle is isomorphic to a natural bundle of the form invJk
0 (R

n,−)×Gk
n
N .

Now, let k be a natural number and N a manifold equipped with a smooth
left Gk

n-action such that F is isomorphic to H = invJk
0 (R

n,−)×Gk
n
N . We will

show that there is H : X(M) → X(H(M)) that satisfies the properties stated in
the proposition with F and F replaced by H and H, respectively. Then F(X) is
obtained from H(X) via a natural isomorphism between F (M) and H(M). The
stated properties for F follow from the corresponding properties for H, since the
isomorphisms are natural.

To get a vector field H(X) on H(M), we construct its flow on H(M). Write σt
for the embedding of UX

t into M . Define the open subsets Ũt of H(M) by

Ũt =
{
[jk(ψ), y] ∈ H(M)

∣∣ Im(ψ) ⊂ UX
t

}

and the diffeomorphisms Φ̃t : Ũt → Ũ−t by

Φ̃t([jk(ψ), y]) = [jk(Φt
X ◦ ψ), y].

It is easy to check that Φ̃t is a local flow. We define H(X) as the unique vector

field on H(M) such that Φt
H(X)(z) = Φ̃t(z) for all z ∈ Ũt. Write p for the canonical

projection from H(M) to M . Thus p([jk(ψ), y]) = ψ(0) for all [jk(ψ), y] ∈ H(M).

Then for all x ∈M and [jk(ψ), y] ∈ H(M)x ∩ Ũt, we get

p(Φt
H(X)([j

k(ψ), y])) = p([jk(Φt
X ◦ ψ), y]) = (Φt

X ◦ ψ)(0) = Φt
X(x).

ThusH(X) is a lift ofX. Moreover, Ũt ⊂ U
H(X)
t , which implies that

⋃
t∈R{t}×Ũt ⊂

D(H(X)). Thus, for every x ∈M and z ∈ H(M)x the interval J
H(X)
z contains the
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interval JX
x . But, since H(X) is a lift of X, also J

H(X)
z ⊂ JX

x . Thus J
H(X)
z = JX

x

as claimed. We also conclude that U
H(X)
t = Ũt for all t ∈ R.

It is clear that if ψ′ : Rn → UX
t then σt ◦ψ

′ : Rn →M has its image in UX
t . Also

for every ψ : Rn →M with Im(ψ) ⊂ UX
t there is a unique ψ′ : Rn → UX

t such that

ψ = σt ◦ψ
′. This shows that Ũt, and hence also U

H(X)
t , is the image of H(σt). The

commutativity of the diagram (3) follows from a straightforward computation. �

Let η : F ′ → F be a natural map between natural bundles on Mfn and M ∈
Mfn. Then for every X ∈ X(M), the vector fields F ′(X) and F(X) are ηM -
related. To see this, let x ∈M and y ∈ F ′(M)x. We have

(4)

TηM(F ′(X)y) =
d

dt

∣∣∣∣
t=0

ηM
(
Φt

F ′(X)y
)

F(X)ηM (y) =
d

dt

∣∣∣∣
t=0

Φt
F(X)(ηM(y)).

For t ∈ R, write σt for the embedding UX
t →֒M . Then F ′(σt) is a diffeomorphism

between F ′(UX
t ) and U

F ′(X)
t ⊂ F ′(M). Denote by yt the unique element of F ′(Ut)

such that F ′(σt)(yt) = y. Using the commutativity of (3) and the naturality of
ηM , we get

ηM(Φt
F ′(X)y) = ηM(Φt

F ′(X) ◦ F
′(σt)(yt)) = ηM(F ′(σ−t) ◦ F

′(Φt
X)(yt))

= F (σ−t) ◦ F (Φ
t
X)(ηUt

(yt)) = Φt
F(X) ◦ F (σt)(ηUt

(yt))

= Φt
F(X)(ηM(F ′(σt)(yt))) = Φt

F(X)(ηM(y)).

Thus (4) implies that

(5) TηM(F ′(X)y) = F(X)ηM (y),

i.e. the vector fields F ′(X) and F(X) are ηM -related.

3. Derivatives

We start with a discussion of what one might expect from a notion of derivative.
Given a map h between two smooth manifolds, the tangent map Th captures the
first-order behavior of h. The drawback of Th is that it retains h inside it. A
metamathematical idea of a derivative of h would be Th with h stripped out and
only the first-order information retained. It is evident how to do this in the case
of R-valued smooth functions. Namely, given a smooth function f : M → R the
derivative df : TM → R is determined by

(Txf)(X) = df(X)
d

dt

∣∣∣∣
t=f(x)

.
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In other words df = dt ◦ Tf . The key point of the definition is the existence
of the canonical nowhere zero 1-form dt on R. More generally, let N be an n-
dimensional manifold and ω : TN → R

n a 1-form on N such that ωy : TyN → R
n

is an isomorphism for every y ∈ N . Then for a smooth map h : M → N , one can
define its derivative as ω◦Th. Notice that a form ω with the above property exists
if and only if N is a parallelizable manifold. For this reason we call such a form a
parallelization form.

Of course, ω ◦ Th depends on the choice of the parallelization form ω. For
example, in the case N is a Lie group H, there are two natural choices for ω: either
left-invariant or right-invariant Maurer-Cartan form. In this case the resulting
derivative is called left (right) Darboux derivative, respectively.

Another standard example of a derivative is the covariant derivative of a section
s : M → P×GV , where P is a principal G-bundle with a fixed principal connection
and V is a G-module. In [5], Janyška and Kolář developed a general theory of Lie
derivatives that includes as special cases the usual Lie derivatives and covariant
derivatives.

Below, we introduce the notion of α-derivatives that captures the idea of deriv-
ative explained above. For this, we use the following auxiliary construction.

Let M1 and M2 be smooth manifolds and h : M1 → M2 a smooth map. For a
pair of vector fields X1 ∈ X(M1), X2 ∈ X(M2), we call the map

L̃(X1,X2)h : M1 → TM2

x 7→ (Txh)(X1)− (X2)h(x).

the Trautman lift of h. Alternatively (cf. [6, Lemma 47.2]), we have

(6) (L̃(X1,X2)h)x =
d

dt

∣∣∣∣
t=0

Φ−t
X2

◦ h ◦ Φt
X1
(x).

Remark 3.1. The map L̃(X1,X2)h was initially introduced by Trautman in [7] with-
out a specific name. It was later referred to as the “generalized Lie derivative” in
a series of articles by Kolář and his coauthors, with the main results summarized
in [6, Ch. XI]. However, we have chosen to deviate from this terminology because
“generalized Lie derivatives” do not align with our concept of a derivative and
never specialize to Lie derivatives. Instead, they serve as an intermediate step in
the construction of Lie derivatives.

