Game semantics of universes in Martin-Lof type theory

Norihiro Yamada

CMUC, University of Coimbra, Department of Mathematics
3000-143 Coimbra, Portugal
northiro@mat.uc.pt

Abstract

We extend game semantics of Martin-Lof type theory to a cumulative hierarchy of universes. This
extension fulfils game semantics of all standard types in Martin-Lof type theory for the first time in
the literature. More broadly, its contribution to mathematical semantics, constructive mathematics
and foundations of mathematics is that it is the first intensional model of universes, showing that
it is possible to interpret universes by finitary computational steps. In contrast, extensional models
of universes, e.g., realisability and domain models, were given more than 30 years ago. As a result,
the powerful combinatorial method of game semantics becomes available for the study of universes
and types generated by them. We illustrate this advantage by applying the game semantics to show
the independence of Markov’s principle from Martin-Lof type theory with universes. A challenge in
obtaining game semantics of universes comes from a conflict between identity types and universes:
Naive game semantics of the encoding of identity types by universes yields a decision procedure on
the equality between functions, contradicting recursion theory. We conquer this challenge by novel
games for universes whose strategies encode games for identity types without deciding the equality.
In this way, we encode extensionally undecidable types effectively by intensional computations.

Keywords: Game semantics, universes, Martin-Lof type theory, constructive mathematics
2020 MSC: 03B70, 03B38, 03F55, 03B16, 03F50

1. Introduction

The present work establishes the first game semantics of universes in Martin-Lof type theory in
the literature! and illustrates its utility by applying it to provide a novel proof of the independence
of Markov’s principle from Martin-Lo6f type theory equipped with universes. For this introduction,
we assume familiarity with Martin-Lof type theory and universes, but not game semantics.

1.1. Martin-Léf type theory and the meaning explanation

On the one hand, formal systems [Sho67] are a class of syntactic formalisations of mathemat-
ics, and constructive mathematics [TvD88] is a family of computational or constructive schools in
(foundations of) mathematics. On the other hand, a model or semantics [Tar54, Sco70] of a formal
system is an assignment of mathematical objects to syntactic objects of the formal system, where
the former serves as the interpretation of the latter.

IBlot and Laird [BL18] interpret a universe extensionally by a domain, not intensionally by a game.

Preprint submitted to Elsevier September 18, 2025

[vl] Thu, 18 Sep 2025

https://www.mat.uc.pt/preprints/eng_2025.html

Martin-Lof type theory (MLTT) [ML75, ML84, ML98] is one of the best-known formal systems
for constructive mathematics, and it is comparable to axiomatic set theory [Zer08, Fra22] for clas-
sical mathematics. In addition, it is also a higher-order functional programming language [ML82],
which generalises the simply-typed A-calculus (STLC) [Chu40] along the generalisation of (intu-
itionistic) propositional logic to higher-order (intuitionistic) predicate logic under the Curry-Howard
isomorphisms [SU06]. By this computational nature, MLTT underlies the computer formalisations
of mathematics and their applications to functional programming [CAB*86, Unil3].

A fundamental idea of MLTT is to regard (mathematical) objects and proofs in constructive
mathematics uniformly as computations in an informal sense; MLTT is a syntactic formalisation of
this beautiful idea due to Martin-Lof [ML82]. Accordingly, objects and proofs in MLTT are unified
into programs or terms, where formulae are called types. This standard yet informal semantics of
MLTT, which interprets terms as computations (and types as collections of the computations), is
known as the meaning explanation of MLTT [DP16, §5]; it can be seen as an extension of the BHK
interpretation of intuitionistic logic [Bro54, Hey31, Kol32] to constructive mathematics.

For illustrating the meaning explanation, let us recall that types in MLTT are written

' A type,
abbreviated as A, where I' is an assumption or contezt, and terms of A as
I'ta:A,

abbreviated as a : A or a. Let us also recall that the generalisation of STLC to MLTT is by allowing
a type A to contain variables in the ambient context I', which corresponds under the Curry-Howard
isomorphisms to the path from propositions to predicates. For instance, an identity (Id-)type,

Dox:Ay: AbTIda(z,y) type,

in MLTT corresponds under the Curry-Howard isomorphisms to the predicate that holds when the
objects x and y are equal. In this way, types in MLTT may depend on the contents of variables,
so they are said to be dependent. A dependent type is said to be constant if it does not contain a
variable; those constant ones are equivalent to simple types in STLC.

Then, for example, function types = in STLC are generalised in MLTT to Pi-types II, whose
typing rules include

T'z: At B type
I'F1I,.4B type

z:A+Fb: B
T'EAx.b:1l,.4B

(II-FORM) (IT-INTRO)

' f:11,.4B T'ka:A
T+ app(f,a) : B{a/z}

where B{a/x} is the result of substituting a for z in B, and we omit the computation and the
uniqueness rules. The difference between Pi- and function types is that B in these rules may contain
variables, especially z, unlike the corresponding rules on functions types. Under the Curry-Howard
isomorphisms, the formation rule II-FORM corresponds to the formation of universal quantification
Vu.4B, where the type Il,.4 B is identified with the formula V.4 B, and the introduction rule II-
INTRO and the elimination rule II-ELIM to the introduction and the elimination rules for universal
quantification in natural deduction, respectively. According to the meaning explanation, the term

(II-EL1vM)

I'HXx.b:11,.4B

yielded in the rule II-INTRO represents a computation that transforms a proof z of A to that b of
B. This computation of the Pi-type II,. 4 B makes sense intuitively as a (constructive) proof of the
universal quantification V,.4B. In addition, the meaning explanation interprets the term

'+ app(f,a) : B{a/z}

generated in the rule II-ELIM as the result of applying a proof f of II,. 4B to that a of A. This
computational procedure corresponds to the instantiation of a proof of the formula V,.4 B.

Another example is Sigma-types ¥ in MLTT, which generalise product types x in STLC. The
typing rules on Sigma-types include

I''z: AF B type
'+ X,.4B type

I'z: At B type 'ka:A I'kb: B{a/x}
L't {a,b):X;.4B

(X-ForM) (3-INTRO)
I'z:Y..4BF C type Nyz:Ay:BFg:C{{x,y)/z} T'kp:X,.4B

(3-ELIM)
't R¥([z:%..4B]C,[z: A,y : Blg,p) : C{p/z}

The formation rule X-Form corresponds under the Curry-Howard isomorphisms to the formation of
existential quantification 3,.4 B, where the type ¥,.4 B is seen as the formula 3,.4 B; the introduc-
tion rule 3-INTRO and the elimination rule 3-ELIM to the introduction and the elimination rules
for existential quantification in natural deduction, respectively. Again, it is straightforward to give
these rules the meaning explanation; see the standard articles [ML82, DP16] for the details.

Nevertheless, the meaning explanation cannot act as a mathematically firm ground to analyse,
justify or develop MLTT since it does not formulate the central concept of computation in a mathe-
matically precise fashion. Moreover, MLTT is an intricate formal system, which contains superficial
syntactic details. This problem makes it technically challenging to study meta-theoretic properties
of MLTT such as independence and consistency.

1.2. Game semantics of Martin-Ldf type theory

Due to these fundamental problems, one calls for mathematical semantics of MLTT that for-
malises the meaning explanation in a mathematically precise manner, yet abstracting the super-
fluous syntactic details, and advances the meta-theoretic study of MLTT. Motivated in this way,
Yamada [Yam23] has established game semantics of MLTT that satisfies these criteria.

Game semantics [Hyl97, AT97] is a class of mathematical semantics that interprets types by
games between Player (or an agent) and Opponent (or an oracle), and terms by strategies on how
to play games. A game is a certain rooted forest together with a set of positions, where the vertices
of the rooted forest are called moves, and the positions are a class of finite sequence of the moves
starting with the roots. A strategy on a game is Player’s algorithm on how to walk on (or play)
the game alternately with Opponent, and said to be winning if it always leads to Player’s win.

We represent walks or plays in a game by a class of potentially infinite sequences of positions,

€,1M71,M1M2, M1M2M3, ...,

where € is the empty sequence or position, and the finite sequences myms ...m; of moves m; are
nonempty positions. By convention, the first move m; is always made by Opponent, and Player
and Opponent alternately make moves. Hence, odd-indexed moves mo;41 are made by Opponent,
and even-indexed ones mq; by Player. Yamada’s work is based on McCusker’s games and strategies
[McC98], and we are recalling this variant here, suppressing pointers (Appendix A.1) for brevity.

We represent a strategy o on a game G, written o : GG, by a partial function,
mi — mimso, mimoms — My, mimsg...Mo;11 F— M2i42, ceey

from odd-length positions mims...mg;11 to moves ma; 1o for Player in G (i.e., the strategy tells
Player how to play in the game when it is her turn to make a move) such that the concatenations

MM . . . M2i41M242

are positions. Equivalently, a strategy can also be given as the set of these concatenations, and we
use the both presentations interchangeably. A strategy is said to be total if so is it as a partial map.

Yamada’s game semantics of MLTT formalises the meaning explanation mathematically and
syntaz-freely by modelling terms as winning strategies or computations on the truths of formulae.
It is also an effective tool for the study of MLTT; e.g., it verifies the independence of Markov’s
principle [Yam23, Corollary 4.7.1], which is impossible by most other mathematical semantics of
MLTT such as the effective topos [Hyl82]. The point here is that game semantics is unique in its
interpretation of terms by strategies or intensional processes, computing in a step-by-step fashion,

mi — mima, mi1meoms +— My, mimsg ... M1 — M2i12, ey

while other mathematical semantics interprets terms by extensional objects such as functions. Be-
cause terms are also intensional objects, the game semantics achieves a very tight correspondence
between terms and strategies, which makes itself a powerful tool for the study of MLTT.

1.3. Universes in Martin-Ldf type theory

We can extend MLTT by a ‘type of types’ or universe [ML75]. The universe enables MLTT to
significantly expand its realm of constructive mathematics. For instance, the elimination rule of
natural number (N-)type with respect to the universe generates infinitely indexed dependent types
such as the type of finite lists of natural numbers (Example 3.2.5).

The power of the universe is greatly increased as soon as it is combined with well-founded tree
(W-)types [ML82]. For instance, MLTT together with the universe and W-types interprets Aczel’s
constructive set theory [Acz86], and the combination of the universe and W-types provides MLTT
with a high proof-theoretic strength among constructive formal systems [Set93, GR94].

Note, however, that the universe does not accommodate itself since otherwise it would lead to
an inconsistency [Gir72]. To overcome this problem, Martin-Lof [ML75, ML84] instead introduced
a cumulative hierarchy (Uy)ken of universes Uy. The first universe Uy does not accommodate itself,
but the second one U; does. Analogously, the second universe U/; does not accommodate itself, but
the third one U5 does, and so forth. This hierarchy is cumulative: If i < j, then the universe U;
accommodates everything contained by the smaller one U; plus U; itself. In this way, the hierarchy
collectively accommodates each type, including the universes themselves, without an inconsistency.

1.4. Main results

For the significant roles of universes in MLTT and constructive mathematics, we aim to extend
Yamada’s game semantics of MLTT to universes so that game semantics becomes available as a
tool for the study of universes and types generated by them. (We explain why we do not employ
other semantics in §1.5.) As clarified in §2, this is by no means an easy task, but:

Theorem 1.4.1 (effective game semantics of universes). Yamada’s game semantics of MLTT is
extendable to the cumulative hierarchy of universes, in which strategies are all effectively computable
in the standard sense of recursion theory.

This theorem in turn extends Yamada’s independence proof:

Corollary (independence of Markov’s principle). Markov’s principle [Mar62] is independent from
MLTT equipped with the cumulative hierarchy of universes.

This result illustrates a strong advantage of game semantics: Its combinatorial reasoning such
as the independence proof remains valid even if it is extended to new types. As a result, when the
game semantics of MLTT has been extended to new types, its meta-theoretic results on MLTT such
as the independence of Markov’s principle are automatically extended to those types too.

This advantage makes the game semantics a powerful tool for the study of MLTT. In contrast,
the proof by Mannaa and Coquand [MC17], for instance, does not have such a modular property:
An extension of MLTT may invalidate their syntactic, inductive reasoning.

1.5. Our contributions and related work

Our main contribution is the establishment of the first game semantics of the cumulative hier-
archy of universes in the literature. More broadly, it is the first intensional semantics of universes
(§4.2), while extensional variants of computational models of universes, e.g., domains [Pal93] and
realisability [Str91], were already given in early 1990’s. Note that none of the existing intensional
semantics of MLTT [AJV15, VJA18, BL18] models universes by intensional computations. We solve
this long-standing problem in constructive mathematics, type theory and mathematical semantics.

As explained in §2.3, a main technical challenge in obtaining game semantics of universes is to
encode games for Id-types by strategies on universes. We overcome this challenge by the novel idea
to encode games by strategies that consist of ordinary computations and additional symbolic ones
as sketched in §2.4, while we permit the decoding El to be extensionally uncomputable (without
sacrificing the effectivity of strategies). This idea in turn requires a nontrivial recursive definition
of games for universes, and one of our technical contributions is to realise it (Definition 3.1.2).

Another contribution of ours is to provide a new proof of the independence of Makov’s principle
from MLTT equipped with the cumulative hierarchy of universes. This result illustrates the mod-
ularity of the game semantics: A meta-theoretic result on MLTT given by the game semantics is
automatically extended to new types as soon as the interpretation is extended to the types.

As related work, we mention that Abramsky et al. [AJV15] have obtained the first intensional
semantics of MLTT. While this is a significant achievement, it interprets Sigma-types indirectly by
formal lists of (families of) games, not games, which makes an interpretation of universes hopeless.
Also, their method is valid only for a specific class of types [VJA18, Figure 7], which excludes a
list type. Because a list type is constructible from N-type and a universe (Example 3.2.5), this also
implies that their method cannot model universes. Thus, we instead adopt Yamada’s semantics.

Blot and Laird [BL18] also model a universe [BL18, Table 3], for which they write T ¢ Z type,
extensionally by a domain, not intensionally by a game. Although they do not interpret Id-types,
they sketch how to do it wia finite tuples of Boolean type [BL18, §9]; however, this method does not
work in the presence of N-type since the set N of all natural numbers is unbounded. While their
semantics is a valuable contribution to the literature, we do not employ it for these reasons.

McCusker [McC98] and Clairambault [Cla09] have established game semantics of recursive types.
One may then wonder if their methods are applicable to universes. However, the answer is negative:

Whilst a variety of type constructions encoded by universes can be made into the form of recursive
types, their methods cannot interpret dependent types. For instance, Id-types cannot be presented
as recursive types because they take terms as parameters. This point illustrates the novelty of the
present work. In addition, their interpretations of recursive types are extensional, while our game
semantics of universes is intensional. Again, this novel intensionality is our main contribution.

Lastly, Manna and Coquand [MC17] have shown the independence of Markov’s principle from
MLTT equipped with a universe for the first time in the literature. Their proof is syntactic, which
stands in contrast to our game-semantic proof. As we have mentioned in §1.4, their syntactic proof
is not necessarily straightforward to extend to other types, while our game-semantic proof is.