The Trautman lift is particularly useful when h : F1 → F2 is a map of fiber
bundles over a manifold M and X1, X2 are lifts of the same vector field on M . In
this case, the values of L̃(X1,X2)h lie in the vertical subbundle VF2 of the tangent
bundle TF2.

Definition 3.2. Let h : F1 → F2 be a bundle morphism over M and (X1, X2) a
pair of lifts of the same vector field on M to F1 and to F2, respectively. For a
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vector bundle E over M and a vector bundle map α : VF2 → E that covers the
projection F2 →M , we denote the composite

α ◦ L̃(X1,X2)h : F1 → E

by Lα
(X1,X2)

h and call it the α-derivative of h along (X1, X2).

Remark 3.3. The α-derivative carries all the first-order information about h pro-
vided that, for each base point x ∈M and each y ∈ F2,x, the map

(7) αy : VyF2 → Ex

is injective.
A potential issue arises if the images of αy vary with the choice of y inside

the same fiber F2,x. In that case, the α-derivative may contain more than just
differential information: it might even allow one to recover the actual values of h
in the fiber.
To avoid this, one can assume that, for each x ∈ M , the image of αy is the

same for all y ∈ F2,x. Imposing injectivity and this independence of the image
ensures that Imα forms a vector subbundle of E. Thus, the notion of α-derivative
fully aligns with the intended philosophy of a derivative if and only if α induces a
fiberwise isomorphism onto a subbundle of E. Of course, by replacing E with this
subbundle, nothing is lost.

In all instances we are aware of where the α-derivative specializes to a previously
studied derivative (e.g., Lie or covariant derivative), the corresponding choice of
α is a fiberwise isomorphism onto E. We have nevertheless not imposed this
assumption in the definition, since doing so would prevent a clean formulation of
the Leibniz rule for α-derivatives.

A family of suitable choices of α can be obtained using vertical splittings. A
vertical splitting for a fiber bundle F2 over M is an isomorphism of vector bundles
β : VF2 → F2 ×M E over F2 for some vector bundle E over M . Then α = pr2 ◦ β
is a vector bundle map from VF2 to E that covers the projection F2 → M such
that the maps αy are isomorphisms.
If F2 is a vector bundle on its own, then the inverse of the vertical lift

vlF2 : F2 ×M F2 → VF2

(u, v) 7→
d

dt

∣∣∣∣
t=0

(u+ vt)

is an example of vertical splitting. The composite pr2 ◦ vl
−1
F2

is called the vertical

projection and is denoted by vpr
F2
. The vpr

F2
-derivative L

vpr
F2

(X1,X2)
h is called the

Lie derivative of h with respect to X1 and X2 in [6, Section 47.7]. This derivative
was introduced by Janyška and Kolář in [5].
Now, we return to the context of a general fiber bundle F2, but assume that

F1 = M with the projection map idM . In this setup h : M → F2 is just a section
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of F2. If X2 ∈ X(F2) is a projectable vector field lifting X ∈ X(M) and β : VF2 →
F2 ×M E is a vertical splitting, then the (pr2 ◦ β)-derivative of h along (X,X2)
was called the (restricted) Lie derivative of h with respect to X2 by Godina and
Matteucci in [3, 4].

The Lie derivatives of Janyška-Kolář and of Godina-Matteucci can be further
specialized to get classical Lie and covariant derivatives.

Example 3.4 (Lie derivative). Suppose F is a natural bundle and E a natural
vector bundle on Mfn. Given M ∈ Mfn, a vector field X ∈ X(M) and a smooth
map h : F (M) → E(M), the Lie derivative LXh of h along X is the vprE(M)-
derivative of h along (F(X), E(X)). It coincides with the Lie derivative defined in
textbooks in the case both F (M) and E(M) are tensor bundles over M .

Example 3.5 (Covariant derivative). If E is a vector bundle equipped with a linear
connection then the covariant derivative ∇Xs of a section s : M → E is the vprE-
derivative of s along (X,X∇), where X∇ is the horizontal lift of X ∈ X(M)
(see [6, Section 47.5]).

Despite the generality of α-derivatives, it is still possible to obtain some results
for them. Namely, we will show that there is a version of Leibniz rule for an
α-derivative of a composition.

We start with the Leibniz rule for the Trautman lift of a composition. The
following proposition follows directly from the definition of the Trautman lift.

Proposition 3.6. Let M1, M2, M3 be manifolds and Xi ∈ X(Mi), i = 1, 2, 3.
For any smooth maps h1 : M1 →M2, h2 : M2 →M3, we have

(8) L̃(X1,X3)(h2 ◦ h1) = Th2 ◦ L̃(X1,X2)h1 + (L̃(X2,X3)h2) ◦ h1.

Notice that the vector field X2 is not present on the left-hand side of (8) and
thus can be chosen arbitrarily on the right-hand side.

The above proposition immediately implies the following result.

Corollary 3.7. Let F1, F2 and F3 be fiber bundles over a manifold M and
h1 : F1 → F2, h2 : F2 → F3 fiber bundle maps. Suppose α : VF3 → E is a vector
bundle map covering the projection from F3 to M . Write h∗2α for the composite
of α with the restriction of Th2 to VF2. It is a vector bundle map covering the
projection from F2 to M . For every triple (X1, X2, X3) ∈ X(F1)×X(F2)×X(F3)
of projectable vector fields lifting the same vector field on M , we get

(9) Lα
(X1,X3)

(h2 ◦ h1) = L
h∗
2α

(X1,X2)
h1 + (Lα

(X2,X3)
h2) ◦ h1.

4. Darboux-Lie derivatives

The peculiarity of α-derivative is that it is defined along pairs of vector fields
on fiber bundles. This is a striking contrast with classical derivatives that are
defined along vector fields on the base manifold. The utility of α-derivative, as
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demonstrated by Examples 3.4 and 3.5, lies in the fact that usual derivatives can
be expressed in terms of α-derivative. Thus α-derivatives provide a framework to
introduce new types of derivatives. By specializing the notion of α-derivative, we
introduce the notion of Darboux-Lie derivative taken along invariant vector fields
on a principal bundle over the base manifold. We accompany this notion by the
notion of covariant Darboux-Lie derivative taken along vector fields on the base
manifold, but additionally depending on the choice of a principal connection.
Let G be a Lie group, P a principal G-bundle and N a manifold equipped

with a smooth left G-action. We will identify V(P ×G N) with P ×G TN via the
isomorphism

(10)

ν : V(P ×G N) → P ×G TN

d

dt

∣∣∣∣
t=0

[γP (t), γN(t)] 7→

[
γP (0),

d

dt

∣∣∣∣
t=0

(γP (0)\γP (t))γN(t)

]
,

where γP is a vertical curve in P and γN is an arbitrary curve in N , both defined
on the same open interval containing 0.