1.6. Concluding remarks

Similarly to Yamada [Yam23], we do not give a full completeness result for the following reasons.
First of all, the syntax of MLT'T, specifically N-type, is not suited to full completeness. For instance,
the full completeness theorem given by Abramsky et al. [AJV15, VJA18] is on a modification of
MLTT, which excludes N-type. Because our main subject of study is MLTT itself, we leave a full
completeness result on some modification of MLTT as future work. Secondly, one of our aims is to
provide a tool for the study of MLTT, but a full completeness theorem is not necessarily essential
for this aim. For example, the fully complete semantics by Blot and Laird [BL18] cannot verify the
independence of Markov’s principle because it admits classical reasoning. Hence, we instead show
the wutility of our game semantics by applying it to some meta-theoretic results on MLTT in §4.

1.7. Article structure

The remainder of this article proceeds as follows. We first informally describe a main challenge
in obtaining game semantics of universes and sketch our solution to this problem in §2. We then
present our result in §3: game semantics of the cumulative hierarchy of universes. We next show
some corollaries of this result in §4 such as the independence of Markov’s principle from MLTT
equipped with the hierarchy. Appendix A summarises the game semantics of MLTT [Yam23].

Notation. Throughout the present article, we use the following notations:

e We use bold letters s, t, u, v etc. for sequences, in particular € for the empty sequence, and
small letters a, b, m,n, x,y, etc. for the elements of sequences;

e Letm:=1{1,2,...,n} for each positive integer n € N, := N\ {0}, and 0 := ;

« We also write z122 ... 2|4 for a finite sequence s = (21, 22,...,2|s), where |s| is the length
of s, and define s(i) := x; for each i € |s|;

e The concatenation of finite sequences s and t is represented by the juxtaposition st (or s.t),
but we often write as, tb and ucv for (a)s, t(b) and u(c)v, respectively;

o We write Even(s) (respectively, Odd(s)) if a sequence s is of even- (respectively, odd-)length,
and for a set S of sequences and a predicate P € {Even, Odd} define S* :={s € S| P(s) };

e We write s <X t if s is a prefix of a sequence ¢, and for a set S of sequences, Pref(S) for the
set of all the prefixes of the sequences in S.

2. Our challenge and solution in a nutshell

Before going into the details of our game semantics of universes in §3, we first informally recall
games and strategies in §2.1, and based on them Yamada’s game semantics of MLTT in §2.2. We
next explain a challenge in extending the game semantics to universes in §2.3. Finally, we sketch
how to overcome the challenge in §2.4, and how to extend it to the hierarchy of universes in 2.5.

2.1. Games and strategies

To understand our main challenge explained in §2.3, we begin with an informal introduction to
games and strategies d la McCusker [McC98, AM99b]. According to the original definition, a game
consists of a certain type of finite rooted forest, called an arena, and a class of finite sequences or
positions of the vertices or moves of the arena starting with the roots. For technical convenience,
Yamada [Yam23] recasts this definition in such a way that a game is identified with a certain set of
finite sequences, which are to be regarded as positions, and an arena is derived from the positions.
He also defines a subgame of a game G to be a game G’ such that G’ C G. In the following, we
adopt Yamada’s reformulation; the details are collected in Appendix A.l.

For instance, the simplest game is the empty game

T := {e},
which has no moves to play. Thus, it has only the trivial strategy
1:={e}: T
As another, more substantial example, consider the game
N:={e,q}U{gn|neN}

of natural numbers. In this game, a play starts with Opponent’s move ¢ (‘What is your number?’)
and ends with Player’s move n (‘My number is n!’). This natural number game N is not always
the most preferred one because it is not very different from the set N of all natural numbers, and
there is another, much more intensional game .4~ for natural numbers [Yam19]. Nevertheless, the
game N is simpler and suffices for our aim, so we adopt it in this article.

Moreover, the subset

2N :={e,q}U{q(2n) |IneN} C N

is a subgame of N. Then, a strategy n : N (n € N) is just the map ¢ — n, and it corresponds to
the number n. Note that, e.g., the strategy 7 is not valid on the game 2N.

Next, there is a binary construction & on games, called product, which is a product in a category
of games and strategies. The product G & H of games G and H is simply the disjoint union

G&H =GWH

of G and H. In other words, a position in G & H is a one in G or H. For instance, a maximal
position of the product N & N of the game N and itself is either?

No & Np No & Np
q[0) ap)
no] mp)

2The diagrams are only to make it explicit which component game each move belongs to; the positions in the
diagrams are just the finite sequences gjg)njg) and gj1ym[y].

where n,m € N, and the subscripts (_); (0 <@ < 1) are tags for the disjoint union to distinguish
between the two copies of N. We often omit the tags if it does not bring confusion. We write (n,m)
for the strategy on N & N that plays as in the diagrams; it is the pairing of the strategies n,m : N.

Another binary construction —o, called linear implication, accommodates the strategies playing
as linear functions in the sense of linear logic [Gir87], i.e., the functions that consume exactly one
input to produce an output. A position in the linear implication G — H between games G and H
is defined to be an interleaving mixture of positions in G and H such that

1. The first element of the position is a move in H;
2. Each change of the G H-parity in the position is by Player, i.e., at an even-indexed move.

For example, a typical position in the linear implication N — N looks like

No — Ny
qn
4]
no]
m

which can be read as follows:

1. Opponent’s question g[;j for an output (“What is your output?’);
2. Player’s question gjo) for an input (‘Wait, what is your input?’);
3. Opponent’s answer nj to gy (‘OK, here is an input n.’);

4. Player’s answer mpyj to qpj (‘Alright, the output is then m.).

This position corresponds to any linear function N — N that maps n — m. Then, for instance, the
strategy succ : N —o N is the function that maps

qn) = qpo)s qu1qi0) o) = n+ 1y
for all n € N, or diagrammatically it plays as

No — Ny
q[1)

q10]
o]
n + 1[1]

By the way, the play qp;) = m[;) in N — N, computing as a constant linear function that maps
x +— m for all z € N, is possible too. Thus, strictly speaking, the linear implication G — H is the
game for affine maps from G to H, but we follow the convention to call —o linear implication.

Now, note that the linear implication N & N — N, where by convention & precedes —o, does
not admit strategies that compute binary maps such as addition because its maximal positions are

N & N — N N & N — N
q q N & N — N
q q q
n n m
m m

and these positions may contain at most one input on the domain N & N.
The unary construction ! on games, called exponential or of-course, addresses this problem by
defining a desired game G = H for ordinary (not necessarily linear) functions from G to H by

G=H:=1G—H,

where by convention ! precedes —o and &. This idea comes from linear logic [Gir87].

A position in the exponential !G is defined to be an interleaving mixture of a finite number of
positions in G in which each switch between positions in different copies of GG is made by Opponent,
i.e., at an odd-indexed move. For instance, the exponential (/N & N) has the positions

(N & N) (N & N)
q q
n n
q q
m m

so that there are strategies add,add’ : N & N = N for addition that compute respectively as

N & N %y N & N N
q q
q q
n n
q q
m m
n+m n+m

Although these strategies both implement addition, their computational processes are slightly dif-
ferent, illustrating the intensional nature of game semantics.
We next recall the composition
vep:G=K
of strategies ¢ : G = H and ¢ : H = K. For instance, consider those succ,double : N = N (where
succ is not on the game N —o N, but its computation remains to be the same) computing as

double
No = Ny N "= Ny
q1] q13)
qjo] q[2)
mo] N3]
m+1 1] 2n[2]

The composition double @ succ : N = N is then defined as follows. First, we take the promotion
succ’ : INjg) — !Npyj of succ : INjg —o Npgj, which computes as succ itself for each position in
INjg) —o Npyj inside !Njg) — !N[;). Thus, a position played by succ’ looks like as in Figure 1.

Next, we synchronise succ’ and double via the codomain !Ny of succ’ and the domain INig) of
double, for which Player also plays the role of Opponent in the component games !Nj;; and !Ny
by copying her last moves as in Figure 2, where the moves for the synchronisation are marked by
square boxes for clarity. Importantly, Opponent plays on the ezternal game Njo) = N3, seeing
only the moves in the component games !Njg) and Nj3j. This play is to be read as follows:

SUCCT

q[1)
4i0]
o]
m + 1[1]
q[1)
q10]
m!
(0]
m' + 1[1]
q[1)
qo]
m!
(0]
m// + 1[1]

Figure 1: An example of promotion

succt double
q[3
q12)
4]
q[0]
(o]
n -+ 1[1]
n -+ 1[2]
2(n+ 1)

Figure 2: An example of an interaction between strategies

10

Opponent’s question gj3) for an output in !Ny — Nz (‘What is your output?’);
Player’s question by double for an input in !N}y — Nig (‘Wait, what is your input?’);

then triggers the question for an output in !Ny —o !Npq; (‘What is your output?’);

Player’s question go) by succ for an input in INig) —o !Np1y (‘Wait, what is your input?’);
Opponent’s answer njy to qjo) in !Njo; —o !Nig) (‘Here is an input n.);

Player’s answer |n + 1j1) | to [gp | by succ! in INig) — !Npyj (‘The output is then n 4 1.);
n + 1p) | then triggers the answer | n + 1) [to[g[z) |in !Nz —o Nigj (‘Here is the input n+1.);
Player’s answer 2 - (n + 1)[3) to g3 by double in !Njg) — N3 (‘The output is then 2(n +1)!").

e B A o

Finally, we hide all the moves enclosed with the square boxes from the play, resulting in the
strategy double e succ : N = N for the function n — 2(n + 1) as expected:

N[o} doubl__e;succ N[g]
q13)

q10)

7[o]

The category of games and strategies has games as objects, strategies ¢ : G = H as morphisms
G — H, and the composition of strategies as the categorical composition. For each object G, the
identity idg : G — G in the category is the strategy that simply copy-cats Opponent’s last moves:

¢ ¥ ¢
my
mi
ma
ma
m3
m3

One can also compose strategies v : G and ¢ : G = H in the same vein, yielding a strategy
¢ e~y : H. For instance, we have the composition double e n = 2n for all n € N. Alternatively, the
strategy ¢ e v : H can be recasted as the ordinary composition ¢ @y : T = H of v : T = G and
¢ : G = H thanks to the evident isomorphism G & (T = () in the category, where we do not
distinguish between strategies on G and T' = G because they are essentially the same.

The pairing (¢,v) : K — G & H of morphisms ¢ : K — G and ¢ : K — H plays by ¢ if the first
move is in G, and by ¢ otherwise. This generalises the example (n,m) : (N&N) = (T = (N&N)).

We have seen that strategies are algorithms computing in a step-by-step, finitary fashion. This
unique intensionality distinguishes game semantics from other mathematical semantics.

2.2. Game semantics of Martin-Lof type theory

We are now ready to sketch the main ideas of Yamada’s game semantics of MLTT [Yam23]. We
leave the details to Appendix A.2.

11

First, it is not a problem to interpret dependent types in MLTT since we can simply interpret
a dependent type z : C'+ D(z) type by a family

D = {D(J)}U:C

of games D(o) indexed by strategies o on the game C that interprets the simple type - C type,
abbreviated as C. Here, by abuse of notation, we omit the semantic bracket [-] and notationally
do not distinguish between types and games; we employ this convention as long as it does not bring
confusion. The dependent type has just one variable, but in the presence of One- and Sigma-types
(which is the case for this work) dependent types with a single variable cover all dependent types.

Next, in light of product & on games, which interprets a particular class of Sigma-types X, viz.,
product types X, it seems to be a natural idea to interpret the Sigma-type X,.cD(x) by a subgame

S(C,D) € C& | Do)
o:C

such that strategies on this hypothetical game X(C, D) are the pairings (o, 7) of strategies o : C
and 7 : D(o). However, this idea does not work due to the following two problems:

1. Each game G already determines the set St(G) of all strategies on Gj
2. Tt is impossible for Player, when playing on such a game X(C, D), if any, to fiz a strategy
o : C, let alone a game D(0), at the beginning of a play.

As an example of the first problem, consider a dependent type
x: N F Ny(z) type

such that canonical terms of the simple type Ny(k) for each k& € N are the numerals n such that
n < k, and assume that we interpret this dependent type Ny by the family

Ny = {Np(0)}o:n
of games Ny(0) defined by
Ny(k) = {e,q} Uf{an | n <k}, Ny(L) i= N,
where St(N) = {k| k € N} U{L}. However, there is no subgame

GCN&|JNy(o)=N&N
o:N

such that (k,n) : G if and only if n : Ny(k), i.e., n < k, for all k,n € N since if such a game G
exists, then we would have
(0,0),(1,1) : G,

which (together with the definition of a strategy on a game) implies
0,1) : G,

a contradiction. Hence, no game can interpret the Sigma-type X,.n Np(z).

12

We next give an example of the second problem. Consider a dependent type
x: N F Listy(x) type

such that canonical terms of the simple type List (k) for each k € N are k-lists of numerals, and
assume that this dependent type Listy is modelled by the family

LiStN = {LiStN (0)}0:N

of games List (o) such that Listy (k) is the k-ary product & on N, where

Listx (0) := T, Listy (L) := | Listy (k).
keN

If there is a subgame
HC N & | Listy(o)
o:N

that interprets the Sigma-type X,.yListy(x), then the pairing

(K, (- (n1,m2), - nk))

for all k,n1,na,...,n; € N would be total on H since strategies modelling proofs are total [Yam23].
Yet, Opponent may select, by his first move, e.g., the (k + 1)st component of Listy(k + 1), for
which the above pairing has no next move; i.e., it is not total. Thus, there is no such a game H.

We have observed two fundamental limitations of games. Yamada [Yam23] has overcome these
limitations by generalising a game to a pair

= (|7, [[T]))

of a game |I'| and a family ||T'|| = {I'(y)},:r of subgames I'(y) C |I'|, called a predicate (p-)game,
and defining a strategy v on T', written 7 : T', to be a one v : |T'| compatible with T'(y) in the sense
that positions in I'(y) are closed under the computations so — sop of 4. In other words, a p-game
[is a game |T'| together with a specification ||T'|| for strategies v : |T'| to be valid on T

Crucially, a play in a p-game I' depends on Player’s choice of a strategy v : I' in the sense
that her choice «y specifies the game I'(y) to play. To depict this idea vividly, Yamada introduces
Judge; a play in T' then proceeds as follows. First, Judge asks Player a question ¢r (‘What is your
strategy?’), and then Player answers it by a strategy v : T' (‘It is v!"). After this nitial protocol,
an ordinary play in I'(y) between Player and Opponent follows, where Player must play by v yet
restricted to I'(y). In this fashion, Player declares her strategy ~y, which is observed by Judge yet
not by Opponent, and it predetermines the game I'(y) for a play between Opponent and Player.

Strictly speaking, Judge and initial protocols are informal devices to explain this idea. Neither
is part of p-games; it suffices to assign games I'() to strategies : I by the family ||T'||. However,
we often add an initial protocol informally to the beginning of a play for pedagogical reasons.

Then, the generalisation of games to p-games solves the first problem as follows. Let X (N, Ny)
be the p-game defined by |X(N, Np)| := N & N and

N & Ny(k) if o =k with k € N;

(N, Ny)({o,7)) :== {N& N otherwise

13

for all (o,7) : |2(N, Ny)|. Hence, strategies on X(N, Np) are the pairings (o, 7) : N & N such that
7 : Np(k) if o = k. For instance, some positions played by the strategy (7,3) : 3(N, N;) are

Z(N7 Nb) Z(Na Nb)
g% (N,Ny) dx(N,Ny)
(7,3) (7,3)
q q
7 3

where Judge first asks Player the question g5y, n,) (‘What is your strategy?’), and Player answers
it by the strategy (7, 3) : 3(N, Np) (‘It is (7, 3)!); then, a play between Player and Opponent on the
game X(N, Np)((7,3)) = N & Np(7) follows, where Player must play by the one (7,3). Although the
predetermination of a strategy is not strictly necessary in this example, Player cannot play by an
invalid strategy, say, (0,1), on X(N, Np) because it is not compatible with the game X (N, Ny) ({0, 1)).
In this way, the specification ||Z(N, Np)|| solves the first problem by filtering strategies.

On the other hand, the predetermination of a strategy in a p-game plays a crucial role in solving
the second problem: The p-game (N, Listy) defined by

S(N, Listy)(k) = N& (N&N&...&N) (keN), X(N,Listy)(L) = |J S(N, Listy)(k),
k keN

|2(N, Listy)| := X(N, List) (L)

interprets the Sigma-type 3y .nListy(x). Then, some typical positions in X(N, Listy) are

S(N, List)
g5 (N, Listn) (N, Listy)
(2,(L,3)) gs(N,Listy)
q (2,(1,3))
2 q
1 or 3

where the predetermination of the strategy (2, (1, 3)) fizes the underlying game N & (N & N). As
a result, this strategy is total on the p-game (N, Listy) (again in the sense of partial maps).
In Appendix A.2, we recall how p-games interpret other type constructions in MLTT.

2.83. Problem: how to encode games for identity types by strategies

However, it turns out to be a challenge to realise game semantics of a universe in MLTT, and
it has been open in the long history of game semantics (since the pioneering work [AJ94]).3
Specifically, the challenge is

how to encode games that interpret Id-types by strategies.

To see what it really means, let us recall the rules on a universe ¢/ in MLTT:

3 Again, Blot and Laird [BL18] interpret a universe [BL18, Table 3], but it is extensionally by domain theory.

14

e The formation rule postulates for each context I'" the universe

' U type;

e The introduction rule encodes each type I' - A type by a term

'+ En(A): U;

¢ The elimination rule is embodied by a type
x: U F El(z) type

via the substitution
Thru:U)— (TF El(u) type)

of a term u for the variable z in the type El(x);

e The computation rule requires the equation

I' - El(En(A4)) = A type.

Note that the universe itself is a simple type, so we shall interpret it by a constant p-game, i.e.,
a game together with a constant family of its subgames, which is identified with a single game in
the evident way. Hence, in order to interpret the above rules, we have to provide

e A game (or constant p-game) I/ that interprets the formation rule,
o A strategy En(A) : T' = U for each family A of games that interprets the introduction rule,

o A family El = {El(x)},.4 of games El(p1) that interprets the elimination rule and for all v : T’
satisfies the equation El(En(A) e v) = A(v) for the computation rule.

Having sketched what is necessary for game semantics to interpret a universe, we now explain
the challenge. Let A be the Id-type

f:N=N,g:N= NtIdy=n(f,g) type
on the function type N = N. Yamada [Yam23] interprets this Id-type by a family

ldy=n = {ldy=nN({f, 9)) } .00 (N= N &e(v=n) = TdN=N((f,9))} rgN=N

of (extremely simple) games Idy= n({f, g)), whose details are left to Appendix A.2.22. Thus, the
game semantics has to interpret the term

f:N=N,g:N=NFEn(Idy=n(f,9)): U,
which encodes the Id-type, by a strategy

En(ldyon): (N = N)& (N = N)) = U (1)

15

that satisfies the equation

El(En(Idy=n) @ (f,9)) = ldn=n((f,9))

for all f,g: N = N. Since each game Idy_ n((f, g)) depends on whether the equation f = g holds
(Appendix A.2.22), the strategy En(Idy=) (f,g) must vary over the cases f = g and f # g.

Thus, the strategy (1) is an algorithm that effectively decides if f and g are equal for all inputs
f,g9: N = N, a contradiction to a well-known fact in recursion theory [Rog67]. In other words,
the problem is that the family Idy— n of games is (extensionally) not effectively computable. This
uncomputability corresponds, in game semantics, to the problem that the strategy (1) can learn
about only a finite number of input-output pairs of f and g; i.e., it can never decide if the equation
f = g holds, as illustrated by the following position played by the strategy (1)

En(ldézv:w)

(N & N & (N £ N u
q
q
q
f(n)
q
q/
g(n')
:

in which the strategy never collects the complete information about f or g.

Let us see more concretely how the following naive method fails due to this issue. We assign a
number #(C) € N to the game C that interprets a simple type - C type except the universe U,
where the assignment # is injective, and define a game I/ whose maximal positions are of the form

U
q
#(C)

Intuitively, the initial move ¢ is Opponent’s question ‘What is your game?’, and the second one
#(C) is Player’s answer ‘My game is C!’. If a strategy

ED(IdN:>N) I'=sU (2)

encodes the family Idy= y, then it would decide the number #(Idy=n({f,g))), depending on if

16

the equation f = g holds, which is impossible (indicated by # below) as illustrated by the play

En(Idy=n)

(N L N & (N £ N A u
q
q
q
f(n)
q
q/
g(n’)

#(Idn=n((f 9)))

because the strategy (2) never collects the complete information about f or g. In the rest of the
present article, we forget about this naive definition of the game U.

2.4. Solution: encoding without deciding

A key observation behind our solution to the problem just sketched in §2.3 is that the strategy

En(ldy=n) e (f,g): U

does not have to decide whether the equation f = g holds in a finitary fashion, e.g., by the one-step
computation ¢ — #(Idn=n({f, g))); instead, the strategy may encode the game Idy— n({f, g)) by
potentially infinite plays in the game U.

This observation leads to our solution sketched below. First, arbitrarily fix distinct numbers

#(1),#(0), #(N), #(I1), #(), #(1d) € N.

We shall define a game U for the universe such that there is a strategy En(Idy=n) of the form (1)
that first computes by ¢ — #(Id) (indicating that it encodes an Id-type) and then, depending on
the next move by Opponent, plays as the one En(N = N) (indicating that the Id-type is on the
type N = N) or copy-cats the inputs f,g : N = N given by Opponent in a step-by-step, finitary
fashion (indicating that the Id-type is between f and g) without fully detecting what f or g is.
Such a strategy En(Idy=) encodes the family Idy— y of games without sacrificing its effectiv-
ity: The copy-cat of f and g is trivially effective, while potentially infinite plays by the composition
En(Idy=n) e (f,g) encode f and g entirely. Meanwhile, the strategy never completes the encoding
of f or g within a finite play. We illustrate this point below, where we sketch the game U as well.
We now sketch the game U (Definition 3.1.2), which realises the above idea, and give examples
of plays in U. First, we encode the base case, i.e., the games 1, 0 and N that model One-, Zero-
and N-types, respectively [Yam23], by strategies on the game I' = Y. Thus, U has the positions

U u U
q q q
#(1) #(0) #(N)

17

so that there are strategies En(1), En(0), En(N) : I' = U that compute by
En(1) : g — #(1), En(0) : ¢ — #(0), En(N) : g — #(N).

We next consider the inductive step that encodes Pi- and Sigma-types. Suppose that a family
A = {A(7)}yr of games A(y) interprets a type I' - A type, and a strategy En(A4) : I' = U the
encoding I' - En(A) : Y. For simplicity, let " be the empty context; thus, I' is the empty game T
that has only the trivial strategy 1, and A is identified with a game. Assume further that a family
B = {B(a)}a:4 of games B(«) interprets a type x : A - B type, and a strategy En(B) : A = U
the encoding x : A+ En(B) : U. Recall that Yamada interprets the Pi- and the Sigma-types

FII(A, B) type, F X(A, B) type
by (the singleton families of) games
II(A, B), X(4, B),

respectively, constructed out of A and B (Appendix A.2.19 and Appendix A.2.20). Then, there
must be strategies
En(II(A, B)),En(X(A,B)): (T=U)=U

that encode these games. For this reason, the game U also has positions of the form

u u u u
q q q q
#(1I) # (1) #(X) #(X)
ai by aq b1
as bo ag ba

where ajas ... are moves played by the strategy En(A) : U, and b1bs ... by the one En(B) : A = U.
We postulate these positions in U so that we can define the strategy En(II(A, B)) to be the pairing

(En(A), En(B)) : U & (A = U)

prefixed by the moves ¢.#(II), and similarly for the one En(X(A, B)). In this manner, the game U
encodes the games II(A, B) and X(A, B) by its strategies.

Note that the games U and A = U for the positions ajas ... and bybs ..., respectively, contain
the game U itself. In particular, A = U is not U but the function game from A to Y. Our idea
thus necessitates a nontrivial recursive definition of &. One of our main achievements is to realise
such a nontrivial game U/, subsuming the general case where I' can differ from the empty one T

Finally, there must be another strategy

En(Ida): (A& A)=U
that encodes the family

Idy = {Ida({a, @) Ha,ey:aea = {Ida((@, o)) }a,ara

18

of games Id 4 ({«, '), where this family Id4 is the interpretation of the Id-type
x: Az’ AFTda(x, 7)) type
in Yamada [Yam23] (Appendix A.2.22). The required equation
El(En(Ida) e {a,) = Ida({a, o))

implies that the strategy En(Id4) e (o, o) : U encodes the game Id4({a, a')). In the light of this
encoding of Id4 ({a, @’)), we add the positions

O U O O O u O 0O O u o 0O
q q q
#(1d) #(1d) #(1d)
ay C1 Cll
as C2 ch

to the game U, where the moves ajas ... are played by the strategy En(A) : U, those cica... by
the one « : A, and those ¢jc}... by the one o : A, and we write auxiliary squares O on the top
row to clarify the column to which each move belongs. That is, we postulate these positions in U
so that we can define the encoding En(Id4({c, a’))) to be the pairing

(En(A), (o, a)) U & (A& A)
prefixed by the moves ¢.#(1d).
Then, based on this strategy, we can further define a strategy
En(Ida): (A& A) =U
that satisfies the equation
En(Ida) e (o, a’) = En(Ida({a, @')))
as sketched below. Instead of the general case, we focus on its instance
En(Idy=n): (N=N)&(N=N))=U (3)

in the rest of this section since this suffices for explaining our idea. The upshot is that we define the
strategy (3) to be what plays in either of the ways in Figure 3, depending on plays by Opponent.

In the first two patterns of the figure, the strategy (3) encodes the underlying (constant) family
A ={N = N} of games by playing as the pairing

(En(N),En(N)) : U & U

prefixed by the moves ¢.#(II), where II(N, N) = N = N. In the last two patterns of the figure, what
the strategy (3) does is essentially to copy-cat the input strategies f or g given by Opponent. This
computation is trivially effective, but also its (potentially infinite) plays have all the information
about f and g, in particular if f = g or not. In this way, we solve the problem sketched in §2.3.
Now, recall that the family Id y— y of games is (extensionally) uncomputable, and the extension

(f,9) = El(En(ldy=n) @ (f,9)) = Idn=n((f,9))

of the strategy En(Idy—), combined with the decoding El, coincides with the uncomputable family
Idy= . This, however, does not contradict the effectivity of the strategy En(Idy=) because it
does not decide if the equation f = g holds in a finitary way; it only collects more and more yet
incomplete, finite information about f and g, which never halts.

19

En(Id_>N=>N)

(NLN) & (NLN) O o O uu 0O O
q
#(1d)
q
#(II)
q
#(NV)
NLEN) & (vEN) PU=Y oo g O u 0O O
q
#(1d)
q
(1)
q
#(IN)
NLIN) & wiN) Y g oo ouw oo
q
#(1d)
C1
C1
C2
C2
C3
C3
Cyq
Cq
NLEN) & wiN) Y g g o ouw oo
q
#(1d)
4
¢
¢
ch
c
ch
c
¢y

Figure 3: An illustration of the strategy on the encoding of an Id-type between functions

20

2.5. Lifting to a cumulative hierarchy of universes

The universe U does not have its own code since otherwise the code I' = En(Uf) : U leads to
inconsistency known as Girard’s paradoz [Gir72]. To overcome this issue, Martin-Lof [ML75, ML84|
excluded the code and proposed a cumulative hierarchy (Uy)ren of universes Uy. The first universe
Uy does not have its own code En(U), but the second one U; does. Analogously, the second universe
U, does not contain its own code En(i;), but the third one Us does, and so on. This hierarchy is
cumulative: If i < j, then the larger universe U; contains all codes in the smaller one I; plus En(lf;).
In this way, the hierarchy collectively encodes every type, including the universes themselves, by a
code in some universe Uy. Here, the original universe U can be identified with the first one Uj.

Having established the game U for the universe, it is straightforward to lift the game semantics
to the cumulative hierarchy of universes:

1. For the base case, we define the first universe game Uy by Uy := U;

2. For the inductive step, we obtain the higher universe game Uy;; by adding new pairwise
distinct moves #(U;) € N for ¢ = 0,1,...,k to the definition of the game U.

3. Game semantics of universes

This section presents our main contribution: game semantics of universes. Recall that Yamada
[Yam23] achieves game semantics of MLTT by showing that the category WPG;, of p-games and
strategies (Appendix A.2.11) forms standard categorical semantics of MLTT, known as a category
with families (CwF) [Dyb96]. Thus, our task is to equip the CwF WPG, (Appendix A.2.18) with
the semantic type-former [Hof97, §3.3] for universes (which is a categorical generalisation of the
game semantics of universes sketched in §2.3). To this end, let us first recall CwFs:

Definition 3.0.1 (categories with families [Dyb96]). A category with families (CwF) is a tuple

C = (C7 T}U Tm7 *{*}7 Tu -- PV, <77 7>)

such that
e C is a category with a terminal object T' € C;
o Ty assigns, to each object I" € C, a set Ty(T") of types in the context T’

e Tm assigns, to each pair (I, A) of an object I" € C and a type A € Ty(T"), a set Tm(T", A) of
terms of type A in the context I’

o _{_} assigns, to each morphism ¢ : A — I', a map _{¢} : Ty(I') — Ty(A), called the sub-
stitution on types, and a family { {¢}a}aery) of maps {¢p}a : Tm(T', A) — Tm(A, A{¢}),
called the substitution on terms;

o _._assigns, to each pair (T, A) of a context I' € C and a type A € Ty(T'), a context I".A € C,
called the comprehension of A;

o p (respectively, v) associates each pair (I', A) of a context I' € C and a type A € Ty(T)
with a morphism p4 : T'"A — T (respectively, a term v4 € Tm(I".A, A{pa})), called the first
projection (respectively, the second projection) on A;

21

o (., -)_ associates each triple (¢, A, &) of a morphism ¢ : A = T', a type A € Ty(T') and a term
& € Tm(A, A{¢}) with a morphism (¢, &) 4 : A — T'. A, called the extension of ¢ by &,

that satisfies, for any object © € C, morphism ¢ : © — A and term « € Tm(I", A), the equations
e (Ty-In) A{idr} = A,

Tv-Conmp) A{6o o} = AloHe},

TM-ID) afidr}a = «,

(

(

(Tm-Comp) a{popta = a{d}a{e}a(sy
» (Cons-L) pao(p,a)a = ¢,

(Cons-R) va{{p,d)a} = &,
* (CONsS-NAT) (¢, d)a 0@ = (pow,a{p}are)a,
e (Cons-ID) (pa,va)a = idr.a,
where we sometimes write Ty, Term¢ and so on if we want to emphasise the underlying CwF C.