Suppose X̃ is a G-invariant vector field on the principal G-bundle P . Write X̃N

for the vector field on P ×GN , whose flow is given by Φt

X̃N
[p, y] = [Φt

X̃
p, y]. Notice

that the vector fields X̃ and X̃N are both projectable and correspond to the same
vector field X on M .
Let F be a natural bundle on Mfn. Recall that F(X) is the canonical lift of

X to F (M), whose existence is proved in Proposition 2.1. For a fiber bundle map

h : F (M) → P ×G N , we denote the Trautman lift L̃(F(X),X̃N )h by £̃X̃h.
Let V be a G-module. For a G-equivariant 1-form ω : TN → V define

id×G ω : P ×G TN → P ×G V

[p, Y ] 7→ [p, ω(Y )].

It is clear that id×Gω is a vector bundle map covering the projection P×GN →M .

Definition 4.1. Let F be a natural bundle on Mfn, M an n-dimensional smooth
manifold, P a principal G-bundle, and N a smooth manifold equipped with a G-

action. Suppose ω : TN → V is a G-equivariant 1-form and X̃ ∈ X(P )G. For a
bundle map h : F (M) → P ×G N , the Darboux-Lie derivative

£ω

X̃
h : F (M) → P ×G V

of h along X̃ with respect to ω is the α-derivative Lα

(F(X),X̃N )
h with α = (id×Gω)◦ν,

i.e. £ω

X̃
h = (id×G ω) ◦ ν ◦ £̃X̃h.

Definition 4.2. If P is additionally equipped with a G-principal connection, we
define the covariant Darboux-Lie derivative Lω,∇

X h of h along X ∈ X(M) with
respect to ω to be £ω

XHh, where X
H is the horizontal lift of X to P .



DARBOUX-LIE DERIVATIVES 11

If N is a G-module V , then there is the canonical G-equivariant parallelization
form vprV := pr2 ◦ vl

−1
V on V , where

vlV : V ⊕ V → TV

(v, w) 7→
d

dt

∣∣∣∣
t=0

(v + wt).

Remark 4.3. If γ is a curve in V , then vprV (γ̇(0)) coincides with the derivative of
γ(t) at 0 as it is usually defined in standard Calculus courses.

Another interesting case is when N coincides with G considered with the conju-
gation action. In this case, we can take ω to be the left-invariant Maurer-Cartan
form on G, defined by

ωMC : TG→ g = TeG

TgG ∋ Z 7→ (TeLg)
−1(Z).

In these two cases we will skip ω in £ω

X̃
and write £X̃h instead of £

vprV
X̃

h or £ωMC

X̃
h.

Similarly, we write L∇
Xh for L

vprV ,∇
X h and for LωMC ,∇

X h.
The Darboux-Lie derivatives £ω

X̃
can be expressed in terms of flows.

Proposition 4.4. Let h : F (M) → P ×G N be a fiber bundle map over M . For
all x ∈M , p ∈ Px and y ∈ F (M)x

(11) £ω

X̃
h(y) =

[
p, ω

(
d

dt

∣∣∣∣
0

(Φt

X̃
p)\h(Φt

F(X)(y))

)]
∈ P ×G V.

Proof. From (6), we get

£̃X̃h(y) =
d

dt

∣∣∣∣
0

Φ−t

X̃N

◦ h ◦ Φt
F(X)(y)

=
d

dt

∣∣∣∣
0

(Φ−t

X̃
×G id)[Φt

X̃
p, (Φt

X̃
p)\h(Φt

F(X)(y))]

=
d

dt

∣∣∣∣
0

[p, (Φt

X̃
p)\h(Φt

F(X)(y))].

Now the result follows from £ω

X̃
h = (id×G ω) ◦ ν ◦ £̃X̃h. �

5. Examples and relation to other definitions

Many known derivatives can be expressed in terms of Darboux-Lie derivative.
First we consider the case of Lie derivatives as defined in Example 3.4. Let F

be a natural bundle and E a natural vector bundle. Then E is isomorphic to, and
thus can be replaced by, the functor invJk

0 (R
n,−)×Gk

n
V for a suitable Gk

n-module

V . For X ∈ X(M), denote by Xc the canonical lift of X to invJk
0 (R

n,M). Then
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Xc is Gk
n-invariant, and X

c
V coincides with the canonical lift E(X) of X to E(M).

Hence for h : F (M) → E(M) = invJk
0 (R

n,M)×Gk
n
V

(12) LXh = L
vprE(M)

(F(X),E(X))h = £
vprV
Xc h.

5.1. Covariant derivative. LetM be a manifold and E anm-dimensional vector
bundle on M . For an m-dimensional vector space W , we denote by L(W,E) the
bundle of W -frames in E, thus L(W,E) is the set of maps f : W → E that induce
an isomorphism between W and Ex for some x ∈ M depending on f . The set
L(W,E) is a principal GL(W )-bundle over M and E is canonically isomorphic to
the associated bundle L(W,E)×GL(W ) W via the evaluation map

evE : L(W,E)×GL(W ) W → E

[f, w] 7→ f(w).

Let ∇ be a linear connection on E. For a vector field X on M, denote its horizontal
lift to E by X∇. We get an induced connection on the principal GL(W )-bundle
L(W,E), for which the horizontal lift XH of X has the flow

Φt
XH : L(W,E) → L(W,E)

f 7→ (w 7→ Φt
X∇(f(w))).

We can express the covariant derivatives from Example 3.5 in terms of covariant-
Darboux-Lie derivative.

Proposition 5.1. Let ∇ be a linear connection on E. If h : M → E is a section
of a vector bundle E, then for every X ∈ X(M)

(13) ∇Xh = evE ◦ L∇
X(ev

−1
E ◦ h).

Proof. As we already explained in Example 3.5, we have

∇Xh = L
vprE
(X,X∇)

h = vprE ◦ L̃(X,X∇)h = pr2 ◦ vl
−1
E ◦ L̃(X,X∇)h.

Hence, for every x ∈M , we get by (6)

(14)

∇Xh(x) = vprE

(
d

dt

∣∣∣∣
t=0

Φ−t
X∇ ◦ h ◦ Φt

X(x))

)

= vprE

(
d

dt

∣∣∣∣
t=0

Φ−t
X∇ ◦ h ◦ Φt

X(x))

)
.

On the other hand

(15) L∇
X(ev

−1
E ◦ h) = (id× vprW ) ◦ ν ◦ L̃(X,XH

W
)(ev

−1
E ◦ h),

where ν : V(L(W,E)×G W )
∼=
−→ L(W,E)×G TW is given by (10). By (6), we get

(16) L̃(X,XH
W

)(ev
−1
E ◦ h)(x) =

d

dt

∣∣∣∣
t=0

(
Φ−t

XH
W

◦ ev−1
E ◦ h ◦ Φt

X

)
(x).