Roughly speaking, judgements in MLTT are interpreted in a CwF C by
FT ctx — [I'] €C, I'F A type — [A] € Ty([T']), I'ka:Aw [a] € Tm([T], [A]),

FT = A ctx = [I] = [A], I' - A =B type = [A] = [B], F'Fa=a':A=[a] =[a],

where the square bracket [] denotes the semantic map or interpretation [Hof97].

Nevertheless, CwFs only interpret the core fragment of MLTT common to all types. To interpret
individual type constructions such as Pi-, Sigma-, One-, N- and Id-types, CwFs must be equipped
with their semantic type formers [Hof97, §3.3]. We recall these semantic type-formers for the CwF
WPG, in Appendix A.2; in the following, we focus on the semantic type former for universes:

Definition 3.0.2 (categorical universes [Hof97]). A CwF C is said to have (a cumulative hierarchy
of) universes if

e (U-ForM) Given an object T € C, there is a type
ul" e Ty(r)

for each k € N, called the (k + 1)st universe in T', where we often omit the superscript (_)

(when T is obvious) and/or the subscript () (when & is unimportant);
e (U-INTRO) Given a type A € Ty(T'), there is a term
Eng(A) € Tm(T, Uy)
for some k € N, subsuming the one

En,(U) € Tm(T,u"))

for each k € N, where we often omit the subscript (_)x;

22

(U-ELiM) Each term ¢ € Tm(T',Uy,) induces a type

El.(y) € Ty ('),
where we often omit the subscript ()x;
(U-Cowmp) El(En(A)) = A4;
(U-CumuL) If ¢ € Tm(T, Uy, then o € Tm (T, Upr1);
(U-SuBsT) Z/Ig]{d)} = L{,gA] € Ty(A) for each morphism ¢ : A — T
(En-SuBsT) En(A){¢} = En(A{¢}) € Tm(A,U).

Note that the axiom U-CUMUL requires the hierarchy (U)ren of universes Uy to be cumulative.

For achieving game semantics of a cumulative hierarchy of universes, it suffices to equip the game-
semantic CwF WPG, with this semantic type-former because then the semantic type-former (by its
soundness) automatically forms game semantics of the cumulative hierarchy of universes [Hof97].

In the rest of the present section, we first define p-games that interpret universes in §3.1 and

then show that they form an instance of the semantic type-former of universes in §3.2.

8.1. Universe predicate games

As a preparation, let us recall the interpretation of Id-types in CwFs:

Definition 3.1.1 (categorical identity types [Hof97]). A CwF C is said to have Id-types if

(Ip-ForM) Given an object I' € C and a type A € Ty(T'), there is a type
Idy € Ty(T.A.A™),
where AT := A{pa} € Ty(T.A);
(ID-INTRO) There is a morphism
Refly :T.A - T.A. A" .Id4
that satisfies the equation
pra, oRefly =v4:T.A - T.A AT,
where v := (idp.a,va);

(Ip-ErLim) Given a type B € Ty(I.A.A".Id4) and a term 8 € Tm(I".A, B{Refl4}), there is a
term

R 5(B) € Tm(T.A. AT Ida, B);
(Ip-Comp) RY p(B){Refla} = 5;

(ID-SUBST) IdA{¢Xt4+ =Idae} € Ty(A.A{p}.A{¢}T) for all A € C and ¢ : A — T, where

A{p}T = A{p}{p} € Ty(A.A{9}), ¢4 = (¢op,v)a : AA{$} = T Aand ¢, = (64)] :
AA{p}A{¢}+ — T.AA*;

23

+ (REFL-SUBST) Reflyo0}y = ¢/)% 1| oReflygg) : A A{¢} = T.AAT.Idy, where ¢ 7

(jtq-%—)ltu : A~A{¢}~A+{¢+}.IdA{¢} — F.A.A+.IdA;

o (R'-SussT) RY 5 ({0745 10} = Rf@},B{@*At y (B1o3)).

1A

JIda =

Then, for technical convenience, we employ the following recast Id’ of the semantic Id-types in
an arbitrary CwF C. First, note that the Id-type Ids € Ty(I'.A.A™) is equivalent to the family
{1dy (v, O‘/)}a,a’eTm(F,A)
of types Id; (e, ') € Ty(T'): The former is recovered from the latter by
Idg :=Idy++ (v{p}, V),
where AT := A*{p} € Ty(I'.A.A"), and the latter from the former by
Idy (o, @) := Id 4 {({idr, o), ') }.

Next, the axiom ID-SUBST implies the equation

Id'y (o, o) {p} = Ida{((idr, o), a") }{o}
=1da{{(¢, a{s}), ' {o})}
=Ida{{{(¢ op,v) o p,v)H{{(idr, a{e}),a'{¢})}
= Ida{o} 7 H{(idr, a{e}), o' {4})}
= Idage} {((idr,a{¢}),a'{¢})} (by ID-SUBST)
= 1dy 4y (a{0}, 0 {9})

for all a,a’ € Tm(T', A) and ¢ : A — T, which we call the axiom ID’-SUBST. Conversely, this axiom
ID’-SUBST implies the original axiom ID-SUBST because

Ida{p; "} = 1t (v{p}, v){(6] o p,v)}
= 14+ (gopyopvy} VIDH (@K o,)} v{(¢f o p,v)}) (by ID-SuBsT)
= Id'y {gopop} (V{{¢ oD oD, v{D})}, V)
= Id/A{¢}++ (v{p},v)
= Idage),

where A{¢}F := A{¢}T{p} € Ty(A.A{¢}.A{$}T).
If we focus on the CwF WPG, (Appendix A.2), then the axiom ID’-SUBST implies the equation

1y (o, ') {7} = 1d', 1 (v e 70, 0" 70) (4)
A('Yo)

for all 'y(T) € WPG,(IT"). We leave it as a straightforward exercise to recast the remaining axioms of
the semantic Id-types Id in such a way that they are adapted to this reformulation Id’. From now
on, we write Id(c, ') for Id’(, @) because we henceforth focus on the reformulation.

Then, as sketched in §2.4, the idea of our game semantics of universes is centred around the
following universe p-games. We henceforth assume familiarity with the contents of Appendix A.

24

Definition 3.1.2 (universe predicate games). Fix an arbitrary injection
#o:{1,0, N,II, ¥, Id} — N.
For each k € N, let {Z/llgi)}ieN be the family of p-games L{éi) together with an arbitrary injection
#e:{LO,NILEId}w{l; |j<k}—N

that conservatively extends the one #j_; defined inductively (on i € N) as follows:

1. (BASE cASE) We define the p-game
U = 2 (Pref({ g #5 (X)) | X € {1,0,N,U;},5 < k1)),
where the first move qg()g justifies the second one # (X)?(3,4 together with the auxiliary map

ELY - WPG, (1”)) — Ob(WPG)
#k(X)(O)T — X (see Appendix A.1.10 for the notation #(X)).

Abusing notation, we lift this map to a dependent p-game El,(co) € .@(M,EO)) by

EL| == U B (#:(X) "), 1B #1(X))" = ELY (#4(X) 0)).
#1(X) 0y TEWEG, (1)

Abusing notation again, we write L{,io) for the constant dependent p-game {U,go)}. Moreover,
for each I' € WPG;, we lift the dependent p-game El,(co) to the map

EI{’) - WPG (D, U") — 2(I)
v = BIPL(®),

where the dependent p-game Elé?%(w) € 92(T) is given by

EL@) = |J E@en) IELCL (@) < 7d = ELY (v 0).
v EWPG, (1)

This map El,(g% generalises the dependent p-game El,(co) by the isomorphism El,(f)T ~ El,(ﬁo).

The map is necessary for the inductive step given below. We often omit the subscript (_)r in
(0) . . .

El;; - when it does not bring confusion.

2. (INnpucTIVE STEP) We define the p-game
U = 2 (U UPref({ g% #5(V)(3, s{0A/0Q} | Y € (T, 3}, s € U BLY = U”) })

U Pref({ g, %, #£ ()3, t{OA/0Q} | t € S EIY & BIY) 1)),

4For clarity, we add the subscripts (1)(iy on moves in this definition though we do not in the introduction.

25

where the first move qgfl) justifies the second ones #k(Y)Fﬁl) and #k(Id)i‘gl)? the j-

sequences s{OA/O0Q} and t{OA/OQ} are obtained respectively from those s and ¢ by the

replacement of the labels OQ on moves with the ones OA, the second moves #k(Y)E(il) and
#k(Id)Zgl) justify the moves q(oif in s{OA/OQ} and t{OA/OQ}, respectively, and the jus-
tifier qg)Q of all moves of the forms #k(X)E.?, #k(Y)E.? and a%lék(Id)}Dj(’)Q in s{OA/OQ} and

t{OA/OQ} with 0 < j < i are replaced with the first move q(oifl),5 together with the map

BT WPG, (1) — Ob(WPG)
#u(X)) = X
Girr) (Y) ir)-() o Y(EL (), B1Y (1))
Qo) A1 (1) 4y (s (@, 0T Tdgyo, (BLY (), ELY (o)),

where for any strategy o and moves ¢ and a we define

q.a.0 :=Pref({q.a.v | v € o })¥"

(with the evident justifications). Again, we lift this function EISH) to a dependent p-game
B € 2™), and further to a map EI'™ : WPG, (T, u{™) = 2(TI") (T' € WPG)) as
in the case of Ellio); it is for the next inductive step. Abusing notation again, let I/{IgH_l) be
the constant dependent p-game {L{SH)} and apply the notations for El,io) to Elgﬂ).

Finally, the (k + 1)st universe predicate (p-)game is the constant p-game
Uy == P (JUy])
on the game [Ux| == J;cy |Ll,£i)| equipped with the injection

#o=J#r: {LONILE 1} w{l; | j N} — N
keN

Convention. For simplicity, we henceforth omit the subscripts _;y on moves in the universe p-games
unless they are strictly necessary.

The inductive step in Definition 3.1.2 realises our idea on how to encode game semantics of Pi-,
Sigma- and Id-types by strategies as sketched in §2.4. Specifically, we define the universe p-game

Uy, inductively through the smaller p-games U,Ei) (i € N) along the simultaneous construction of the

)

auxiliary map Elg . This is a main technical highlight of the present work.

5By this adjustment of justifiers, the P-moves of the form #(_) are all justified by the first move qggl) in the

p-game M£i+1), so the p-game Uy, is well-founded (Appendix A.1.7). The adjustment alone makes strategies on U
ill-bracketed (Appendix A.2.11), but we fix this issue by the replacement of the labels OQ with those OA.

26

8.2. Game semantics of the cumulative hierarchy of universes

We need one more preparation for game semantics of universes. The axiom U-INTRO (Defini-
tion 3.0.2) requires that each type A has its encoding En(A). As indicated in §2.4, however, we
define the encoding inductively along the construction of types. Thus, we have to restrict types in
the CwF WPG;, to those freely generated by the type constructions of MLTT, leading to:

Definition 3.2.1 (UPG,). Let UPG, < WPG; be the substructural CwF of WPG, such that
e The underlying category UPG; is the category WPGy;

e The types of UPG, are inductively constructed from the atomic dependent p-games 1, 0, N
and Uy, for all k£ € N by the constructions II, ¥ and Id;

e The terms of UPG, are given by
TmUpG! (F, A) = me[p([;! (F, A)

Remark. We can make the CwF UPG, democratic [CD14] by restricting its objects and morphisms
to those inductively constructed from its types and terms, respectively. This democracy, however,
takes complex mutual recursion as in the syntax of MLTT; for simplicity, we do not take this option.

Corollary 3.2.2 (well-defined UPGy). The structure UPGy gives rise to a well-defined CwF that
has One-, Zero-, N-, Pi-, Sigma- and Id-types in the same way as the CwF WPG, (Appendiz A.2).

Proof. This corollary follows from Appendix A.2.18 (where the only nontrivial point is the closure
of types UPG, under substitution, but it is easily shown by induction on the types). O

In addition, this CwF UPG; also has the cumulative hierarchy of universes:
Theorem 3.2.3 (game semantics of universes). The CwF UPG, has universes.

Proof. Let A,I" € UPG,, A € Tyypg,(I') and ¢ € UPG(A,T).

« (U-Form) We have U!") € (T) for cach k € N (Definition 3.1.2).

¢ (U-INTRO) By the definition of UPGy, the type A is given inductively, so we can yield a term
En(A) € Tmypg, (I', Uy(a)) for some k4 € N inductively along the construction of A:

1. If Ais 1, 0 or N, then
EH(A) =Ac Tm[[j[p@! (F,UQ);

2. If A is U; for some i € N, then
En(l;) == U; € Tmype, (T, Uit1);
3. If AisY(B,C), where Y is IT or X, then
En(Y(B,C)) := ¢°#(Y)™ (En(B), A 0 En(C)) € Tmupe, (T, Unax(kp ke))»

where A is the currying for the introduction rule on Pi-types [Yam23, Lemma 4.5.1.2];

27

4. If AisIdp(4,4’), then

En(Idp(4,4")) ==

(U-ELM) We define El; : Tmypg, (T, 4"

El, = | J B

up to the isomorphism

EL@) = |J Eke),

~§ewpe, (1)

1€EN

¢ #(1d)PA (En(D), (5,6")) € Tmypg, (T, Us,,).
= WPG(T',U) — 2(T') to be the union

: WPG!(F,Uk) — .@(F)

Tmype, (T,UL) = WPG(T, Uy),

where Elg) : WPG;(F,L{,&“) — 2(T) is given in Definition 3.1.2. Note that the one El,(¢)) €
2(T) for each ¢ € Tmypg, (I‘,Z/{,[CF}) is given by

(U-Comp) We show the equation El(En(A))
on the cases of A =T1I(B,C) and A = Idp(d,d’) since the other cases are similar or trivial:

1. Assume A =TII(B, (). The dependent p-game

Elo En(II(B, C))

consists of the underlying p-game

|Elo En(II(B, C))| = [El(q.4(IT).(En

and the function

[ELo En(TI(B, C))| : 7§

IEL @) 74 = El(0 70) == (U EI) (4 0 70).

ieN

= A by induction on the type A, where we focus

= El(q.#(11).(En(B), A 0 En(C)))

(B); Ao En(C)))]

U M(E(E(B) e), EI(A o En(C) e 7))

~§eupe, ()

U (EUER(B) e0)| = [EL(A 0 En(C) ¢ 7))

7i eUPG,(IT)

U [ElEaB)eyw)= [(J IE(AoEn(C)ex)

~+{ €UPG, (IT)
|Elo En(B)| =

7§ eUPG,(IT)
|El o En(C)|

=|B| = |C| (by the induction hypothesis)
= [I(B,C)|

€ UPGy(IT) —

— El(g.#(I1).(En(B) ® 70, A o En(C) @ 70))
El(En(B) e y9), EI(A o En(C) @ y9))
El o En(B)(7{), El o En(C)_+)

(

TI(
= II(
I(B(1)), C“/S) by the induction hypothesis)
(B, C)(7)-

Hence, we have shown
Elo En(II(B, C)) =II(B, C).

2. Assume A =1dp(6,0"). The dependent p-game
Elo En(Idp(6,8")) = El(q.#(1d).(En(D), (5,4")))
consists of the underlying p-game
[El o En(Idp (3, 8)| = [El(g#(1d). (En(D), (5,8')|
= U [1dE1(En(D)ere) (I ® 70,0" @ 70)]

v EURG, (IT)
=T (see Appendix A.2.22)
= [Idp(8,0")]

and the function

15, 8)]| - 7 € UBGI(IT) > B(q#(1d). (Bn(D) » 70, {6 #70,5' ¢ 70)))
= Idgi(En(D)evo) (0 ® 70,0" ®70)
= IdEloEn(D)(ryg)((s ®0,0" ®0)
= IdD('yT) (0 70,0’ ®vy) (by the induction hypothesis)
=1dp(8,8) (7)) (by the equation (4)).

Hence, we have shown
Elo En(Idp(4,8")) = Idp(6,d").

o (U-CuMuL) By construction, ¥ € Tmypg, (T, Uy) implies ¥ € Tmypg, (T, Ui 41)-
o (U-SuBsT) By construction, the equation M,EF]{(b} = U,[CA] € Ty(A) holds.

¢ (En-SuBST) We see that the equation En(A){¢} = En(A{¢}) € Tm(A,U) holds by induction
on the type A, where again we focus on the cases of A =TI(B,C) and A =1dp(d,d’):

1. Assume A =TI(B,C). We have the equation
En(II(B, C)){¢} = ¢-#(I1).(En(B) & ¢, A o En(C) ¢ ¢)
= q.#(I1).(En(B{¢}), A o En(C{¢}})) (by the induction hypothesis)
= En(II(B{¢}, C{¢}}))
=En(II(B,C){¢}) (by the equation (A.1)).
2. Assume A =1dp(6,0"). We have the equation

En(ldp(6,8){8} = ¢.4(1d).(Fn(D) o 6, (5.0 6,5' +)
= q.4(1d).(En(D{¢}), (6{o}, 8 {¢})) (by the induction hypothesis)
= En(ldpgey (6{¢}, 6'{¢}))
=En(Idp(d,6"){¢}) (by ID’-SUBST).

29

We have verified all the required axioms, completing the proof. O

Remark. An Id-type Id4(a, a’) is the ‘trivially true’ one 1 if « = o/, and the ‘trivially false’ one
0 otherwise (Appendix A.2.22), but the strategy a or ' is not part of Id4(a, a’). One may thus
wonder if the encoding En(Id4(«, @’)) might not be well-defined. Nevertheless, it is well-defined,
where the point is that En is not a function, and En(Ida(«, @’)) is assigned along the inductive
construction of Ida(a,a’).® The general definition of universes in a CwF (Definition 3.0.2) does
not require En to be a function, so there is no problem in the definition of our encoding En.

Example 3.2.4. Let us consider the interpretation of the encoding
f:N=N,g:N=NFEn(Idn=n(f,9)) : Uo
of the Id-type discussed in §2.3. The strategy
P :=Eng(Idy=n(m1,m2)) : (N = N)& (N = N) — Uy,
which interprets this encoding of the Id-type, plays as in Figure 4. We note that Figure 4 is just a
slightly more precise description of Figure 3.

Example 3.2.5. Let us recall the rules for N type:

I'Ht: N

(N-ForMm)
I+ succ(t) : N

(N-INTROZ)

I'F N type I'Fzero: N (N-INTROS)

Iz : NFC type 'k c. : C{zero/x} Iyz:N,y:CFcs: C{succ(z)/z} '-t: N

(N-ELM) J
' RY(C,cz,cs,t) : C{t/x}
(N-CowmpZ) Le:NECwpe IFe.: Ofzero/ay D,a:Nyy:CF e : C{suce(z)/z}
'k RN(Cv Cz, cs,zero) =Cz ! C{ZGI‘O/I}
(N-ConpS) I,z : NFC type 't c. : C{zero/x} I'z:N,y:CFcs: C{succ(z)/z} +t: N

I'F RY(C, cs, cs,succ(t)) = cs{t/z}H{ RN (C, csycs,t) /y} - C{succ(t)/z}

The elimination rule N-ELIM with respect to a universe generates transfinite dependent types.
For instance, the encoding of the dependent type

x: N Listy(z) type
of finite lists of natural numbers, which satisfies
Listy(0) = 1, Listy(n + 1) = Listy(n) X N,
is defined by applying N-ELIM, where I := € (i.e., the empty context) and C := U, to the terms
Fe.:=En(1): U, z:N,y: Uk cs:=En(El(y) x N) : U.

Then, the strategy
Y = % (En(1), En(El(m2) & N)) : N — Uy,

30

N L N & v £ N L O O O « 0O O 00

q
#(1d)
q
#(1I)
q
#(IN)
N L N & v £ N 4 0o o O ¥ 0O O 0O O
q
#(1d)
q
#(11)
q
#(IN)
N £ N & W £ N S 0DOoDo u O O OO0
q
#(1d)
q
q
q
q
f(n)
f(n)
N L N & w42 N S 000 wu OO0 O
q
#(1d)
q
q
q
q
g(m)
g(m)

Figure 4: The strategy on the encoding of the Id-type between functions

31

=
1=
O
O
2
1=
O
N
O

N £> U q q
q q q
q 1 1
0 #(%) #(%)
#(1) q q
#(1) #(N)
N 4 0 O O u O N % o O 0 U 0
q q
q q
2 2
#(%) #(%)
q q
#(2) #(2)
q q
#(1) #(N)
N % 0o o u 0
q
q
2
#(3)
q
#(N)

Figure 5: The strategy on the encoding of the list type

32

which interprets the encoding of the list type, plays as in Figure 5, where Z% is the game-semantic
constructor that interprets the elimination rule N-ELIM [Yam23, Theorem 4.5.3.3].

This list type is out of the scope of Abramsky et al. [AJV15, VJA18] since their semantics is
limited to finite inductive types [VIA18, Figure 7], which exclude the list type [Yam23, §4.3]. This
implies that their approach cannot interpret the combination of universes and N-type.

4. Corollaries

This last section presents some corollaries of our game semantics of universes (Theorem 3.2.3).
The first corollary is the effective computability of the game semantics (§4.1), the second one is the
independence of the principle of universe reflection from MLTT equipped with universes (§4.2), and
the last one is the independence of Markov’s principle from MLTT together with universes (§4.3).
We emphasise that these corollaries come from the unique intensionality of the game semantics.

4.1. Effective computability

We first show the effective computability of our game semantics of universes. Recall that strate-
gies in the CwF UPG; are just the conventional ones (Appendix A.1) that are winning and well-
bracketed (Appendix A.2.11). Recall also that more unrestricted strategies that interpret terms in
the higher-order functional programming language PCF [Sc093, Plo77] are all effective or recursive;
see the original articles [AJMO00, §5] and [HOO00, §5.6] for the details. Thus, terms and morphisms
in UPG; are a class of winning, well-bracketed strategies in the game semantics of PCF that satisfy
the additional condition of strategy filtering imposed by p-games (§2.2). Therefore, the definition
of recursive strategies is directly applicable to terms and morphisms in UPG;.

Roughly, if moves are all encodable by natural numbers, which is clearly the case for Yamada’s
game semantics of MLTT, then a strategy is said to be recursive if its computational steps

sa — sab

at the level of positions are all computable (with respect to the encoding of moves) in the standard
sense [Rog67]. Again, see the aforementioned references for the details. We then define:

Definition 4.1.1 (UPG{"). Let UPG{" < UPG, be the wide substructural CwF of UPG, whose
terms and morphisms are all recursive.

Because the strategies in UPG; modelling terms in MLTT are more restricted than those mod-
elling terms in PCF, it is just straightforward” to verify:

Corollary 4.1.2 (effective game semantics of universes). The CwF UPG?H is well-defined and has
One-, Zero-, N-, Pi-, Sigma- and Id-types as well as the cumulative hierarchy of universes in the
same way as the CwF UPG, (Theorems 3.2.3 and Appendiz A.2). This in particular establishes
effective game semantics of universes.

SFor analogy, an interpretation of terms is given along the inductive construction of terms, and the interpretation
is a priori not a map defined on terms themselves. The inductive construction of terms does not add any data to
terms, but it makes the interpretation well-defined. In this sense, the interpretation is similar to the assignment En.

7Again, the point is that our strategies are just the conventional ones, so the existing arguments on the recursive
nature of strategies interpreting PCF such as [AJMO00, §5] and [HOO0O, §5.6] are applicable here.

33

4.2. Independence of universe reflection
Next, recall the principle of universe reflection [ML75, Pal98]: Given terms ¢, ¢’ € Tm(T,U), if

El(v) = El(¢') € Ty(T),

then
Y=1"

Let us show that this principle is independent from MLTT. To this end, a key observation is
that, by the intensionality of our game semantics, there can be more than one term that encodes
the same type in the CwF UIPG!(GH). In other words, the game semantics refutes universe reflection.

For instance, the term En(1) € Tm(7T.N,U), which encodes One-type 1 € Ty(T.N) in UIF’G!(EH),
plays by

TN 0y

q
#(1)
while another term ¢ € Tm(T.N,U), which plays by
TN % u
q
q
n
#(1)

for all n € N, also encodes the same type. We note that the latter term 1 can be given by the
interpretation ZV of the elimination rule N-ELIM of N-type in UIPG!(GH) applied to the constant
terms #(1) € Tm(T,U) and #(1) € Tm(T.N.U,U) in UPG®™),

This argument together with Theorem 3.2.3 immediately implies:

Corollary 4.2.1 (independence of universe reflection). The principle of universe reflection is in-
dependent from MLTT equipped with One-, Zero-, N-, Pi-, Sigma- and Id-types as well as the
cumulative hierarchy of universes.

The intensionality of strategies plays a vital role for this argument, while it is not available for
other computational models such as those based on domains [Pal93, BL18] and realisability [Str91].

4.3. Independence of Markov’s principle

Finally, recall that Yamada [Yam23, §4.7] proved that Markov’s principle [Mar62] is invalid in
his game semantics, so the principle is independent from MLTT equipped with One-, Zero-, N-,
Pi-, Sigma- and Id-types. Markov’s principle is a well-known one in constructive mathematics, and
it depends on the school of constructive mathematics whether the principle is to be regarded as
constructive. The principle postulates that if it is impossible that there is no natural number n € N
with f(n) =0 for a map f: N — N, then there is a natural number ny € N with f(ng) = 0.

To see the subtlety of Markov’s principle, we note that Markov’s principle forms an instance of
the law of double negation elimination, which is available in classical logic but not in intuitionis-
tic logic [TS00]. In this sense, the principle appears non-constructive. On the other hand, Markov

34

described an algorithm that validates the principle within his recursive school of constructive math-
ematics [TvD88, §4.5]. In this way, it depends on the choice of a school of constructive mathematics
whether or not one accepts Markov’s principle as constructive. In this context, it is an interesting
problem to see if the principle is independent from (some extensions of) MLTT.

Clearly, the independence proof due to Yamada is also valid for our game semantics without any
modification. This extends the independence result to universes:

Corollary 4.3.1 (independence of Markov’s principle from universes). Markov’s principle is in-
dependent from MLTT equipped with One-, Zero-, N-, Pi-, Sigma- and Id-types as well as the
cumulative hierarchy of universes.

Proof. Tt is instructive to recall Yamada’s proof of the independence result [Yam23, Corollary 4.7.1]

below, where we replace the CwF WPG, with the one UIPG!(GH).
First, recall that the p-game that interprets Markov’s principle is

II(Njoy = Npj, D = C), (5)
where

C := %(Ng), ldn{(app(m1,72), 0) }i7){p},
D := (%(Npj, Idn{(app(m1,7m2), 0) }3)) = Opg) = Ops),

and omit the terminal p-game T and the bracket {_} for constant dependent p-games (e.g., write N
for T{N}). We call C the codomain of the p-game (5), Nigy = Np1j the outer domain, and D the

inner domain. Assume for a contradiction that there is a term (¢,) on this p-game in IUIP’(G!(‘SH).
We then proceed by the following case analysis. Assume that there are total input strategies

o! I(Njg) = Npyp), (n, V)" : 1S(Npgy, Idn{(app(m1, m2), 0) }131)
on which ¢ eventually makes a P-move n;, in Nig if Opponent begins a play in Nig.

L. If pen/, # 0 for some of ¢ and n, and Opponent plays by them, then Idx{(app(m1,72),0)}7
can be the empty one 0, and 1) plays on the domains forever, contradicting its noetherianity;

2. If penj, =0 for all ¢ and n, then ¢ is strict® since otherwise n;, would be the same even

if Opp&ent changes ¢ so that ¢ e n:o # 0, a contradiction; thus, ¢ is strict and answers the
question in N with no answer to the question in Op), contradicting the well-bracketing of ¢.

Hence, we conclude that, given any total inputs ¢ and (n, i}ﬂ ¢ does not make a P-move in
Nig). Similarly to the case of 1, however, this contradicts the noetherianity of ¢. O

Again, this proof takes advantages of the intensional nature of the game semantics, which is
not available for other computational models of MLTT such as domain theory and realisability.
The intuitionistic nature of the game semantics realised by the well-bracketing of strategies is also
crucial in the proof; it is unavailable in the denotational semantics due to Blot and Laird [BL18].

Mannaa and Coquand [MC17] established the independence of Markov’s principle from MLTT
equipped with a universe for the first time in the literature. Their proof is syntactic, which stands in

8 A morphism ¢ : I' = A is said to be strict if mn € ¢ implies n € T' [Lau02, p. 88].

35

contrast to our game-semantic proof. As we have already mentioned, their proof is not automatically
extendable to other types, and an extension can be nontrivial. In contrast, our reasoning is modular:
A meta-theoretic result on MLTT given by our game semantics is automatically extended to new
types as soon as the game semantics is extended to the types. This is a strong advantages of our
game-semantic approach to the study of type theory and constructive mathematics.

Acknowledgements

The author acknowledges financial support from the Centre for Mathematics of the University
of Coimbra (under the FCT project UID/00324) and from FCT (contract 2022.06122.CEECIND).

References

[A*97]

[Acz86]

[AHMOS]

[AJ94]

[AJMOO]

[AJV15]

[AMY7]

[AM99a]

[AM99D)]

[BL18]

[Brob4]

Samson Abramsky et al., Semantics of interaction: An introduction to game semantics,
Semantics and Logics of Computation 14 (1997), 1-31.

Peter Aczel, The type theoretic interpretation of constructive set theory: inductive defi-
nitions, Studies in Logic and the Foundations of Mathematics, vol. 114, Elsevier, 1986,
pp- 17-49.

Samson Abramsky, Kohei Honda, and Guy McCusker, A fully abstract game semantics
for general references, Logic in Computer Science, 1998. Proceedings. Thirteenth Annual
IEEE Symposium on, IEEE, 1998, pp. 334-344.