DARBOUX-LIE DERIVATIVES 13

Write c(t) for Φt
X(x). Observe that h(Φt

X(x)) ∈ Ec(t) and Φt
XHf : W

∼=
−→ Ec(t) is a

frame at c(t). Thence

ev−1
E

(
h
(
Φt

X(x)
))

=
[
Φt

XHf, (Φ
t
XHf)

−1 ◦ h ◦ Φt
X(x)

]
.

Plug in this into (16) and using the definition of XH
W , we get

L̃(X,XH
W

)(ev
−1
E ◦ h)(x) =

d

dt

∣∣∣∣
t=0

[
f, (Φt

XHf)
−1 ◦ h ◦ Φt

X(x)
]
.

Applying (10) and (15), we get

L∇
X(ev

−1
E ◦ h)(x) =

[
f, vprW

(
d

dt

∣∣∣∣
t=0

(Φt
XHf)

−1 ◦ h ◦ Φt
X(x)

)]
.

Therefore

(17) evE
(
L∇

X(ev
−1
E ◦ h)(x)

)
= f

(
vprW

(
d

dt

∣∣∣∣
t=0

(Φt
XHf)

−1 ◦ h ◦ Φt
X(x)

))
.

Write c̃(t) for h(Φt
X(x)). We have c̃(t) ∈ Ec(t). Since Φt

XHf(w) = Φt
X∇(f(w)) for

all w ∈ W , we get

(Φt
XHf)

−1(c̃(t)) = f−1
(
Φ−t

X∇(c̃(t))
)
.

Therefore

(18) evE
(
L∇

X(ev
−1
E ◦ h)(x)

)
= f

(
vprW

(
d

dt

∣∣∣∣
t=0

f−1
(
Φ−t

X∇ ◦ h ◦ Φt
X(x)

)))
.

It is left to check that the right hand sides of (14) and (18) coincide, i.e. that

f

(
vprW

(
d

dt

∣∣∣∣
t=0

f−1
(
Φ−t

X∇ ◦ h ◦ Φt
X(x)

)))
= vprE

(
d

dt

∣∣∣∣
t=0

Φ−t
X∇ ◦ h ◦ Φt

X(x))

)
.

Let γ(t) be the curve f−1(Φ−t
X∇ ◦ h ◦Φt

X(x))) in W . Then the last equation can be
written as

f (vprW (γ̇(0))) = vprE

(
d

dt

∣∣∣∣
t=0

(f ◦ γ)(t)

)

or, equivalently, as

f (vprW (γ̇(0))) = vprE (Tf (γ̇(0))) .

Hence, we only have to ensure that f ◦ vprW = vprE ◦ Tf . Every element of TW
can be written as d

dt

∣∣
t=0

(w0 + w1t) for suitable w0, w1 ∈ W . We get

f ◦ vprW

(
d

dt

∣∣∣∣
t=0

(w0 + w1t)

)
= f ◦ pr2 ◦ vl

−1
W

(
d

dt

∣∣∣∣
t=0

(w0 + w1t)

)

= f(pr2(w0, w1)) = f(w1)
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and, using that f is linear,

vprE

(
Tf

(
d

dt

∣∣∣∣
t=0

(w0 + w1t)

))
= pr2 ◦ vl

−1
E

(
d

dt

∣∣∣∣
t=0

(f(w0) + f(w1)t

)

= pr2 (f(w0), f(w1)) = f(w1).

Hence the result. �

6. Darboux-Lie derivatives with respect to vertical

right-invariant vector fields

Write g for the Lie algebra of the group G. For each section a of P ×G g, we
denote by Xa the vertical vector field on P whose flow is given by

Φt
Xap = p exp((p\a(x))t), for x ∈M, p ∈ Px.

It is a G-invariant vector field on P . Conversely, one can show that if X̃ is a
G-invariant vertical vector field on P then it coincides with Xa, where

a : M → P ×G g

x 7→

[
p,

d

dt

∣∣∣∣
0

p\Φt

X̃
p

]
,

for an arbitrary p ∈ Px.
Let V be a G-module. The induced action of γ̇(0) ∈ g on v ∈ V is defined by

(19) γ̇(0)v = vprV

(
d

dt

∣∣∣∣
0

γ(t)v

)
.

For a ∈ Γ(M,P ×G g) and h : F (M) → P ×G V , we define a · h : F (M) → P ×G V
by

a · h(y) = [p, (p\a(x))(p\h(y))],

where y ∈ F (M), x is the base point of the fiber of y and p is an arbitrary point
in the fiber Px.

Proposition 6.1. Let V be a G-module. For every a ∈ Γ(M,P ×G g) and every
map h : F (M) → P ×G V of fiber bundles over M , we have £Xah = −a · h.

Proof. Let x ∈M , y ∈ F (M)x and p ∈ Px. From Proposition 4.4, it follows that

p\£Xah(y) = vprV

(
d

dt

∣∣∣∣
0

(Φt
Xap)\h(y)

)
.

Applying the definition of Φt
Xa , we get

p\£Xah(y) = vprV

(
d

dt

∣∣∣∣
0

(p exp((p\a(x))t))\h(y)

)
.
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As for every g ∈ G and z ∈ (P ×G V )x, we have (pg)\z = g−1(p\z), the above
formula can be rewritten in the form

p\£Xah(y) = vprV

(
d

dt

∣∣∣∣
0

exp(−(p\a(x))t)(p\h(y))

)
.

By (19), we get p\£Xah(y) = −(p\a(x))(p\h(y)). Hence £Xah = −a · h. �

When the target bundle is P ×G cG instead of P ×G V the resulting formula is
more interesting. To state the result, we need additional notation. For h : F (M) →
P ×G cG, we deviate from the standard conventions and denote by h−1 the map
from F (M) to P ×G cG given by h−1(y) = [p, (p\h(y))−1], where p ∈ P lies over
the same point in M as y.

Further, for a ∈ Γ(M,P ×G g), we define Adh(a) : F (M) → P ×G g by

Adh(a)(y) = [p,Adp\h(y)(p\a(x))],

for all x ∈M , y ∈ F (M)x and any p ∈ Px.

Proposition 6.2. For every a ∈ Γ(M,P ×G g) and h : F (M) → P ×G cG, we have
£Xah = a ◦ pM − Adh−1(a), where pM : F (M) →M is the bundle projection.

Proof. Write ∗c for the conjugation action of G on itself, i.e. h ∗c g = hgh−1 for all
h, g ∈ G. Let x ∈M , p ∈ Px and y ∈ F (M)x. By the same chain of arguments as
in the proof of Proposition 6.1, we get

p\£Xah(y) = ωMC

(
d

dt

∣∣∣∣
0

exp(−(p\a(x))t) ∗c (p\h(y))

)
.

For any b ∈ g and g ∈ G, we have exp(−bt) ∗c g = exp(−bt)g exp(bt). Next

ωMC

(
d

dt

∣∣∣∣
0

exp(−bt)g exp(bt)

)
=

d

dt

∣∣∣∣
0

g−1 exp(−bt)g exp(bt)

= −Adg−1(b) + b.

Therefore with b = p\a(x) and g = p\h(y), we get

p\£Xah(y) = −Ad(p\h(y))−1(p\a(x)) + (p\a(x)).

This proves the proposition. �

More generally, for a G-equivariant V -valued 1-form ω on N , we define ∗ω : g×
N → V by

(20) b ∗ω z = ω

(
d

dt

∣∣∣∣
0

exp(bt)z

)
.

Then adapting the first part of the proof of Proposition 6.1, we get

(21) p\£ω
Xah(y) = −(p\a(x)) ∗ω (p\h(y)),
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for all y ∈ F (M). This equation can be rewritten as

(22) £ω
Xah = −a∗̂ωh,

for a suitably defined ∗̂ω.
In the case P is equipped with two G-principal connections, we can compare the

corresponding covariant Darboux-Lie derivatives L∇
X and L∇̃

X . Write XH and XH̃

for the horizontal lifts of the vector field X ∈ X(M) to P with respect to these

connections. Then XH −XH̃ is a vertical vector field on P and there is a unique

section a ∈ Γ(M,P ×G g) such that XH − XH̃ = Xa. If V is a G-module and
h : F (M) → P ×G V is a vector bundle map, Proposition 6.1 implies that

(23) L∇
Xh− L∇̃

Xh = −a · h.

If h : F (M) → P ×G cG is a fiber bundle map, Proposition 6.2 implies that

(24) L∇
Xh− L∇̃

Xh = a ◦ pM − Adh−1(a),

where pM : F (M) →M is the projection of the fiber bundle F (M).

7. Leibniz rule

In future articles, we will need the expressions for £X̃(s·β), where s ∈ Γ(M,P×G

cG) and β ∈ Ω1(M,P ×G V ), and for £X̃(α ∧ β), where β is as before and α ∈
Ω1(M,P ×G g). This section aims to explore the Leibniz rule for the Darboux-Lie
derivative with respect to some binary operations.

Notice that the map s · β can be described as the composition

TM
∼=
−→M ×M TM

s×Mβ
−−−→ P ×G (cG× V ) −→ P ×G V

and α ∧ β as the composition

Λ2TM → TM ⊗ TM
α⊗β
−−→ P ×G (g⊗ V ) → P ×G V.

Thus in both cases we have a composition of

• a natural map ηM : F (M) → F1(M) ∗ F2(M), where ∗ is either × or ⊗;
• a suitably defined product h1 ∗ h2 : F1(M) ∗ F2(M) → P ×G (N1 ∗ N2) of
h1 : F1(M) → P ×G N1 and h2 : F2(M) → P ×G N2;

• the map from P ×G (N1 ∗N2) → P ×G N3 induced by a map N1 ∗N2 → N3.

Below we develop a machinery to deal with Darboux-Lie derivatives of composi-
tions of the above type.

Applying Proposition 3.6 and (5), we conclude that for every natural map
ηM : F ′(M) → F (M) and for h : F (M) → P ×G N

£̃X̃(h ◦ ηM) = Th ◦ L̃(F ′(X),F(X))ηM + (£̃X̃h) ◦ ηM = (£̃X̃h) ◦ ηM .

Hence

(25) £ω

X̃
(h ◦ ηM) = (£ω

X̃
h) ◦ ηM .
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7.1. Darboux-Lie derivative of a product. Suppose F1 and F2 are natural
bundles. Define the natural bundle F1×F2 by (F1×F2)(M) = F1(M)×M F2(M).
Given h1 : F1(M) → P ×G N1 and h2 : F2(M) → P ×G N2, define

h1 ×M h2 : (F1 × F2)(M) → P ×G (N1 ×N2)

(y1, y2) 7→ [p, (p\h1(y1), p\h2(y2))],

where y1 ∈ F1(M)x, y2 ∈ F2(M)x, p ∈ Px for some x ∈ M . Let ω1 : TN1 → V1
and ω2 : TN2 → V2 be G-equivariant 1-forms with values in G-modules V1 and V2.
Define ω1 × ω2 : T (N1 ×N2) → V1 ⊕ V2 by

ω1 × ω2

(
d

dt

∣∣∣∣
0

(γ1(t), γ2(t))

)
= (ω1(γ̇1(0)), ω2(γ̇2(0))) .

By Proposition 4.4, we get for X̃ ∈ X(P )G over X ∈ X(M)

p\£ω1×ω2

X̃
(h1 ×M h2)(y1, y2) =

= ω1 × ω2

(
d

dt

∣∣∣∣
0

Φt

X̃
p\(h1 ×M h2)(Φ

t
F1(X)y1,Φ

t
F2(X)y2)

)

= ω1 × ω2

(
d

dt

∣∣∣∣
0

(
Φt

X̃
p\h1 ◦ Φ

t
F1(X)(y1) , Φ

t

X̃
p\h2 ◦ Φ

t
F2(X)(y2)

))

=

(
ω1

(
d

dt

∣∣∣∣
0

Φt

X̃
p\h1 ◦ Φ

t
F1(X)(y1)

)
, ω2

(
d

dt

∣∣∣∣
0

Φt

X̃
p\h2 ◦ Φ

t
F2(X)(y2)

))

=
(
p\£ω1

X̃
h1(y1), p\£

ω2

X̃
h2(y2)

)
.

Hence

(26) £ω1×ω2

X̃
(h1 ×M h2) = £ω1

X̃
h1 ×M £ω2

X̃
h2.

7.2. Darboux-Lie derivative of a tensor product. For natural vector bundles
E1, E2, we define the natural vector bundle E1⊗E2 by (E1⊗E2)(M) = E1(M)⊗
E2(M). Given two vector bundle maps h1 : E1(M) → P ×G V1 and h2 : E2(M) →
P ×G V2, we define

h1 ⊗ h2 : (E1 ⊗ E2)(M) → P ×G (V1 ⊗ V2)

y1 ⊗ y2 7→ [p, (p\h1(y1))⊗ (p\h2(y2))],

where y1 ∈ E1(M)x, y2 ∈ E2(M)x, p ∈ Px for some x ∈M . We have for all x ∈M ,
y1 ∈ E1(M)x, y2 ∈ E2(M)x

Φt
(E1⊗E2)(X)(y1 ⊗ y2) = Φt

E1(X)(y1)⊗ Φt
E2(X)(y2).
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By Proposition 4.4, we get for X̃ ∈ X(P )G over X ∈ X(M)

p\£X̃(h1 ⊗ h2)(y1 ⊗ y2) =

= vprV1⊗V2

(
d

dt

∣∣∣∣
0

Φt

X̃
p\(h1 ⊗ h2)(Φ

t
F1(X)y1 ⊗ Φt

F2(X)y2)

)

= vprV1⊗V2

(
d

dt

∣∣∣∣
0

Φt

X̃
p\h1 ◦ Φ

t
F1(X)(y1)⊗ Φt

X̃
p\h2 ◦ Φ

t
F2(X)(y2)

)
.