Samson Abramsky and Radha Jagadeesan, Games and full completeness for multiplica-
tive linear logic, The Journal of Symbolic Logic 59 (1994), no. 02, 543-574.

Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria, Full abstraction for
PCF, Information and Computation 163 (2000), no. 2, 409-470.

Samson Abramsky, Radha Jagadeesan, and Matthijs Vakar, Games for dependent types,
Automata, Languages, and Programming, Springer, Berlin, Heidelberg, 2015, pp. 31-43.

Samson Abramsky and Guy McCusker, Linearity, sharing and state: a fully ab-
stract game semantics for Idealized Algol with active expressions, Algol-like languages,
Springer, 1997, pp. 297-329.

, Full abstraction for Idealized Algol with passive expressions, Theoretical Com-
puter Science 227 (1999), no. 1, 3-42.

, Game semantics, Computational Logic: Proceedings of the 1997 Marktoberdorf
Summer School (Berlin, Heidelberg), Springer, 1999, pp. 1-55.

Valentin Blot and Jim Laird, Fxtensional and intensional semantic universes: A denota-
tional model of dependent types, Proceedings of the 33rd Annual ACM/IEEE Symposium
on Logic in Computer Science, ACM, 2018, pp. 95-104.

LEJ Brouwer, Points and spaces, Canadian Journal of Mathematics 6 (1954), 1-17.

36

[CAB*86]

[CD14]

[CH10]

[Chr00]

[Chu40]

[Cla09]

[Coq95]

[DP16]

[Dyb96]

[Fra22]

[Gir72]

[Gir87]
[GR4]

[Hey31]

[HO00]

[Hof97]

RL Constable, SF Allen, HM Bromley, WR Cleaveland, JF Cremer, RW Harper,
DJ Howe, TB Knoblock, NP Mendler, P Panangaden, et al., Implementing mathematics
with the nuprl proof development system.

Pierre Clairambault and Peter Dybjer, The biequivalence of locally cartesian closed cat-
egories and martin-l0f type theories, Mathematical Structures in Computer Science 24
(2014), no. 6, ¢240606.

Pierre Clairambault and Russ Harmer, Totality in arena games, Annals of pure and
applied logic 161 (2010), no. 5, 673-689.

Juliusz Chroboczek, Game semantics and subtyping, Proceedings Fifteenth Annual
IEEE Symposium on Logic in Computer Science (Cat. No. 99CB36332), IEEE, 2000,
pp. 192-203.

Alonzo Church, A formulation of the simple theory of types, The journal of symbolic
logic 5 (1940), no. 2, 56-68.

Pierre Clairambault, Least and greatest fixpoints in game semantics, International Con-
ference on Foundations of Software Science and Computational Structures, Springer,
2009, pp. 16-31.

Thierry Coquand, A semantics of evidence for classical arithmetic, The Journal of Sym-
bolic Logic 60 (1995), no. 1, 325-337.

Peter Dybjer and Erik Palmgren, Intuitionistic type theory, Stanford Encyclopedia of
Philosophy (2016).

Peter Dybjer, Internal Type Theory, Types for Proofs and Programs, Springer, 1996,
pp- 120-134.

Adolf Fraenkel, Zu den grundlagen der cantor-zermeloschen mengenlehre, Mathematis-
che annalen 86 (1922), no. 3-4, 230-237.

Jean-Yves Girard, Interprétation fonctionnelle et élimination des coupures de
Uarithmétique d’ordre supérieur, Ph.D. thesis, Editeur inconnu, 1972.

, Linear logic, Theoretical Computer Science 50 (1987), no. 1, 1-101.

Edward Griffor and Michael Rathjen, The strength of some martin-lof type theories,
Archive for Mathematical Logic 33 (1994), no. 5, 347-385.

Arend Heyting, Die intuitionistische grundlequng der mathematik, Erkenntnis 2 (1931),
no. 1, 106-115.

J Martin E Hyland and C-HL Ong, On full abstraction for PCF: I, II, and III, Infor-
mation and Computation 163 (2000), no. 2, 285-408.

Martin Hofmann, Syntaz and Semantics of Dependent Types, Extensional Constructs in
Intensional Type Theory, Springer, 1997, pp. 13-54.

37

[Hyl182]

[Hy197]

[Kol32]

[Lai97]

[Lau02]

[Mar62]

[MC17]

[McC98]

[ML75]

[ML82]

[ML84]

[MLOS]

[Pal93]

[Pal9g]

[Plo77]

[Rogb67]

[ScoT0]

J Martin E Hyland, The effective topos, Studies in Logic and the Foundations of Math-
ematics, vol. 110, Elsevier, 1982, pp. 165-216.

Martin Hyland, Game semantics, Semantics and Logics of Computation, vol. 14, Cam-
bridge University Press, New York, 1997, p. 131.

Andrej Kolmogoroff, Zur deutung der intuitionistischen logik, Mathematische Zeitschrift
35 (1932), no. 1, 58-65.

James Laird, Full abstraction for functional languages with control, Logic in Computer
Science, 1997. LICS’97. Proceedings., 12th Annual IEEE Symposium on, IEEE, 1997,
pp. 58-67.

Olivier Laurent, Polarized games, Proceedings of the 17th Annual IEEE Symposium on
Logic in Computer Science, IEEE, 2002, pp. 265-274.

Andrei Andreevich Markov, On constructive mathematics, Trudy Matematicheskogo In-
stituta imeni VA Steklova 67 (1962), 8-14.

Bassel Mannaa and Thierry Coquand, The independence of markov’s principle in type
theory, Logical Methods in Computer Science 13 (2017).

Guy McCusker, Games and full abstraction for a functional metalanguage with recursive
types, Springer Science & Business Media, London, 1998.

Per Martin-Lof, An Intuitionistic Theory of Types: Predicative Part, Studies in Logic
and the Foundations of Mathematics 80 (1975), 73-118.

, Constructive Mathematics and Computer Programming, Studies in Logic and
the Foundations of Mathematics 104 (1982), 153-175.

, Intuitionistic Type Theory: Notes by Giovanni Sambin of a series of lectures
given in Padova, June 1980, 1984.

, An Intuitionistic Theory of Types, Twenty-five years of constructive type theory
36 (1998), 127-172.

Erik Palmgren, An information system interpretation of martin-léf’s partial type theory
with universes, Information and Computation 106 (1993), no. 1, 26-60.

, On universes in type theory, Twenty five years of constructive type theory
(1998), 191-204.

Gordon D. Plotkin, Lcf considered as a programming language, Theoretical computer
science 5 (1977), no. 3, 223-255.

Jr Rogers, Hartley, Theory of recursive functions and effective computability, vol. 5,
McGraw-Hill, New York, 1967.

Dana Scott, Outline of a mathematical theory of computation, Oxford University Com-
puting Laboratory, Programming Research Group Oxford, 1970.

38

[Sco93]

[Set93]

[Sho67]
[Stro1]

[SUO6]

[Tar54]

[TS00]

[TvDS3]

[Unil3]

[VIALS]

[Yam19]

[Yam23]

[Zer08]

Dana S Scott, A type-theoretical alternative to iswim, cuch, owhy, Theoretical Computer
Science 121 (1993), no. 1-2, 411-440.

Anton Setzer, Proof theoretical strength of martin-lof type theory with w-type and one
universe, Ph.D. thesis, Uitgever niet vastgesteld, 1993.

Joseph R Shoenfield, Mathematical logic, vol. 21, Addison-Wesley, Reading, 1967.

Thomas Streicher, Semantics of Type Theory: Correctness, Completeness and Indepen-
dence Results, Springer Science & Business Media, 1991.

Morten Heine Sgrensen and Pawel Urzyczyn, Lectures on the curry-howard isomorphism,
Elsevier, 2006.

Alfred Tarski, Contributions to the theory of models. i, Indagationes Mathematicae (Pro-
ceedings), vol. 57, Elsevier, 1954, pp. 572-581.

Anne Sjerp Troelstra and Helmut Schwichtenberg, Basic proof theory, no. 43, Cambridge
University Press, 2000.

Anne Sjerp Troelstra and Dirk van Dalen, Constructivism in mathematics. two volumes,
NorthHolland, Amsterdam (1988).

The Univalent Foundations Program, Homotopy type theory: Univalent foundations of
mathematics, https://homotopytypetheory.org/book, Institute for Advanced Study,
2013.

Matthijs Vakéar, Radha Jagadeesan, and Samson Abramsky, Game semantics for depen-
dent types, Information and Computation 261 (2018), 401-431.

Norihiro Yamada, A game-semantic model of computation, Research in the Mathemat-
ical Sciences 6 (2019), no. 1, 3.

, Game semantics of Martin-Lif type theory, Mathematical Structures in Com-
puter Science (2023), 1-42.

Ernst Zermelo, Untersuchungen tiber die grundlagen der mengenlehre. i, Mathematische
Annalen 65 (1908), no. 2, 261-281.

Appendix A. Game semantics of Martin-Lof type theory

In this section, we review Yamada’s game semantics of MLTT [Yam23]. To this end, we first
recall McCusker’s games and strategies [McC98, AM99b] (with the slight modifications made in
loc. cit.) that interpret simple type theories [AM99b] in Appendix A.1 as loc. cit. is based on that
variant of games and strategies. Yamada selects that variant since it has the linear decomposition
of function types in the sense of linear logic [Gir87] and interprets computational effects [AM99b];
he hopes that his game semantics of MLTT will eventually solve the problem of combining MLTT
with linear logic and/or computational effects [Yam23, §2]. We then review the basic definitions
and the results of the game semantics of MLTT in Appendix A.2. Our exposition is minimal; see
the original articles [AM99b, McC98, Yam23] for more explanations and examples.

39

Appendiz A.1. Games and strategies

A game is a certain set of finite sequences or positions, which represent possible developments
in the game. Each element of the position is called a move in the game, and a play in the game
proceeds as the participants, Player and Opponent, alternately make moves along a growth of
positions. By convention, Opponent always makes the first move.

These notions are centred around the structure of an arena, and positions are required to satisfy
an axiom, called legality. Let us first recall these auxiliary concepts.

Definition Appendix A.1.1 (moves [Yam23]). Fix arbitrary pairwise distinct symbols O, P, Q
and A, and call them labels. A move is a triple of the form

m* = (m,x,y)
such that x € {O,P} and y € {Q, A}.
Convention. We usually abbreviate a move m*¥ as m and instead define
A(m) = xy, AOP(m) =z, A (m) =y,

and call a move m an O-move if \O¥ (m) = O, a P-move if \OF (m) = P, a question if \Q4(m) = Q,
and an answer if \94(m) = A.

Definition Appendix A.1.2 (arenas [HO00, McC98]). An arena is a pair A = (Ma,Fa) of
e A set M4 of moves,

o A subset 4, called the enabling relation, of the cartesian product ({x} U M4) x My, where
* is an arbitrarily fixed element such that x € My, that satisfies

— (E1) If x F 4 m, then A(m) = 0OQ;
— (E2) If m F4 n and AQ4(n) = A, then A% (m) = Q;
— (E3) If m F4 n and m # x, then A\OF (m) # AP (n).

We call a move m in an arena A initial in A if ¥ -4 m, and define the set
M= {me My |xFam}

of all initial moves in A. An arena A is said to be well-founded if so is the relation F- 4, i.e., there
is no infinite sequence (m;);en of moves m; € M4 with x -4 mo and m; -4 m;4q for all ¢ € N.

The idea is that an arena A specifies moves in a game, each of which is Opponent’s/Player’s
question/answer, and the relation m k4 n defining that the move n can be made for the move m
during a play in the game (Appendix A.1.3), where x 4 m means that Opponent can initiate a
play by the move m in the game. The axioms E1, E2 and E3 are then to be read as follows:

o El1 sets the convention that an initial move must be Opponent’s question;
o E2 states that an answer must be performed for a question;

e E3 says that an O-move must be performed for a P-move, and vice versa.

40

Strictly speaking, a positions is a finite sequence together with a pointer. The idea is that each
non-initial occurrence of a move in a position is made for a specific previous occurrence; a pointer
defines these pairs of occurrences. We call a finite sequence together with a pointer a j-sequence:

Definition Appendix A.1.3 (j-sequences [Coq95, HO00, Yam23]). A justified (j-)sequence is a
pair s = (s, Js) of a finite sequence s of moves and a function

T+ |s| = {0}y Us| - 1,
called the pointer of s, such that 0 < J,(i) < i for all i € [s].

« An occurrence in a finite sequence t refers to a pair (¢(i),7) such that i € [t];
e An occurrence (s(4),14) is said to be initial in a j-sequence s if Js(i) = 0;

e The occurrence (s(Js(%)), Js(2)) such that Js(7) > 0 is said to be the justifier of a non-initial
one (s(7),1) in s, and equivalently (s(i),4) is said to be justified by (s(Ts(i)), Ts(?)) in s;

e A j-sequence s is said to be in an arena A if the elements of its underlying sequence s are all
moves in A, and its pointer Js respects the enabling relation 4, i.e.,

Vi € [s]. (Ts(i) = 0= x4 8(i)) A (Ts(i) > 0= s(Ts(7)) Fa s(i)),
where we write _#g for the set of all j-sequences in A.

Convention. Henceforth, we are casual about the distinction between moves and their occurrences
in sequences; also, we often keep the pointer Js of a j-sequence s implicit (as it is mostly clear),
and abbreviate an occurrence (s(i),4) in s as s(i). In addition:

o We write Js(s(i)) = s(j) if Ts(i) =7 > 0;

o We extend the notation s(i) (i € |s|) by s(0) := * (so that the pair (%,0) is seen as justifying
initial occurrences in), and write J5(s(2)) = s(j) even if Js(i) = j =0, i.e., 8(j) = *.

This convention is convenient in practice. For instance, see the following:

Definition Appendix A.1.4 (j-subsequences [Yam23]). A justified (j-)subsequence of a j-sequence
s is a j-sequence t, written ¢t C s, whose underlying sequence is a subsequence of s, and Jz(n) = m
if and only if there are occurrences my,mo,...,my in s deleted in ¢ such that

Js(n) = ma, Ts(m1) = ma, Ts(my—1) = my, Ts(my) =m,

where note that m can be x (which is not a move) by the above convention.

We note that a j-subsequence of a j-sequence s is completely specified by a subsequence of the
underlying sequence of s. We are now ready to proceed to the last auxiliary concept for legality:

Definition Appendix A.1.5 (views [Coq95, HO00, McC98]). The P-view [s] and the O-view
|s] of a j-sequence s are the j-subsequences of s defined respectively by

1:=¢€;

1. [e
2. [sm] := [s].m if m is a P-move, where the justifier of m is kept unchanged;

41

3. [sm] := m if m is initial;

4. [smin] := [s].mn if n is an O-move such that m justifies n;

5. €] :==¢€;

6. |sm] :=|s].m if m is an O-move, where the justifier of m is kept unchanged;
7. |smin| := |s].mn if n is a P-move such that m justifies n.

Remark. Strictly speaking, the P-view [s] or the O-view |s] may not be a j-sequence because the
justifier of m may be lost in the clause (2) or (6). Yet, this problem is insignificant as we later focus
on visible j-sequences (Appendix A.1.6), for which this problem does not occur [McC98, pp. 19-20].