Given curves γ1 : I → V1 and γ2 : I → V2, we have

vprV1⊗V2

(
d

dt

∣∣∣∣
0

γ1(t)⊗ γ2(t)

)
= vprV1

(γ̇1(0))⊗ γ2(0)

+ γ1(0)⊗ vprV2
(γ̇2(0)).

Therefore

(27)
p\£X̃(h1 ⊗ h2)(y1 ⊗ y2) = (p\£X̃h1(y1))⊗ (p\h2(y2))

+ (p\h1(y1))⊗ (p\£X̃h2(y2)).

Thence

(28) £X̃(h1 ⊗ h2) = £X̃h1 ⊗ h2 + h1 ⊗£X̃h2.

7.3. Darboux-Lie derivative of a composition. In this subsection we deal
with the Darboux-Lie derivative of (id×G f)◦h, where h : F (M) → P ×GN and f
is a G-equivariant map from N to N ′. Suppose ω′ : TN ′ → V ′ is a G-equivariant
1-form with values in a G-module V ′. By Proposition 4.4, for h : F (M) → P ×GN
and every x ∈M , y ∈ F (M)x and p ∈ Px

p\£ω′

X̃
((id×G f) ◦ h)(y) = ω′

(
d

dt

∣∣∣∣
0

Φt

X̃
p\((id×G f) ◦ h ◦ Φt

F(X)(y))

)

= f ∗ω′

(
d

dt

∣∣∣∣
0

Φt

X̃
p\(h ◦ Φt

F(X)(y))

)

= p\£f∗ω′

X̃
h(y).

Hence

(29) £ω′

X̃
((id×G f) ◦ h) = £f∗ω′

X̃
h.

The ability to write the above formula is the reason we don’t require ω to be a
parallelization form in the definition of £ω

X̃
, since even if ω′ is a parallelization

form its pull-back f ∗ω′, in general, is not.
Formula (29) becomes more useful if there is a relation between f ∗ω′ and a

G-equivariant 1-form ω : TN → V , where V is a G-module. The vector space
HomR(V, V

′) has the G-module structure defined by (gα)(v) = gα(g−1v) for all
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g ∈ G, α ∈ HomR(V, V
′) and v ∈ V . Now, assume that there is a G-equivariant

map ϕ : N → HomR(V, V
′) such that

(30) (f ∗ω′)z = ϕ(z) ◦ ωz

for each z ∈ N . Let x ∈ M , y ∈ F (M)x and p ∈ Px. Denote the curve Φt

X̃
p\(h ◦

Φt
F(X)(y) by γ. By Proposition 4.4, we get

(31) p\£f∗ω′

X̃
h(y) = f ∗ω′(γ̇(0)) = ϕ(p\h(y))(ω(γ̇(0))) = ϕ(p\h(y))(p\£ω

X̃
h(y)).

Hence

(32) £ω′

X̃
((id×G f) ◦ h)(y) = £f∗ω′

X̃
h(y) = ((id×G ϕ)h(y)) (£

ω
Xh(y)),

where we define an action of Γ(M,P ×G HomR(V, V
′)) on Γ(M,P ×G V ) by

(ψ(s))(x) = [p, (p\ψ(x))(p\s(x))],

for all ψ ∈ Γ(M,P ×G HomR(V, V
′)), s ∈ Γ(M,P ×G V ), x ∈M and p ∈ Px.

Next we give several examples of N , N ′, ω, ω′ and f for which there exists a
map ϕ satisfying (30).

Example 7.1. Take N = V , N ′ = V ′, f : V → V ′ a linear G-equivariant map,
ω = vprV and ω′ = vprV ′ . In this case f ∗ω′ = f ◦ ω. Hence ϕ : V → HomR(V, V

′)
is the constant map that sends each v ∈ V into f and (32) becomes

(33) £X̃((id×G f) ◦ h)(y) = (id×G f)(£X̃h(y)).

Example 7.2. Take N = G × V , N ′ = V and f : G × V → V to be the action
of G on V . We equip N with the form ω := ωMC × vprV and N ′ with the form
ω′ := vprV . Fix g ∈ G and v ∈ V . Every element of T(g,v)(G × V ) is of the form
d
dt

∣∣
0
(g exp(at), v + ut) for suitable a ∈ g and u ∈ V . We get

(34)
f ∗ω′

(
d

dt

∣∣∣∣
0

(geat, v + ut)

)
= vprV

(
d

dt

∣∣∣∣
0

(
geatv + geatut

))

= g(av) + gu = g(av + u).

Notice that

a =
d

dt

∣∣∣∣
0

exp(at) = (TeLg)
−1 d

dt

∣∣∣∣
0

g exp(at) = ωMC

(
d

dt

∣∣∣∣
0

g exp(at)

)

and

u = vprV

(
d

dt

∣∣∣∣
0

(v + ut)

)
.

Hence

(35) (ωMC × vprV )

(
d

dt

∣∣∣∣
0

(geat, v + ut)

)
= (a, u) .

Now (34) and (35) imply that for all (g, v) ∈ G× V

(f ∗ω′)(g,v) = ϕ(g, v) ◦ ((ωMC)g × (vprV )v),
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where

ϕ : G× V → HomR(g⊕ V, V )(36)

(g, v) 7→ ((a, u) 7→ g(av + u)).

Example 7.3. Let H be a Lie group equipped with a left G-action by Lie automor-
phisms. Take N = H ×H, N ′ = H and f : H ×H → H the multiplication map.
Write ωH for the Maurer-Cartan form on H. It is G-equivariant, since G acts
on H by automorphisms. The Maurer-Cartan form on the direct product H ×H
coincides with ωH × ωH .
For h1, h2 ∈ H and a1, a2 ∈ h = TeH, we have

f ∗ωH

(
d

dt

∣∣∣∣
0

(h1e
a1t, h2e

a2t)

)
= ωH

(
d

dt

∣∣∣∣
0

h1h2h
−1
2 ea1th2e

a2t

)

= ωH

(
d

dt

∣∣∣∣
0

h1h2 exp(Adh−1
2
(a1t))e

a2t

)

=
d

dt

∣∣∣∣
0

exp(Adh−1
2
(a1)t) exp(a2t)

= Adh−1
2
(a1) + a2.

Hence (f ∗ωH)h1,h2 = ϕ(h1, h2) ◦ (ωH × ωH)h1,h2 , where

ϕ : H ×H → HomR(h⊕ h, h)(37)

(h1, h2) 7→ ((a1, a2) 7→ Adh−1
2
(a1) + a2).

7.4. Synthesis. The aim of this subsection is to obtain rather general Lie-type
formulas by combining the results already obtained in this section. We will treat
the special cases in examples.

Let F1, F2 be natural bundles and h1 : F1(M) → P×GN1, h2 : F2(M) → P×GN2

morphisms of fibred manifolds over M . Suppose ω1 : TN1 → V1, ω2 : TN2 → V2,
ω : TN → V are G-equivariant forms, f : N1 × N2 → N is a G-equivariant map,
and ϕ : N1 ×N2 → HomR(V1 ⊕ V2, V ) is a smooth map such that

(f ∗ω)z = ϕ(z) ◦ (ω1 × ω2)z.

Let η : F → F1 × F2 be a natural bundle map. Define

h1 ×f,η h2 : F (M) → P ×G N

to be the composition (id×G f) ◦ (h1 ×M h2) ◦ ηM .
Fix y ∈ F (M). Then ηM(y) = (y1, y2) for suitable y1 ∈ F1(M), y2 ∈ F2(M).

Using (25) and (32), we get
(38)

£ω

X̃
(h1 ×f,η h2)(y) = £ω

X̃
((id×G f) ◦ (h1 ×M h2) ◦ ηM)(y)

= £ω

X̃
((id×G f) ◦ (h1 ×M h2))(y1, y2)

= (id×G ϕ)((h1 ×M h2)(y1, y2))(£
ω1×ω2

X̃
(h1 ×M h2)(y1, y2)).
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By definition of h1 ×M h2, we have

(h1 ×M h2)(y1, y2) = [p, (p\h1(y1), p\h2(y2))].

Hence

(id×G ϕ)((h1 ×M h2)(y1, y2)) = [p, ϕ(p\h1(y1), p\h2(y2))].

By (26), we have

£ω1×ω2

X̃
(h1 ×M h2)(y1, y2) = [p, (p\£ω1

X̃
h1(y1), p\£

ω2

X̃
h2(y2))].

Thence (38) becomes

£ω

X̃
(h1 ×f,η h2)(y) = [p, ϕ(p\h1(y1), p\h2(y2))

(p\£ω1

X̃
h1(y1), p\£

ω2

X̃
h2(y2))].

(39)

Example 7.4. Suppose s ∈ Γ(M,P ×G cG) and β : F (M) → P ×G V , where V is
a G-module. We define ηM : F (M) → M ×M F (M) to be Z 7→ (x, Z) for every
x ∈ M and Z ∈ F (M)x. Write f for the action map G × V → V . Then s · β
defined at the beginning of the section coincides with s ×f,η β. Taking ϕ defined
by (36) and applying (39), we get for x ∈M , p ∈ Px and Z ∈ TxM

p\£X̃(s · β)(Z) = ϕ(p\s(x), p\β(Z))(p\£X̃s(x), p\£X̃β(Z))

= (p\s(x))
(
(p\£X̃s(x))(p\β(Z)) + p\£X̃β(Z)

)
.

Hence

(40) £X̃(s · β) = s · (£X̃s · β +£X̃β).

If P is equipped with a G-principal connection and X ∈ X(M), then we get the
following property for the covariant Darboux-Lie derivative

(41) L∇
X(s · β) = s · (L∇

Xs · β + L∇
Xβ).

Example 7.5. Now let s1, s2 ∈ Γ(M,P ×G cG). Notice that the multiplication map
µG : cG×cG→ cG is G-equivariant. Define ηM : M →M×MM by ηM(x) = (x, x).
We write s1 · s2 for s1 ×µG,η s2. Taking ϕ defined by (37) and applying (39), we
get for all x ∈M and p ∈ Px,

p\£X̃(s1 · s2)(x) = ϕ(p\s1(x), p\s2(x))(p\£X̃s1(x), p\£X̃s2(x))

= Ad(p\s2(x))−1

(
p\£X̃s1(x)

)
+ (p\£X̃s2(x)).

Thus with appropriate definitions for s−1
2 and Ads−1

2
, we get

(42) £X̃(s1 · s2) = Ads−1
2

(
£X̃s1

)
+£X̃s2.

In the case P is equipped with a G-principal connection, this implies

(43) L∇
X(s1 · s2) = Ads−1

2
(L∇

Xs1) + L∇
Xs2.
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Now we turn our attention to the Leibniz rule involving tensor product. Let E1,
E2 be natural vector bundles and h1 : E1(M) → P ×G V1, h2 : E2(M) → P ×G V2
morphisms of vector bundles, f : V1 ⊗ V2 → V a homomorphism of G-modules,
and η : E → E1 ⊗ E2 a natural transformation of natural vector bundles. Write
h1 ⊗f,η h2 for the composition (id×G f) ◦ (h1 ⊗ h2) ◦ ηM .

Fix x ∈M , y ∈ E(M)x, and p ∈ Px. Then ηM(y) can be written as
∑

i∈I y1,i⊗y2,i
for suitable elements y1,i ∈ E1(M)x and y2,i ∈ E2(M)x. Using (25) and (33), we
get

£X̃(h1 ⊗f,η h2)(y) = £X̃((id×G f) ◦ (h1 ⊗ h2) ◦ ηM)(y)

= £X̃((id×G f) ◦ (h1 ⊗ h2)) (ηM(y))

= (id×G f)
(
£X̃(h1 ⊗ h2) (ηM(y))

)
.

Applying (27), we get

p\£X̃(h1 ⊗ h2) (ηM(y)) =
∑

i∈I

(p\£X̃h1(y1,i)⊗ p\h2(y2,i)

+ p\h1(y1,i)⊗ p\£X̃h2(y2,i)).

Thence

(44)

£X̃(h1 ⊗f,η h2)(y) =
∑

i∈I

[p, f(p\£X̃h1(y1,i)⊗ p\h2(y2,i))]

+ [p, f(p\h1(y1,i)⊗ p\£X̃h2(y2,i))].

Example 7.6. Let α ∈ Ω1(M,P ×G g) and β ∈ Ω1(M,P ×G V ), where V is a
G-module. Define α ∧ β ∈ Ω2(M,P ×G V ) by

(α ∧ β)(Z1, Z2) = α(Z1) · β(Z2)− α(Z2) · β(Z1).