The idea on views is as follows. Given a nonempty j-sequence sm such that m is a P- (respec-
tively, O-)move, the P-view [s] (respectively, O-view |s|) is the currently ‘relevant part’ of the
previous occurrences in s for Player (respectively, Opponent). In other words, Player (respectively,
Opponent) is concerned only with the last occurrence of an O- (respectively, P-)move, its justifier
and that justifier’s P- (respectively, O-)view, which then recursively proceeds.

We are now ready to recall legal positions and then games:

Definition Appendix A.1.6 (legal positions [HO00, McC98, Yam23]). A legal position is a
j-sequence s such that

o (ALTERNATION) If s = symnsa, then A°F (m) # A°F (n);

e (VISIBILITY) If s = tmu with m non-initial, then Js(m) occurs in the P-view [t] if m is a
P-move, and in the O-view |t] otherwise.

A legal position is said to be in an arena A if it is a j-sequence in A (Appendix A.1.3). Let us
write Z4 for the set of all legal positions in A.

As already noted, legal positions in an arena are to specify the basic rules of a game in the
sense that all positions in the game are legal so that

 During a play, Opponent makes the first move by a question (by E1),% and then Player and
Opponent alternately make moves (by alternation), where each non-initial move is made for
a specific one, viz., its justifier;™°

o The justifiers are in the ‘relevant parts’ or views (by visibility).

Definition Appendix A.1.7 (games [McC98, Yam23]). A game is a set G of legal positions that
satisfies the following:

1. The set G is nonempty and prefiz-closed (i.e., sm € G implies s € G);
2. The pair Arn(G) := (Mg, F¢) is an arena, where
(a) Mg :={s(i)|s€G,ic]s[},
(b) Fa = Usec{ (,8(3)) | Ts(4) =03 U{(s(i), () | Ts(j) =2 > 0}).

98ince the initial element s(1) of a legal position s in an arena A is subject to the equation Js(1) = 0, we have
* 4 s(1). Hence, the axiom E1 on A implies A(s(1)) = OQ.

10 Again, since we focus on a legal position s in an arena A, the justifier of each P-move occurring in s is an
O-move, and vice versa, by the axiom E3 on A. In addition, the justifier of each answer occurring in s is a question
by the axiom E2 on A.

42

We call elements of G positions in G. A play in G is a (finite or infinite) sequence of positions
in G of the form
(e,m1, mymo, mymams,...).

A game G is said to be well-founded if so is the arena Arn(G), and well-opened if each of its
positions contains at most one initial move. A subgame of G is a game H such that H C G, where
we write Sub(G) for the set of all subgames of G.

Example Appendix A.1.8. The simplest game is the terminal game
T := {e},
which only has the empty position €. The flat game on a given set S is the game

flat(S) := Pref({ ¢°@m™ |m € S),

where ¢ is an arbitrarily fixed element such that ¢ & S, and ¢°9 justifies mPA.

Consider, e.g., the empty game 0 and the natural number game N defined respectively by
0 := flat(0), N := flat(N).
The empty game interprets Zero-type, and the natural number game N-type (Appendix A.2).

Next, strategies on a game G are Player’s algorithms to play in G:

Definition Appendix A.1.9 (strategies [McC98]). A strategy on a game G is a subset 0 C GFven,
written o : G, that is nonempty, even-prefiz-closed (i.e., smn € o implies s € o) and deterministic
(i.e., smn,smn’ € o implies smn = smn’).

We write St(G) for the set of all strategies on a game G. The idea is that a strategy o : G
describes for Player how to play in G by the computation

GOdd

sm € — smn € o,

if any, which is unique by the determinacy of o, and in general partial because there can be no
output smn € o for some input sm € G4,

Example Appendix A.1.10. The terminal game T only has the trivial strategy
T = {e},
and the flat game flat(S) on a set S has those
1 :={e}, m = {e,qm} (m€S).

Nevertheless, strategies are too unrestricted to correspond to proofs, and this problem motivates
winning and well-bracketing: Winning strategies correspond to proofs in classical logic, and winning,
well-bracketed ones to proofs in intuitionistic logic. Because the logic of MLTT is intuitionistic, we
may obtain a tight correspondence between MLTT and game semantics by focusing on winning,
well-bracketed strategies.

43

Definition Appendix A.1.11 (constraints on strategies [HO00, CH10, Coq95, Lai97]). A strat-
egy o : G is said to be

e Total if it always responds: Vs € g,sm € G.dsmn € o;

e Innocent if it only depends on P-views: Vsmn € o,t € o,tl € G.[sm] = [tl] = Ttir €
o.[smn] = [tir];

e Noetherian if there is no strictly increasing (with respect to the prefix relation <) infinite
sequence of elements in the set [o] :={[s] | s € 0 } of all P-views in o;

o Winning if it is total, innocent and noetherian;

o Well-bracketed if its question-answering in P-views is in the last-question-first-answered fash-
ion: If sqta € o, where A94(q) = Q, A%4(a) = A and Jsqta(a) = g, then each question in ¢/,
where [sqt] is of the form [sqt] = [sq]|.t’ by visibility, justifies an answer in ¢’.

Example Appendix A.1.12. The strategies T : T and n : N for all n € N are winning and
well-bracketed, while those L : 0 and L : N are not even total.

We regard winning strategies as proofs in classical logic as follows. First, proofs must not get
‘stuck,” so strategies playing as proofs are total. Next, imposing innocence on strategies corre-
sponds to excluding stateful terms [AM97, AHM98, AM99a]. Since logic is concerned with truths,
independently of ‘passage of time,” proofs should not depended on ‘states of arguments.” Thus, we
impose innocence on strategies for proofs. Finally, we need noetherianity to handle infinite plays:
If a play by an innocent, noetherian strategy keeps growing infinitely, then it cannot be Player’s
‘intention,” so the play must be her ‘win. Technically, noetherianity is crucial for the closure of
winning strategies under composition (Appendix A.1.15).

In addition, well-bracketing bans classical reasoning or control operators [Lai97]. Thus, we see
winning, well-bracketed strategies as proofs in intuitionistic logic.

Let us next recall standard constructions on games and strategies.

Convention. For readability, we omit tags for disjoint union W. For instance, we write t € AW B
if x € A or x € B; also, given relations R4 C A x A and Rg C B x B, we write R4 W Rp for the
relation on A W B such that (z,y) € RaWRp 1< (r,y) € RaV (z,y) € Rp.

Definition Appendix A.1.13 (constructions on arenas [HO00, McC98]). Given arenas A and
B, we define the arenas

¢« AWB := (MA&JMB7|—A ttll—B);
¢« If B#T, then A —o B:= ({a® ¥ | a® € My} ¥ Mp,+4_op), where
ot =P, Pt := 0, *bFa opm:&xkEgm,

mbaopn:ombanVmbgnV (xkFpmAxtgn);

L] A—OT2=T.11

1By distinguishing the case A — T" from the one A — B with B # T, we save A — T from unused structures. In
other words, it keeps games economical, i.e., free from unused structures [Yam23, p. 9].

44

Definition Appendix A.1.14 (constructions on games [HO00, McC98]). Given games G and
H, we define the games

e The tensor of G and H:
G® H := {S € gArn(G)&JArn(H) ‘ VX € {G,H}.S[X € X},
where the j-subsequence s[x C s consists of the occurrences of moves in X;

e The exponential of G:
IG := {8 € Lrm) | Vi€ |s].Ts(i) = 0= sl(s0)0)) €G},

where the j-subsequence s[{(se),i)} E 512 consists of the occurrences in s hereditarily justi-
fied'? by the initial occurrence (s(i),4) in s;

e The product of G and H:

G& H :={s5¢€ Lrmn@cwamm) | (8lc €GAslg =€)V (slg=€eNslge€H)};

e The linear implication from G to H:
G—H:= {S € gArn(G’)—OArn(H) | eri € G,STH € H}y

also written H®, where the j-sequence s|s. is obtained from the one s|g by modifying all
the moves m(®)Y occurring in s|g into those m™Y;

e The implication from G to H:
G=H:=!G—H.

Notation. Notationally, exponential ! precedes other constructions on games, while tensor ® and
product & precede linear implication — and implication =.

Definition Appendix A.1.15 (constructions on strategies [HO00, McC98]). Given strategies
¢0:G—oH,0: K—oL 7:G—oK,9:H— K and 0:!G — H, we define

e The copy-cat on G:

cpg = {5 € (Gjg) — Gpp) P+ |ths.Even(t):>tr% = tlay, Initay,cy, (5)

where the predicate InitG[O],G[l](S) means that every initial occurrence in the domain G|
points to the last initial occurrence in the codomain Gy

e The dereliction on G:

derg :={se (|G — G)Eve“ | Vt < s.Even(t) = thge = tlg, Initig,g(s) };

12We abuse the notation | for the operations s[x and sl{(s(i),i)}, but it is not a problem in practice.
13 An occurrence n in a j-sequence s is hereditarily justified by another occurrence m in s if J2(n) = m for some
positive integer ¢ € Ny [McC98, p. 22].

45

e The tensor of ¢ and o:
pR0c:={s€e(GRK)—- (H®L)|slgu € ¢ sk, €0},

where the j-subsequence s|g uy C s (respectively, slk, T s) consists of the occurrences of
moves in G or H (respectively, K or L);

e The pairing of ¢ and 7:

(1) i={s€G—o(H&K)|(slegu€dNslk =€)V (slgxk ETNSIg =¢€)};
o The composition of ¢ and :

o :={slex|s€¢| v} (alsowritten ¢ o¢),

where

14
1L gl €c
bty € Pk

¥ ={8€ Fam((G—Hp) —Hu)—K) | 8IG Hq € O, 81, K €, 8]y
and the j-sequence s| HE HE is obtained from the one s[p, m, by the application of the
operation (J)+ : m® me Y (Appendix A.1.13) to all moves m*¥;

e The promotion of 6:

HT = {8 S ('G —0 !H)Even ‘ Vi € |S|js(’é) =0= 3[{(5(1’),71)} S 9}

Example Appendix A.1.16. The promotion succ’ : IN —o IN of the strategy
suce := { qq1-qjo]-njo)-n + 111y [n € N} 2 Nigp = Ny
computes as sketched in the introduction (§2.1).
Let us summarise the present section by:

Definition Appendix A.1.17 (categories of games and strategies [McC98]). The category Gy
consists of

o Well-opened games as objects;
o Strategies on the implication G = H as morphisms G — H;

o The composition 1) @ ¢ := 1 o ¢’ : G = K of strategies as the composition of morphisms
¢:G— Handy: H— K,

e The dereliction derg as the identity on each object G.

The subcategory LGy (respectively, WGy) of G, consists of well-founded, well-opened games and
winning (respectively, winning, well-bracketed) strategies.

14This condition SlyL pi € cpy is to guarantee that the play in Hg) is the same as the one in H[yj.
[0y

46

We focus on well-opened (respectively, well-opened, well-founded) games in the categories since
otherwise the identities would not be well-defined [McC98, pp. 42-43]. Although one can permit
ill-opened games by a standard method [McC98, §3.6], Yamada [Yam23] does not use it as it makes
his game semantics more complex, and it is not strictly necessary for the interpretation of MLTT.

We use the subscript (-)1 to distinguish these categories from the linear ones [McC98, §3.3], in
which morphisms G — H are strategies on the linear implication G — H. We are not bothered
about the distinction between strategies on a game G and those on the game T'— G or T = G.

Appendiz A.2. Game semantics of Martin-Ldof type theory

Yamada [Yam23] establishes game semantics of MLTT. His idea is to generalise games into
predicate (p-)games, which corresponds to the generalisation of simple types to dependent ones:

Definition Appendix A.2.1 (predicate games [Yam23]). A predicate (p-)game is a pair
=TT

of a game |I'| and a family ||T'|| = {T'(7)},:r| of subgames I'(y) C |I'|, and said to be well-founded
(respectively, well-opened) if so is the game |T'|.

Example Appendix A.2.2. Given a game G, we have the p-game
2(G) = (G, kg),

where k¢ is the constant family at G. Clearly, the game G and the p-game Z(G) are essentially
the same. We abbreviate the p-games & (T), #Z(0) and Z(N) as T, 0 and N, and call them the

terminal p-game, the empty p-game and the natural number p-game, respectively.
Before recalling strategies on p-games, we need a few preliminary concepts:

Definition Appendix A.2.3 (liveness ordering [Chr00]). The liveness ordering is a partial order
< between games [Chr00, Definition 8 and Theorem 9], which defines G < H to mean that Opponent
(respectively, Player) is less (respectively, more) restricted in G than in H, i.e., they satisfy

1. If s € (GN H)E" and sm € HO then sm € GO,
2. If tl € (GN H)© and tir € GEV*", then tir € HEVeR,

Definition Appendix A.2.4 (closures of strategies [Yam23]). The closure of a strategy o : G
with respect to another game H is the subgame defined inductively by

Gy ={eyU{smec H°Y |scay}U{tirco|ticay} CoUH.
We see by induction that the equation
gg=0U{smeG|seco}
holds for all o : G. Moreover, we have:

Proposition Appendix A.2.5 (liveness characterisation [Yam23]). Let o : G and H € Sub(G).

1. GEven . H if and only if 5 < H;
2. If5g < H, then™ =0 N H.

47

This proposition enables us to define strategies on p-games in a handy way:

Definition Appendix A.2.6 (strategies on p-games [Yam23]). A strategy on a p-game I', written
7v: T, is a strategy 7 : [['| such that 7 < I'(v), where

St(I') :={yeSt(Il]) [y:T'}, Ar = Tr(y);
and said to be total (respectively, innocent, noetherian, well-bracketed) if so is the one yNI'(7y) : T'(7y).

A position in a p-game I is a one in a game 7 for some strategy v : I'. A play in I' then proceeds
as follows: Before a play, Player fixes a strategy v : I', and then an ordinary play on the game I'(y)
follows, where Player must play by the strategy v yet restricted to T'(v), i.e., yNI'(y) = VIEZ’%‘ :T(w).
This predetermination of a strategy is in accordance with conventional game semantics because in
the literature game semantics has always focused on plays by a fized strategy for an interpretation.
In addition, the predetermination of a strategy does not lose generality since each position s in a
game G is the result of a play by some strategy o : G, viz., o := Pref({s})Fven.

By the generalisation of a game |T'| to a p-game I' = (T, ||T']|), we can only select a strategy
7 : |I'| that satisfies the condition 7| < I'(y), and this choice v : T' fizes the ambient game I'(7);
i.e., the game-semantic counterpart of the generalisation of simple types to dependent ones is the
family ||T||, which brings these strategy filtering and game fixing abilities to the game |T'|.

We next recall basic constructions on p-games:

Notation. If G is a game, s € !G and i € N, then (again by abuse of the notation [) let s|; be
the j-subsequence of s that consists of the occurrences hereditarily justified by the (i + 1)st initial
occurrence in s; e.g., if s = ¢2¢q1q¢0 € |N, then sfg = ¢2, s[1 = g1 and s[2 = 0.

Given a strategy o on the tensor Gy ® G of games G; (i =0, 1), we define

[o; if 0 =09 ® oy for (necessarily unique) og : Go and o7 : Gy;
olg, =
Gi 1T otherwise, where 1 means being undefined.