Alternatively, it can be written as the composition (id×G f) ◦ (α⊗ β) ◦ ηM , where

ηM : Λ2TM → TM ⊗ TM

Z1 ∧ Z2 7→ Z1 ⊗ Z2 − Z2 ⊗ Z1

and f : g⊗V → V is the action of g on V . Notice that f is G-equivariant. Thence
α ∧ β = α⊗f,η β. Applying (44), we get

p\£X̃(α ∧ β)(Z1, Z2) = (p\£X̃α(Z1))(p\β(Z2)) + (p\α(Z1))(p\£X̃β(Z2))

− (p\£X̃α(Z2))(p\β(Z1))− (p\α(Z2))(p\£X̃β(Z1)).

Hence

(45) £X̃(α ∧ β) = £X̃α ∧ β + α ∧£X̃β.



DARBOUX-LIE DERIVATIVES 23

Remark 7.7. More generally we can take α ∈ Ωk(M,P ×G g) and β ∈ Ωℓ(M,P ×G

V ). Then α ∧ β can be defined as α⊗f,η β, where f is the same as above and

ηM : Λk+ℓTM → ΛkTM ⊗ ΛℓTM

Z1 ∧ · · · ∧ Zk+ℓ 7→
∑

σ∈Shk,ℓ

(−1)σZσ(1) ∧ · · · ∧ Zσ(k) ⊗ Zσ(k+1) ∧ · · · ∧ Zσ(k+ℓ),

where Shk,l is the set of all (k, ℓ)-shuffles. As expected, for every X̃ ∈ X(P )G one
gets

(46) £X̃(α ∧ β) = £X̃α ∧ β + α ∧£X̃β.

In the case P is equipped with a G-principal connection and X ∈ X(M), this
implies

(47) L∇
X(α ∧ β) = L∇

Xα ∧ β + α ∧ L∇
Xβ.

8. Cartan magic formula

Suppose ∇ is a covariant derivative on a vector bundle E Then the exterior
covariant derivative d∇ of β ∈ Ωk(M,E) is given by

d∇β(X0, . . . , Xk) :=
k∑

j=0

(−1)j∇Xj
(β(X0, . . . , X̂j, . . . , Xk))

+
∑

i<j

(−1)i+jβ([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xk).

In the special case when ∇ is a covariant derivative on P ×G V induced by a
G-principal connection on P , we get

∇Xj
(β(X0, . . . , X̂j, . . . , Xk)) = L∇

Xj
(β(X0, . . . , X̂j, . . . , Xk)).

Indeed, let s ∈ Γ(M,P ×G V ) and XH the horizontal lift of X to P . Then XH
V it

the∇-horizontal lift of X to P×GV and by the definition of covariant Darboux-Lie
derivative

L∇
X(s)(x) = L(X,XH

V
)(s)(x) = vprV

(
d

dt

∣∣∣∣
t=0

Φ−t

XH
V

◦ s ◦ Φt
X(x)

)
= (∇Xs)(x).

Hence

(48)

d∇β(X0, . . . , Xk) =
k∑

j=0

(−1)jL∇
Xj
(β(X0, . . . , X̂j, . . . , Xk))

+
∑

i<j

(−1)i+jβ([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xk).
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Let Y1,. . . , Yk and Z be vector fields onM . The section β(Y1, . . . , Yk) of P ×GV

is the composition of ∧k
j=1 Yj : M → ∧kTM and β : ∧k TM → P ×G V . Write Z̃

for the canonical lift of Z to ∧kTM . Applying Proposition 3.6, we get

£̃ZH (β ◦ ∧k
j=1 Yj) = Tβ ◦ L̃(Z,Z̃)(∧

k
j=1 Yj) + (L̃(Z̃,ZH

V
)β) ◦ ∧

k
j=1 Yj.

Applying id×G vprV to the both sides, we obtain

L∇
Z (β ◦ ∧k

j=1 Yj) = β ◦ L(Z,Z̃)(∧
k
j=1 Yj) + (L(Z̃,ZH

V
)β) ◦ ∧

k
j=1 Yj.

Now L(Z,Z̃) is the usual Lie derivative LZ of tensor fields and L(Z̃,ZH
V
) is the covariant

Darboux-Lie derivative L∇
Z . Hence

(49)

L∇
Z (β ◦ ∧k

j=1 Yj) = β ◦ LZ(∧
k
j=1 Yj) + (L∇

Zβ) ◦ ∧
k
j=1 Yj

=
k∑

j=1

β(Y1, . . . , [Z, Yj], . . . , Yk) + L∇
Zβ(Y1, . . . , Yk).

Taking X0 = Z and Xi = Yi for 1 ≤ i ≤ k in (48), we get

iZd
∇β(Y1, . . . , Yk) = L∇

Z (β(Y1, . . . , Yk))−
k∑

j=1

(−1)j−1L∇
Yj
(β(Z, Y1, . . . , Ŷj, . . . , Yk))

+
k∑

j=1

(−1)jβ([Z, Yj], Y1, . . . , Ŷj, . . . , k)

−
∑

i<j

(−1)i+jβ(Z, [Yi, Yj], Y1, . . . , Ŷi, . . . , Ŷj, . . . , Yk)

= (L∇
Zβ)(Y1, . . . , Yk)− d∇(iZβ)(Y1, . . . , Yk).

Hence we obtain the Cartan magic formula for covariant Darboux-Lie derivative

(50) L∇
Zβ = iZ(d

∇β) + d∇(iZβ).

9. Future work on G-structures

The principal motivation for introducing the covariant Darboux–Lie derivative
was its anticipated application to the theory of G-structures. Recall that a G-
structure on an n-dimensional manifold M is a reduction of the structure group
of TM to G < GLn(R). This can be described in several equivalent ways:

− by choosing an open covering of M such that the transition maps of TM
with respect to this covering take values in G;

− by specifying a principal G-subbundle of the frame bundle L(Rn, TM);
− by giving an isomorphism TM ∼= P ×G V , for a suitable principal G-bundle

P and G-module V .
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The last formulation is particularly suited for analytic treatments, in contrast
with the more geometric viewpoint of describing the structure as a subbundle2.
It should be noted that two distinct isomorphisms β, β′ : TM → P ×G V may
determine the same G-structure. In fact, we will formally verify that β and β′

define the same G-structure if and only if there is s ∈ Γ(M,P ×G cG) such that
β′ = s ·β. Thus a G-structure on M can be described as a gauge equivalence class
[β] of soldering forms β : TM → P ×G V . We conclude this section by announcing
two results that will be proved in forthcoming work. Suppose P is equipped with
a fixed G-principal connection.

Proposition 9.1. A vector field X ∈ X(M) is an infinitesimal automorphism of
a G-structure [β] on M if and only if L∇

Xβ = a · β for some a ∈ Γ(M,P ×G g).

Proposition 9.2. A G-structure [β] is torsion-free if and only if d∇β = α∧ β for
some α ∈ Ω1(M,P ×G g).
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