Similarly, for a strategy 7 on the exponential |G of a game G and j € N, let

{slj|ser} if{sly|ser}:GlorallkeN;
Tl =)
0 otherwise.

For a p-game I', we let the value T'(1) to be undefined, and the operations ®, —o, & and ! on
undefined games to be undefined. Lastly, we extend the relation 7|p| < ['(v) by defining that it
does not hold if the game T'(7) is undefined.

Definition Appendix A.2.7 (product and tensor on p-games [Yam23]). The product of p-games
I' and A is the p-game I" & A defined by

T & Al = [T] & |A], T&A)((7,0)) :==T(7) &AG) ({7,6) : [T & AJ),
and their tensor is the p-game I' ® A defined by
T A= 0o Al (T ® A)(o) == T(olr) @ Alolay) (o: [T A

Definition Appendix A.2.8 (countable tensor [Yam23]). The countable tensor of a family
(Gi)ien of subgames G; C H is the subgame

RienGi = {s€!H|VjeN.s|; €G;} CIH

48

Definition Appendix A.2.9 (exponential on p-games [Yam23]). The ezponential of a p-game T
is the p-game !'T" defined by

eSSl (I0)(0) = @sexl(ols) (o : |IT)).

Definition Appendix A.2.10 (implication between p-games [Yam23]). The linear implication
between p-games I' and A is the p-game I' —o A (also written Al) defined by |AT| := |A|/Tl and
for all ¢ : |AL|

(AN)(¢) == {e} U{sm € |AT|% | s € (AT)(¢), 3y : T.sm € A(dpor)T"}
U {tlr € |AT|Evn | tl € (AT)(¢),Vy : T .t € A(poy)Tr = tlr € A(pon)Tr},
and the implication between I' and A is the linear implication
' A:=1T—5A.

The first clause of the inductive definition of the subgame (Al')(¢) C |Al] is the base case. The
second clause specifies one of the two inductive steps: At an even-length position s € (AL)(g)Fven,
Opponent can make a move m as in A(¢ o)t C |AL| for any v : T not yet excluded, i.e., such
that s € A(¢o~)7r. Finally, the third clause stipulates the other inductive step: At an odd-length
position 1 € (AT)(¢)°%, the next move r by ¢ must be as in A(¢ o)t C |AL| for some v : T
not yet excluded, i.e., such that t/ € A(¢o~v)7r. The idea is that in the subgame Al'(¢) C |AT]
Opponent can play as in any subgame A(¢ o~)7r C |Al| not yet excluded. Because Player or ¢
should be able to see what the input strategy v : I' is only via plays, the subgame Al'(¢) C |AT
only allows Player to play as in the game A(¢ o v)7r for all v not yet excluded.

Yamada [Yam23] emphasises that strategies ¢ : Al are the ordinary ones (Appendix A.1.9),
which just satisfy an additional axiom. In particular, this means that ¢ can see Opponent’s strategy
v : T on the domain I' only gradually via plays. In this way, his approach retains the intensionality
of standard game semantics.

Besides, p-games give rise to categories just like games do (Appendix A.1.17):

Definition Appendix A.2.11 (categories of p-games [Yam23]). The category PG, consists of
e Well-opened p-games as objects;
¢ Strategies on the implication I' = A as morphisms I' — A;

o The composition 1) @ ¢ := 1y o ¢ : I' = O of strategies as the composition of morphisms
¢:T'—=Aandvy: A — O;

 The dereliction der|p| : I' = I" as the identity idr on each object T'.

Its subcategory LPG, (respectively, WPG,) has well-founded, well-opened p-games and winning
(respectively, winning, well-bracketed) strategies. Let

PG,(T) := PG(T,T), LPG(T) := LPGy(T,T), WPG,(T) := WPG(T,T).

Again, the subscript (), is to distinguish these categories from linear ones, and we focus on
well-opened or well-opened, well-founded games for the identities to be well-defined. Since the logic
of MLTT is intuitionistic, Yamada [Yam23] focuses on the category WPG, and establishes game
semantics of MLTT by showing that WPG, induces a CwF (Definition 3.0.1).

In the following, we recall the additional structures on the category WIPG; that lift it to a CwF.
First, types in the CwF WPG, are dependent p-games:

49

Definition Appendix A.2.12 (dependent p-games [Yam23]). A linearly dependent p-game over
a p-game I' is a pair L = (|L|, ||L||) of a game |L| and a family ||L|| = {L(70) },,ewee,(r) of p-games
L(v0) such that |L(v)| = |L|. It is well-opened (respectively, well-founded) if so is the game |L|.
The extension of the family ||L| is the family L* = {L*(v)},.r, where

L*() N L(’Y) if’)/ € WPG'(F)v
"l 2(|L|) otherwise,

and a dependent p-game over I is a linearly dependent p-game over the exponential IT.

Notation. Let 2,(I") (respectively, 2;'(I')) be the class of all linearly dependent p-games (respec-
tively, well-opened, well-founded ones) over a p-game I', {T”}1 or {I'} the constant one at I, i.e.,
{I"}r =T, (y:) = T7), 2(T) := 2,('T") and 2% (T) := 2;'(IT"). We write ~! for an arbitrary
element of WPG(IT"), where vy € WPG(I'), since elements of WPG(!T") are all innocent and thus
the promotions of elements of WPG,(I"). For the case of the CwF [UIE”G!(EH)7 the class Z(T") for each

re [UIPG,(eH) is a set because dependent p-games in UIP’G,(EH) are inductively constructed.

Example Appendix A.2.13. A dependent p-game Listy € 2V (N) for finite lists of natural
numbers is defined by

Listy (k") :==N&N&...& N (keN), |Listy| := | Listy (k).
k keN

Next, terms in the CwF WPG, are winning, well-bracketed strategies on the following:

Definition Appendix A.2.14 (Pi[Yam23]). Let L be a linearly dependent p-game over a p-game
I, and A be a dependent p-game over I'. The linear-Pi from I" to L is the p-game II,(T, L) defined
by |TIy(T, L)| := |L|I'l and for all ¢ : [TT,(T, L)|

II,(T, L)(¢) := {€} U {sm € [II,(T, L)% | s € TI,(T', L)($), 3y : T.sm € L*(7)(poy)r }
U {tlr € [To(T, L) | tl € (T, L)(¢),Vy : T.tl € L*(7)(p o))" = tir € L*(y)(¢07)7r },

and the P7 from T" to A is the linear-Pi
II(T, A) :=TI,('T, A),
where we write I' = A for II(T', A) if A is constant.

The idea of linear-Pi is that it is linear implication between p-games except that it also satisfies
type dependency. Here, the type dependency means that the codomain of a linear-Pi II,(T", L) is
the p-game L(vy) if the input strategy « : I" on the domain satisfies v € WPG,(T"), and the constant
one #(|L|) otherwise. Similarly to linear implication (Appendix A.2.10), this type dependency
on linear-Pi is imposed only gradually (and often incompletely) along the gradual (and often in-
complete) disclosure of the input strategies by Opponent during a play; i.e., linear-Pi is highly
intensional. We then define Pi out of linear-Pi and exponential in the same way as we define impli-
cation out of linear implication and exponential. Accordingly, linear-Pi (respectively, Pi) generalises
linear implication (respectively, implication): Given p-games I" and I, we have

(T, {I"}p) =T — I, (L, {I"}yr) =T =T

50

Example Appendix A.2.15. There is a strategy ¢ : II(N, List ;) that plays as the dependent
function n € N — (0,0,...,0) € N™ as follows.

1. If Opponent makes the first move qp; (K € Ni) on the codomain |Listy|, where (_)p is the
tag on the kth component in the product Njjj & Nigj & ..., then (asks a question g on the
domain !Ny, where (_)[o) is another tag;

2. Next, if Opponent plays by qqjo) = njo) (0 € Ny), then ¢ by qpqnp) = Opy- If £ < n,
then n' € WPG,(!N) on the domain is not yet excluded; ¢ is compatible with this possibility
since its computation so far is within the subgame N = Listy (n') C |[II(V, Listy)).

Finally, comprehensions in the CwEF WPG, are given by:

Definition Appendix A.2.16 (Sigma [Yam23]). The Sigma of a p-game I' and a dependent
p-game A over I is the p-game X(T", A) defined by

o B, A)] = [T & [A],
o S, A) (v, 0) =T() & A (YN (@) ({(v,0) : [E(T, 4))),
where we write I' & A for X(T', A) if A is constant.

The idea is that strategies on the Sigma X(T', A) are those (v,) : |I'| & |A| that satisfy v : T
and a : A(y") if v € WPG(T'). When A is a constant one {I"}r, we have (I, {I"}hr) & T & I".
Thus, Sigma generalises product on p-games.

Example Appendix A.2.17. Winning strategies on the Sigma (N, List ;) are those (k, 7) with
ke N, T:<...<m,@>,...,%>ZLiStN(ET), N1, N2, ..., N €N,

which play as the dependent pairings (k, (n1,ns,...,n%)) € Nx N¥. The strategy filtering and game
fizing in p-games are crucial for the winning of these strategies (k, 7).

We are now ready to recall:

Theorem Appendix A.2.18 (a game-semantic CwF [Yam23]). The category WPG, gives rise
to a CwF as follows:

e The terminal p-game T € WPG, (Appendiz A.2.2) is a terminal object;

o We define

Ty(T) := 2¥() (T € WPGy), Tm(T, A) := WPG,(II(T, A)) (A € 2%());

o Given a morphism ¢ : A — T, we define the map {¢} : Ty(T') — Ty(A) by

|A{o}] = [Al, A{}(60) == A(o' » &)
Jor all A € Ty(T') and 6} € WPGy(!A), and the map {¢}a : Tm(I, A) — Tm(A, A{¢}) by
a{plai=aed

for all a € Tm(T', A);

o1

We define
I.A:=%(T,A), pa :=derp : X(I',A) = T, va i=derj g I(X(T, A), A{pa}),

(p,)4 = (P, &) : A = E(TA) (& € Tm(A, A{¢})).

For any I' € WPG, and A € 2% (1), let WPG(T', A) := Tm(T", A). Strictly speaking, a CwF

only interprets the core part of MLTT common to all types. For interpreting One-, Zero-, N-, Pi-
Sigma- and Id-types, we need to equip the CwF WPG, with the semantic type-formers [Hof97, §3.3]
that interpret these types. In the following, we only sketch the game-semantic type-formers on the
CwF WPG,, leaving the general definition of semantic type-formers to Hofmann [Hof97, §3.3].

Fix objects A,T' € WPG, and types A € 2¥(T") and B € 2% (X(T', A)). For the semantic type-

formers of One-, Zero-, N-, Pi- and Sigma-types, it suffices to lift the terminal p-game, the empty
p-game, the natural number p-game, Pi and Sigma on dependent p-games, respectively:

Theorem Appendix A.2.19 (game semantics of Pi-types [Yam23]). WPG, has Pi-types, where

(II-ForM) A dependent p-game II(A, B) € 2¥(T") is given by
TI(4, B)| := [A] = [B], (A, B)(3) == TI(A(%), Bs) (v € WPG(IT)),

where another dependent p-game B‘YT € @W(A(vg)) is given by
0

|Bil = |Bl, B.i(a}) = B((0,a0)") (ah € WPGI(1A(%))),

Yo

and we write A = B for II(A, B) if B_; is constant for each ’yg € WPG,(IT"). Note that the
0
equation (II-SUBST)

(A, B){¢} = II(A{¢}, B{o}}) (A.1)

holds for each morphism ¢ : A — I', where

ot = (pep,v): AA{¢} = A

(II-INTRO) Given a term B € WPG(X(T', A), B), a term
)‘A7B(6) € WPG'(F7H(A7 B))7

where the subscripts (1) a,p on Aa,p are often omitted, is obtained from B by adjusting tags
with respect to the adjunction between tensor @ and linear implication — [McC98] via the

evident isomorphism
'S, A)f = (T & |A]) =T @ Al

(II-ELim) We define the term
appA,B("i’ a) = AE}B("{){E} € WPG'(Fv B{a})

for all k € WPG(T', II(A, B)) and o € WPGy(T', A), where the subscripts (1)a,p on app g
are often omitted.

52

Theorem Appendix A.2.20 (game semantics of Sigma-types [Yam23]). The CwF WPG, has
Sigma-types, where

e (X-ForM) We define the dependent p-game

£(4, B) = (|A| & | Bl {(A0), By1)}t cwp,or):

where we write A& B for X(A, B) if ng is constant for each 'yg € WPGy(IT").
e (3-INTRO) By the evident bijection
Y(X(T, A), B) 2 X(T, %(A, B)),
we define an isomorphism

Paira g == (pa e b5, (va{ps},ve)) : Z(X(T, A), B) = (T, %(A, B)).

o (X-ELiM) For a term p € WPG(X(X(T, A), B), P{Paira g}), let
R% p.p(p) = p{Pairy'y} € WG (S(T, X(4, B)), P).
Theorem Appendix A.2.21 (game semantics of atomic types [Yam23]). The CwF WPG, has
One-, Zero- and N-types, where their formation rules are given by the constant dependent p-games

at the terminal p-game T, the empty p-game 0 and the natural number p-game N, for which abusing
notation we write 1, 0 and N, respectively.

Finally, we recall the interpretation of Id-types:

Theorem Appendix A.2.22 (game semantics of Id-types [Yam23]). The CwF WPG, has Id-
types, where

e (ID-ForMm) We define the p-game
T = P2(fat({\/})) (Appendiz A.1.8),
where \/ is an arbitrarily fized element, and the dependent p-game
Ida € 2V (S(2(T, A), A1)

by [Ida| :=T" and
(Tlv KT’) if ag = 0‘6;
(T', ko) otherwise

Id 4 ({{70, o), ap)T) == {

for all ({0, ap),ah) € WPG(!X(2(T, A), A1), where AT := A{pa} € Ty([.A), and kx is

the constant family at a game X.
o (ID-INTRO) We define the term
Refly = (va,refly) € WPG,(2(T, A), S(X(2(T, A), A7), Id,)),

where refly € WPG(X(T', A),Ida{Va}) is the strategy \/ : T" (Appendiz A.1.8) up to tags.

53

The game-semantic Id-type Id 4 embodies ‘trivially true’ proposition if the two input strategies
ap and «f are equal on the nose, and ‘trivially false’ one otherwise. Therefore, it is no surprise that
those Id-types validate the principle of uniqueness of identity proofs [Yam23, §4.6]. It is left open
to establish a nontrivial game-semantic interpretation of Id-types that refutes the principle.

Example Appendix A.2.23. The Id-type
f:N=N,g: N = NFIdy=n(f, g) type
is interpreted in the CwF WPG, by the dependent p-game
Idyony € 2V (2(X(T,N = N),N = N)).
One may then wonder how the Pi
II(X(%(T,N = N),N = N),Idy=n)

works since one never completely knows what the input strategies on the domain given by Opponent
are. Nevertheless, the Pi works because a component of the codomain of each Pi (Appendix A.2.14)
has to be specified only gradually (and often incompletely) along the gradual (and often incomplete)
disclosure of input strategies on the domain by Opponent in each play [Yam23].

54

